1
|
Lee H, Park H, Kwak K, Lee CE, Yun J, Lee D, Lee JH, Lee SH, Kang LW. Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D. J Enzyme Inhib Med Chem 2025; 40:2435365. [PMID: 39714271 DOI: 10.1080/14756366.2024.2435365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP). SBP is kidney bean-shaped on the indented surface, formed mainly by loops L1, L2, and L3, and an additional loop Lc in class C. β-lactams bind in a conserved orientation, with the β-lactam ring towards L2 and additional rings towards the space between L1 and L3. Structural comparison shows each class has distinct SBP structures, but subclasses share a conserved scaffold. The SBP structure, accommodating complimentary β-lactams, determines the substrate spectrum of SBLs. The systematic comparison of SBLs, including structural compatibility between β-lactams and SBPs, will help understand their substrate spectrum.
Collapse
Affiliation(s)
- Hyeonmin Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chae-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jiwon Yun
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Donghyun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
González-Pinto L, Gomis-Font MA, Lence E, Outeda-García M, Blanco-Martín T, Rodríguez-Pallares S, Sánchez-Peña L, Alonso-García I, Vázquez-Ucha JC, Beceiro A, Bou G, González-Bello C, Oliver A, Arca-Suárez J. Functional and structural analyses of amino acid sequence variation in PDC β-lactamase reveal different mechanistic pathways toward cefiderocol resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2025:e0029225. [PMID: 40422084 DOI: 10.1128/aac.00292-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 05/28/2025] Open
Abstract
A wide variety of clinically observed amino acid alterations in the Pseudomonas aeruginosa chromosomal β-lactamase AmpC (Pseudomonas-derived cephalosporinase [PDC]) are associated with increased resistance to cefepime, ceftolozane/tazobactam, or ceftazidime/avibactam, but their impact on cefiderocol resistance is unclear. We took advantage of a previously engineered collection of wild-type (PAO1) and iron uptake-deficient (PAO ΔpiuC) P. aeruginosa isolates producing 19 distinct PDC variants with substitutions in key catalytic regions. While most variants had moderate effects on cefiderocol minimum inhibitory concentrations compared to PDC-1, the E219K (Ω-loop) and L293P (helix H10) variants significantly affected cefiderocol activity. Kinetic studies revealed that both mutations improve cefiderocol hydrolysis through different enzymatic mechanisms compared to PDC-1 (Km = 85.29 µM, kcat = 0.0036 s-1, and kcat/Km = 0.00004 µM-1 s-1), leading to enhanced turnover in PDC E219K (Km = 465.64 µM, kcat = 0.45 s-1, and kcat/Km = 0.00096 µM-1 s-1) and improved affinity in PDC L293P (Km = 2.69 µM, kcat = 0.0036 s-1, and kcat/Km = 0.00135 µM-1 s-1). These mechanisms are also involved in resistance to ceftolozane and cefepime, identified as the preferred substrates for the E219K and L293P variants, respectively. Molecular dynamics (MD) simulation studies revealed that (i) rigidification of the Ω-loop in PDC E219K promotes optimal accommodation of the R1 group of cefiderocol, enhancing nucleophilic attack by the catalytic serine; (ii) the less folded conformation of helix H10 in PDC L293P improves cefiderocol accommodation in the active site by establishing stronger hydrogen-bonding interactions with the R2 group. Our findings demonstrate that the PDC β-lactamase may take advantage of the structural similarities between cefiderocol and other cephalosporins and accelerate hydrolysis by accommodating the E219K or L293P amino acid replacements.
Collapse
Affiliation(s)
- Lucía González-Pinto
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - María Antonia Gomis-Font
- Servicio de Microbiología & Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Michelle Outeda-García
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Tania Blanco-Martín
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Salud Rodríguez-Pallares
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Lucía Sánchez-Peña
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Isaac Alonso-García
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Juan Carlos Vázquez-Ucha
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Germán Bou
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Oliver
- Servicio de Microbiología & Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Arca-Suárez
- Servicio de Microbiología & Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Powers RA, Wallar BJ, Jarvis HR, Ziegler ZX, June CM, Bethel CR, Hujer AM, Taracila MA, Rudin SD, Hujer KM, Prati F, Caselli E, Bonomo RA. Resistance to oxyimino-cephalosporins conferred by an alternative mechanism of hydrolysis by the Acinetobacter-derived cephalosporinase-33 (ADC-33), a class C β-lactamase present in carbapenem-resistant Acinetobacter baumannii (CR Ab). mBio 2025:e0028725. [PMID: 40377322 DOI: 10.1128/mbio.00287-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/07/2025] [Indexed: 05/18/2025] Open
Abstract
Antimicrobial resistance in Acinetobacter baumannii is partly mediated by chromosomal class C β-lactamases, the Acinetobacter-derived cephalosporinases (ADCs). Recently, a growing number of emerging variants were described, expanding this threat. Consistent with other β-lactamases, one of the main areas of variance exists in the Ω-loop region near the site of cephalosporin binding. Interestingly, a common alanine duplication (Adup) is found in this region. Herein, we studied specific Adup variants expressed in a uniform Escherichia coli genetic background that demonstrated high-level resistance to multiple oxyimino-cephalosporins. For ceftolozane and ceftazidime, the Adup ADCs significantly increased levels of resistance (minimum inhibitory concentration [MIC] ≥ 512 µg/mL and MIC ≥ 1,024 µg/mL, respectively). These observations were consistent with the increased kcat/KM for ceftazidime. For cefiderocol, three Adup variants exhibited increased MICs and increased kcat/KM for this compound. Timed electrospray ionization mass spectrometry demonstrated stable cephalosporin:ADC adducts with ADC-30 (non-Adup), but not with ADC-33 (Adup), consistent with turnover. The X-ray crystal structure of Adup variant ADC-33 in complex with ceftazidime was determined (1.57 Å resolution) and suggests that increased turnover is facilitated by conformational changes (shift in Tyr221 and orientation of the oxyimino portion of the R1 side chain) and repositioning of water in the active site. These changes appear to favor substrate-assisted catalysis as an alternative mechanism to base-assisted catalysis. These studies also provide unprecedented insight into the mechanism underlying oxyimino-cephalosporin hydrolysis by expanded-spectrum ADC β-lactamases and possibly other class C β-lactamases, which is of critical importance to future drug design.IMPORTANCEThe characterization of emerging Acinetobacter-derived cephalosporinase (ADC) variants is necessary to understand the increasing resistance to β-lactam antibiotics in Acinetobacter spp. In this study, cefiderocol retains effectiveness against ADC variants with and without an Ω-loop alanine duplication (Adup). However, the presence of the Adup appears to introduce loop flexibility and structural alterations resulting in increased resistance and steady-state turnover of larger cephalosporins. Further characterization provides unprecedented insight into the mechanism of cephalosporin hydrolysis by ADC β-lactamases and supports a concomitant increase in ADC structural flexibility and cephalosporin affinity that leads to more efficient hydrolysis. In addition, the crystal structure of ADC-33 in complex with ceftazidime is consistent with a substrate-assisted catalysis mechanism. The structural differences in the ADC-33 active site leading to ceftazidime catalysis provide a better understanding of β-lactamase Adup variants and open important opportunities for future drug design and development.
Collapse
Affiliation(s)
- Rachel A Powers
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, USA
| | - Bradley J Wallar
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, USA
| | - Hannah R Jarvis
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, USA
| | - Zoe X Ziegler
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, USA
| | - Cynthia M June
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, USA
| | - Christopher R Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Andrea M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Magdalena A Taracila
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Susan D Rudin
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kristine M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Emilia-Romagna, Italy
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Emilia-Romagna, Italy
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
4
|
Santi N, Piccirilli A, Corsini F, Taracila MA, Perilli M, Bonomo RA, Fini F, Prati F, Caselli E. Discovery of Boronic Acids-Based β-Lactamase Inhibitors Through In Situ Click Chemistry. Int J Mol Sci 2025; 26:4182. [PMID: 40362418 PMCID: PMC12071365 DOI: 10.3390/ijms26094182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/21/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
In this study, we evaluated in situ click chemistry as a platform for discovering boronic acid-based β-lactamase inhibitors (BLIs). Unlike conventional drug discovery approaches requiring multi-step synthesis, protection strategies, and extensive screening, the in situ method can allow for the generation and identification of potent β-lactamase inhibitors in a rapid, economic, and efficient way. Using KPC-2 (class A carbapenemase) and AmpC (class C cephalosporinase) as templates, we demonstrated their ability to catalyse azide-alkyne cycloaddition, facilitating the formation of triazole-based β-lactamase inhibitors. Initial screening of various β-lactamases and boronic warheads identified compound 3 (3-azidomethylphenyl boronic acid) as the most effective scaffold for kinetic target-guided synthesis (KTGS). KTGS experiments with AmpC and KPC-2 yielded triazole inhibitors with Ki values as low as 140 nM (compound 10a, AmpC) and 730 nM (compound 5, KPC-2). Competitive inhibition studies confirmed triazole formation within the active site, while an LC-MS analysis verified that the reversible covalent interaction of boronic acids did not affect detection of the in situ-synthesised product. While KTGS successfully identified potent inhibitors, limitations in amplification coefficients and spatial constraints highlight the need for optimised warhead designs. This study validates KTGS as a promising strategy for BLI discovery and provides insights for further refinement in fighting β-lactamase-mediated antibiotic resistance.
Collapse
Affiliation(s)
- Nicolò Santi
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia (UNIMORE), via Campi 103, 41125 Modena, Italy; (N.S.); (F.C.); (F.F.); (F.P.)
| | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100 L’Aquila, Italy; (A.P.); (M.P.)
| | - Federico Corsini
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia (UNIMORE), via Campi 103, 41125 Modena, Italy; (N.S.); (F.C.); (F.F.); (F.P.)
| | - Magdalena A. Taracila
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (M.A.T.); (R.A.B.)
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100 L’Aquila, Italy; (A.P.); (M.P.)
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (M.A.T.); (R.A.B.)
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Veteran Affair Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Case Western Reserve University, Cleveland, OH 44106, USA
| | - Francesco Fini
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia (UNIMORE), via Campi 103, 41125 Modena, Italy; (N.S.); (F.C.); (F.F.); (F.P.)
| | - Fabio Prati
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia (UNIMORE), via Campi 103, 41125 Modena, Italy; (N.S.); (F.C.); (F.F.); (F.P.)
| | - Emilia Caselli
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia (UNIMORE), via Campi 103, 41125 Modena, Italy; (N.S.); (F.C.); (F.F.); (F.P.)
| |
Collapse
|
5
|
Introvigne ML, Destro L, Mologni L, Crippa V, Zardi P, Fini F, Prati F, Caselli E, Zambon A. α-Triazolylboronic Acids: A Novel Scaffold to Target FLT3 in AML. ChemMedChem 2025; 20:e202400622. [PMID: 39331039 PMCID: PMC11694611 DOI: 10.1002/cmdc.202400622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
The treatment of acute myeloid leukemia (AML) presents a challenge to current therapies because of the development of drug resistance. Genetic mutation of FMS-like tyrosine kinase-3 (FLT3) is a target of interest for AML treatment, but the use of FLT3-targeting agents on AML patients has so far resulted in poor overall clinical outcomes.[1] The incorporation of the boronic group in a drug scaffold could enhance the bioavailability and pharmacokinetic profile of conventional anticancer chemotypes. Boronic acids represent an intriguing and unexplored class of compounds in the context of AML, and they are only scantly reported as inhibitors of protein kinases. We identified α-triazolylboronic acids as a novel chemotype for targeting FLT3 by screening a library of structurally heterogeneous in-house boronic acids. Selected compounds show low micromolar activities on enzymatic and cellular assays, selectivity against control cell lines and a recurring binding mode in in-silico studies. Furthermore, control analogues synthesized ad hoc and lacking the boronic acid are inactive, confirming that this group is essential for the activity of the series. All together, these results suggest α-triazolylboronic acids could be a promising novel chemotype for FLT3 inhibition, laying the ground for the design of further compounds.
Collapse
Affiliation(s)
| | - Lorenza Destro
- Department of Chemical and Geological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Luca Mologni
- Department of Medicine and SurgeryUniversity of Milano-BicoccaMonzaItaly
| | - Valentina Crippa
- Department of Medicine and SurgeryUniversity of Milano-BicoccaMonzaItaly
| | - Paolo Zardi
- Department of Chemical and Geological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Francesco Fini
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Fabio Prati
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Emilia Caselli
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Alfonso Zambon
- Department of Chemical and Geological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
6
|
Kang SJ, Kim DH, Lee BJ. Metallo-β-lactamase inhibitors: A continuing challenge for combating antibiotic resistance. Biophys Chem 2024; 309:107228. [PMID: 38552402 DOI: 10.1016/j.bpc.2024.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
β-lactam antibiotics are the most successful and commonly used antibacterial agents, but the emergence of resistance to these drugs has become a global health threat. The expression of β-lactamase enzymes produced by pathogens, which hydrolyze the amide bond of the β-lactam ring, is the major mechanism for bacterial resistance to β-lactams. In particular, among class A, B, C and D β-lactamases, metallo-β-lactamases (MBLs, class B β-lactamases) are considered crucial contributors to resistance in gram-negative bacteria. To combat β-lactamase-mediated resistance, great efforts have been made to develop β-lactamase inhibitors that restore the activity of β-lactams. Some β-lactamase inhibitors, such as diazabicyclooctanes (DBOs) and boronic acid derivatives, have also been approved by the FDA. Inhibitors used in the clinic can inactivate mostly serine-β-lactamases (SBLs, class A, C, and D β-lactamases) but have not been effective against MBLs until now. In order to develop new inhibitors particularly for MBLs, various attempts have been suggested. Based on structural and mechanical studies of MBL enzymes, several MBL inhibitor candidates, including taniborbactam in phase 3 and xeruborbactam in phase 1, have been introduced in recent years. However, designing potent inhibitors that are effective against all subclasses of MBLs is still extremely challenging. This review summarizes not only the types of β-lactamase and mechanisms by which β-lactam antibiotics are inactivated, but also the research finding on β-lactamase inhibitors targeting these enzymes. These detailed information on β-lactamases and their inhibitors could give valuable information for novel β-lactamase inhibitors design.
Collapse
Affiliation(s)
- Su-Jin Kang
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Do-Hee Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Bong-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Mastermeditech Ltd., Seoul 07793, Republic of Korea.
| |
Collapse
|
7
|
Kawai A, Shropshire WC, Suzuki M, Borjan J, Aitken SL, Bachman WC, McElheny CL, Bhatti MM, Shields RK, Shelburne SA, Doi Y. Structural insights into the molecular mechanism of high-level ceftazidime-avibactam resistance conferred by CMY-185. mBio 2024; 15:e0287423. [PMID: 38179965 PMCID: PMC10865806 DOI: 10.1128/mbio.02874-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
β-Lactamases can accumulate stepwise mutations that increase their resistance profiles to the latest β-lactam agents. CMY-185 is a CMY-2-like β-lactamase and was identified in an Escherichia coli clinical strain isolated from a patient who underwent treatment with ceftazidime-avibactam. CMY-185, possessing four amino acid substitutions of A114E, Q120K, V211S, and N346Y relative to CMY-2, confers high-level ceftazidime-avibactam resistance, and accumulation of the substitutions incrementally enhances the level of resistance to this agent. However, the functional role of each substitution and their interplay in enabling ceftazidime-avibactam resistance remains unknown. Through biochemical and structural analysis, we present the molecular basis for the enhanced ceftazidime hydrolysis and impaired avibactam inhibition conferred by CMY-185. The substituted Y346 residue is a major driver of the functional evolution as it rejects primary avibactam binding due to the steric hindrance and augments oxyimino-cephalosporin hydrolysis through a drastic structural change, rotating the side chain of Y346 and then disrupting the H-10 helix structure. The other substituted residues E114 and K120 incrementally contribute to rejection of avibactam inhibition, while S211 stimulates the turnover rate of the oxyimino-cephalosporin hydrolysis. These findings indicate that the N346Y substitution is capable of simultaneously expanding the spectrum of activity against some of the latest β-lactam agents with altered bulky side chains and rejecting the binding of β-lactamase inhibitors. However, substitution of additional residues may be required for CMY enzymes to achieve enhanced affinity or turnover rate of the β-lactam agents leading to clinically relevant levels of resistance.IMPORTANCECeftazidime-avibactam has a broad spectrum of activity against multidrug-resistant Gram-negative bacteria including carbapenem-resistant Enterobacterales including strains with or without production of serine carbapenemases. After its launch, emergence of ceftazidime-avibactam-resistant strains that produce mutated β-lactamases capable of efficiently hydrolyzing ceftazidime or impairing avibactam inhibition are increasingly reported. Furthermore, cross-resistance towards cefiderocol, the latest cephalosporin in clinical use, has been observed in some instances. Here, we clearly demonstrate the functional role of the substituted residues in CMY-185, a four amino-acid variant of CMY-2 identified in a patient treated with ceftazidime-avibactam, for high-level resistance to this agent and low-level resistance to cefiderocol. These findings provide structural insights into how β-lactamases may incrementally alter their structures to escape multiple advanced β-lactam agents.
Collapse
Affiliation(s)
- Akito Kawai
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Infectious Disease Research, Fujita Health University, Toyoake, Aichi, Japan
| | - William C. Shropshire
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Infectious Disease Research, Fujita Health University, Toyoake, Aichi, Japan
| | - Jovan Borjan
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel L. Aitken
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William C. Bachman
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christi L. McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Micah M. Bhatti
- Division of Pathology/Lab Medicine, Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan K. Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Infectious Disease Research, Fujita Health University, Toyoake, Aichi, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
8
|
Rentschler S, Borgolte M, Filbert A, Laufer S, Deigner HP. Highly efficient β-lactamase assay applying poly-dimethylacrylamide-based surface functionalization with β-lactam antibiotics and β-lactamase inhibitors. LAB ON A CHIP 2023; 23:5120-5130. [PMID: 37937378 DOI: 10.1039/d3lc00682d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
In recent decades, the rise of β-lactamases has substantially led to the emergence and wide spread of antibiotic resistance posing a serious global health threat. There is growing need for the development of rapid, cost-effective and user-friendly diagnostic assays for the accurate detection of β-lactamases to optimize patient outcomes and prevent the spread of multidrug-resistances. In this article, we present a poly-dimethylacrylamide (PDMA)-based surface functionalization to immobilize β-lactam antibiotics and β-lactamase inhibitors of different subclasses. Immobilization was induced via UV-crosslinking through C,H-insertion reactions. The functional coatings were successfully applied in a highly efficient assay for the determination of recombinant β-lactamases as well as β-lactamases isolated from clinically relevant bacterial strains. Thus, this method describes an innovative approach with several significant benefits for diagnostic applications: the creation of specific detection platforms tailored for β-lactamase activity, the development of high-throughput diagnostic assays and benefits regarding stability and shelf-life. Furthermore, this method is highly adaptable to other surfaces, antibiotics, and analytes, offering far-reaching implications for various biomedical, environmental, and antimicrobial applications.
Collapse
Affiliation(s)
- Simone Rentschler
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen, 78054, Germany.
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, Tuebingen, 72076, Germany
| | - Max Borgolte
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen, 78054, Germany.
| | - Alexander Filbert
- Furtwangen University, Robert-Gerwig-Platz1, Furtwangen, 78120, Germany
| | - Stefan Laufer
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, Tuebingen, 72076, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tuebingen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen, 78054, Germany.
- Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany
- Faculty of Science, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, Tuebingen, 72076, Germany
| |
Collapse
|
9
|
Mack AR, Kumar V, Taracila MA, Mojica MF, O'Shea M, Schinabeck W, Silver G, Hujer AM, Papp-Wallace KM, Chen S, Haider S, Caselli E, Prati F, van den Akker F, Bonomo RA. Natural protein engineering in the Ω-loop: the role of Y221 in ceftazidime and ceftolozane resistance in Pseudomonas-derived cephalosporinase. Antimicrob Agents Chemother 2023; 67:e0079123. [PMID: 37850746 PMCID: PMC10648885 DOI: 10.1128/aac.00791-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/07/2023] [Indexed: 10/19/2023] Open
Abstract
A wide variety of clinically observed single amino acid substitutions in the Ω-loop region have been associated with increased minimum inhibitory concentrations and resistance to ceftazidime (CAZ) and ceftolozane (TOL) in Pseudomonas-derived cephalosporinase and other class C β-lactamases. Herein, we demonstrate the naturally occurring tyrosine to histidine substitution of amino acid 221 (Y221H) in Pseudomonas-derived cephalosporinase (PDC) enables CAZ and TOL hydrolysis, leading to similar kinetic profiles (k cat = 2.3 ± 0.2 µM and 2.6 ± 0.1 µM, respectively). Mass spectrometry of PDC-3 establishes the formation of stable adducts consistent with the formation of an acyl enzyme complex, while spectra of E219K (a well-characterized, CAZ- and TOL-resistant comparator) and Y221H are consistent with more rapid turnover. Thermal denaturation experiments reveal decreased stability of the variants. Importantly, PDC-3, E219K, and Y221H are all inhibited by avibactam and the boronic acid transition state inhibitors (BATSIs) LP06 and S02030 with nanomolar IC50 values and the BATSIs stabilize all three enzymes. Crystal structures of PDC-3 and Y221H as apo enzymes and complexed with LP06 and S02030 (1.35-2.10 Å resolution) demonstrate ligand-induced conformational changes, including a significant shift in the position of the sidechain of residue 221 in Y221H (as predicted by enhanced sampling well-tempered metadynamics simulations) and extensive hydrogen bonding between the enzymes and BATSIs. The shift of residue 221 leads to the expansion of the active site pocket, and molecular docking suggests substrates orientate differently and make different intermolecular interactions in the enlarged active site compared to the wild-type enzyme.
Collapse
Affiliation(s)
- Andrew R. Mack
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Vijay Kumar
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Magdalena A. Taracila
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Maria F. Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Margaret O'Shea
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - William Schinabeck
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Galen Silver
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Andrea M. Hujer
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Krisztina M. Papp-Wallace
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Shuang Chen
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, England, United Kingdom
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, England, United Kingdom
- UCL Centre for Advanced Research Computing, University College London, London, England, United Kingdom
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Biochemical Insights into Imipenem Collateral Susceptibility Driven by ampC Mutations Conferring Ceftolozane/Tazobactam Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2023; 67:e0140922. [PMID: 36715512 PMCID: PMC9933714 DOI: 10.1128/aac.01409-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Several Pseudomonas aeruginosa AmpC mutants have emerged that exhibit enhanced activity against ceftazidime and ceftolozane, while also evading inhibition by avibactam. Interestingly, P. aeruginosa strains harboring these AmpC mutations fortuitously exhibit enhanced carbapenem susceptibility. This acquired susceptibility was investigated by comparing the degradation of imipenem by wild-type and cephalosporin-resistant AmpC. We show that cephalosporin-resistant AmpC enzymes lose their efficacy for hydrolyzing imipenem and suggest that this may be due to their increased flexibility and dynamics relative to the wild type.
Collapse
|
11
|
Colque CA, albarracín Orio AG, Tomatis PE, Dotta G, Moreno DM, Hedemann LG, Hickman RA, Sommer LM, Feliziani S, Moyano AJ, Bonomo RA, K. Johansen H, Molin S, Vila AJ, Smania AM. Longitudinal Evolution of the Pseudomonas-Derived Cephalosporinase (PDC) Structure and Activity in a Cystic Fibrosis Patient Treated with β-Lactams. mBio 2022; 13:e0166322. [PMID: 36073814 PMCID: PMC9600753 DOI: 10.1128/mbio.01663-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Traditional studies on the evolution of antibiotic resistance development use approaches that can range from laboratory-based experimental studies, to epidemiological surveillance, to sequencing of clinical isolates. However, evolutionary trajectories also depend on the environment in which selection takes place, compelling the need to more deeply investigate the impact of environmental complexities and their dynamics over time. Herein, we explored the within-patient adaptive long-term evolution of a Pseudomonas aeruginosa hypermutator lineage in the airways of a cystic fibrosis (CF) patient by performing a chronological tracking of mutations that occurred in different subpopulations; our results demonstrated parallel evolution events in the chromosomally encoded class C β-lactamase (blaPDC). These multiple mutations within blaPDC shaped diverse coexisting alleles, whose frequency dynamics responded to the changing antibiotic selective pressures for more than 26 years of chronic infection. Importantly, the combination of the cumulative mutations in blaPDC provided structural and functional protein changes that resulted in a continuous enhancement of its catalytic efficiency and high level of cephalosporin resistance. This evolution was linked to the persistent treatment with ceftazidime, which we demonstrated selected for variants with robust catalytic activity against this expanded-spectrum cephalosporin. A "gain of function" of collateral resistance toward ceftolozane, a more recently introduced cephalosporin that was not prescribed to this patient, was also observed, and the biochemical basis of this cross-resistance phenomenon was elucidated. This work unveils the evolutionary trajectories paved by bacteria toward a multidrug-resistant phenotype, driven by decades of antibiotic treatment in the natural CF environmental setting. IMPORTANCE Antibiotics are becoming increasingly ineffective to treat bacterial infections. It has been consequently predicted that infectious diseases will become the biggest challenge to human health in the near future. Pseudomonas aeruginosa is considered a paradigm in antimicrobial resistance as it exploits intrinsic and acquired resistance mechanisms to resist virtually all antibiotics known. AmpC β-lactamase is the main mechanism driving resistance in this notorious pathogen to β-lactams, one of the most widely used classes of antibiotics for cystic fibrosis infections. Here, we focus on the β-lactamase gene as a model resistance determinant and unveil the trajectory P. aeruginosa undertakes on the path toward a multidrug-resistant phenotype during the course of two and a half decades of chronic infection in the airways of a cystic fibrosis patient. Integrating genetic and biochemical studies in the natural environment where evolution occurs, we provide a unique perspective on this challenging landscape, addressing fundamental molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Claudia A. Colque
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Andrea G. albarracín Orio
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- IRNASUS, Universidad Católica de Córdoba, CONICET, Facultad de Ciencias Agropecuarias, Córdoba, Argentina
| | - Pablo E. Tomatis
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gina Dotta
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego M. Moreno
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- IQUIR, Instituto de Química de Rosario, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura G. Hedemann
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Rachel A. Hickman
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lea M. Sommer
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sofía Feliziani
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Alejandro J. Moyano
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Robert A. Bonomo
- Departments of Molecular Biology and Microbiology, Medicine, Biochemistry, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
- Senior Clinical Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
| | - Helle K. Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrea M. Smania
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| |
Collapse
|
12
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
13
|
Nowak MG, Skwarecki AS, Milewska MJ. Amino Acid Based Antimicrobial Agents - Synthesis and Properties. ChemMedChem 2021; 16:3513-3544. [PMID: 34596961 PMCID: PMC9293202 DOI: 10.1002/cmdc.202100503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Structures of several dozen of known antibacterial, antifungal or antiprotozoal agents are based on the amino acid scaffold. In most of them, the amino acid skeleton is of a crucial importance for their antimicrobial activity, since very often they are structural analogs of amino acid intermediates of different microbial biosynthetic pathways. Particularly, some aminophosphonate or aminoboronate analogs of protein amino acids are effective enzyme inhibitors, as structural mimics of tetrahedral transition state intermediates. Synthesis of amino acid antimicrobials is a particular challenge, especially in terms of the need for enantioselective methods, including the asymmetric synthesis. All these issues are addressed in this review, summing up the current state‐of‐the‐art and presenting perspectives fur further progress.
Collapse
Affiliation(s)
- Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
14
|
Mora-Ochomogo M, Lohans CT. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med Chem 2021; 12:1623-1639. [PMID: 34778765 PMCID: PMC8528271 DOI: 10.1039/d1md00200g] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/25/2021] [Indexed: 12/24/2022] Open
Abstract
The β-lactams are the most widely used antibacterial agents worldwide. These antibiotics, a group that includes the penicillins and cephalosporins, are covalent inhibitors that target bacterial penicillin-binding proteins and disrupt peptidoglycan synthesis. Bacteria can achieve resistance to β-lactams in several ways, including the production of serine β-lactamase enzymes. While β-lactams also covalently interact with serine β-lactamases, these enzymes are capable of deacylating this complex, treating the antibiotic as a substrate. In this tutorial-style review, we provide an overview of the β-lactam antibiotics, focusing on their covalent interactions with their target proteins and resistance mechanisms. We begin by describing the structurally diverse range of β-lactam antibiotics and β-lactamase inhibitors that are currently used as therapeutics. Then, we introduce the penicillin-binding proteins, describing their functions and structures, and highlighting their interactions with β-lactam antibiotics. We next describe the classes of serine β-lactamases, exploring some of the mechanisms by which they achieve the ability to degrade β-lactams. Finally, we introduce the l,d-transpeptidases, a group of bacterial enzymes involved in peptidoglycan synthesis which are also targeted by β-lactam antibiotics. Although resistance mechanisms are now prevalent for all antibiotics in this class, past successes in antibiotic development have at least delayed this onset of resistance. The β-lactams continue to be an essential tool for the treatment of infectious disease, and recent advances (e.g., β-lactamase inhibitor development) will continue to support their future use.
Collapse
Affiliation(s)
| | - Christopher T Lohans
- Department of Biomedical and Molecular Sciences, Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
15
|
Arca-Suárez J, Vázquez-Ucha JC, Fraile-Ribot PA, Lence E, Cabot G, Martínez-Guitián M, Lasarte-Monterrubio C, Rodríguez-Iglesias M, Beceiro A, González-Bello C, Galán-Sánchez F, Oliver A, Bou G. Molecular and biochemical insights into the in vivo evolution of AmpC-mediated resistance to ceftolozane/tazobactam during treatment of an MDR Pseudomonas aeruginosa infection. J Antimicrob Chemother 2021; 75:3209-3217. [PMID: 32728723 DOI: 10.1093/jac/dkaa291] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa may develop resistance to novel cephalosporin/β-lactamase inhibitor combinations during therapy through the acquisition of structural mutations in AmpC. OBJECTIVES To describe the molecular and biochemical mechanisms involved in the development of resistance to ceftolozane/tazobactam in vivo through the selection and overproduction of a novel AmpC variant, designated PDC-315. METHODS Paired susceptible/resistant isolates obtained before and during ceftolozane/tazobactam treatment were evaluated. MICs were determined by broth microdilution. Mutational changes were investigated through WGS. Characterization of the novel PDC-315 variant was performed through genotypic and biochemical studies. The effects at the molecular level of the Asp245Asn change were analysed by molecular dynamics simulations using Amber. RESULTS WGS identified mutations leading to modification (Asp245Asn) and overproduction of AmpC. Susceptibility testing revealed that PAOΔC producing PDC-315 displayed increased MICs of ceftolozane/tazobactam, decreased MICs of piperacillin/tazobactam and imipenem and similar susceptibility to ceftazidime/avibactam compared with WT PDCs. The catalytic efficiency of PDC-315 for ceftolozane was 10-fold higher in relation to the WT PDCs, but 3.5- and 5-fold lower for piperacillin and imipenem. IC50 values indicated strong inhibition of PDC-315 by avibactam, but resistance to cloxacillin inhibition. Analysis at the atomic level explained that the particular behaviour of PDC-315 is linked to conformational changes in the H10 helix that favour the approximation of key catalytic residues to the active site. CONCLUSIONS We deciphered the precise mechanisms that led to the in vivo emergence of resistance to ceftolozane/tazobactam in P. aeruginosa through the selection of the novel PDC-315 enzyme. The characterization of this new variant expands our knowledge about AmpC-mediated resistance to cephalosporin/β-lactamase inhibitors in P. aeruginosa.
Collapse
Affiliation(s)
- Jorge Arca-Suárez
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Juan Carlos Vázquez-Ucha
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Pablo Arturo Fraile-Ribot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdiSBA), Palma de Mallorca, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gabriel Cabot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdiSBA), Palma de Mallorca, Spain
| | - Marta Martínez-Guitián
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Cristina Lasarte-Monterrubio
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Manuel Rodríguez-Iglesias
- Servicio de Microbiología and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar and Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fátima Galán-Sánchez
- Servicio de Microbiología and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar and Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdiSBA), Palma de Mallorca, Spain
| | - Germán Bou
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| |
Collapse
|
16
|
Bąchor U, Mączyński M. Selected β 2-, β 3- and β 2,3-Amino Acid Heterocyclic Derivatives and Their Biological Perspective. Molecules 2021; 26:438. [PMID: 33467741 PMCID: PMC7829935 DOI: 10.3390/molecules26020438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 11/25/2022] Open
Abstract
Heterocyclic moieties, especially five and six-membered rings containing nitrogen, oxygen or sulfur atoms, are broadly distributed in nature. Among them, synthetic and natural alike are pharmacologically active compounds and have always been at the forefront of attention due to their pharmacological properties. Heterocycles can be divided into different groups based on the presence of characteristic structural motifs. The presence of β-amino acid and heterocyclic core in one compound is very interesting; additionally, it very often plays a vital role in their biological activity. Usually, such compounds are not considered to be chemicals containing a β-amino acid motif; however, considering them as this class of compounds may open new routes of their preparation and application as new drug precursors or even drugs. The possibility of their application as nonproteinogenic amino acid residues in peptide or peptide derivatives synthesis to prepare a new class of compounds is also promising. This review highlights the actual state of knowledge about β-amino acid moiety-containing heterocycles presenting antiviral, anti-inflammatory, antibacterial compounds, anaplastic lymphoma kinase (ALK) inhibitors, as well as agonist and antagonists of the receptors.
Collapse
Affiliation(s)
- Urszula Bąchor
- Department of Organic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | | |
Collapse
|
17
|
Tooke CL, Hinchliffe P, Bonomo RA, Schofield CJ, Mulholland AJ, Spencer J. Natural variants modify Klebsiella pneumoniae carbapenemase (KPC) acyl-enzyme conformational dynamics to extend antibiotic resistance. J Biol Chem 2021; 296:100126. [PMID: 33257320 PMCID: PMC7949053 DOI: 10.1074/jbc.ra120.016461] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Class A serine β-lactamases (SBLs) are key antibiotic resistance determinants in Gram-negative bacteria. SBLs neutralize β-lactams via a hydrolytically labile covalent acyl-enzyme intermediate. Klebsiella pneumoniae carbapenemase (KPC) is a widespread SBL that hydrolyzes carbapenems, the most potent β-lactams; known KPC variants differ in turnover of expanded-spectrum oxyimino-cephalosporins (ESOCs), for example, cefotaxime and ceftazidime. Here, we compare ESOC hydrolysis by the parent enzyme KPC-2 and its clinically observed double variant (P104R/V240G) KPC-4. Kinetic analyses show that KPC-2 hydrolyzes cefotaxime more efficiently than the bulkier ceftazidime, with improved ESOC turnover by KPC-4 resulting from enhanced turnover (kcat), rather than altered KM values. High-resolution crystal structures of ESOC acyl-enzyme complexes with deacylation-deficient (E166Q) KPC-2 and KPC-4 mutants show that ceftazidime acylation causes rearrangement of three loops; the Ω, 240, and 270 loops, which border the active site. However, these rearrangements are less pronounced in the KPC-4 than the KPC-2 ceftazidime acyl-enzyme and are not observed in the KPC-2:cefotaxime acyl-enzyme. Molecular dynamics simulations of KPC:ceftazidime acyl-enyzmes reveal that the deacylation general base E166, located on the Ω loop, adopts two distinct conformations in KPC-2, either pointing "in" or "out" of the active site; with only the "in" form compatible with deacylation. The "out" conformation was not sampled in the KPC-4 acyl-enzyme, indicating that efficient ESOC breakdown is dependent upon the ordering and conformation of the KPC Ω loop. The results explain how point mutations expand the activity spectrum of the clinically important KPC SBLs to include ESOCs through their effects on the conformational dynamics of the acyl-enzyme intermediate.
Collapse
Affiliation(s)
- Catherine L Tooke
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Robert A Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, Ohio, USA
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
18
|
Crystal structure of AmpC BER and molecular docking lead to the discovery of broad inhibition activities of halisulfates against β-lactamases. Comput Struct Biotechnol J 2020; 19:145-152. [PMID: 33425247 PMCID: PMC7773887 DOI: 10.1016/j.csbj.2020.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 11/23/2022] Open
Abstract
AmpC BER is an extended-spectrum (ES) class C β-lactamase with a two-amino-acid insertion in the H10 helix region located at the boundary of the active site compared with its narrow spectrum progenitor. The crystal structure of the wild-type AmpC BER revealed that the insertion widens the active site by restructuring the flexible H10 helix region, which is the structural basis for its ES activity. Besides, two sulfates originated from the crystallization solution were observed in the active site. The presence of sulfate-binding subsites, together with the recognition of ring-structured chemical scaffolds by AmpC BER, led us to perform in silico molecular docking experiments with halisulfates, natural products isolated from marine sponge. Inspired by the snug fit of halisulfates within the active site, we demonstrated that halisulfate 3 and 5 significantly inhibit ES class C β-lactamases. Especially, halisulfate 5 is comparable to avibactam in terms of inhibition efficiency; it inhibits the nitrocefin-hydrolyzing activity of AmpC BER with a Ki value of 5.87 μM in a competitive manner. Furthermore, halisulfate 5 displayed moderate and weak inhibition activities against class A and class B/D enzymes, respectively. The treatment of β-lactamase inhibitors (BLIs) in combination with β-lactam antibiotics is a working strategy to cope with infections by pathogens producing ES β-lactamases. Considering the emergence and dissemination of enzymes insensitive to clinically-used BLIs, the broad inhibition spectrum and structural difference of halisulfates would be used to develop novel BLIs that can escape the bacterial resistance mechanism mediated by β-lactamases.
Collapse
|
19
|
Structural Insights into Inhibition of the Acinetobacter-Derived Cephalosporinase ADC-7 by Ceftazidime and Its Boronic Acid Transition State Analog. Antimicrob Agents Chemother 2020; 64:AAC.01183-20. [PMID: 32988830 DOI: 10.1128/aac.01183-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023] Open
Abstract
Extended-spectrum class C β-lactamases have evolved to rapidly inactivate expanded-spectrum cephalosporins, a class of antibiotics designed to be resistant to hydrolysis by β-lactamase enzymes. To better understand the mechanism by which Acinetobacter-derived cephalosporinase-7 (ADC-7), a chromosomal AmpC enzyme, hydrolyzes these molecules, we determined the X-ray crystal structure of ADC-7 in an acyl-enzyme complex with the cephalosporin ceftazidime (2.40 Å) as well as in complex with a boronic acid transition state analog inhibitor that contains the R1 side chain of ceftazidime (1.67 Å). In the acyl-enzyme complex, the carbonyl oxygen is situated in the oxyanion hole where it makes key stabilizing interactions with the main chain nitrogens of Ser64 and Ser315. The boronic acid O1 hydroxyl group is similarly positioned in this area. Conserved residues Gln120 and Asn152 form hydrogen bonds with the amide group of the R1 side chain in both complexes. These complexes represent two steps in the hydrolysis of expanded-spectrum cephalosporins by ADC-7 and offer insight into the inhibition of ADC-7 by ceftazidime through displacement of the deacylating water molecule as well as blocking its trajectory to the acyl carbonyl carbon. In addition, the transition state analog inhibitor, LP06, was shown to bind with high affinity to ADC-7 (Ki , 50 nM) and was able to restore ceftazidime susceptibility, offering the potential for optimization efforts of this type of inhibitor.
Collapse
|
20
|
Novel inhibition mechanism of carbapenems on the ACC-1 class C β-lactamase. Arch Biochem Biophys 2020; 693:108570. [PMID: 32888908 DOI: 10.1016/j.abb.2020.108570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 11/20/2022]
Abstract
The hydrolysis of β-lactam antibiotics by class C β-lactamases proceeds through the acylation and the rate-determining deacylation steps mediated by the nucleophilic serine and the deacylation water, respectively. The pose of poor substrates such as carbapenems in the acylated enzyme is responsible for the low efficient deacylation reaction. Here we present the crystal structures of the Y150F variant of the ACC-1 class C β-lactamase in the apo and acylated states. In the acylated enzyme complexed with two carbapenems, imipenem and meropenem, the lactam carbonyl oxygen is located in the oxyanion hole. However, the five-membered pyrroline ring displays a novel orientation that has not been reported so far. The ring is rotated such that its C3 carboxylate makes salt bridges with Lys67 and Ly315, which is accompanied by the side-chain rotamer change of Phe150. The C3 carboxylate is placed where the deacylation water occupies in the apo-enzyme, which, together with the displacement of the catalytic base residue at position 150, explains why carbapenems are poor substrates of ACC-1.
Collapse
|
21
|
Slater CL, Winogrodzki J, Fraile-Ribot PA, Oliver A, Khajehpour M, Mark BL. Adding Insult to Injury: Mechanistic Basis for How AmpC Mutations Allow Pseudomonas aeruginosa To Accelerate Cephalosporin Hydrolysis and Evade Avibactam. Antimicrob Agents Chemother 2020; 64:e00894-20. [PMID: 32660987 PMCID: PMC7449160 DOI: 10.1128/aac.00894-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/01/2020] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of nosocomial infections worldwide and notorious for its broad-spectrum resistance to antibiotics. A key mechanism that provides extensive resistance to β-lactam antibiotics is the inducible expression of AmpC β-lactamase. Recently, a number of clinical isolates expressing mutated forms of AmpC have been found to be clinically resistant to the antipseudomonal β-lactam-β-lactamase inhibitor (BLI) combinations ceftolozane-tazobactam and ceftazidime-avibactam. Here, we compare the enzymatic activity of wild-type (WT) AmpC from PAO1 to those of four of these reported AmpC mutants, bearing mutations E247K (a change of E to K at position 247), G183D, T96I, and ΔG229-E247 (a deletion from position 229 to 247), to gain detailed insights into how these mutations allow the circumvention of these clinically vital antibiotic-inhibitor combinations. We found that these mutations exert a 2-fold effect on the catalytic cycle of AmpC. First, they reduce the stability of the enzyme, thereby increasing its flexibility. This appears to increase the rate of deacylation of the enzyme-bound β-lactam, resulting in greater catalytic efficiencies toward ceftolozane and ceftazidime. Second, these mutations reduce the affinity of avibactam for AmpC by increasing the apparent activation barrier of the enzyme acylation step. This does not influence the catalytic turnover of ceftolozane and ceftazidime significantly, as deacylation is the rate-limiting step for the breakdown of these antibiotic substrates. It is remarkable that these mutations enhance the catalytic efficiency of AmpC toward ceftolozane and ceftazidime while simultaneously reducing susceptibility to inhibition by avibactam. Knowledge gained from the molecular analysis of these and other AmpC resistance mutants will, we believe, aid in the design of β-lactams and BLIs with reduced susceptibility to mutational resistance.
Collapse
Affiliation(s)
- Cole L Slater
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | | - Pablo A Fraile-Ribot
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Antonio Oliver
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | | | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
22
|
Cheng Q, DeYonker NJ. Acylation and deacylation mechanism and kinetics of penicillin G reaction with Streptomyces R61 DD-peptidase. J Comput Chem 2020; 41:1685-1697. [PMID: 32323874 DOI: 10.1002/jcc.26210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/26/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
Abstract
Two quantum mechanical (QM)-cluster models are built for studying the acylation and deacylation mechanism and kinetics of Streptomyces R61 DD-peptidase with the penicillin G at atomic level detail. DD-peptidases are bacterial enzymes involved in the cross-linking of peptidoglycan to form the cell wall, necessary for bacterial survival. The cross-linking can be inhibited by antibiotic beta-lactam derivatives through acylation, preventing the acyl-enzyme complex from undergoing further deacylation. The deacylation step was predicted to be rate-limiting. Transition state and intermediate structures are found using density functional theory in this study, and thermodynamic and kinetic properties of the proposed mechanism are evaluated. The acyl-enzyme complex is found lying in a deep thermodynamic sink, and deacylation is indeed the severely rate-limiting step, leading to suicide inhibition of the peptidoglycan cross-linking. The usage of QM-cluster models is a promising technique to understand, improve, and design antibiotics to disrupt function of the Streptomyces R61 DD-peptidase.
Collapse
Affiliation(s)
- Qianyi Cheng
- Department of Chemistry, University of Memphis, Memphis, Tennessee, USA
| | - Nathan J DeYonker
- Department of Chemistry, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
23
|
Kawai A, McElheny CL, Iovleva A, Kline EG, Sluis-Cremer N, Shields RK, Doi Y. Structural Basis of Reduced Susceptibility to Ceftazidime-Avibactam and Cefiderocol in Enterobacter cloacae Due to AmpC R2 Loop Deletion. Antimicrob Agents Chemother 2020; 64:e00198-20. [PMID: 32284381 PMCID: PMC7318025 DOI: 10.1128/aac.00198-20] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/04/2020] [Indexed: 12/23/2022] Open
Abstract
Ceftazidime-avibactam and cefiderocol are two of the latest generation β-lactam agents that possess expanded activity against highly drug-resistant bacteria, including carbapenem-resistant Enterobacterales Here, we show that structural changes in AmpC β-lactamases can confer reduced susceptibility to both agents. A multidrug-resistant Enterobacter cloacae clinical strain (Ent385) was found to be resistant to ceftazidime-avibactam and cefiderocol without prior exposure to either agent. The AmpC β-lactamase of Ent385 (AmpCEnt385) contained an alanine-proline deletion at positions 294 and 295 (A294_P295del) in the R2 loop. AmpCEnt385 conferred reduced susceptibility to ceftazidime-avibactam and cefiderocol when cloned into Escherichia coli TOP10. Purified AmpCEnt385 showed increased hydrolysis of ceftazidime and cefiderocol compared to AmpCEnt385Rev, in which the deletion was reverted. Comparisons of crystal structures of AmpCEnt385 and AmpCP99, the canonical AmpC of E. cloacae complex, revealed that the two-residue deletion in AmpCEnt385 induced drastic structural changes of the H-9 and H-10 helices and the R2 loop, which accounted for the increased hydrolysis of ceftazidime and cefiderocol. The potential for a single mutation in ampC to confer reduced susceptibility to both ceftazidime-avibactam and cefiderocol requires close monitoring.
Collapse
Affiliation(s)
- Akito Kawai
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Christi L McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alina Iovleva
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ellen G Kline
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Innovative Antimicrobial Therapy, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan K Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Innovative Antimicrobial Therapy, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Innovative Antimicrobial Therapy, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
24
|
Lang PA, Parkova A, Leissing TM, Calvopiña K, Cain R, Krajnc A, Panduwawala TD, Philippe J, Fishwick CWG, Trapencieris P, Page MGP, Schofield CJ, Brem J. Bicyclic Boronates as Potent Inhibitors of AmpC, the Class C β-Lactamase from Escherichia coli. Biomolecules 2020; 10:E899. [PMID: 32545682 PMCID: PMC7356297 DOI: 10.3390/biom10060899] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Resistance to β-lactam antibacterials, importantly via production of β-lactamases, threatens their widespread use. Bicyclic boronates show promise as clinically useful, dual-action inhibitors of both serine- (SBL) and metallo- (MBL) β-lactamases. In combination with cefepime, the bicyclic boronate taniborbactam is in phase 3 clinical trials for treatment of complicated urinary tract infections. We report kinetic and crystallographic studies on the inhibition of AmpC, the class C β‑lactamase from Escherichia coli, by bicyclic boronates, including taniborbactam, with different C-3 side chains. The combined studies reveal that an acylamino side chain is not essential for potent AmpC inhibition by active site binding bicyclic boronates. The tricyclic form of taniborbactam was observed bound to the surface of crystalline AmpC, but not at the active site, where the bicyclic form was observed. Structural comparisons reveal insights into why active site binding of a tricyclic form has been observed with the NDM-1 MBL, but not with other studied β-lactamases. Together with reported studies on the structural basis of inhibition of class A, B and D β‑lactamases, our data support the proposal that bicyclic boronates are broad-spectrum β‑lactamase inhibitors that work by mimicking a high energy 'tetrahedral' intermediate. These results suggest further SAR guided development could improve the breadth of clinically useful β-lactamase inhibition.
Collapse
Affiliation(s)
- Pauline A. Lang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Anete Parkova
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (A.P.); (P.T.)
| | - Thomas M. Leissing
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Karina Calvopiña
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Ricky Cain
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK; (R.C.); (C.W.G.F.)
| | - Alen Krajnc
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Tharindi D. Panduwawala
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Jules Philippe
- Jacobs University Bremen gGmbH, 28759 Bremen, Germany; (J.P.); (M.G.P.P.)
| | | | | | - Malcolm G. P. Page
- Jacobs University Bremen gGmbH, 28759 Bremen, Germany; (J.P.); (M.G.P.P.)
| | - Christopher J. Schofield
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK; (P.A.L.); (T.M.L.); (K.C.); (A.K.); (T.D.P.)
| |
Collapse
|
25
|
Lefurgy ST, Caselli E, Taracila MA, Malashkevich VN, Biju B, Papp-Wallace KM, Bonanno JB, Prati F, Almo SC, Bonomo RA. Structures of FOX-4 Cephamycinase in Complex with Transition-State Analog Inhibitors. Biomolecules 2020; 10:biom10050671. [PMID: 32349291 PMCID: PMC7277225 DOI: 10.3390/biom10050671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
Boronic acid transition-state analog inhibitors (BATSIs) are partners with β-lactam antibiotics for the treatment of complex bacterial infections. Herein, microbiological, biochemical, and structural findings on four BATSIs with the FOX-4 cephamycinase, a class C β-lactamase that rapidly hydrolyzes cefoxitin, are revealed. FOX-4 is an extended-spectrum class C cephalosporinase that demonstrates conformational flexibility when complexed with certain ligands. Like other β-lactamases of this class, studies on FOX-4 reveal important insights into structure–activity relationships. We show that SM23, a BATSI, shows both remarkable flexibility and affinity, binding similarly to other β-lactamases, yet retaining an IC50 value < 0.1 μM. Our analyses open up new opportunities for the design of novel transition-state analogs of class C enzymes.
Collapse
Affiliation(s)
- Scott T. Lefurgy
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Magdalena A. Taracila
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | | | - Beena Biju
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Krisztina M. Papp-Wallace
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +216-791-3800 (ext. 64801); Fax: +216-231-3482
| |
Collapse
|
26
|
Linciano P, Vicario M, Kekez I, Bellio P, Celenza G, Martín-Blecua I, Blázquez J, Cendron L, Tondi D. Phenylboronic Acids Probing Molecular Recognition against Class A and Class C β-lactamases. Antibiotics (Basel) 2019; 8:antibiotics8040171. [PMID: 31574990 PMCID: PMC6963673 DOI: 10.3390/antibiotics8040171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 11/24/2022] Open
Abstract
Worldwide dissemination of pathogens resistant to almost all available antibiotics represent a real problem preventing efficient treatment of infectious diseases. Among antimicrobial used in therapy, β-lactam antibiotics represent 40% thus playing a crucial role in the management of infections treatment. We report a small series of phenylboronic acids derivatives (BAs) active against class A carbapenemases KPC-2 and GES-5, and class C cephalosporinases AmpC. The inhibitory profile of our BAs against class A and C was investigated by means of molecular docking, enzyme kinetics and X-ray crystallography. We were interested in the mechanism of recognition among class A and class C to direct the design of broad serine β-Lactamases (SBLs) inhibitors. Molecular modeling calculations vs GES-5 and crystallographic studies vs AmpC reasoned, respectively, the ortho derivative 2 and the meta derivative 3 binding affinity. The ability of our BAs to protect β-lactams from BLs hydrolysis was determined in biological assays conducted against clinical strains: Fractional inhibitory concentration index (FICI) tests confirmed their ability to be synergic with β-lactams thus restoring susceptibility to meropenem. Considering the obtained results and the lack of cytotoxicity, our derivatives represent validated probe for the design of SBLs inhibitors.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| | - Mattia Vicario
- Department of Biology, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| | - Ivana Kekez
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| | - Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100 L'Aquila, Italy.
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio 1, 67100 L'Aquila, Italy.
| | | | - Jesús Blázquez
- National Center of Biotechnology-CSIC, Calle Darwin 3, 28049 Madrid, Spain.
| | - Laura Cendron
- Department of Biology, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| |
Collapse
|
27
|
Multiple substitutions lead to increased loop flexibility and expanded specificity in Acinetobacter baumannii carbapenemase OXA-239. Biochem J 2018; 475:273-288. [PMID: 29229762 DOI: 10.1042/bcj20170702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 11/17/2022]
Abstract
OXA-239 is a class D carbapenemase isolated from an Acinetobacter baumannii strain found in Mexico. This enzyme is a variant of OXA-23 with three amino acid substitutions in or near the active site. These substitutions cause OXA-239 to hydrolyze late-generation cephalosporins and the monobactam aztreonam with greater efficiency than OXA-23. OXA-239 activity against the carbapenems doripenem and imipenem is reduced ∼3-fold and 20-fold, respectively. Further analysis demonstrated that two of the substitutions (P225S and D222N) are largely responsible for the observed alteration of kinetic parameters, while the third (S109L) may serve to stabilize the protein. Structures of OXA-239 with cefotaxime, doripenem and imipenem bound as acyl-intermediates were determined. These structures reveal that OXA-239 has increased flexibility in a loop that contains P225S and D222N. When carbapenems are bound, the conformation of this loop is essentially identical with that observed previously for OXA-23, with a narrow active site that makes extensive contacts to the ligand. When cefotaxime is bound, the loop can adopt a different conformation that widens the active site to allow binding of that bulky drug. This alternate conformation is made possible by P225S and further stabilized by D222N. Taken together, these results suggest that the three substitutions were selected to expand the substrate specificity profile of OXA-23 to cephalosporins and monobactams. The loss of activity against imipenem, however, suggests that there may be limits to the plasticity of class D enzymes with regard to evolving active sites that can effectively bind multiple classes of β-lactam drugs.
Collapse
|
28
|
Patel MP, Hu L, Stojanoski V, Sankaran B, Venkataram Prasad BV, Palzkill T. The Drug-Resistant Variant P167S Expands the Substrate Profile of CTX-M β-Lactamases for Oxyimino-Cephalosporin Antibiotics by Enlarging the Active Site upon Acylation. Biochemistry 2017; 56:3443-3453. [PMID: 28613873 PMCID: PMC5645026 DOI: 10.1021/acs.biochem.7b00176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CTX-M β-lactamases provide resistance against the β-lactam antibiotic, cefotaxime, but not a related antibiotic, ceftazidime. β-Lactamases that carry the P167S substitution, however, provide ceftazidime resistance. In this study, CTX-M-14 was used as a model to study the structural changes caused by the P167S mutation that accelerate ceftazidime turnover. X-ray crystallography was used to determine the structures of the P167S apoenzyme along with the structures of the S70G/P167S, E166A/P167S, and E166A mutant enzymes complexed with ceftazidime as well as the E166A/P167S apoenzyme. The S70G and E166A mutations allow capture of the enzyme-substrate complex and the acylated form of ceftazidime, respectively. The results showed a large conformational change in the Ω-loop of the ceftazidime acyl-enzyme complex of the P167S mutant but not in the enzyme-substrate complex, suggesting the change occurs upon acylation. The change results in a larger active site that prevents steric clash between the aminothiazole ring of ceftazidime and the Asn170 residue in the Ω-loop, allowing accommodation of ceftazidime for hydrolysis. In addition, the conformational change was not observed in the E166A/P167S apoenzyme, suggesting the presence of acylated ceftazidime influences the conformational change. Finally, the E166A acyl-enzyme structure with ceftazidime did not exhibit the altered conformation, indicating the P167S substitution is required for the change. Taken together, the results reveal that the P167S substitution and the presence of acylated ceftazidime both drive the structure toward a conformational change in the Ω-loop and that in CTX-M P167S enzymes found in drug-resistant bacteria this will lead to an increased level of ceftazidime hydrolysis.
Collapse
Affiliation(s)
- Meha P. Patel
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Liya Hu
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Vlatko Stojanoski
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - B. V. Venkataram Prasad
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Timothy Palzkill
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
29
|
Affiliation(s)
- R. F. Pratt
- Department
of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
30
|
Tripathi R, Nair NN. Deacylation Mechanism and Kinetics of Acyl-Enzyme Complex of Class C β-Lactamase and Cephalothin. J Phys Chem B 2016; 120:2681-90. [PMID: 26918257 DOI: 10.1021/acs.jpcb.5b11623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Understanding the molecular details of antibiotic resistance by the bacterial enzymes β-lactamases is vital for the development of novel antibiotics and inhibitors. In this spirit, the detailed mechanism of deacylation of the acyl-enzyme complex formed by cephalothin and class C β-lactamase is investigated here using hybrid quantum-mechanical/molecular-mechanical molecular dynamics methods. The roles of various active-site residues and substrate in the deacylation reaction are elucidated. We identify the base that activates the hydrolyzing water molecule and the residue that protonates the catalytic serine (Ser64). Conformational changes in the active sites and proton transfers that potentiate the efficiency of the deacylation reaction are presented. We have also characterized the oxyanion holes and other H-bonding interactions that stabilize the reaction intermediates. Together with the kinetic and mechanistic details of the acylation reaction, we analyze the complete mechanism and the overall kinetics of the drug hydrolysis. Finally, the apparent rate-determining step in the drug hydrolysis is scrutinized.
Collapse
Affiliation(s)
- Ravi Tripathi
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208016, India
| |
Collapse
|
31
|
Bujnowski K, Synoradzki L, Darłak RC, Zevaco TA, Dinjus E. Semi-synthetic zwitterionic rifamycins: a promising class of antibiotics; survey of their chemistry and biological activities. RSC Adv 2016. [DOI: 10.1039/c6ra22880a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rifamycins are an important group of macrocyclic antibiotics highly active against tuberculosis and various other Gram-positive pathogenic bacteria.
Collapse
Affiliation(s)
- Krzysztof Bujnowski
- Warsaw University of Technology
- Faculty of Chemistry
- Laboratory of Technological Processes
- 00-664 Warsaw
- Poland
| | - Ludwik Synoradzki
- Warsaw University of Technology
- Faculty of Chemistry
- Laboratory of Technological Processes
- 00-664 Warsaw
- Poland
| | - Radosław C. Darłak
- Warsaw University of Technology
- Faculty of Chemistry
- Laboratory of Technological Processes
- 00-664 Warsaw
- Poland
| | - Thomas A. Zevaco
- Institute of Catalysis Research and Technology
- Karlsruhe Institute of Technology
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Eckhard Dinjus
- Institute of Catalysis Research and Technology
- Karlsruhe Institute of Technology
- 76344 Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|
32
|
Tilvawala R, Cammarata M, Adediran SA, Brodbelt JS, Pratt RF. A New Covalent Inhibitor of Class C β-Lactamases Reveals Extended Active Site Specificity. Biochemistry 2015; 54:7375-84. [DOI: 10.1021/acs.biochem.5b01149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ronak Tilvawala
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Michael Cammarata
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - S. A. Adediran
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Jennifer S. Brodbelt
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - R. F. Pratt
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
33
|
Class D β-lactamases do exist in Gram-positive bacteria. Nat Chem Biol 2015; 12:9-14. [PMID: 26551395 PMCID: PMC4684797 DOI: 10.1038/nchembio.1950] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022]
Abstract
Production of β-lactamases of the four molecular classes (A, B, C, and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics that have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, they have not been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinct structural architecture and employ a unique substrate binding mode quite different from that of all currently known class A, C, and D β-lactamases. They constitute a novel reservoir of antibiotic resistance enzymes.
Collapse
|
34
|
Mitchell JM, Clasman JR, June CM, Kaitany KCJ, LaFleur JR, Taracila MA, Klinger NV, Bonomo RA, Wymore T, Szarecka A, Powers RA, Leonard DA. Structural basis of activity against aztreonam and extended spectrum cephalosporins for two carbapenem-hydrolyzing class D β-lactamases from Acinetobacter baumannii. Biochemistry 2015; 54:1976-87. [PMID: 25710192 DOI: 10.1021/bi501547k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The carbapenem-hydrolyzing class D β-lactamases OXA-23 and OXA-24/40 have emerged worldwide as causative agents for β-lactam antibiotic resistance in Acinetobacter species. Many variants of these enzymes have appeared clinically, including OXA-160 and OXA-225, which both contain a P → S substitution at homologous positions in the OXA-24/40 and OXA-23 backgrounds, respectively. We purified OXA-160 and OXA-225 and used steady-state kinetic analysis to compare the substrate profiles of these variants to their parental enzymes, OXA-24/40 and OXA-23. OXA-160 and OXA-225 possess greatly enhanced hydrolytic activities against aztreonam, ceftazidime, cefotaxime, and ceftriaxone when compared to OXA-24/40 and OXA-23. These enhanced activities are the result of much lower Km values, suggesting that the P → S substitution enhances the binding affinity of these drugs. We have determined the structures of the acylated forms of OXA-160 (with ceftazidime and aztreonam) and OXA-225 (ceftazidime). These structures show that the R1 oxyimino side-chain of these drugs occupies a space near the β5-β6 loop and the omega loop of the enzymes. The P → S substitution found in OXA-160 and OXA-225 results in a deviation of the β5-β6 loop, relieving the steric clash with the R1 side-chain carboxypropyl group of aztreonam and ceftazidime. These results reveal worrying trends in the enhancement of substrate spectrum of class D β-lactamases but may also provide a map for β-lactam improvement.
Collapse
Affiliation(s)
| | | | | | | | | | - Magdalena A Taracila
- ∥Departments of Medicine, Pharmacology, Biochemistry, and Molecular Biology and Microbiology, Case Western Reserve University and Research Service, and Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | | | - Robert A Bonomo
- ∥Departments of Medicine, Pharmacology, Biochemistry, and Molecular Biology and Microbiology, Case Western Reserve University and Research Service, and Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Troy Wymore
- ⊥UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | | | | |
Collapse
|
35
|
Sgrignani J, Novati B, Colombo G, Grazioso G. Covalent docking of selected boron-based serine beta-lactamase inhibitors. J Comput Aided Mol Des 2015; 29:441-50. [DOI: 10.1007/s10822-015-9834-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|
36
|
Lahiri SD, Walkup GK, Whiteaker JD, Palmer T, McCormack K, Tanudra MA, Nash TJ, Thresher J, Johnstone MR, Hajec L, Livchak S, McLaughlin RE, Alm RA. Selection and molecular characterization of ceftazidime/avibactam-resistant mutants in Pseudomonas aeruginosa strains containing derepressed AmpC. J Antimicrob Chemother 2015; 70:1650-8. [PMID: 25645206 DOI: 10.1093/jac/dkv004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/28/2014] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa is an important nosocomial pathogen that can cause a wide range of infections resulting in significant morbidity and mortality. Avibactam, a novel non-β-lactam β-lactamase inhibitor, is being developed in combination with ceftazidime and has the potential to be a valuable addition to the treatment options for the infectious diseases practitioner. We compared the frequency of resistance development to ceftazidime/avibactam in three P. aeruginosa strains that carried derepressed ampC alleles. METHODS The strains were incubated in the presence of increasing concentrations of ceftazidime with a fixed concentration (4 mg/L) of avibactam to calculate the frequency of spontaneous resistance. The mutants were characterized by WGS to identify the underlying mechanism of resistance. A representative mutant protein was characterized biochemically. RESULTS The resistance frequency was very low in all strains. The resistant variants isolated exhibited ceftazidime/avibactam MIC values that ranged from 64 to 256 mg/L. All of the mutants exhibited changes in the chromosomal ampC gene, the majority of which were deletions of various sizes in the Ω-loop region of AmpC. The mutant enzyme that carried the smallest Ω-loop deletion, which formed a part of the avibactam-binding pocket, was characterized biochemically and found to be less effectively inhibited by avibactam as well as exhibiting increased hydrolysis of ceftazidime. CONCLUSIONS The development of high-level resistance to ceftazidime/avibactam appears to occur at low frequency, but structural modifications in AmpC can occur that impact the ability of avibactam to inhibit the enzyme and thereby protect ceftazidime from hydrolysis.
Collapse
Affiliation(s)
- Sushmita D Lahiri
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Grant K Walkup
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - James D Whiteaker
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Tiffany Palmer
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Kathy McCormack
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - M Angela Tanudra
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Tory J Nash
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Jason Thresher
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Michele R Johnstone
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Laurie Hajec
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Stephania Livchak
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Robert E McLaughlin
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| | - Richard A Alm
- Infection Innovative Medicines Unit, AstraZeneca R & D Boston, Waltham, MA, USA
| |
Collapse
|
37
|
Jeon JH, Hong MK, Lee JH, Lee JJ, Park KS, Karim AM, Jo JY, Kim JH, Ko KS, Kang LW, Lee SH. Structure of ADC-68, a novel carbapenem-hydrolyzing class C extended-spectrum β-lactamase isolated from Acinetobacter baumannii. ACTA ACUST UNITED AC 2014; 70:2924-36. [PMID: 25372683 DOI: 10.1107/s1399004714019543] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/28/2014] [Indexed: 11/10/2022]
Abstract
Outbreaks of multidrug-resistant bacterial infections have become more frequent worldwide owing to the emergence of several different classes of β-lactamases. In this study, the molecular, biochemical and structural characteristics of an Acinetobacter-derived cephalosporinase (ADC)-type class C β-lactamase, ADC-68, isolated from the carbapenem-resistant A. baumannii D015 were investigated. The blaADC-68 gene which encodes ADC-68 was confirmed to exist on the chromosome via Southern blot analysis and draft genome sequencing. The catalytic kinetics of β-lactams and their MICs (minimum inhibitory concentrations) for A. baumannii D015 and purified ADC-68 (a carbapenemase obtained from this strain) were assessed: the strain was resistant to penicillins, narrow-spectrum and extended-spectrum cephalosporins, and carbapenems, which were hydrolyzed by ADC-68. The crystal structure of ADC-68 was determined at a resolution of 1.8 Å. The structure of ADC-68 was compared with that of ADC-1 (a non-carbapenemase); differences were found in the central part of the Ω-loop and the C-loop constituting the edge of the R1 and R2 subsites and are close to the catalytic serine residue Ser66. The ADC-68 C-loop was stabilized in the open conformation of the upper R2 subsite and could better accommodate carbapenems with larger R2 side chains. Furthermore, a wide-open conformation of the R2-loop allowed ADC-68 to bind to and hydrolyze extended-spectrum cephalosporins. Therefore, ADC-68 had enhanced catalytic efficiency against these clinically important β-lactams (extended-spectrum cephalosporins and carbapenems). ADC-68 is the first reported enzyme among the chromosomal class C β-lactamases to possess class C extended-spectrum β-lactamase and carbapenemase activities.
Collapse
Affiliation(s)
- Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Myoung Ki Hong
- Institute for Cellular and Structural Biology of Sun Yat-Sen University, Guangzhou, Peoples Republic of China
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Jae Jin Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Asad Mustafa Karim
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Jeong Yeon Jo
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Ji Hwan Kim
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Lin Woo Kang
- Institute for Cellular and Structural Biology of Sun Yat-Sen University, Guangzhou, Peoples Republic of China
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| |
Collapse
|
38
|
Feng H, Ding J, Zhu D, Liu X, Xu X, Zhang Y, Zang S, Wang DC, Liu W. Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins. J Am Chem Soc 2014; 136:14694-7. [PMID: 25268575 DOI: 10.1021/ja508388e] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cephalosporins constitute a large class of β-lactam antibiotics clinically used as antimicrobial drugs. New Dehli metallo-β-lactamase (NDM-1) poses a global threat to human health as it confers on bacterial pathogen resistance to almost all β-lactams, including penicillins, cephalosporins, and carbapenems. Here we report the first crystal structures of NDM-1 in complex with cefuroxime and cephalexin, as well as NMR spectra monitoring cefuroxime and cefixime hydrolysis catalyzed by NDM-1. Surprisingly, cephalosporoate intermediates were captured in both crystal structures determined at 1.3 and 2.0 Å. These results provide detailed information concerning the mechanism and pathways of cephalosporin hydrolysis. We also present the crystal structure and enzyme assays of a D124N mutant, which reveals that D124 most likely plays a more structural than catalytic role.
Collapse
Affiliation(s)
- Han Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Avibactam and class C β-lactamases: mechanism of inhibition, conservation of the binding pocket, and implications for resistance. Antimicrob Agents Chemother 2014; 58:5704-13. [PMID: 25022578 DOI: 10.1128/aac.03057-14] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Avibactam is a novel non-β-lactam β-lactamase inhibitor that inhibits a wide range of β-lactamases. These include class A, class C, and some class D enzymes, which erode the activity of β-lactam drugs in multidrug-resistant pathogens like Pseudomonas aeruginosa and Enterobacteriaceae spp. Avibactam is currently in clinical development in combination with the β-lactam antibiotics ceftazidime, ceftaroline fosamil, and aztreonam. Avibactam has the potential to be the first β-lactamase inhibitor that might provide activity against class C-mediated resistance, which represents a growing concern in both hospital- and community-acquired infections. Avibactam has an unusual mechanism of action: it is a covalent inhibitor that acts via ring opening, but in contrast to other currently used β-lactamase inhibitors, this reaction is reversible. Here, we present a high-resolution structure of avibactam bound to a class C β-lactamase, AmpC, from P. aeruginosa that provided insight into the mechanism of both acylation and recyclization in this enzyme class and highlighted the differences observed between class A and class C inhibition. Furthermore, variants resistant to avibactam that identified the residues important for inhibition were isolated. Finally, the structural information was used to predict effective inhibition by sequence analysis and functional studies of class C β-lactamases from a large and diverse set of contemporary clinical isolates (P. aeruginosa and several Enterobacteriaceae spp.) obtained from recent infections to understand any preexisting variability in the binding pocket that might affect inhibition by avibactam.
Collapse
|
40
|
Barelier S, Cummings J, Rauwerdink AM, Hitchcock DS, Farelli JD, Almo SC, Raushel FM, Allen KN, Shoichet BK. Substrate deconstruction and the nonadditivity of enzyme recognition. J Am Chem Soc 2014; 136:7374-82. [PMID: 24791931 PMCID: PMC4046767 DOI: 10.1021/ja501354q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Indexed: 12/15/2022]
Abstract
Predicting substrates for enzymes of unknown function is a major postgenomic challenge. Substrate discovery, like inhibitor discovery, is constrained by our ability to explore chemotypes; it would be expanded by orders of magnitude if reactive sites could be probed with fragments rather than fully elaborated substrates, as is done for inhibitor discovery. To explore the feasibility of this approach, substrates of six enzymes from three different superfamilies were deconstructed into 41 overlapping fragments that were tested for activity or binding. Surprisingly, even those fragments containing the key reactive group had little activity, and most fragments did not bind measurably, until they captured most of the substrate features. Removing a single atom from a recognized substrate could often reduce catalytic recognition by 6 log-orders. To explore recognition at atomic resolution, the structures of three fragment complexes of the β-lactamase substrate cephalothin were determined by X-ray crystallography. Substrate discovery may be difficult to reduce to the fragment level, with implications for function discovery and for the tolerance of enzymes to metabolite promiscuity. Pragmatically, this study supports the development of libraries of fully elaborated metabolites as probes for enzyme function, which currently do not exist.
Collapse
Affiliation(s)
- Sarah Barelier
- Department
of Pharmaceutical Chemistry, University
of California - San Francisco, 1700 Fourth Street, Byers Hall, San Francisco, California 94158, United States
| | - Jennifer
A. Cummings
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Alissa M. Rauwerdink
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Daniel S. Hitchcock
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas, United States
| | - Jeremiah D. Farelli
- Department
of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215-2521, United States
| | - Steven C. Almo
- Department
of Biochemistry, Albert Einstein College
of Medicine, New York, New York 10461, United
States
| | - Frank M. Raushel
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas, United States
| | - Karen N. Allen
- Department
of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215-2521, United States
| | - Brian K. Shoichet
- Department
of Pharmaceutical Chemistry, University
of California - San Francisco, 1700 Fourth Street, Byers Hall, San Francisco, California 94158, United States
- Faculty of
Pharmacy, University of Toronto, Donnelly Centre Suite 604, 160 College
Street, Toronto, Ontario, Canada, M5S 3E1
| |
Collapse
|
41
|
Abstract
The production of β-lactamase is one of the primary resistance mechanisms used by Gram-negative bacterial pathogens to counter β-lactam antibiotics, such as penicillins, cephalosporins and carbapenems. There is an urgent need to develop novel β-lactamase inhibitors in response to ever evolving β-lactamases possessing an expanded spectrum of β-lactam hydrolyzing activity. Whereas traditional high-throughput screening has proven ineffective against serine β-lactamases, fragment-based approaches have been successfully employed to identify novel chemical matter, which in turn has revealed much about the specific molecular interactions possible in the active site of serine and metallo β-lactamases. In this review, we summarize recent progress in the field, particularly: the identification of novel inhibitor chemotypes through fragment-based screening; the use of fragment-protein structures to understand key features of binding hot spots and inform the design of improved leads; lessons learned and new prospects for β-lactamase inhibitor development using fragment-based approaches.
Collapse
Affiliation(s)
- Derek A Nichols
- University of South Florida College of Medicine, Department of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry & Small Molecule Discovery Center, University of California San Francisco, 1700 4th Street, Byers Hall S504, San Francisco, CA 94158, USA
| | - Yu Chen
- University of South Florida College of Medicine, Department of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612, USA
| |
Collapse
|
42
|
Cha SS, An YJ, Jeong CS, Kim MK, Jeon JH, Lee CM, Lee HS, Kang SG, Lee JH. Structural basis for the β-lactamase activity of EstU1, a family VIII carboxylesterase. Proteins 2013; 81:2045-51. [PMID: 23737193 DOI: 10.1002/prot.24334] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/08/2013] [Indexed: 11/08/2022]
Abstract
EstU1 is a unique family VIII carboxylesterase that displays hydrolytic activity toward the amide bond of clinically used β-lactam antibiotics as well as the ester bond of p-nitrophenyl esters. EstU1 assumes a β-lactamase-like modular architecture and contains the residues Ser100, Lys103, and Tyr218, which correspond to the three catalytic residues (Ser64, Lys67, and Tyr150, respectively) of class C β-lactamases. The structure of the EstU1/cephalothin complex demonstrates that the active site of EstU1 is not ideally tailored to perform an efficient deacylation reaction during the hydrolysis of β-lactam antibiotics. This result explains the weak β-lactamase activity of EstU1 compared with class C β-lactamases. Finally, structural and sequential comparison of EstU1 with other family VIII carboxylesterases elucidates an operative molecular strategy used by family VIII carboxylesterases to extend their substrate spectrum.
Collapse
Affiliation(s)
- Sun-Shin Cha
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 426-744, Republic of Korea; Ocean Science and Technology School, Korea Maritime University, Pusan, 606-791, Republic of Korea; Department of Marine Biotechnology, University of Science and Technology, Daejeon, 305-333, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dahyot S, Broutin I, de Champs C, Guillon H, Mammeri H. Contribution of asparagine 346 residue to the carbapenemase activity of CMY-2 β-lactamase. FEMS Microbiol Lett 2013; 345:147-53. [PMID: 23763375 DOI: 10.1111/1574-6968.12199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 06/06/2013] [Accepted: 06/11/2013] [Indexed: 11/30/2022] Open
Abstract
Only a few plasmid-borne AmpC (pAmpC) β-lactamases, such as CMY-2, can account for carbapenem resistance in Enterobacteriaceae in combination with outer membrane impermeability. The aim of this study was to elucidate the contribution of Asn-346, which is well conserved among carbapenem-hydrolyzing pAmpCs, to the hydrolysis spectrum of CMY-2. Site-directed mutagenesis experiments were carried out to replace Asn-346 with glycine, alanine, valine, glutamate, aspartate, serine, threonine, glutamine, tyrosine, isoleucine, lysine, and histidine. The recombinant plasmids were transferred into wild-type and porin-deficient Escherichia coli strains. Asn-346 replacement reduced significantly the MICs of all β-lactams, except the Asn-346-Ile substitution that increased the MICs of cephalosporins, whereas it decreased those of carbapenems. The biochemical characterization, along with a molecular modeling study, showed that the size and the polarity of the side chain at position 346 assisted substrate binding and turnover. This study shows for the first time that the amino acid at position 346 contributes to the β-lactamase activity of cephalosporinases. Asparagine and isoleucine residues, which are well conserved at position 346 among AmpC-type enzymes, modulate their hydrolysis spectrum in an opposing sense. Ile-346 confers higher level of cephalosporins resistance, whereas Asn-346 confers carbapenem resistance in combination with outer membrane impermeability.
Collapse
Affiliation(s)
- Sandrine Dahyot
- Service de Bactériologie, Centre Hospitalo-Universitaire d'Amiens, Amiens, France
| | | | | | | | | |
Collapse
|
44
|
Tilvawala R, Pratt RF. Covalent Inhibition of Serine β-Lactamases by Novel Hydroxamic Acid Derivatives. Biochemistry 2013; 52:3712-20. [DOI: 10.1021/bi4003887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ronak Tilvawala
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut
06459, United States
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut
06459, United States
| |
Collapse
|
45
|
Interactions of oximino-substituted boronic acids and β-lactams with the CMY-2-derived extended-spectrum cephalosporinases CMY-30 and CMY-42. Antimicrob Agents Chemother 2012; 57:968-76. [PMID: 23229484 DOI: 10.1128/aac.01620-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CMY-30 and CMY-42 are extended-spectrum (ES) derivatives of CMY-2. ES characteristics are due to substitutions of Gly (CMY-30) and Ser (CMY-42) for Val211 in the Ω-loop. To characterize the effects of 211 substitutions, we studied the interactions of CMY-2, -30, and -42 with boronic acid transition state inhibitors (BATSIs) resembling ceftazidime and cefotaxime, assessed thermal stability of the enzymes in their free forms and in complexes with BATSIs and oximino-β-lactams, and simulated, using molecular dynamics (MD), the CMY-42 apoenzyme and the CMY-42 complexes with ceftazidime and the ceftazidime-like BATSI. Inhibition constants showed that affinities between CMY-30 and CMY-42 and the R1 groups of BATSIs were lower than those of CMY-2. ES variants also exhibited decreased thermal stability either as apoenzymes or in covalent complexes with oximino compounds. MD simulations further supported destabilization of the ES variants. Val211Ser increased thermal factors of the Ω-loop backbone atoms, as previously observed for CMY-30. The similar effects of the two substitutions seemed to be due to a less-constrained Tyr221 likely inducing concerted movement of elements at the edges of the active site (Ω-loop-Q120 loop-R2 loop/H10 helix). This inner-protein movement, along with the wider R1 binding cleft, enabled intense vibrations of the covalently bound ceftazidime and ceftazidime-like BATSIs. Increased flexibility of the ES enzymes may assist the productive adaptation of the active site to the various geometries of the oximino substrates during the reaction (higher frequency of near-attack conformations).
Collapse
|
46
|
Fragment-guided design of subnanomolar β-lactamase inhibitors active in vivo. Proc Natl Acad Sci U S A 2012; 109:17448-53. [PMID: 23043117 DOI: 10.1073/pnas.1208337109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragment-based design was used to guide derivatization of a lead series of β-lactamase inhibitors that had heretofore resisted optimization for in vivo activity. X-ray structures of fragments overlaid with the lead suggested new, unanticipated functionality and points of attachment. Synthesis of three derivatives improved affinity over 20-fold and improved efficacy in cell culture. Crystal structures were consistent with the fragment-based design, enabling further optimization to a K(i) of 50 pM, a 500-fold improvement that required the synthesis of only six derivatives. One of these, compound 5, was tested in mice. Whereas cefotaxime alone failed to cure mice infected with β-lactamase-expressing Escherichia coli, 65% were cleared of infection when treated with a cefotaxime:5 combination. Fragment complexes offer a path around design hurdles, even for advanced molecules; the series described here may provide leads to overcome β-lactamase-based resistance, a key clinical challenge.
Collapse
|
47
|
Ruble JF, Lefurgy ST, Cornish VW, Powers RA. Structural analysis of the Asn152Gly mutant of P99 cephalosporinase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1189-93. [PMID: 22948919 DOI: 10.1107/s0907444912024080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/26/2012] [Indexed: 11/10/2022]
Abstract
P99 cephalosporinase is a class C β-lactamase that is responsible in part for the widespread bacterial resistance to β-lactam antibiotics. Mutations of the conserved active-site residue Asn152 of the enzyme have been shown to alter β-lactam substrate specificity in vivo. Mutation of Asn152 to a glycine is notable in that it exhibits in vivo substrate-selectivity switching. In order to better understand the structural basis for this observed switch, the X-ray crystal structure of the apo Asn152Gly mutant of P99 was determined to 1.95 Å resolution. Unexpectedly, the artificial C-terminal His(6) tag of a symmetrically-related molecule was observed bound in the active site. The His(6) tag makes several interactions with key active-site residues, as well as with several sulfate ions. Additionally, the overall C-terminus occupies the space left vacant upon the mutation of Asn152 to glycine.
Collapse
Affiliation(s)
- James F Ruble
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | | | | | | |
Collapse
|
48
|
Schürmann CJ, Pröpper K, Wagner T, Dittrich B. Invariom modeling of ceftazidime pentahydrate: molecular properties from a 200 second synchrotron microcrystal experiment. ACTA CRYSTALLOGRAPHICA SECTION B: STRUCTURAL SCIENCE 2012; 68:313-7. [PMID: 22610682 DOI: 10.1107/s0108768112017831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/21/2012] [Indexed: 11/10/2022]
Abstract
The structure of ceftazidime pentahydrate, a third generation cephalosporin antibiotic, is reported. Data collection was carried out in a remarkably short time with synchrotron radiation and the latest detector technology, illustrating that single-crystal X-ray diffraction can be used as a technique for screening hundreds of compounds in a short amount of time. Structure refinement made use of invarioms, namely non-spherical scattering factors, which allow more information to be derived from a diffraction experiment. Properties that can be screened are bond-topological parameters, empirical hydrogen-bond energies, molecular dipole moments and electrostatic potentials.
Collapse
Affiliation(s)
- C J Schürmann
- Institut für Anorganische Chemie der Universität Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
49
|
Hydrolysis spectrum extension of CMY-2-like β-lactamases resulting from structural alteration in the Y-X-N loop. Antimicrob Agents Chemother 2012; 56:1151-6. [PMID: 22232281 DOI: 10.1128/aac.05630-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Citrobacter freundii isolate CHA, which was responsible for postoperative peritonitis after 10 days of cefepime therapy, displayed a phenotype of resistance consistent with extended-spectrum AmpC (ESAC) β-lactamase. The chromosome-borne bla(AmpC-CHA) gene was amplified and sequenced, revealing five amino acid substitutions, I125V, R148H, Q196H, V305A, and V348A, in the product compared to the sequence of native AmpC. A cloning experiment yielded the Escherichia coli TOP10(pAmpC-CHA) strain, which was resistant to all extended-spectrum cephalosporins (ESCs), including cefepime. To ascertain whether the R148H substitution accounted for the hydrolysis spectrum extension, it was reverted by site-directed mutagenesis. The resulting E. coli TOP10(pAmpC-CHA-H148R) strain was fully susceptible to cefepime, thus confirming that the Arg-148 replacement was mandatory for substrate profile enlargement. To further characterize the phenotypical and biochemical effects induced by the R148H change, it was introduced by site-directed mutagenesis into the CMY-2 β-lactamase, which is structurally related to the chromosome-borne cephalosporinase of C. freundii. The CMY-2-R148H variant conferred increased MICs of ESCs, whereas those of carbapenems were unchanged even in a porin-deficient E. coli strain. Moreover, it exhibited increased catalytic efficiency (k(cat)/K(m)) toward ceftazidime (100-fold) due to an enhanced hydrolysis rate (k(cat)), whereas the enzymatic parameters toward imipenem were unchanged. The structural analysis of the AmpC variant showed that the R148H replacement occurred in the loop containing the Y-X-N motif, which is the counterpart of the SDN loop in class A β-lactamases. This study shows that the Y-X-N loop is a novel hot spot for mutations accounting for hydrolysis spectrum extension in CMY-2-type enzymes.
Collapse
|
50
|
Novel metagenome-derived carboxylesterase that hydrolyzes β-lactam antibiotics. Appl Environ Microbiol 2011; 77:7830-6. [PMID: 21908637 DOI: 10.1128/aem.05363-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been proposed that family VIII carboxylesterases and class C β-lactamases are phylogenetically related; however, none of carboxylesterases has been reported to hydrolyze β-lactam antibiotics except nitrocefin, a nonclinical chromogenic substrate. Here, we describe the first example of a novel carboxylesterase derived from a metagenome that is able to cleave the amide bond of various β-lactam substrates and the ester bond of p-nitrophenyl esters. A clone with lipolytic activity was selected by functional screening of a metagenomic library using tributyrin agar plates. The sequence analysis of the clone revealed the presence of an open reading frame (estU1) encoding a polypeptide of 426 amino acids, retaining an S-X-X-K motif that is conserved in class C β-lactamases and family VIII carboxylesterases. The gene was overexpressed in Escherichia coli, and the purified recombinant protein (EstU1) was further characterized. EstU1 showed esterase activity toward various chromogenic p-nitrophenyl esters. In addition, it exhibited hydrolytic activity toward nitrocefin, leading us to investigate whether EstU1 could hydrolyze β-lactam antibiotics. EstU1 was able to hydrolyze first-generation β-lactam antibiotics, such as cephalosporins, cephaloridine, cephalothin, and cefazolin. In a kinetic study, EstU1 showed a similar range of substrate affinities for both p-nitrophenyl butyrate and first-generation cephalosporins while the turnover efficiency for the latter was much lower. Furthermore, site-directed mutagenesis studies revealed that the catalytic triad of EstU1 plays a crucial role in hydrolyzing both ester bonds of p-nitrophenyl esters and amide bonds of the β-lactam ring of antibiotics, implicating the predicted catalytic triad of EstU1 in both activities.
Collapse
|