1
|
Krokengen OC, Touma C, Mularski A, Sutinen A, Dunkel R, Ytterdal M, Raasakka A, Mertens HDT, Simonsen AC, Kursula P. The cytoplasmic tail of myelin protein zero induces morphological changes in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184368. [PMID: 38971517 DOI: 10.1016/j.bbamem.2024.184368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
The major myelin protein expressed by the peripheral nervous system Schwann cells is protein zero (P0), which represents 50% of the total protein content in myelin. This 30-kDa integral membrane protein consists of an immunoglobulin (Ig)-like domain, a transmembrane helix, and a 69-residue C-terminal cytoplasmic tail (P0ct). The basic residues in P0ct contribute to the tight packing of myelin lipid bilayers, and alterations in the tail affect how P0 functions as an adhesion molecule necessary for the stability of compact myelin. Several neurodegenerative neuropathies are related to P0, including the more common Charcot-Marie-Tooth disease (CMT) and Dejerine-Sottas syndrome (DSS) as well as rare cases of motor and sensory polyneuropathy. We found that high P0ct concentrations affected the membrane properties of bicelles and induced a lamellar-to-inverted hexagonal phase transition, which caused bicelles to fuse into long, protein-containing filament-like structures. These structures likely reflect the formation of semicrystalline lipid domains with potential relevance for myelination. Not only is P0ct important for stacking lipid membranes, but time-lapse fluorescence microscopy also shows that it might affect membrane properties during myelination. We further describe recombinant production and low-resolution structural characterization of full-length human P0. Our findings shed light on P0ct effects on membrane properties, and with the successful purification of full-length P0, we have new tools to study the role of P0 in myelin formation and maintenance in vitro.
Collapse
Affiliation(s)
- Oda C Krokengen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Christine Touma
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anna Mularski
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ryan Dunkel
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marie Ytterdal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY, Hamburg, Germany
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway; Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
2
|
Raasakka A, Kursula P. How Does Protein Zero Assemble Compact Myelin? Cells 2020; 9:E1832. [PMID: 32759708 PMCID: PMC7465998 DOI: 10.3390/cells9081832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Myelin protein zero (P0), a type I transmembrane protein, is the most abundant protein in peripheral nervous system (PNS) myelin-the lipid-rich, periodic structure of membrane pairs that concentrically encloses long axonal segments. Schwann cells, the myelinating glia of the PNS, express P0 throughout their development until the formation of mature myelin. In the intramyelinic compartment, the immunoglobulin-like domain of P0 bridges apposing membranes via homophilic adhesion, forming, as revealed by electron microscopy, the electron-dense, double "intraperiod line" that is split by a narrow, electron-lucent space corresponding to the extracellular space between membrane pairs. The C-terminal tail of P0 adheres apposing membranes together in the narrow cytoplasmic compartment of compact myelin, much like myelin basic protein (MBP). In mouse models, the absence of P0, unlike that of MBP or P2, severely disturbs myelination. Therefore, P0 is the executive molecule of PNS myelin maturation. How and when P0 is trafficked and modified to enable myelin compaction, and how mutations that give rise to incurable peripheral neuropathies alter the function of P0, are currently open questions. The potential mechanisms of P0 function in myelination are discussed, providing a foundation for the understanding of mature myelin development and how it derails in peripheral neuropathies.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland
| |
Collapse
|
3
|
Thermodynamic Analysis of Protein-Lipid Interactions by Isothermal Titration Calorimetry. Methods Mol Biol 2019; 2003:71-89. [PMID: 31218614 DOI: 10.1007/978-1-4939-9512-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Isothermal titration calorimetry is a highly sensitive and powerful technique for the study of molecular interactions. This method can be applied universally for studying the interaction between moleculeAbstracts, molecular assembles and ions as it measures the heat changes resulting from such interactions and does not need any probe molecule/moiety to be incorporated into the system under investigation. This method has been applied quite extensively to investigate the interaction of proteins with other biomolecules such as small ligands, other proteins, nucleic acids, lipid membranes as well as to study the interaction of antibodies, drugs, metal ions and nanoparticles with target proteins or antigens, nucleic acids, and membranes. In this chapter, we describe the application of ITC for the investigation of thermodynamics of protein-lipid interaction. A number of important parameters such as enthalpy of binding (ΔH), entropy of binding (ΔS), association constant (Ka), binding stoichiometry (n) and free energy of binding (ΔG) can be obtained from a single calorimetric titration, providing a complete thermodynamic characterization of the interaction. The method is described in detail taking the major protein of the bovine seminal plasma, PDC-109, which exhibits a high preference for interaction with choline-containing lipids, as an example. The method can be applied to investigate thermodynamic parameters associated with the interaction of other soluble proteins with lipid membranes.
Collapse
|
4
|
Swamy MJ, Sankhala RS. Probing the thermodynamics of protein-lipid interactions by isothermal titration calorimetry. Methods Mol Biol 2013; 974:37-53. [PMID: 23404271 DOI: 10.1007/978-1-62703-275-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Isothermal titration calorimetry is a highly sensitive technique for the study of molecular interactions. This method has been applied quite extensively to investigate the interaction of proteins with small ligands, other proteins, and nucleic acids as well as with drugs and metal ions. In this chapter, we describe the application of ITC for the investigation of thermodynamics of protein-lipid interaction. A number of parameters such as enthalpy of binding (ΔH), entropy of binding (ΔS), association constant (K (a)), binding stoichiometry (n), and free energy of binding (ΔG) can be obtained from a single calorimetric titration, providing a complete thermodynamic characterization of the interaction. The method is described in detail taking the major protein of the bovine seminal plasma, PDC-109, which exhibits a high preference for interaction with choline-containing lipids, as an example. The method can be applied to investigate the thermodynamics of the interaction of other soluble proteins with lipid membranes.
Collapse
Affiliation(s)
- Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad, India.
| | | |
Collapse
|
5
|
Cristofolini L, Fontana MP, Serra F, Fasano A, Riccio P, Konovalov O. Microstructural analysis of the effects of incorporation of myelin basic protein in phospholipid layers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 34:1041-8. [PMID: 15917983 DOI: 10.1007/s00249-005-0489-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/07/2005] [Accepted: 05/04/2005] [Indexed: 12/01/2022]
Abstract
We report an X-ray reflectivity study on the effects of adsorption of myelin basic protein (MBP) on Langmuir monolayers and on deposited Langmuir-Schaefer multilayers of the phospholipid dipalmitoyl phosphatidylglycerol (DPPG). We provide for the first time, direct microscopic evidence on the destructuring effects of MBP leading to plasticity of the DPPG layers supporting commonly accepted models of the stabilizing role of MBP in the myelin membrane. We also show how protein adsorption onto the layer is determined both by electrostatic and nonspecific hydrophobic interactions.
Collapse
Affiliation(s)
- L Cristofolini
- Dipartmento di Fisica e Istituto Nazionale per la Fisica della Materia, Universita' di Parma, Parco Area delle Scienze 7a, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
6
|
Harauz G, Ishiyama N, Hill CMD, Bates IR, Libich DS, Farès C. Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 2004; 35:503-42. [PMID: 15219899 DOI: 10.1016/j.micron.2004.04.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The 18.5 kDa isoform of myelin basic protein (MBP) is a major component of the myelin sheath in the central nervous system of higher vertebrates, and a member of a larger family of proteins with a multiplicity of forms and post-translational modifications (PTMs). The 18.5 kDa protein is the exemplar of the family, being most abundant in adult myelin, and thus the most-studied. It is peripherally membrane-associated, but has generally been investigated in isolated form. MBP is an 'intrinsically unstructured' protein with a high proportion (approximately 75%) of random coil, but postulated to have core elements of beta-sheet and alpha-helix. We review here the properties of the MBP family, especially of the 18.5 kDa isoform, and discuss how its three-dimensional (3D) structure may be resolved by direct techniques available to us, viz., X-ray and electron crystallography, and solution and solid-state NMR spectrometry. In particular, we emphasise that creating an appropriate environment in which the protein can adopt a physiologically relevant fold is crucial to such endeavours. By solving the 3D structure of 18.5 kDa MBP and the effects of PTMs, we will attain a better understanding of myelin architecture, and of the molecular mechanisms that transpire in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular Biology and Genetics, Biophysics Interdepartmental Group, University of Guelph, Room 230, Axelrod Building, 50 Stone Road East, Guelph, Ont., Canada N1G 2W1.
| | | | | | | | | | | |
Collapse
|
7
|
Boggs JM, Jo E, Polozov IV, Epand RF, Anantharamaiah GM, Blazyk J, Epand RM. Effect of magainin, class L, and class A amphipathic peptides on fatty acid spin labels in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1511:28-41. [PMID: 11248202 DOI: 10.1016/s0005-2736(00)00379-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Magainins and other antimicrobial peptides increase ion flux across the membrane. They may do this by forming some type of pore or by perturbing lipid organization due to peptide lying on the bilayer surface. In order to determine if magainins perturb the lipid sufficiently to permeabilize the bilayer, their effect on the motion of fatty acid and lipid spin labels in phosphatidylcholine/phosphatidylglycerol (PC/PG) lipid vesicles was determined. Their effect was compared to two synthetic peptides, 18L and Ac-18A-NH(2), designed to mimic the naturally occurring classes of lytic (class L) and apolipoprotein (class A) amphipathic helices, respectively. We show that although magainins and 18L both had significant effects on lipid chain order, much greater than Ac-18A-NH(2), there was no correlation between these effects and the relative ability of these three peptide classes to permeabilize PC/PG vesicles in the order magainins=Ac-18A-NH(2) >> 18L. This suggests that the perturbing effects of magainins on lipid chain order at permeabilizing concentrations are not directly responsible for the increased leakage of vesicle contents. The greater ability of the magainins to permeabilize PC/PG vesicles relative to 18L is thus more likely due to formation of some type of pore by magainins. The greater ability of Ac-18A-NH(2) relative to 18L to permeabilize PC/PG vesicles despite its lack of disordering effect must be due to its ability to cause membrane fragmentation. Effects of these peptides on other lipids indicated that the mechanism by which they permeabilize lipid bilayers depends both on the peptide and on the lipid composition of the vesicles.
Collapse
Affiliation(s)
- J M Boggs
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Boggs JM, Rangaraj G, Koshy KM. Analysis of the membrane-interacting domains of myelin basic protein by hydrophobic photolabeling. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1417:254-66. [PMID: 10082801 DOI: 10.1016/s0005-2736(99)00008-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myelin basic protein is a water soluble membrane protein which interacts with acidic lipids through some type of hydrophobic interaction in addition to electrostatic interactions. Here we show that it can be labeled from within the lipid bilayer when bound to acidic lipids with the hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID) and by two lipid photolabels. The latter included one with the reactive group near the apolar/polar interface and one with the reactive group linked to an acyl chain to position it deeper in the bilayer. The regions of the protein which interact hydrophobically with lipid to the greatest extent were determined by cleaving the TID-labeled myelin basic protein (MBP) with cathepsin D into peptides 1-43, 44-89, and 90-170. All three peptides from lipid-bound protein were labeled much more than peptides from the protein labeled in solution. However, the peptide labeling pattern was similar for both environments. The two peptides in the N-terminal half were labeled similarly and about twice as much as the C-terminal peptide indicating that the N-terminal half interacts hydrophobically with lipid more than the C-terminal half. MBP can be modified post-translationally in vivo, including by deamidation, which may alter its interactions with lipid. However, deamidation had no effect on the TID labeling of MBP or on the labeling pattern of the cathepsin D peptides. The site of deamidation has been reported to be in the C-terminal half, and its lack of effect on hydrophobic interactions of MBP with lipid are consistent with the conclusion that the N-terminal half interacts hydrophobically more than the C-terminal half. Since other studies of the interaction of isolated N-terminal and C-terminal peptides with lipid also indicate that the N-terminal half interacts hydrophobically with lipid more than the C-terminal half, these results from photolabeling of the intact protein suggest that the N-terminal half of the intact protein interacts with lipid in a similar way as the isolated peptide. The similar behavior of the intact protein to that of its isolated peptides suggests that when the purified protein binds to acidic lipids, it is in a conformation which allows both halves of the protein to interact independently with the lipid bilayer. That is, it does not form a hydrophobic domain made up from different parts of the protein.
Collapse
Affiliation(s)
- J M Boggs
- Division of Structural Biology and Biochemistry, Research Institute, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada.
| | | | | |
Collapse
|
9
|
Hirsh DJ, Lazaro N, Wright LR, Boggs JM, McIntosh TJ, Schaefer J, Blazyk J. A new monofluorinated phosphatidylcholine forms interdigitated bilayers. Biophys J 1998; 75:1858-68. [PMID: 9746526 PMCID: PMC1299856 DOI: 10.1016/s0006-3495(98)77626-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
16-Fluoropalmitic acid was synthesized from 16-hydroxypalmitic acid using diethylaminosulfur trifluoride. This monofluorinated fatty acid then was used to make 1-palmitoyl-2-[16-fluoropalmitoyl]-phosphatidylcholine (F-DPPC) as a fluorinated analog of dipalmitoylphosphatidylcholine (DPPC). Surprisingly, we found that the phase transition temperature (Tm) of F-DPPC occurs near 50 degrees C, approximately 10 degrees C higher than its nonfluorinated counterpart, DPPC, as judged by both differential scanning calorimetry and infrared spectroscopy. The pretransition observed for DPPC is absent in F-DPPC. A combination of REDOR, rotational-echo double-resonance, and conventional solid-state NMR experiments demonstrates that F-DPPC forms a fully interdigitated bilayer in the gel phase. Electron paramagnetic resonance experiments show that below Tm, the hydrocarbon chains of F-DPPC are more motionally restricted than those of DPPC. X-ray scattering experiments confirm that the thickness and packing of gel phase F-DPPC is similar to that of heptanetriol-induced interdigitated DPPC. F-DPPC is the first phosphoglyceride containing sn-1 and sn-2 ester-linked fatty acyl chains of equal length that spontaneously forms interdigitated bilayers in the gel state in the absence of inducing agents such as alcohols.
Collapse
Affiliation(s)
- D J Hirsh
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Hao YH, Xu YM, Chen JW, Huang F. A drug-lipid interaction model: atropine induces interdigitated bilayer structure. Biochem Biophys Res Commun 1998; 245:439-42. [PMID: 9571171 DOI: 10.1006/bbrc.1998.8453] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-ray diffraction and fluorescence methods have been carried out to examine the effects of a drug, atropine, on the structure of model membranes: dipalmitoylphosphatidylglycerol(DPPG) multilamella vesicles(MLVs). A structural analysis by small angle x-ray diffraction shows that, with incorporation of atropine, the lamella repeating period of DPPG MLV is decreased from 5.89 nm to 4.52 nm. Using fluorescence probe 1,6-diphenyl-1,3,5-hexatriene(DPH) we find that the fluorescence intensity of DPH reduces largely at a narrow scope of atropine concentration. The experiments of fluorescence polarization of n-(9-anthroyloxyl)-stearic acid (nAS) and 16-(9-anthroyloxyl)-palmiticacid (16AP) discover that the normal polarization gradient almost disappears in DPPG/atropine system. By colligating the above results, we can draw a conclusion that atropine induces the transition from non-interdigitated to interdigitated stricture of DPPG vesicles in gel phase, which provides a sound model of drug-lipid interaction.
Collapse
Affiliation(s)
- Y H Hao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academy Sinica, Beijing, China
| | | | | | | |
Collapse
|
11
|
Boggs JM, Rangaraj G. Greater partitioning of small spin labels into interdigitated than into non-interdigitated gel phase bilayers. Chem Phys Lipids 1997. [DOI: 10.1016/s0009-3084(97)02663-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Shin I, Silman I, Weiner LM. Interaction of partially unfolded forms of Torpedo acetylcholinesterase with liposomes. Protein Sci 1996; 5:42-51. [PMID: 8771195 PMCID: PMC2143252 DOI: 10.1002/pro.5560050106] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A water-soluble dimeric form of acetylcholinesterase from electric organ tissue of Torpedo californica was obtained by solubilization with phosphatidylinositol-specific phospholipase C of the glycophosphatidylinositol-anchored species, followed by purification by affinity chromatography. The water-soluble species, in its catalytically active native conformation, did not interact with unilamellar vesicles of dimyristoylphosphatidylcholine. We previously showed that either chemical modification or exposure to low concentrations of guanidine hydrochloride converted the native enzyme to compact, partially unfolded species with the physicochemical characteristics of the molten globule state. In the present study, it was shown that such molten globule species, whether produced by mild denaturation or by chemical modification, interacted efficiently with small unilamellar vesicles. Binding was not accompanied by significant vesicle fusion, but transient leakage occurred at the time of binding. The bound acetylcholinesterase reduced the transition temperature of the vesicles slightly, and NMR data suggested that it interacted primarily with the head-group region of the bilayer. The effects of tryptic digestion of the bound acetycholinesterase were monitored by gel electrophoresis under denaturing conditions. It was found that a single polypeptide, of mass approximately 5 kDa, remained associated with the vesicles. Sequencing revealed that this is a tryptic peptide corresponding to the sequence Glu 268-Lys 315. This polypeptide contains the longest hydrophobic sequence in the protein, Leu 274-Met 308, as identified on the basis of hydropathy plots. Inspection of the three-dimensional structure of acetylcholinesterase reveals that this hydrophobic sequence is largely devoid of tertiary structure and is localized primarily on the surface of the protein. It is suggested that this hydrophobic sequence is aligned parallel to the surface of the vesicle membrane, with nonpolar residues undergoing shallow penetration into the bilayer.
Collapse
Affiliation(s)
- I Shin
- Department of Neurobiology, Weizmann Institute of Science, Rehovol, Israel
| | | | | |
Collapse
|
13
|
Lo YL, Rahman YE. Protein location in liposomes, a drug carrier: a prediction by differential scanning calorimetry. J Pharm Sci 1995; 84:805-14. [PMID: 7562428 DOI: 10.1002/jps.2600840705] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Location of protein drugs in lipid carriers often determines the stability, loading efficiency, and release rate of these drugs from the carriers following administration. On the basis of conventional differential scanning calorimetry (DSC) measurements, Papahadjopoulos et al. (Biochim. Biphys. Acta 1975, 401, 317-335) proposed that proteins can be classified into three categories depending on their effects on the thermotropic behavior of the lipids, e.g., transition temperature and enthalpy. Interactions are usually electrostatic, hydrophobic, or their combination. The nature of these interactions are reflected by changes in various thermotropic parameters. Our study aims to test the validity of Papahadjopoulos' classification. Hydrophilic ribonuclease A, cytochrome c, and superoxide dismutase (SOD), as well as hydrophobic cyclosporin A, are used as model proteins. Neutral lipids, e.g., dipalmitoylphosphatidylcholine, and/or negatively charged lipids, e.g., dipalmitoylphosphatidylglycerol (DPPG), are used to prepare liposomes. Results from conventional and high-sensitivity DSC are compared. High-sensitivity DSC gives significant, more reproducible results. We find that the classification of Papahadjopoulos et al. needs to be modified. No hydrophilic proteins bind to liposomes exclusively on the surface by electrostatic interactions, and some degree of penetration is observed in most cases. An unexpected binding between SOD and DPPG liposomes is observed. The binding of SOD to negatively charged lipids may account, at least in part, for its ability to protect lipid membranes against oxygen-mediated injury.
Collapse
Affiliation(s)
- Y L Lo
- Department of Pharmaceutics, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
14
|
Zhang F, Rowe ES. Calorimetric studies of the interactions of cytochrome c with dioleoylphosphatidylglycerol extruded vesicles: ionic strength effects. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1193:219-25. [PMID: 8054342 DOI: 10.1016/0005-2736(94)90156-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytochrome c has been studied as an example of a peripheral membrane protein which interacts with the lipids as well as the proteins of the inner mitochondrial membrane. In order to elucidate the thermodynamic properties of these interactions, isothermal titration calorimetry and differential scanning calorimetry (DSC) were used to study the binding of cytochrome c to negatively charged dioleoylphosphatidylglycerol (DOPG) extruded vesicles as a function of ionic strength. The binding constant and enthalpy of association decrease with increasing ionic strength, with no binding detected above 0.5 M NaCl. The enthalpy of the binding of cytochrome c to DOPG-extruded vesicles was 15 kcal/mol, and the binding constant was 6 x 10(6) M-1 at the lowest ionic strengths. The minimum size of the lipid cluster to which the protein bound was found to be approx. 9 lipid molecules in the titration calorimetry measurements and as low as 5 lipid molecules in the DSC measurements. The stability of the bound cytochrome c was found to be reduced; the thermal denaturation temperature was lowered from 83 to 50 degrees when bound to DOPG. The results of this study support previous suggestions that cytochrome c may undergo a conformational change when it binds to charged lipids such as DOPG. The results also support the suggestion that the protein penetrates partially into the lipid bilayer.
Collapse
Affiliation(s)
- F Zhang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66103
| | | |
Collapse
|
15
|
Wang PY, Lu JZ, Chen JW, Hwang F. Interaction of the interdigitated DPPG or DPPG/DMPC bilayer with human erythrocyte band 3: differential scanning calorimetry and fluorescence studies. Chem Phys Lipids 1994; 69:241-9. [PMID: 8194160 DOI: 10.1016/0009-3084(94)90005-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human erythrocyte band 3 reconstituted into phospholipid vesicles has been used for studying the interaction of interdigitated lipid bilayer with an integral membrane protein. The interdigitated gel phase in DPPG/band 3 or DPPG/DMPC/band 3 systems was induced with polymyxin B (PMB) or Tris+. The phase transitions of the vesicles were detected with high-sensitivity differential scanning calorimetry (DSC). The results indicated that band 3 does not cause significant alterations in the interdigitated phase of phospholipids, with only a little decrease of the phase transition enthalpies. Fluorescence measurements showed that the transition of phospholipid/band 3 systems from the non-interdigitated to interdigitated phase is accompanied by marked intrinsic fluorescence changes of band 3. The interdigitated phase of DPPG or DPPG/DMPC vesicles increases the intrinsic fluorescence intensity of band 3 and significantly decreases the accessibility of certain tryptophan residues on the protein to Cs+.
Collapse
Affiliation(s)
- P Y Wang
- Institute of Biophysics, Academia Sinica, Beijing, China
| | | | | | | |
Collapse
|
16
|
Ye Q, Biltonen RL. Differential scanning and dynamic calorimetric studies of cooperative phase transitions in phospholipid bilayer membranes. Subcell Biochem 1994; 23:121-60. [PMID: 7855872 DOI: 10.1007/978-1-4615-1863-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Q Ye
- Department of Biochemistry, University of Virginia Health Sciences Center, Charlottesville 22908
| | | |
Collapse
|
17
|
Maggio B. The surface behavior of glycosphingolipids in biomembranes: a new frontier of molecular ecology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1994; 62:55-117. [PMID: 8085016 DOI: 10.1016/0079-6107(94)90006-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- B Maggio
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0614
| |
Collapse
|
18
|
Abstract
The effect of anisodamine on the structure of the gel phase and the properties of the acyl chain disordering transition of dipalmitoylphosphatidylglycerol (DPPG) has been studied through high-sensitivity differential scanning calorimetry (DSC) and fluorescence polarization measurements of 16-(9-anthroyloxyl)-palmitic acid (16AP) and 3-(9-anthroyloxyl)-stearic acid (3AS), labeling, respectively, the ends and the third carbon of the acyl chains. The non-interdigitated DPPG multilamellar vesicles formed in HEPES buffer show clear fluidity gradient in their acyl chains, whereas the fluidity gradients are completely abolished in the presence of anisodamine. The DSC results showed that the phase transition temperature (Tm) of DPPG is decreased and the enthalpy (delta H) is increased by anisodamine, while the pre-transition vanishes. At 3 mM anisodamine, the delta H of DPPG reaches 9.6 kcal/mol. It can be concluded that DPPG forms an interdigitated gel phase in the presence of anisodamine. A molecular scheme for the interaction of anisodamine with DPPG is proposed.
Collapse
Affiliation(s)
- P Y Wang
- National Laboratory of Biomacromolecules, Academia Sinica, Beijing, China
| | | | | |
Collapse
|
19
|
Boggs JM, Koshy KM, Rangaraj G. Thermotropic phase behavior of mixtures of long chain fatty acid species of cerebroside sulfate with different fatty acid chain length species of phospholipid. Biochemistry 1993; 32:8908-22. [PMID: 8395886 DOI: 10.1021/bi00085a024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The thermotropic phase behavior of asymmetric, long fatty acid chain species of cerebroside sulfate, C24-CBS and C26-CBS, with symmetric species of phosphatidylcholine (PC) containing fatty acid chains of 14-18 carbons in length (diC14-PC, diC16-PC, diC18-PC) and dimyristoylphosphatidylethanolamine (diC14-PE) in 0.1 M KCl was studied by differential scanning calorimetry. Novel cerebroside sulfate (CBS) spin labels containing long chain C24 and C26 fatty acid spin labels with the nitroxide group on the twenty-second carbon were used to study the lipid organization of the gel phases of these mixtures. The phase diagrams of all the mixtures indicated the presence of two immiscible gel phases at low CBS concentrations. All except the C26-CBS/diC14-PC mixture had eutectic phase behavior at low CBS concentrations suggesting that the long fatty acid chain of the CBS species had a destabilizing effect on the gel phase of most of the phospholipids. The C26-CBS/diC14-PC mixture had peritectic phase behavior at low CBS concentrations indicating a stabilizing effect of the CBS C26 acyl chain on diC14-PC. These results are consistent with the relative compatibility of the CBS acyl chain length with the bilayer thickness of the PC; only in the case of the C26-CBS/diC14-PC mixture is the acyl chain of CBS long enough to span the PC bilayer. At intermediate to high CBS concentrations, the CBS and phospholipid (PL) were miscible with the exception of the C24-CBS/diC18-PC combination, which had eutectic phase behavior over a wide concentration range. Thus when the PL acyl chain length was similar to the sphingosine chain length of CBS, CBS bilayers could accommodate symmetric phospholipid molecules better than phospholipid bilayers could accommodate asymmetric molecules of CBS. Use of the spin labels indicated that, at low temperatures and at intermediate to high CBS concentrations, all of the mixtures were in a triple chain mixed interdigitated gel phase which immobilized the spin label. This gel phase slowly transformed over a wide temperature range to a double chain partially interdigitated gel phase in which the spin labels had much more motion. This transformation could be detected as a broad low enthalpy transition by differential scanning calorimetry. In all cases the presence of phospholipid destabilized the mixed interdigitated phase. Stabilization of the partially interdigitated bilayer by intermolecular hydrogen bonding interactions must outweigh the destabilizing forces caused by disruptions in packing and van der Waals interactions between CBS molecules resulting from insertion of molecules of phospholipid into this type of bilayer.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J M Boggs
- Department of Biochemistry, Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
20
|
Boggs JM, Tümmler B. Interdigitated gel phase bilayers formed by unsaturated synthetic and bacterial glycerolipids in the presence of polymyxin B and glycerol. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1145:42-50. [PMID: 8380717 DOI: 10.1016/0005-2736(93)90379-e] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability of synthetic phosphoglycerolipids with a cis mono-unsaturated acyl chain in the 2-position and a saturated chain in the 1-position of glycerol to form interdigitated gel phase bilayers in the presence of amphipathic substances was monitored using a fatty acid spin label, 16-doxylstearic acid, and a phosphatidylglycerol spin label containing 16-doxylstearic acid. These spin labels become significantly more motionally restricted in an interdigitated gel phase bilayer than in a non-interdigitated gel phase bilayer. The results indicated that polymyxin B and polymyxin B nonapeptide caused interdigitation of 1-palmitoyl,2-oleoyl-phosphatidylglycerol (POPG) and glycerol caused interdigitation of 1-stearoyl,2-oleoyl-phosphatidylcholine (SOPC), similar to their effects on disaturated lipids. The fluidity gradient present in non-interdigitated gel phase bilayers was abolished. However, glycerol did not cause POPG to become interdigitated, in contrast to SOPC. We reported earlier that there is a kinetic barrier to interdigitation of saturated PG in the presence of glycerol, in contrast to saturated PC. This barrier is even greater for the unsaturated species of PG. Furthermore, these compounds lowered the gel to liquid-crystalline phase transition temperatures of the unsaturated lipids more than of saturated lipids suggesting that the interdigitated bilayer of the former may be less ordered or less stable than that of the latter. Since polymyxin B is an antibiotic we also examined its effect on a lipid extract from the Gram-negative bacteria Pseudomonas aeruginosa in order to assess whether interdigitation might be involved in its mechanism of bactericidal or bacteriostatic effect. Polymyxin B and polymyxin B nonapeptide also caused motional restriction of a small percentage (about 13% at -2 degrees C and 25% at -14 degrees C for polymyxin B) of the spin label in the lipid extract at low temperatures, where the lipid is in the gel phase, consistent with formation of a small domain of interdigitated bilayer lipid. However, the degree of immobilization was less than that in the interdigitated bilayers of the synthetic unsaturated lipids. This may be a result of the heterogeneous nature of the lipids in the extract. However, it cannot be ruled out that the motional restriction of the spin label in this extract may be caused by something other than interdigitation. Thus the results with the lipid extract are less conclusive of interdigitation than for the synthetic lipids. A motionally restricted population was not detectable at higher temperatures.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J M Boggs
- Department of Biochemistry, Hospital for Sick Children, Toronto, Canada
| | | |
Collapse
|
21
|
Abstract
Multiple sclerosis (MS) is characterized by the active degradation of central nervous system myelin, a multilamellar membrane system that insulates nerve axons. MS arises from complex interactions between genetic, immunological, infective, and biochemical mechanisms. Although the circumstances of MS etiology remain hypothetical, one persistent theme involves immune system recognition of myelin-specific antigens derived from myelin basic protein, the most abundant extrinsic myelin membrane protein, and/or another equally suitable myelin protein or lipid. Knowledge of the biochemical and physical-chemical properties of myelin proteins, and lipids, particularly their composition, organization, structure, and accessibility with respect to the compacted myelin multilayers, thus becomes central to understanding how and why these antigens become selected during the development of MS. This article focuses on the current understanding of the molecular basis of MS as it may relate to the protein and lipid components of myelin, which dictate myelin morphology on the basis of protein-lipid and lipid-lipid interactions, and the relationship, if any, between the protein/lipid components and the destruction of myelin in pathological situations.
Collapse
Affiliation(s)
- K A Williams
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
22
|
Abstract
Consideration of the evidence presented in this review leads to the following conclusions: (a) Isolated MBP in aqueous solution has little ordered secondary or tertiary structure. (b) In this state, the protein can associate with a wide range of hydrophobic and amphiphilic compounds, these interactions involving limited sections of the protein. (c) The strength of binding to bilayers and the accompanying conformational changes in the protein are greatest for systems containing acidic lipids, presumably because of the involvement of ionic interactions. (d) When bound to bilayers of acidic lipids, MBP will have substantially more ordered secondary structure than it manifests in aqueous solution, and it is likely to be oligomeric (possibly hexameric). (e) MBP does affect the organization of lipid aggregates. It influences strongly the separation of bilayers in multilayers of purified lipids, and at present this must be viewed as its prime role within myelin. The greatest impediment to our understanding of MBP is the lack of an assayable biological activity. In contrast to the situation with enzymes, for example, we have no functional test for changes in protein structure or changes accompanying interactions with other molecules. Current evidence suggests that the protein has a structural role within myelin and that its own three-dimensional structure is strongly dependent on the molecules with which it is associated. If this picture is correct, studies of the isolated protein or of the protein in reconstituted lipid systems may yield, at best, a rough guide to the structure within its biological environment. Further clarification of the structure and function of MBP may have to await development of more powerful techniques for studying proteins bound to large molecular aggregates, such as lipid bilayers. The paucity of generally applicable methods is reflected in the fact that even low resolution structures are known for only a handful of intrinsic membrane proteins, and even more limited information exists for proteins associated with membrane surfaces. However, the increasing use of a combination of electron microscopy and diffraction on two-dimensional arrays of proteins formed on lipid bilayers (Henderson et al., 1990) offers the hope that it may not be too long before it will be possible to study at moderate resolution the three-dimensional structure of MBP bound to a lipid membrane.
Collapse
Affiliation(s)
- R Smith
- Department of Biochemistry, University of Queensland, St. Lucia, Australia
| |
Collapse
|
23
|
Gasset M, Oñaderra M, Martínez del Pozo A, Schiavo GP, Laynez J, Usobiaga P, Gavilanes JG. Effect of the antitumour protein alpha-sarcin on the thermotropic behaviour of acid phospholipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1068:9-16. [PMID: 1892859 DOI: 10.1016/0005-2736(91)90055-d] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The antitumour protein alpha-sarcin modifies the thermotropic behaviour of phospholipid vesicles. This has been studied by fluorescence depolarization measurements and differential scanning calorimetry. A surface protein-phospholipid interaction is detected by measuring the polarization degree of TMA-DPH-labelled vesicles. At the higher protein/lipid molar ratios studied, the alpha-sarcin-vesicles complexes exhibit different thermotropic behaviour depending on whether they are prepared above or below the Tm of the corresponding phospholipid. Labelling of the protein with photoactive phospholipids has also been considered. alpha-Sarcin penetrates the bilayer deep enough to be labelled with the photoactive group located at the C-12 of the fatty acid acyl chain of phospholipids forming vesicles.
Collapse
Affiliation(s)
- M Gasset
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Ghosh SK, Rawal N, Syed SK, Paik WK, Kim SD. Enzymic methylation of myelin basic protein in myelin. Biochem J 1991; 275 ( Pt 2):381-7. [PMID: 1709004 PMCID: PMC1150064 DOI: 10.1042/bj2750381] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Myelin fractions with different degrees of compaction were isolated from bovine brain, and post-translational methylation of membrane-associated proteins was studied. When the purified myelin-basic-protein-specific protein methylase I and S-adenosyl-L-[methyl-14C]methionine were added exogenously, the most compact myelin fraction exhibited higher methyl-accepting activity than the less compact dense fractions. The methylated protein was identified as myelin basic protein (18.4 kDa) exclusively among the several myelin proteins from all membrane fractions, by SDS/PAGE/radioautography of methyl-14C-labelled membrane proteins. The methyl-14C-labelled amino acid residue in the basic protein was identified by h.p.l.c. as NG-methylarginine, indicating the high degree of specificity for the arginine residue as well as the myelin basic protein in the intact myelin membranes. The possibility of a charge alteration of myelin basic protein resulting from its arginine methylation was investigated by using the purified component 1 of myelin basic protein. The methylated component was shown to be less cationic than the unmethylated component by Bio-Rex 70 cation-exchange chromatography, since the former preceded the latter. However, in the presence of the denaturant (guanidinium chloride), the two species were co-eluted, indicating that the charge difference between methylated and unmethylated myelin basic protein can only be shown under the renatured condition.
Collapse
Affiliation(s)
- S K Ghosh
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140
| | | | | | | | | |
Collapse
|
25
|
Abstract
Multiple sclerosis (MS) and a number of related distinctive diseases are characterized by the active degradation of central nervous system (CNS) myelin, an axonal sheath comprised essentially of proteins and lipids. These demyelinating diseases appear to arise from complex interactions of genetic, immunological, infective, and biochemical mechanisms. While circumstances of MS etiology remain hypothetical, one persistent theme involves recognition by the immune system of myelin-specific antigens derived from myelin basic protein (MBP), the most abundant extrinsic myelin membrane protein, and/or another equally susceptible myelin protein or lipid component. Knowledge of the biochemical and physical-chemical properties of myelin proteins and lipids, particularly their composition, organization, structure, and accessibility with respect to the compacted myelin multilayers, thus becomes central to the understanding of how and why these antigens become selected during the development of MS. This review focuses on current understanding of the molecular basis underlying demyelinating disease as it may relate to the impact of the various protein and lipid components on myelin morphology; the precise molecular architecture of this membrane as dictated by protein-lipid and lipid-lipid interactions; and the relationship, if any, between the protein/lipid components and the destruction of myelin in pathological situations.
Collapse
Affiliation(s)
- C M Deber
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
26
|
Komatsu H, Rowe ES. Effect of cholesterol on the ethanol-induced interdigitated gel phase in phosphatidylcholine: use of fluorophore pyrene-labeled phosphatidylcholine. Biochemistry 1991; 30:2463-70. [PMID: 2001373 DOI: 10.1021/bi00223a024] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It is now recognized that many amphiphilic molecules such as ethanol can induce the formation of the fully interdigitated gel phase (L beta I) in phosphatidylcholines (PC's). In the present study, we have developed a simple detection method for the L beta I phase using pyrene-labeled PC (PyrPC), which is a PC analogue with covalently coupled pyrene moiety at the end of one of its acyl chains. The intensity ratio of its fluorescence vibrational bands is a reflection of the polarity of the environment of the fluorophore. We have tested this fluorophore in several established interdigitated lipid systems, including 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (1,2-DPPC) in the presence of high concentrations of ethanol and 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (DHPC) and 1,3-dipalmitoyl-sn-glycero-2-phosphocholine (1,3-DPPC) in the absence of any additives. We have found in each of these systems that the ratio of the intensities of band III (387.5 nm) to band I (376.5 nm) is sensitive to the lipid phase change from the noninterdigitated L beta' phase to the interdigitated L beta I phase. By comparison of the III/I ratios for PyrPC in the lipid systems with the III/I ratios for methylpyrene in organic solvents, it was shown that the polarity of the PyrPC environment in the L beta I phase is similar to that of pentanol or ethanol. Using this method, we investigated the effect of cholesterol on the ethanol induction of the interdigitated gel phase in 1,2-DPPC. We found that the ethanol induction of the interdigitated gel phase is prevented by the presence of 20 mol % cholesterol.
Collapse
Affiliation(s)
- H Komatsu
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66103
| | | |
Collapse
|
27
|
Bellini T, Degani D, Matteuzzi M, Dallocchio F. Myelin basic protein inhibits the calcium response to phytohaemagglutinin in human lymphocytes. Biosci Rep 1990; 10:55-9. [PMID: 1692750 DOI: 10.1007/bf01116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myelin Basic Protein, one of the major membrane protein component of the central nervous system, was used to probe the molecular mechanism of cellular activation by phytohaemagglutinin. Pre-treatment of human lymphocytes with myelin basic protein results in a lower rising of cytosolic concentration of free calcium after stimulation with phytohaemagglutinin. This effect is dependent on myelin basic protein concentration and on the preincubation time of the protein with the cells. It is not due to a interaction between myelin basic protein and phytohaemagglutinin, but appears to be a consequence of the binding of the protein to the cell surface. The reduction of the rise of cytosolic calcium induced by phytohaemagglutinin is specific for the myelin basic protein because other proteins like albumin and protamine have no effect.
Collapse
Affiliation(s)
- T Bellini
- Istituto di Chimica Biologica, Universita' di Ferrara, Italy
| | | | | | | |
Collapse
|
28
|
Wang HY, Tümmler B, Boggs JM. Use of spin labels to determine the percentage of interdigitated lipid in complexes with polymyxin B and polymyxin B nonapeptide. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 985:182-98. [PMID: 2553117 DOI: 10.1016/0005-2736(89)90364-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Long chain spin labels with the nitroxide group located near the terminal methyl of the chain were used to determine the percentage interdigitated lipid in complexes of polymyxin B (PMB) and polymyxin B nonapeptide (PMBN) with the acidic lipids dipalmitoylphosphatidylglycerol (DPPG) and dipalmitoylphosphatidic acid (DPPA) at varying mole ratios of drug to lipid and at different pH values. These spin labels are more motionally restricted in the interdigitated than in the non-interdigitated gel phase bilayer. This allows determination of the percentage interdigitated lipid by resolution of the spectrum into motionally restricted and more mobile components. At nonsaturating concentrations of PMB, significantly more DPPG than that which can be maximally PMB-bound, becomes interdigitated. As the temperature approaches the gel to liquid crystalline phase transition temperature, the bilayer becomes progressively non-interdigitated. The ESR spectrum indicates that PMB also causes interdigitation of DPPA. However, in contrast to DPPG, the amount of DPPA which is interdigitated at pH 6, is less than the amount which is expected to be PMB-bound. This is attributed to the ability of DPPA to participate in lateral interlipid hydrogen bonding interactions. Such lateral interactions would be abolished in the interdigitated bilayer and thus they are expected to inhibit its formation. At pH 9, where the interlipid interactions of DPPA are weakened, PMB induces even more lipid than that which is PMB-bound to become interdigitated. Indeed, the percentage interdigitated lipid is even greater than found for DPPG. This may be partly a result of the greater negative charge of DPPA at this pH. A greater repulsive negative charge is expected to favor interdigitation. PMBN is less effective than PMB at inducing interdigitation of DPPG and causes little or no interdigitation of DPPA at pH 6, even at saturating concentrations. PMBN also does not lower the phase transition temperature of DPPA at pH 6 as much as PMB. At pH 9, the effect of PMBN on DPPA is more similar to the effect of PMB. However, even for DPPG, and DPPA at pH 9, PMBN does not maintain interdigitation of the lipids at higher temperatures as effectively as PMB. PMBN's smaller perturbing effect and greatly decreased ability to cause interdigitation of DPPA at pH values below 9 may be related to a decreased ability to cause lateral separation of the lipid molecules, which is necessary in order to weaken the interlipid interactions.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H Y Wang
- Department of Biochemistry, Hospital for Sick Children, University of Toronto, Canada
| | | | | |
Collapse
|
29
|
Boggs JM, Wang HY, Rangaraj G, Tümmler B. Interdigitation of phosphatidylcholine and phosphatidylethanolamine mixed with complexes of acidic lipids and polymyxin B or polymyxin B nonapeptide. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 985:199-210. [PMID: 2553118 DOI: 10.1016/0005-2736(89)90365-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A fatty acid spin label, 16-doxyl-stearic acid, was used to determine the percent interdigitated lipid in mixtures of a neutral phospholipid and an acidic phospholipid. Interdigitation of the acidic lipid was induced with polymyxin B (PMB) at a mole ratio of PMB to acidic lipid of 1:5. This compound does not bind significantly to neutral lipids or induce interdigitation of the neutral lipids by themselves. The neutral lipids used were dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), or dipalmitoylphosphatidylethanolamine (DPPE), and the acidic lipids were dipalmitoylphosphatidylglycerol (DPPG) or dipalmitoylphosphatidic acid (DPPA). The percent interdigitated lipid was determined from the percent of the spin label which is motionally restricted, assuming that the spin label is homogeneously distributed in the lipid. Assuming further that 100% of the acidic lipid is interdigitated at this saturating concentration of PMB, the percentage of the neutral lipid which can become interdigitated along with it was calculated. The results indicate that about 20 mole % DPPC can be incorporated into and become interdigitated in the interdigitated bilayer of PMB/DPPG at 4 degrees C. As the temperature approaches the phase transition temperature, the lipid becomes progressively less interdigitated; this occurs to a greater degree for the mixtures than for the single acidic lipid. Thus the presence of DPPC promotes transformation of the acidic lipid to a non-interdigitated bilayer at higher temperatures. At the temperature of the lipid phase transition little or none of the lipid in the mixture is interdigitated. Thus the lipid phase transition detected by calorimetry is not that of the interdigitated bilayer. The shorter chain length DMPC can be incorporated to a greater extent than DPPC, 30-50 mol%, in the interdigitated bilayer of PMB-DPPG. This may be a result of reduced exposure of the terminal methyl groups of the shorter myristoyl chains at the polar/apolar interface of the interdigitated bilayer. Less than 29% of the total lipid was interdigitated in a DPPC/DPPA/PMB 1:1:0.2 mixture indicating that none of the DPPC in this mixture becomes interdigitated. This is attributed to the lateral interlipid hydrogen bonding interactions of DPPA which inhibits formation of an interdigitated bilayer. DPPE was found to be incorporated into the interdigitated bilayer of PMB-DPPG to a similar extent as DPPC if the amount of PMB added is sufficient to bind to only the DPPG in the mixture. Differential scanning calorimetry showed that the remaining non-interdigitated DPPE-enriched mixture phase separates into its own domain.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J M Boggs
- Department of Biochemistry, Hospital for Sick Children, University of Toronto, Canada
| | | | | | | |
Collapse
|
30
|
Boggs JM, Rangaraj G, Watts A. Behavior of spin labels in a variety of interdigitated lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 981:243-53. [PMID: 2543460 DOI: 10.1016/0005-2736(89)90034-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The behavior of a number of spin labels in several lipid bilayers, shown by X-ray diffraction to be interdigitated, has been compared in order to evaluate the ability of the spin label technique to detect and diagnose the structure of lipid bilayers. The main difference between interdigitated and non-interdigitated gel phase bilayers which can be exploited for determination of their structure using spin labels, is that the former have a much less steep fluidity gradient. Thus long chain spin labels with the nitroxide group near the terminal methyl of the chain, such as 16-doxylstearic acid, its methyl ester, or a phosphatidylglycerol spin label containing 16-doxylstearic acid (PG-SL), are more motionally restricted and/or ordered in the interdigitated bilayer than in the non-interdigitated bilayer. This difference is large enough to be of diagnostic value for all three spin labels in the interdigitated bilayers of dihexadecylphosphatidylcholine, dipalmitoylphosphatidylcholine/ethanol, and 1,3-dipalmitoylphosphatidylcholine. However, it is not large enough to be of diagnostic value at low temperatures. Use of probes with the nitroxide group closer to the apolar/polar interface reveals that these latter interdigitated bilayers are more disordered or less closely packed. As the temperature is increased, however, the motion of the PG-SL does not increase as much in these interdigitated bilayers as in non-interdigitated bilayers. The difference in the motion and/or order of PG-SL between interdigitated and non-interdigitated bilayers is large enough at higher temperatures to be of value in diagnosing the structure of the bilayers. Thus by choice of a suitable spin label and a suitable temperature, this technique should prove useful for detection and diagnosis of lipid bilayer structure with a good degree of reliability. Caution must, of course be exercised, as with any spectroscopic technique. Spin labels will also be invaluable for more detailed studies of known interdigitated bilayers, which would be time- and material-consuming, if carried out using X-ray diffraction solely.
Collapse
Affiliation(s)
- J M Boggs
- Department of Clinical Biochemistry, University of Toronto, Canada
| | | | | |
Collapse
|
31
|
Lüscher-Mattli M. Effect of the mitogenic lectin concanavalin A on the thermotropic behavior of glycosyl-free cationic lipids and their mixtures with zwitterionic lipids. Biopolymers 1989; 28:799-817. [PMID: 2720124 DOI: 10.1002/bip.360280403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effect of concanavalin A (Con A) on the thermotropic behavior of positively charged, glycosyl-free lipids and their mixtures with zwitterionic lipids was investigated by differential scanning calorimetry. The gel to liquid-crystal phase transition enthalpy of pure dipalmitoylcholine (DPC) was found to be significantly increased in the presence of Con A (delta H = 31.2 and 42.5 KJ mol-1 lipid in the presence and in absence of Con A, respectively). Addition of the lectin to DPC liposomes, furthermore, induces the appearance of a new phase transition centered at 320 K. These results are interpretable by a partial hydrophobic interdigitation of the lectin molecule into the liposomal bilayer. The effect of Con A on the phase behavior of three 2:1 mixtures of zwitterionic and of positively charged lipids was also investigated. Phase diagrams of the systems dipalmitoyl-phosphatidylcholine-dihydrosphingosine (DPPC-DHS), sphingomyelin-dipalmitoylcholine (SPM-DPC), and dimyristoylphosphatidylcholine-dipalmitoylcholine (DMPC-DPC) are presented. In lipid mixtures of limited miscibility (DPPC-DHS and SPM-DPC), Con A induces pronounced phase-separation effects. These effects are attributable to a direct hydrophobic interaction of the lectin with the liposomal bilayer and do not require the presence of specific receptor groups. The possible relationship between lectin-induced phase separations in the lipid matrix of biomembranes, and the observed changes in membrane permeability, membranal enzymatic activities, etc., is briefly discussed.
Collapse
|
32
|
Boggs JM, Koshy KM, Rangaraj G. Interdigitated lipid bilayers of long acyl chain species of cerebroside sulfate. A fatty acid spin label study. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 938:373-85. [PMID: 2831978 DOI: 10.1016/0005-2736(88)90135-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The metastable phase behavior of semi-synthetic species of cerebroside sulfate (CBS), with hydroxy and non-hydroxy fatty acids from 16 to 26 carbons in length, was compared in Li+ and K+ using differential scanning calorimetry. The structure of the metastable and various stable phases formed in the presence of these two cations was investigated using a fatty acid spin label, 16-doxylstearate. A number of stable phases with successively higher phase transition temperatures and enthalpies occur in the presence of K+ (see the preceding paper). Li+ prevents formation of the most stable phases with the highest transition temperatures and enthalpies for all species of CBS. However, it does not prevent a transition from the metastable phase to the first stable phase of the longer chain C24 and C26 species. Furthermore, it allows C24:0h-CBS to undergo a similar transition, in contrast to a high K+ concentration, which prevents it. The spin label has anisotropic motion in the metastable gel phase formed by all species of CBS on cooling from the liquid crystalline phase. The spectra resemble those in gel phase phospholipids. The spin label is partially insoluble in the most stable phases formed by all the lipids, including the unsaturated C24:1 species, preventing further elucidation of their structure using this technique. However, the spin label is soluble in the first stable phase formed on cooling by the longer chain C24:0 and C26:0-CBS in Li+ and K+ and by C24:0h-CBS in Li+, and is motionally restricted in this phase. The motional restriction is similar to that observed in the mixed interdigitated bilayers of asymmetric species of phosphatidylcholine and fully interdigitated bilayers formed by symmetric phospholipids. It strongly suggests that the highly asymmetric long chain species of CBS form a mixed interdigitated bilayer in their first stable gel phases while the metastable phase of these and the shorter chain lipids may be partially interdigitated. The metastable phase of C24:1-CBS is more disordered suggesting that it may not be interdigitated at all. Thus the results suggest that (i) the hydroxy fatty acid inhibits but does not prevent formation of a mixed interdigitated bilayer by long chain species of CBS, (ii) an increase in non-hydroxy fatty acid chain length from 24 to 26 carbons promotes it, and (iii) a cis double bond probably prevents any form of interdigitation. These results may be relevant to the physiological and pathological roles of these structural modifications of CBS.
Collapse
Affiliation(s)
- J M Boggs
- Department of Biochemistry, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
33
|
Boggs JM, Rangaraj G, Koshy KM. Photolabeling of myelin basic protein in lipid vesicles with the hydrophobic reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 937:1-9. [PMID: 2446664 DOI: 10.1016/0005-2736(88)90221-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine([125I]TID) was used to label myelin basic protein or polylysine in aqueous solution and bound to lipid vesicles of different composition. Although myelin basic protein is a water soluble protein which binds electrostatically only to acidic lipids, unlike polylysine it has several short hydrophobic regions. Myelin basic protein was labeled to a significant extent by TID when in aqueous solution indicating that it has a hydrophobic site which can bind the reagent. However, myelin basic protein was labeled 2-4-times more when bound to the acidic lipids phosphatidylglycerol, phosphatidylserine, phosphatidic acid, and cerebroside sulfate than when bound to phosphatidylethanolamine, or when in solution in the presence of phosphatidylcholine vesicles. It was labeled 5-7-times more than polylysine bound to acidic lipids. These results suggest that when myelin basic protein is bound to acidic lipids, it is labeled from the lipid bilayer rather than from the aqueous phase. However, this conclusion is not unequivocal because of the possibility of changes in the protein conformation or degree of aggregation upon binding to lipid. Within this limitation the results are consistent with, but do not prove, the concept that some of its hydrophobic residues penetrate partway into the lipid bilayer. However, it is likely that most of the protein is on the surface of the bilayer with its basic residues bound electrostatically to the lipid head groups.
Collapse
Affiliation(s)
- J M Boggs
- Department of Biochemistry, Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
34
|
Affiliation(s)
- J L Slater
- University of Virginia, Biochemistry Department, Charlottesville 22908
| | | |
Collapse
|
35
|
Boggs JM. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 906:353-404. [PMID: 3307919 DOI: 10.1016/0304-4157(87)90017-7] [Citation(s) in RCA: 570] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The great variety of different lipids in membranes, with modifications to the hydrocarbon chains, polar groups and backbone structure suggests that many of these lipids may have unique roles in membrane structure and function. Acidic groups on lipids are clearly important, since they allow interaction with basic groups on proteins and with divalent cations. Another important property of certain lipids is their ability to interact intermolecularly with other lipids via hydrogen bonds. This interaction occurs through acidic and basic moieties in the polar head groups of phospholipids, and the amide moiety and hydroxyl groups on the acyl chain, sphingosine base and sugar groups of sphingo- and glycolipids. The putative ability of different classes of lipids to interact by intermolecular hydrogen bonding, the molecular groups which may participate and the effect of these interactions on some of their physical properties are summarized in Table IX. It is frequently questioned whether intermolecular hydrogen bonding could occur between lipids in the presence of water. Correlations of their properties with their molecular structures, however, suggest that it can. Participation in intermolecular hydrogen bonding increases the lipid phase transition temperature by approx. 8-16 Cdeg relative to the electrostatically shielded state and by 20-30 Cdeg relative to the repulsively charged state, while having variable effects on the enthalpy. It increases the packing density in monolayers, possibly also in the liquid-crystalline phase in bilayers, and decreases the lipid hydration. These effects can probably be accounted for by transient, fluctuating hydrogen bonds involving only a small percentage of the lipid at any one time. Thus, rotational and lateral diffusion of the lipids may take place but at a slower rate, and the lateral expansion is limited. Intermolecular hydrogen bonding between lipids in bilayers may be significantly stabilized, despite the presence of water, by the fact that the lipids are already intermolecularly associated as a result of the hydrophobic effect and the Van der Waals' interactions between their chains. The tendency of certain lipids to self-associate, their asymmetric distribution in SUVs, their preferential association with cholesterol in non-cocrystallizing mixtures, their temperature-induced transitions to the hexagonal phase and their inhibitory effect on penetration of hydrophobic residues of proteins partway into the bilayer can all be explained by their participation in intermolecular hydrogen bonding interactions.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J M Boggs
- Department of Biochemistry, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
36
|
Effect of myelin basic protein on the thermotropic behavior of aqueous dispersions of neutral and anionic glycosphingolipids and their mixtures with dipalmitoylphosphatidylcholine. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61556-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
McElhaney RN. Differential scanning calorimetric studies of lipid-protein interactions in model membrane systems. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 864:361-421. [PMID: 3539194 DOI: 10.1016/0304-4157(86)90004-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
Huang C, Mason JT. Structure and properties of mixed-chain phospholipid assemblies. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 864:423-70. [PMID: 3539195 DOI: 10.1016/0304-4157(86)90005-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Boggs JM, Mason JT. Calorimetric and fatty acid spin label study of subgel and interdigitated gel phases formed by asymmetric phosphatidylcholines. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 863:231-42. [PMID: 3024720 DOI: 10.1016/0005-2736(86)90263-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several saturated asymmetric and symmetric phosphatidylcholines were studied by ESR spectroscopy and differential scanning calorimetry in order to determine the behavior of a fatty acid spin labeled near its terminal methyl, 16-doxylstearate, in the mixed interdigitated gel phase and the Lc subgel phase and other properties of these lipids. This spin label was motionally restricted in the mixed interdigitated gel phases of 18:10PC and 18:12PC. The motional restriction was similar to that reported earlier for fully interdigitated phases. This spin label was motionally restricted almost to the same degree in 10:18PC suggesting that this asymmetric lipid may also form a mixed interdigitated bilayer. In contrast the spin label had more motion in the gel phase of 18:14PC than in symmetric forms of PC, consistent with conclusions from X-ray diffraction studies that this less asymmetric lipid does not form a mixed interdigitated phase. The spin label was partially frozen out of the Lc subgel phases of symmetric forms of PC and 18:14PC formed by storage at low temperature. The phase behavior of the other asymmetric lipids also depended on the sample history. Storage at low temperature caused 10:18PC and 18:12PC to go into ordered phases. The enthalpy of the transition of these ordered phases to the liquid-crystalline phase was 2-2.4-times greater than that of the transition of the gel phase formed on cooling back from the liquid-crystalline phase. The temperature of this high enthalpy transition was 0.8 K below that of the lower enthalpy gel to liquid-crystalline phase transition for 18:12PC, but 4.6 K higher for 10:18PC. The spin label was frozen out of these ordered phases, as it was out of the Lc subgel phases, suggesting that 18:12PC and 10:18PC may also form an Lc phase. 18:10PC was not observed to form an ordered phase although storage of the sample at low temperatures did affect the temperature of its transition from the liquid-crystalline phase back to the gel phase upon cycling through its phase transition.
Collapse
|
40
|
Maggio B, Fidelio GD, Cumar FA, Yu RK. Molecular interactions and thermotropic behavior of glycosphingolipids in model membrane systems. Chem Phys Lipids 1986; 42:49-63. [PMID: 3549020 DOI: 10.1016/0009-3084(86)90042-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The oligosaccharide chain of glycosphingolipids (GSLs) has a marked influence on their thermotropic behavior, intermolecular packing and surface electrical potential. The transition temperature and enthalpy of GSLs decrease proportionally to the complexity of the polar head group and show a linear dependence with the intermolecular spacings. Interactions occurring among GSLs and phospholipids induce changes of the molecular area and surface potential that depend on the type of GSLs. Increasing proportions of phospholipids perturb the thermodynamic properties of the GSLs up to a point where phase separated phospholipid domains separate out but no phase separation of pure GSLs occurs. Heterogeneous equilibria among different structures occur for some systems. Large changes of the molecular free energy, eccentricity, asymmetry ratio and phase state of the GSLs-containing structure can be triggered by small changes of the molecular parameters, lipid composition and lateral surface pressure. The thermotropic behavior of GSLs is considerably perturbed by myelin basic protein. Phase separation occurs depending on the amount of protein and type of GSLs. The protein induces a decrease of the lipid molecular area, the more so the more complex the oligosaccharide chain in the GSLs. These membrane systems can not be described only on the basis of the individual properties of the molecules involved in a simple causal manner. Still scarcely explored long range thermodynamic, geometric and field effects that belong simultaneously to the intervening molecules, to the morphological properties of the structure involved and to the aqueous environment, are important determinants of their behavior.
Collapse
|
41
|
Boggs JM, Chia LS, Rangaraj G, Moscarello MA. Interaction of myelin basic protein with different ionization states of phosphatidic acid and phosphatidylserine. Chem Phys Lipids 1986; 39:165-84. [PMID: 2418997 DOI: 10.1016/0009-3084(86)90110-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myelin basic protein (BP) has a perturbing effect on some lipids, causing, among other effects, a decrease in the temperature and enthalpy of the phase transition. This is believed to be a result of penetration of some hydrophobic residues of the protein partway into the lipid bilayer. Variations in the perturbing effect of BP on different acidic lipids has been attributed to the ability of the lipids to participate in intermolecular hydrogen bonding which inhibits penetration of the protein. Participation in intermolecular hydrogen bonding depends on the ionization state of the lipid as well as the type of lipid. In order to further test the dependence of the degree of penetration of BP on the intermolecular hydrogen bonding properties of lipids, the effect of BP on the phase transition of lipids in different ionization states was studied using differential scanning calorimetry. Dipalmitoylphosphatidic acid (DPPA) and dimyristoylphosphatidylserine (DMPS) were studied at different pH-values from 4 to 9.5. The results were compared to data obtained earlier with phosphatidylglycerol (PG), which is in the same ionization state at pH-values above 4, in order to distinguish the effects of pH on the protein from effects on the lipids. The perturbing effect of BP on PG increases with increase in pH. This is probably a result of the increasing hydrophobicity of the protein as the histidines become deprotonated, which allows greater penetration of the protein into the bilayer. In contrast, the effect on DPPA was greatest at low pH, where the state of ionization of the lipid is less than 1 and protein binding utilizes all of the hydrogen bond accepting sites (P-O-) on the lipid. BP had no perturbing effect on DPPA at higher pH where the state of ionization is between 1 and 1.5, and hydrogen bond accepting and donating sites (P-OH) are still available even after binding of the protein. Thus hydrogen bonding occurs at high pH and penetration of hydrophobic residues of the protein into DPPA is inhibited. BP had a large perturbing effect on DMPS at all pH values above 4 suggesting that lipid intermolecular hydrogen bonding does not occur in the presence of the protein and its hydrophobic residues consequently can penetrate into the bilayer. The protein may inhibit hydrogen bonding by binding electrostatically to the anionic hydrogen bond accepting group of PS.
Collapse
|
42
|
MacNaughtan W, Snook KA, Caspi E, Franks NP. An X-ray diffraction analysis of oriented lipid multilayers containing basic proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 818:132-48. [PMID: 2411290 DOI: 10.1016/0005-2736(85)90556-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
X-ray diffraction techniques have been used to study the structures of lipid bilayers containing basic proteins. Highly ordered multilayer specimens have been formed by using the Langmuir-Blodgett method in which a solid support is passed through a lipid monolayer held at constant surface pressure at an air/water interface. If the lipid monolayer contains acidic lipids then basic proteins in the aqueous subphase are transferred with the monolayer and incorporated into the multi-membrane stack. X-ray diffraction patterns have been recorded from multilayers of cerebroside sulphate and 40% (molar) cholesterol both with and without polylysine, cytochrome c and the basic protein from central nervous system myelin. Electron density profiles across the membranes have been derived at between 6 A and 12 A resolution. All of the membrane profiles have been placed on an absolute scale of electron density by the isomorphous exchange of cholesterol with a brominated cholesterol analog. The distributions and conformations of the various basic proteins incorporated within the cerebroside sulphate/cholesterol bilayer are very different. Polylysine attaches to the surface of the lipid bilayer as a fully extended chain while cytochrome c maintains its native structure and attaches to the bilayer surface with its short axis approximately perpendicular to the membrane plane. The myelin basic protein associates intimately with the lipid headgroups in the form of an extended molecule, yet its dimension perpendicular to the plane of the membrane of approx. 15 A is consistent with the considerable degree of secondary structure found in solution. In the membrane plane, the myelin basic protein extends to cover an area of about 2500 A2. There is no significant penetration of the protein into the hydrocarbon region of the bilayer or, indeed, beyond the position of the sulphate group of the cerebroside sulphate molecule.
Collapse
|
43
|
Boggs JM, Rangaraj G. Phase transitions and fatty acid spin label behavior in interdigitated lipid phases induced by glycerol and polymyxin. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 816:221-33. [PMID: 2988614 DOI: 10.1016/0005-2736(85)90489-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glycerol and polymyxin have been shown by X-ray diffraction to induce interdigitated bilayers in phosphatidylcholine (PC) and phosphatidylglycerol (PG), respectively (McDaniel, R.V., et al. (1983) Biochim. Biophys. Acta 731, 97-108; Ranck, J.-L. and Tocanne, J.-F. (1982) FEBS Lett. 143, 175-178). In the present study we have investigated the phase behavior of PC and PG in the presence of glycerol and polymyxin by differential scanning calorimetry and the use of fatty acid spin labels. Interdigitation causes a large increase in the order parameter of a fatty acid spin labeled near the terminal methyl, 16-doxylstearate, so that it was similar to that of a fatty acid labeled much closer to the polar head group region, 5-doxylstearate. Thus interdigitation abolishes the fluidity gradient found in a non-interdigitated bilayer. 16-Doxylstearate may be useful in detecting interdigitation of lipid bilayers caused by other substances. The different samples all went through two transitions on heating or cooling, or both. However, use of the fatty acid spin label showed that the molecular events during these transitions varies for different samples. The results suggested that PC-glycerol freezes from the liquid-crystalline phase into a non-interdigitated gel phase. This subsequently becomes interdigitated upon lowering the temperature a few degrees, in a low enthalpy transition. PG-polymyxin shows a similar behavior except that the enthalpy of the non-interdigitated gel to interdigitated phase transition is greater and the transition is reversible on heating. Thus on heating PG-polymyxin first goes through a transition from the interdigitated phase to a non-interdigitated gel phase and then, in a separate transition, to the liquid-crystalline phase. This occurs because the fatty acid chains in the presence of polymyxin become too disordered with increase in temperature to maintain the interdigitated state. PG-glycerol goes into the interdigitated state less readily than the other mixtures. If cooled rapidly, PG-glycerol freezes into a metastable phase which is more disordered than the interdigitated phase. It goes into the interdigitated phase in an exothermic transition on heating. An increase in fatty acid chain length causes greater steric hindrance to interdigitation but also increases the stabilizing energy gained by interdigitation.
Collapse
|
44
|
Hui SW, Mason JT, Huang C. Acyl chain interdigitation in saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry 1984; 23:5570-7. [PMID: 6509035 DOI: 10.1021/bi00318a029] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The molecular packing of various fully hydrated mixed-chain phosphatidylcholines was studied by X-ray diffraction and electron microscopy. All of the mixed-chain phosphatidylcholines under study were shown to adopt a lamellar or bilayer form in aqueous media. The bilayer thickness of these mixed-chain phosphatidylcholines was determined from the lamellar repeat distance in the small-anglé X-ray diffraction region by controlled swelling experiments. At T greater than Tm, the bilayer thickness of C(18):C(12)PC and C(18):C-(10)PC is found to be comparable to that of C(14):C(14)PC. In contrast, the bilayer thickness of these highly asymmetric phosphatidylcholines is considerably less than that of the symmetric C(14):C(14)PC at temperatures below Tm. Moreover, the wide-angle X-ray diffraction patterns taken at T less than Tm consist of at least two sharp reflections at 4.2 and 4.6 A. These X-ray diffraction data suggest that these highly asymmetric mixed-chain phospholipids, in excess water, form mixed interdigitated bilayers in the gel state and that the acyl chain packing in the gel-state bilayer is not hexagonal. The freeze-fracture planes of these mixed-chain phosphatidylcholines are discontinuous at T less than Tm, supporting the conclusion drawn from X-ray diffraction data that these highly asymmetric phosphatidylcholines form interdigitated bilayers at temperatures below Tm. The molecular packing of fully hydrated C(18):C(14)PCs in bilayers is distinctively different from that of C(18):C(10)PCs or C(18):C(10)PCs.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
45
|
Boggs JM, Koshy KM, Rangaraj G. Effect of fatty acid chain length, fatty acid hydroxylation, and various cations on phase behavior of synthetic cerebroside sulfate. Chem Phys Lipids 1984. [DOI: 10.1016/0009-3084(84)90090-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Surface accessibility of 13C-labeled lysine residues in membrane-bound myelin basic protein. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)47206-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Sedzik J, Blaurock AE, Höchli M. Lipid/myelin basic protein multilayers. A model for the cytoplasmic space in central nervous system myelin. J Mol Biol 1984; 174:385-409. [PMID: 6201618 DOI: 10.1016/0022-2836(84)90344-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A multilayered complex forms when a solution of myelin basic protein is added to single-bilayer vesicles formed by sonicating myelin lipids. Vesicles and multilayers have been studied by electron microscopy, biochemical analysis, and X-ray diffraction. Freeze-fracture electron microscopy shows well-separated vesicles before myelin basic protein is added, but afterward there are aggregated, possibly multilayered, vesicles and extensive planar multilayers. The vesicles aggregate and fuse within seconds after the protein is added, and the multilayers form within minutes. No intra-bilayer particles are seen, with or without the protein. Some myelin basic protein, but no lipid, remains in the supernatant after the protein is added and the complex sedimented for X-ray diffraction. A rather variable proportion of the protein is bound. X-ray diffraction patterns show that the vesicles are stable in the absence of myelin basic protein, even under high g-forces. After the protein is added, however, lipid/myelin basic protein multilayers predominate over single-bilayer vesicles. The protein is in every space between lipid bilayers. Thus the vesicles are torn open by strong interaction with myelin basic protein. The inter-bilayer spaces in the multilayers are comparable to the cytoplasmic spaces in central nervous system myelins . The diffraction indicates the same lipid bilayer thickness in vesicles and multilayers, to within 1 A. By comparing electron-density profiles of vesicles and multilayers, most of the myelin basic protein is located in the inter-bilayer space while up to one-third may be inserted between lipid headgroups. When cytochrome c is added in place of myelin basic protein, multilayers also form. In this case the protein is located entirely outside the unchanged bilayer. Comparison of the various profiles emphasizes the close and extensive apposition of myelin basic protein to the lipid bilayer. Numerous bonds may form between myelin basic protein and lipids. Cholesterol may enhance binding by opening gaps between diacyl-lipid headgroups.
Collapse
|
48
|
Benga G, Holmes RP. Interactions between components in biological membranes and their implications for membrane function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1984; 43:195-257. [PMID: 6087406 DOI: 10.1016/0079-6107(84)90014-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Theretz A, Ranck JL, Tocanne JF. Polymyxin B-induced phase separation and acyl chain interdigitation in phosphatidylcholine/phosphatidylglycerol mixtures. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 732:499-508. [PMID: 6307373 DOI: 10.1016/0005-2736(83)90226-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Monolayers, fluorescence polarization, differential scanning calorimetry and X-ray diffraction experiments have been carried out to examine the effect of the polypeptide antibiotic polymyxin B on the phase behaviour of dipalmitoylphosphatidylglycerol (DPPG) either pure or mixed with dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC). It is shown that in both phosphatidylglycerol alone and phosphatidylglycerol/phosphatidylcholine mixtures, polymyxin B can induce either phase separation between lipid domains of various compositions or interdigitation of the acyl chains in the solid state, without segregation of the two lipids. Phase separation was observed by fluorescence and differential scanning calorimetry after addition of the antibiotic to vesicles composed of mixtures of DMPC and DPPG in conditions where polymyxin B did not saturate phosphatidylglycerol (DPPG to polymyxin B molar ratio, Ri, higher than 15). Phase separation was also observed in mixed monolayers of DPPC and of the 5:1 DPPG/polymyxin B complex, at high surface pressure. Acyl chain interdigitation was observed by X-ray diffraction in both 5:1 DPPG/polymyxin B mixtures and preformed 5:5:1 DMPC/DPPG/polymyxin B mixture, in which the antibiotic saturates phosphatidylglycerol (Ri 5). In both cases, raising the temperature gave rise to a complex double-peaked phase transition by differential scanning calorimetry, from the interdigitating phase to a normal L alpha lamellar phase. As it is known that polymyxin B does not interact with phosphatidylcholine, the data presented show that, when phosphatidylcholine and phosphatidylglycerol are mixed together, a phase perturbation such as acyl chain interdigitation, which normally affects only phosphatidylglycerol, is also felt by phosphatidylcholine.
Collapse
|
50
|
Harris R, Findlay JB. Investigation of the organisation of the major proteins in bovine myelin membranes. Use of chemical probes and bifunctional crosslinking reagents. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 732:75-82. [PMID: 6871202 DOI: 10.1016/0005-2736(83)90188-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bovine myelin was incubated with a variety of bifunctional reagents and chemical probes. The use of a photosensitive hydrophobic compound, 1-azido-[125I]iodobenzene, led to the suggestion that the proteolipid protein is deeply intercalated into the hydrophobic milieu of the membrane, but did not support the contention that regions of the basic protein behave in a similar fashion. Crosslinking studies indicated that both polypeptides may be present in the membrane as homodimers and these dimers may be part of much larger assemblies. These results give rise to a somewhat different model for the structural organisation of myelin to that proposed earlier.
Collapse
|