1
|
Cheng X, Chen R, Zhou T, Zhang B, Li Z, Gao M, Huang Y, Liu H, Su Z. Leveraging the multivalent p53 peptide-MdmX interaction to guide the improvement of small molecule inhibitors. Nat Commun 2022; 13:1087. [PMID: 35228542 PMCID: PMC8885691 DOI: 10.1038/s41467-022-28721-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Overexpressed Mdm2 and its 7homolog MdmX impair p53 activity in many cancers. Small molecules mimicking a p53 peptide can effectively inhibit Mdm2 but not MdmX. Here, we show a strategy for improving lead compounds for Mdm2 and MdmX inhibition based on the multivalency of the p53 peptide. Crystal structures of MdmX complexed with nutlin-3a, a strong Mdm2 inhibitor but a weak one for MdmX, reveal that nutlin-3a fits into the ligand binding pocket of MdmX mimicking the p53 peptide. However, due to distinct flexibility around the MdmX ligand binding pocket, the structures are missing many important intermolecular interactions that exist in the MdmX/p53 peptide and Mdm2/nultin-3a complexes. By targeting these flexible regions, we identify allosteric and additive fragments that enhance the binding affinity of nutlin-3a for MdmX, leading to potent Mdm2/MdmX inhibitors with anticancer activity. Our work provides a practical approach to drug design for signal transduction therapy. Peptide fragments derived from the interfaces of protein-protein interactions (PPIs) provide useful templates for designing small molecule PPI inhibitors. Here, the authors utilize the multivalency of an MdmX-binding p53 peptide to develop a weak inhibitor of MdmX into potent Mdm2/MdmX inhibitors.
Collapse
|
2
|
Qin L, Liu H, Chen R, Zhou J, Cheng X, Chen Y, Huang Y, Su Z. Effect of the Flexible Regions of the Oncoprotein Mouse Double Minute X on Inhibitor Binding Affinity. Biochemistry 2017; 56:5943-5954. [DOI: 10.1021/acs.biochem.7b00903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Lingyun Qin
- Institute
of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial
Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Huili Liu
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Chinese Academy of Science, Wuhan 430071, China
| | - Rong Chen
- Institute
of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial
Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Jingjing Zhou
- Institute
of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial
Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xiyao Cheng
- Institute
of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial
Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yao Chen
- Institute
of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial
Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yongqi Huang
- Institute
of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial
Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Zhengding Su
- Institute
of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial
Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
3
|
Regions outside of conserved PxxPxR motifs drive the high affinity interaction of GRB2 with SH3 domain ligands. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2560-9. [PMID: 26079855 DOI: 10.1016/j.bbamcr.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/26/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022]
Abstract
SH3 domains are evolutionarily conserved protein interaction domains that control nearly all cellular processes in eukaryotes. The current model is that most SH3 domains bind discreet PxxPxR motifs with weak affinity and relatively low selectivity. However, the interactions of full-length SH3 domain-containing proteins with ligands are highly specific and have much stronger affinity. This suggests that regions outside of PxxPxR motifs drive these interactions. In this study, we observed that PxxPxR motifs were required for the binding of the adaptor protein GRB2 to short peptides from its ligand SOS1. Surprisingly, PxxPxR motifs from the proline rich region of SOS1 or CBL were neither necessary nor sufficient for the in vitro or in vivo interaction with full-length GRB2. Together, our findings show that regions outside of the consensus PxxPxR sites drive the high affinity association of GRB2 with SH3 domain ligands, suggesting that the binding mechanism for this and other SH3 domain interactions may be more complex than originally thought.
Collapse
|
4
|
Qin L, Yang F, Zhou C, Chen Y, Zhang H, Su Z. Efficient reactivation of p53 in cancer cells by a dual MdmX/Mdm2 inhibitor. J Am Chem Soc 2014; 136:18023-33. [PMID: 25453499 DOI: 10.1021/ja509223m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aberrant interaction between p53 and Mdm2/MdmX is an attractive target for cancer drug discovery because the overexpression of Mdm2 and/or MdmX ultimately impairs the function of p53 in approximately half of all human cancers. Recent studies have shown that inhibition of both Mdm2 and MdmX is more efficient than that of a single target in promoting cellular apoptosis in cancers. In this study, we demonstrate that a dual small-molecule antagonist of Mdm2/MdmX can efficiently reactivate the p53 pathway in model cancer cells overexpressing MdmX and/or Mdm2. The dual antagonist was rationally designed based on segmental mutational analysis of the N-terminal domain of MdmX and the crystal structure of the N-terminal domain of Mdm2 in complex with nutlin-3a (an Mdm2-specific inhibitor). The current work establishes a small molecule therapeutic candidate that targets cancers overexpressing Mdm2 and/or MdmX.
Collapse
Affiliation(s)
- Lingyun Qin
- Department of Biotechnology and Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology , Wuhan 430068, China
| | | | | | | | | | | |
Collapse
|
5
|
Puttamadappa SS, Jagadish K, Shekhtman A, Camarero JA. Backbone dynamics of cyclotide MCoTI-I free and complexed with trypsin. Angew Chem Int Ed Engl 2010; 49:7030-4. [PMID: 20715250 PMCID: PMC2944905 DOI: 10.1002/anie.201002906] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Krishnapa Jagadish
- Department of Pharmaceutical Sciences and Pharmacology, University of Southern California, Los Angeles, CA 90033
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York, Albany, NY 12222, USA
| | - Julio A. Camarero
- Department of Pharmaceutical Sciences and Pharmacology, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
6
|
|
7
|
Piserchio A, Nair PA, Shuman S, Ghose R. Solution NMR studies of Chlorella virus DNA ligase-adenylate. J Mol Biol 2009; 395:291-308. [PMID: 19913033 DOI: 10.1016/j.jmb.2009.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 01/31/2023]
Abstract
DNA ligases are essential guardians of genome integrity by virtue of their ability to recognize and seal 3'-OH/5'-phosphate nicks in duplex DNA. The substrate binding and three chemical steps of the ligation pathway are coupled to global and local changes in ligase structure, involving both massive protein domain movements and subtle remodeling of atomic contacts in the active site. Here we applied solution NMR spectroscopy to study the conformational dynamics of the Chlorella virus DNA ligase (ChVLig), a minimized eukaryal ATP-dependent ligase consisting of nucleotidyltransferase, OB, and latch domains. Our analysis of backbone (15)N spin relaxation and (15)N,(1)H residual dipolar couplings of the covalent ChVLig-AMP intermediate revealed conformational sampling on fast (picosecond to nanosecond) and slow timescales (microsecond to millisecond), indicative of interdomain and intradomain flexibility. We identified local and global changes in ChVLig-AMP structure and dynamics induced by phosphate. In particular, the chemical shift perturbations elicited by phosphate were clustered in the peptide motifs that comprise the active site. We hypothesize that phosphate anion mimics some of the conformational transitions that occur when ligase-adenylate interacts with the nick 5'-phosphate.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry, The City College of New York, New York, NY 10031, USA
| | | | | | | |
Collapse
|
8
|
Dutta K, Cox CJ, Basavappa R, Pascal SM. 15N relaxation studies of Apo-Mts1: a dynamic S100 protein. Biochemistry 2008; 47:7637-47. [PMID: 18627127 DOI: 10.1021/bi8005048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mts1 is a member of the S100 family of EF-hand calcium-binding proteins. Like most S100 proteins, Mts1 exists as a dimer in solution and contains one canonical and one pseudo-EF-hand motif per monomer, each of which consists of two alpha helices connected by a loop capable of coordinating a calcium ion. The backbone dynamics of murine apo-Mts1 homodimer have been examined by nuclear magnetic resonance spectroscopy. Longitudinal and transverse relaxation data and steady-state (1)H- (15)N nuclear Overhauser effects were analyzed using model-free formalism. The extracted global correlation time is 9.94 ns. Results indicate that the protein backbone is most rigid at the dimer interface, made up of helices 1 and 4 from each monomer with mean S (2) ( S avg (2)) values approximately 0.9, flanked by helices 2 and 3 with lower S avg (2) values of 0.84 and 0.77, respectively. Each calcium-binding site along with the hinge joining the two EF-hands and the N- and C-termini are considerably more flexible than the dimer interface on a range of time scales and more flexible than the corresponding regions of other S100 proteins studied to date. As the hinge and the C-terminal tail are believed to interact with target proteins, these dynamic characteristics may have implications for Mts1 activity.
Collapse
Affiliation(s)
- Kaushik Dutta
- New York Structural Biology Center, 89 Convent Avenue, New York, New York 10033, USA.
| | | | | | | |
Collapse
|
9
|
Structure of the Eps15-stonin2 complex provides a molecular explanation for EH-domain ligand specificity. EMBO J 2008; 27:558-69. [PMID: 18200045 DOI: 10.1038/sj.emboj.7601980] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 12/17/2007] [Indexed: 11/09/2022] Open
Abstract
Eps15 homology (EH) domain-containing proteins play a key regulatory role in intracellular membrane trafficking and cell signalling. EH domains serve as interaction platforms for short peptide motifs comprising the residues NPF within natively unstructured regions of accessory proteins. The EH-NPF interactions described thus far are of very low affinity and specificity. Here, we identify the presynaptic endocytic sorting adaptor stonin2 as a high-affinity ligand for the second EH domain (EH2) of the clathrin accessory protein Eps15. Calorimetric data indicate that both NPF motifs within stonin2 interact with EH2 simultaneously and with sub-micromolar affinity. The solution structure of this complex reveals that the first NPF motif binds to the conserved site on the EH domain, whereas the second motif inserts into a novel hydrophobic pocket. Our data show how combination of two EH-attachment sites provides a means for modulating specificity and allows discrimination from a large pool of potential binding partners containing NPF motifs.
Collapse
|
10
|
Bhattacharya N, Yi M, Zhou HX, Logan TM. Backbone dynamics in an intramolecular prolylpeptide-SH3 complex from the diphtheria toxin repressor, DtxR. J Mol Biol 2007; 374:977-92. [PMID: 17976643 PMCID: PMC2266074 DOI: 10.1016/j.jmb.2007.09.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 09/09/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
Abstract
The diphtheria toxin repressor contains an SH3-like domain that forms an intramolecular complex with a proline-rich (Pr) peptide segment and stabilizes the inactive state of the repressor. Upon activation of diphtheria toxin repressor (DtxR) by transition metals, this intramolecular complex must dissociate as the SH3 domain and Pr segment form different interactions in the active repressor. Here we investigate the dynamics of this intramolecular complex using backbone amide nuclear spin relaxation rates determined using NMR spectroscopy and molecular dynamics trajectories. The SH3 domain in the unbound and bound states showed typical dynamics in that the secondary structures were fairly ordered with high generalized order parameters and low effective correlation times, while residues in the loops connecting beta-strands exhibited reduced generalized order parameters and required additional motional terms to adequately model the relaxation rates. Residues forming the Pr segment exhibited low-order parameters with internal rotational correlation times on the order of 0.6 ns-1 ns. Further analysis showed that the SH3 domain was rich in millisecond time scale motions while the Pr segment exhibited motions on the 100 mus time scale. Molecular dynamics simulations indicated structural rearrangements that may contribute to the observed relaxation rates and, together with the observed relaxation rate data, suggested that the Pr segment exhibits a binding<-->unbinding equilibrium. The results here provide new insights into the nature of the intramolecular complex and provide a better understanding of the biological role of the SH3 domain in regulating DtxR activity.
Collapse
Affiliation(s)
- Nilakshee Bhattacharya
- Dept. of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee FL 32310
- Kasha Laboratory, Florida State University, Tallahassee, FL 32306
| | - Myunggi Yi
- Kasha Laboratory, Florida State University, Tallahassee, FL 32306
- Dept. of Physics, Florida State University, Tallahassee, FL 32306
| | - Huan-Xiang Zhou
- Kasha Laboratory, Florida State University, Tallahassee, FL 32306
- Dept. of Physics, Florida State University, Tallahassee, FL 32306
- School of Computational Sciences, Florida State University, Tallahassee, FL 32306
| | - Timothy M. Logan
- Dept. of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- National High Magnetic Field Laboratory, Tallahassee FL 32310
- Kasha Laboratory, Florida State University, Tallahassee, FL 32306
| |
Collapse
|
11
|
Jarymowycz VA, Stone MJ. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 2007; 106:1624-71. [PMID: 16683748 DOI: 10.1021/cr040421p] [Citation(s) in RCA: 322] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Virginia A Jarymowycz
- Department of Chemistry and Interdisciplinary Biochemistry Program, Indiana University, Bloomington, Indiana 47405-0001, USA
| | | |
Collapse
|
12
|
Martín-García JM, Luque I, Mateo PL, Ruiz-Sanz J, Cámara-Artigas A. Crystallographic structure of the SH3 domain of the human c-Yes tyrosine kinase: loop flexibility and amyloid aggregation. FEBS Lett 2007; 581:1701-6. [PMID: 17418139 DOI: 10.1016/j.febslet.2007.03.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 03/19/2007] [Indexed: 11/26/2022]
Abstract
SH3 domains from the Src family of tyrosine kinases represent an interesting example of the delicate balance between promiscuity and specificity characteristic of proline-rich ligand recognition by SH3 domains. The development of inhibitors of therapeutic potential requires a good understanding of the molecular determinants of binding affinity and specificity and relies on the availability of high quality structural information. Here, we present the first high-resolution crystal structure of the SH3 domain of the c-Yes oncogen. Comparison with other SH3 domains from the Src family revealed significant deviations in the loop regions. In particular, the n-Src loop, highly flexible and partially disordered, is stabilized in an unusual conformation by the establishment of several intramolecular hydrogen bonds. Additionally, we present here the first report of amyloid aggregation by an SH3 domain from the Src family.
Collapse
Affiliation(s)
- José M Martín-García
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | | | | | | | | |
Collapse
|
13
|
Natarajan A, Ghose R, Hill JM. Structure and Dynamics of ASC2, a Pyrin Domain-only Protein That Regulates Inflammatory Signaling. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84101-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Natarajan A, Ghose R, Hill JM. Structure and dynamics of ASC2, a pyrin domain-only protein that regulates inflammatory signaling. J Biol Chem 2006; 281:31863-75. [PMID: 16905547 DOI: 10.1074/jbc.m605458200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyrin domain (PYD)-containing proteins are key components of pathways that regulate inflammation, apoptosis, and cytokine processing. Their importance is further evidenced by the consequences of mutations in these proteins that give rise to autoimmune and hyperinflammatory syndromes. PYDs, like other members of the death domain (DD) superfamily, are postulated to mediate homotypic interactions that assemble and regulate the activity of signaling complexes. However, PYDs are presently the least well characterized of all four DD subfamilies. Here we report the three-dimensional structure and dynamic properties of ASC2, a PYD-only protein that functions as a modulator of multidomain PYD-containing proteins involved in NF-kappaB and caspase-1 activation. ASC2 adopts a six-helix bundle structure with a prominent loop, comprising 13 amino acid residues, between helices two and three. This loop represents a divergent feature of PYDs from other domains with the DD fold. Detailed analysis of backbone 15N NMR relaxation data using both the Lipari-Szabo model-free and reduced spectral density function formalisms revealed no evidence of contiguous stretches of polypeptide chain with dramatically increased internal motion, except at the extreme N and C termini. Some mobility in the fast, picosecond to nanosecond timescale, was seen in helix 3 and the preceding alpha2-alpha3 loop, in stark contrast to the complete disorder seen in the corresponding region of the NALP1 PYD. Our results suggest that extensive conformational flexibility in helix 3 and the alpha2-alpha3 loop is not a general feature of pyrin domains. Further, a transition from complete disorder to order of the alpha2-alpha3 loop upon binding, as suggested for NALP1, is unlikely to be a common attribute of pyrin domain interactions.
Collapse
Affiliation(s)
- Aswin Natarajan
- Department of Chemistry, City College of the City University of New York, New York, New York 10031, USA
| | | | | |
Collapse
|
15
|
Mukherjee M, Dutta K, White MA, Cowburn D, Fox RO. NMR solution structure and backbone dynamics of domain III of the E protein of tick-borne Langat flavivirus suggests a potential site for molecular recognition. Protein Sci 2006; 15:1342-55. [PMID: 16731969 PMCID: PMC2242546 DOI: 10.1110/ps.051844006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 02/24/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
Flaviviruses cause many human diseases, including dengue fever, yellow fever, West Nile viral encephalitis, and hemorrhagic fevers, and are transmitted to their vertebrate hosts by infected mosquitoes and ticks. Domain III of the envelope protein (E-D3) is considered to be the primary viral determinant involved in the virus-host-cell receptor interaction, and thus represents an excellent target for antiviral drug development. Langat (LGT) virus is a naturally attenuated BSL-2 TBE virus and is a model for the pathogenic BSL-3 and BSL-4 viruses in the serogroup. We have determined the solution structure of LGT-E-D3 using heteronuclear NMR spectroscopy. The backbone dynamics of LGT-E-D3 have been investigated using 15N relaxation measurements. A detailed analysis of the solution structure and dynamics of LGT-E-D3 suggests potential residues that could form a surface for molecular recognition, and thereby represent a target site for antiviral therapeutics design.
Collapse
Affiliation(s)
- Munia Mukherjee
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0647, USA
| | | | | | | | | |
Collapse
|
16
|
Zhang X, Sui X, Yang D. Probing Methyl Dynamics from 13C Autocorrelated and Cross-Correlated Relaxation. J Am Chem Soc 2006; 128:5073-81. [PMID: 16608341 DOI: 10.1021/ja057579r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An understanding of side-chain motions in protein is of great interest since side chains often play an important role in protein folding and intermolecular interactions. A novel method for measuring dipole-dipole cross-correlated relaxation in methyl groups of uniformly 13C-labeled proteins without deuteration has been developed by our group. The excellent agreement between dynamic parameters of methyl groups in ubiquitin obtained from the cross-correlated relaxation and 13C spin-lattice relaxation and those derived previously from 2H relaxation data demonstrates the reliability of the method. This method was applied to the study of side-chain dynamics of human intestinal fatty acid binding protein (IFABP) with and without its ligand. Binding of oleic acid to the protein results in decreased mobility of most of the methyl groups in the binding region, whereas no significant change in mobility was observed for methyl groups in the nonbinding region.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | | | | |
Collapse
|
17
|
Su Z, Osborne MJ, Xu P, Xu X, Li Y, Ni F. A bivalent dissectional analysis of the high-affinity interactions between Cdc42 and the Cdc42/Rac interactive binding domains of signaling kinases in Candida albicans. Biochemistry 2006; 44:16461-74. [PMID: 16342938 DOI: 10.1021/bi050846l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The small GTPase Cdc42, a member of the highly conserved Rho family of intracellular GTPases, communicates with downstream signaling proteins via high-affinity interactions with the consensus Cdc42/Rac interactive binding (CRIB) polypeptide sequence. Previous biochemical and structural studies show that the CRIB motif itself is insufficient for high-affinity binding to Cdc42 but requires the sequence segment C-terminal to the CRIB motif for enhanced affinity. In this study, we have investigated the high-affinity (K(d) in units of nanomolar) associations of two highly homologous extended CRIB domains (eCRIBs) from the PAK kinases, Cla4 and Cst20, with Cdc42 from Candida albicans. (1)H-(15)N NMR heteronuclear NOE data of the eCRIB polypeptides in complex with Candida Cdc42 (CaCdc42) indicate that both eCRIB peptides have approximately two binding loci for CaCdc42. When each of the two eCRIB peptides is dissected into two fragments, the N-terminal fragments containing the minimal CRIB motif (mCRIB), mCla4 and mCst20, have relatively high binding affinities with dissociation constants (K(d)) of 4.2 and 0.43 microM, respectively. On the other hand, the C-terminal fragments (cCRIB), cCla4 and cCst20, exhibit significantly lower affinities for their binding to CaCdc42. The cCla4 peptide binds to CaCdc42 with a sub-millimolar K(d) of 275 microM, and the cCst20 peptide shows an even lower binding affinity (K(d) = 1160 microM). Cross-titration experiments with the cognate fragments show that the binding affinity of cCst20 is enhanced approximately 5.5-fold (K(d) = 207 microM) in the presence of saturating amounts of mCst20, and vice versa. No such effect is observed for the binding of cCla4 and mCla4. These results suggest that the Cdc42-CRIB system can be represented by a "dual recognition" model for protein-protein interactions [Kleanthous, C., et al. (1998) Mol. Microbiol. 28, 227-233], following much the same mechanisms of multivalent molecular interactions [Song, J., and Ni, F. (1998) Biochem. Cell Biol. 76, 177-188; Mammen, M., et al. (1998) Angew Chem., Int. Ed. 37, 2754-2794]. The bivalent modeling of linked peptide fragments shows that the binding of eCla4 follows a simple additivity/avidity model, while binding of eCst20 appears to have a more complex mechanism involving cooperative effects. The differential binding mechanisms between closely related eCRIB polypeptides and CaCdc42 provide a new molecular basis for understanding kinase activation and for the design of antifungal agents targeting the large protein interaction interfaces engaged by the fungal GTPase.
Collapse
Affiliation(s)
- Zhengding Su
- Biomolecular NMR and Protein Research Group, Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2
| | | | | | | | | | | |
Collapse
|
18
|
Li SSC. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 2006; 390:641-53. [PMID: 16134966 PMCID: PMC1199657 DOI: 10.1042/bj20050411] [Citation(s) in RCA: 307] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions occurring via the recognition of short peptide sequences by modular interaction domains play a central role in the assembly of signalling protein complexes and larger protein networks that regulate cellular behaviour. In addition to spatial and temporal factors, the specificity of signal transduction is intimately associated with the specificity of many co-operative, pairwise binding events upon which various pathways are built. Although protein interaction domains are usually identified via the recognition code, the consensus sequence motif, to which they selectively bind, they are highly versatile and play diverse roles in the cell. For example, a given interaction domain can bind to multiple sequences that exhibit no apparent identity, and, on the other hand, domains of the same class or different classes may favour a given consensus motif. This promiscuity in ligand selection is typified by the SH3 (Src homology 3) domain and several other interaction modules that commonly recognize proline-rich sequences. Furthermore, interaction domains are highly adaptable, a property that is essential for the evolution of novel pathways and modulation of signalling dynamics. The ability of certain interaction domains to perform multiple tasks, however, poses a challenge for the cell to control signalling specificity when cross-talk between pathways is undesired. Extensive structural and biochemical analysis of many interaction domains in recent years has started to shed light on the molecular basis underlying specific compared with diverse binding events that are mediated by interaction domains and the role affinity plays in affecting domain specificity and regulating cellular signal transduction.
Collapse
Affiliation(s)
- Shawn S-C Li
- Department of Biochemistry, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| |
Collapse
|
19
|
Bauer F, Schweimer K, Meiselbach H, Hoffmann S, Rösch P, Sticht H. Structural characterization of Lyn-SH3 domain in complex with a herpesviral protein reveals an extended recognition motif that enhances binding affinity. Protein Sci 2005; 14:2487-98. [PMID: 16155203 PMCID: PMC2253286 DOI: 10.1110/ps.051563605] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The Src homology 3 (SH3) domain of the Src family kinase Lyn binds to the herpesviral tyrosine kinase interacting protein (Tip) more than one order of magnitude stronger than other closely related members of the Src family. In order to identify the molecular basis for high-affinity binding, the structure of free and Tip-bound Lyn-SH3 was determined by NMR spectroscopy. Tip forms additional contacts outside its classical proline-rich recognition motif and, in particular, a strictly conserved leucine (L186) of the C-terminally adjacent sequence stretch packs into a hydrophobic pocket on the Lyn surface. Although the existence of this pocket is no unique property of Lyn-SH3, Lyn is the only Src family kinase that contains an additional aromatic residue (H41) in the n-Src loop as part of this pocket. H41 covers L186 of Tip by forming tight hydrophobic contacts, and model calculations suggest that the increase in binding affinity compared with other SH3 domains can mainly be attributed to these additional interactions. These findings indicate that this pocket can mediate specificity even between otherwise closely related SH3 domains.
Collapse
Affiliation(s)
- Finn Bauer
- Lehrstuhl für Biopolymere, Universität Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Solomaha E, Szeto FL, Yousef MA, Palfrey HC. Kinetics of Src Homology 3 Domain Association with the Proline-rich Domain of Dynamins. J Biol Chem 2005; 280:23147-56. [PMID: 15834155 DOI: 10.1074/jbc.m501745200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dynamin function is mediated in part through association of its proline-rich domain (PRD) with the Src homology 3 (SH3) domains of several putative binding proteins. To assess the specificity and kinetics of this process, we undertook surface plasmon resonance studies of the interaction between isolated PRDs of dynamin-1 and -2 and several purified SH3 domains. Glutathione S-transferase-linked SH3 domains bound with high affinity (K(D) approximately 10 nm to 1 microm) to both dynamin-1 and -2. The simplest interaction appeared to take place with the amphiphysin-SH3 domain; this bound to a single high affinity site (K(D) approximately 10 nm) in the C terminus of dynamin-1 PRD, as predicted by previous studies. Binding to the dynamin-2 PRD was also monophasic but with a slightly lower affinity (K(D) approximately 25 nm). Endophilin-SH3 binding to both dynamin-1 and -2 PRDs was biphasic, with one high affinity site (K(D) approximately 14 nm) in the N terminus of the PRD and another lower affinity site (K(D) approximately 60 nm) in the C terminus of dynamin-1. The N-terminal site in dynamin-2 PRD had a 10-fold lower affinity for endophilin-SH3. Preloading of dynamin-1 PRD with the amphiphysin-SH3 domain partially occluded binding of the endophilin-SH3 domain, indicating overlap between the binding sites in the C terminus, but endophilin was still able to interact with the high affinity N-terminal site. This shows that more than one SH3 domain can simultaneously bind to the PRD and suggests that competition probably occurs in vivo between different SH3-containing proteins for the limited number of PXXP motifs. Endophilin-SH3 binding to the high affinity site was disrupted when dynamin-1 PRD was phosphorylated with Cdk5, indicating that this site overlaps the phosphorylation sites, but amphiphysin-SH3 binding was unaffected. Other SH3 domains showed similarly complex binding characteristics, and substantial differences were noted between the PRDs from dynamin-1 and -2. For example, SH3 domains from c-Src, Grb2, and intersectin bound only to the C-terminal half of dynamin-2 PRD but to both the N- and C-terminal portions of dynamin-1 PRD. Thus, differential binding of SH3 domain-containing proteins to dynamin-1 and -2 may contribute to the distinct functions performed by these isoforms.
Collapse
Affiliation(s)
- Elena Solomaha
- Department of Neurobiology, Pharamacology, and Physiology, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|