1
|
Wight TN, Day AJ, Kang I, Harten IA, Kaber G, Briggs DC, Braun KR, Lemire JM, Kinsella MG, Hinek A, Merrilees MJ. V3: an enigmatic isoform of the proteoglycan versican. Am J Physiol Cell Physiol 2023; 325:C519-C537. [PMID: 37399500 PMCID: PMC10511178 DOI: 10.1152/ajpcell.00059.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
V3 is an isoform of the extracellular matrix (ECM) proteoglycan (PG) versican generated through alternative splicing of the versican gene such that the two major exons coding for sequences in the protein core that support chondroitin sulfate (CS) glycosaminoglycan (GAG) chain attachment are excluded. Thus, versican V3 isoform carries no GAGs. A survey of PubMed reveals only 50 publications specifically on V3 versican, so it is a very understudied member of the versican family, partly because to date there are no antibodies that can distinguish V3 from the CS-carrying isoforms of versican, that is, to facilitate functional and mechanistic studies. However, a number of in vitro and in vivo studies have identified the expression of the V3 transcript during different phases of development and in disease, and selective overexpression of V3 has shown dramatic phenotypic effects in "gain and loss of function" studies in experimental models. Thus, we thought it would be useful and instructive to discuss the discovery, characterization, and the putative biological importance of the enigmatic V3 isoform of versican.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Anthony J Day
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Ingrid A Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Gernot Kaber
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - David C Briggs
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Kathleen R Braun
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Joan M Lemire
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| | - Michael G Kinsella
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Aleksander Hinek
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mervyn J Merrilees
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Jørgensen SM, Lorentzen LG, Hammer A, Hoefler G, Malle E, Chuang CY, Davies MJ. The inflammatory oxidant peroxynitrous acid modulates the structure and function of the recombinant human V3 isoform of the extracellular matrix proteoglycan versican. Redox Biol 2023; 64:102794. [PMID: 37402332 DOI: 10.1016/j.redox.2023.102794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Continued oxidant production during chronic inflammation generates host tissue damage, with this being associated with pathologies including atherosclerosis. Atherosclerotic plaques contain modified proteins that may contribute to disease development, including plaque rupture, the major cause of heart attacks and strokes. Versican, a large extracellular matrix (ECM) chondroitin-sulfate proteoglycan, accumulates during atherogenesis, where it interacts with other ECM proteins, receptors and hyaluronan, and promotes inflammation. As activated leukocytes produce oxidants including peroxynitrite/peroxynitrous acid (ONOO-/ONOOH) at sites of inflammation, we hypothesized that versican is an oxidant target, with this resulting in structural and functional changes that may exacerbate plaque development. The recombinant human V3 isoform of versican becomes aggregated on exposure to ONOO-/ONOOH. Both reagent ONOO-/ONOOH and SIN-1 (a thermal source of ONOO-/ONOOH) modified Tyr, Trp and Met residues. ONOO-/ONOOH mainly favors nitration of Tyr, whereas SIN-1 mostly induced hydroxylation of Tyr, and oxidation of Trp and Met. Peptide mass mapping indicated 26 sites with modifications (15 Tyr, 5 Trp, 6 Met), with the extent of modification quantified at 16. Multiple modifications, including the most extensively nitrated residue (Tyr161), are within the hyaluronan-binding region, and associated with decreased hyaluronan binding. ONOO-/ONOOH modification also resulted in decreased cell adhesion and increased proliferation of human coronary artery smooth muscle cells. Evidence is also presented for colocalization of versican and 3-nitrotyrosine epitopes in advanced (type II-III) human atherosclerotic plaques. In conclusion, versican is readily modified by ONOO-/ONOOH, resulting in chemical and structural modifications that affect protein function, including hyaluronan binding and cell interactions.
Collapse
Affiliation(s)
- Sara M Jørgensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, 8010, Austria
| | - Gerald Hoefler
- Institute of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, 8010, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, 8010, Austria
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
3
|
Harten IA, Kaber G, Agarwal KJ, Kang I, Ibarrientos SR, Workman G, Chan CK, Nivison MP, Nagy N, Braun KR, Kinsella MG, Merrilees MJ, Wight TN. The synthesis and secretion of versican isoform V3 by mammalian cells: A role for N-linked glycosylation. Matrix Biol 2020; 89:27-42. [PMID: 32001344 PMCID: PMC7282976 DOI: 10.1016/j.matbio.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/02/2023]
Abstract
Versican is a large extracellular matrix (ECM) chondroitin sulfate (CS) proteoglycan found in most soft tissues, which is encoded by the VCAN gene. At least four major isoforms (V0, V1, V2, and V3) are generated via alternative splicing. The isoforms of versican are expressed and accumulate in various tissues during development and disease, where they contribute to ECM structure, cell growth and migration, and immune regulation, among their many functions. While several studies have identified the mRNA transcript for the V3 isoform in a number of tissues, little is known about the synthesis, secretion, and targeting of the V3 protein. In this study, we used lentiviral generation of doxycycline-inducible rat V3 with a C-terminal tag in stable NIH 3T3 cell lines and demonstrated that V3 is processed through the classical secretory pathway. We further show that N-linked glycosylation is required for efficient secretion and solubility of the protein. By site-directed mutagenesis, we identified amino acids 57 and 330 as the active N-linked glycosylation sites on V3 when expressed in this cell type. Furthermore, exon deletion constructs of V3 revealed that exons 11-13, which code for portions of the carboxy region of the protein (G3 domain), are essential for V3 processing and secretion. Once secreted, the V3 protein associates with hyaluronan along the cell surface and within the surrounding ECM. These results establish critical parameters for the processing, solubility, and targeting of the V3 isoform by mammalian cells and establishes a role for V3 in the organization of hyaluronan.
Collapse
Affiliation(s)
- Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Gernot Kaber
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kiran J. Agarwal
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Gail Workman
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Christina K. Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Mary P. Nivison
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Nadine Nagy
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kathleen R. Braun
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Mervyn J. Merrilees
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
4
|
Aleixo-Pais I, Salmona J, Sgarlata GM, Rakotonanahary A, Sousa AP, Parreira B, Kun-Rodrigues C, Ralantoharijaona T, Jan F, Rasolondraibe E, Minhós T, Zaonarivelo JR, Andriaholinirina NV, Chikhi L. The genetic structure of a mouse lemur living in a fragmented habitat in Northern Madagascar. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1126-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Iu J, Santerre JP, Kandel RA. Inner and Outer Annulus Fibrosus Cells Exhibit Differentiated Phenotypes and Yield Changes in Extracellular Matrix Protein Composition In Vitro on a Polycarbonate Urethane Scaffold. Tissue Eng Part A 2014; 20:3261-9. [DOI: 10.1089/ten.tea.2013.0777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jonathan Iu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - J. Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Rita A. Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Köwitsch A, Yang Y, Ma N, Kuntsche J, Mäder K, Groth T. Bioactivity of immobilized hyaluronic acid derivatives regarding protein adsorption and cell adhesion. Biotechnol Appl Biochem 2011; 58:376-89. [DOI: 10.1002/bab.41] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/13/2011] [Indexed: 11/08/2022]
|
7
|
Popov KI, Palyulin VV, Möller M, Khokhlov AR, Potemkin II. Surface induced self-organization of comb-like macromolecules. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2011; 2:569-84. [PMID: 22003463 PMCID: PMC3190627 DOI: 10.3762/bjnano.2.61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/01/2011] [Indexed: 05/23/2023]
Abstract
We present a review of the theoretical and experimental evidence for the peculiar properties of comb copolymers, demonstrating the uniqueness of these materials among other polymer architectures. These special properties include an increase in stiffness upon increasing side-chain length, the spontaneous curvature of adsorbed combs, rod-globule transition, and specific intramolecular self-assembly. We also propose a theory of chemically heterogeneous surface nanopattern formation in ultrathin films of comblike macromolecules containing two different types (A and B) of incompatible side chains (so-called binary combs). Side chains of the binary combs are strongly adsorbed on a surface and segregated with respect to the backbone. The thickness of surface domains formed by the B side chains is controlled by the interaction with the substrate. We predict the stability of direct and inverse disc-, torus- and stripelike nanostructures. Phase diagrams of the film are constructed.
Collapse
Affiliation(s)
- Konstantin I Popov
- Physics Department, Moscow State University, Moscow 119991, Russian Federation
| | - Vladimir V Palyulin
- Physics Department, Moscow State University, Moscow 119991, Russian Federation
- Institute of Polymer Science, University of Ulm, 89069 Ulm, Germany
| | - Martin Möller
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen and DWI at the RWTH Aachen e.V., 52056 Aachen, Germany
| | - Alexei R Khokhlov
- Physics Department, Moscow State University, Moscow 119991, Russian Federation
- Institute of Polymer Science, University of Ulm, 89069 Ulm, Germany
| | - Igor I Potemkin
- Physics Department, Moscow State University, Moscow 119991, Russian Federation
- Institute of Polymer Science, University of Ulm, 89069 Ulm, Germany
| |
Collapse
|
8
|
pH-induced conformational changes of loosely grafted molecular brushes containing poly(acrylic acid) side chains. POLYMER 2008. [DOI: 10.1016/j.polymer.2008.10.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
|
10
|
Xie YZ, Li SZ, Yee A, La Pierre DP, Deng Z, Lee DY, Wu QP, Chen Q, Li C, Zhang Z, Guo J, Jiang Z, Yang BB. Ganoderma lucidum inhibits tumour cell proliferation and induces tumour cell death. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.10.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
|
12
|
Zheng PS, Reis M, Sparling C, Lee DY, La Pierre DP, Wong CKA, Deng Z, Kahai S, Wen J, Yang BB. Versican G3 domain promotes blood coagulation through suppressing the activity of tissue factor pathway inhibitor-1. J Biol Chem 2006; 281:8175-82. [PMID: 16431924 DOI: 10.1074/jbc.m509182200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have detected versican, a member of the large chondroitin sulfate proteoglycans, and its degraded C-terminal G3 fragments in human plasma and observed that the versican G3 domain promoted blood coagulation. Silencing G3 expression with small interfering RNA reduced the effect of G3 on coagulation. Plasma coagulation assays suggest that G3 enhances coagulation irrespective of its actions on platelets and white blood cells. To examine how versican affected blood coagulation, we used normal human plasma and different types of coagulation factor-deficient plasmas. The experiments indicated that versican enhanced coagulation through the extrinsic pathway, and that Factor VII was the target molecule. FVII activity assays showed that G3 activated FVII in the presence of plasma but not with purified FVII directly. Yeast two-hybrid, immunoprecipitation, and gel co-migration assays showed that G3 interacted with the tissue factor pathway inhibitor-1 (TFPI-1). TFPI-1 activity assays suggested that G3 inhibited TFPI-1 activity, allowing FVIIa and FXa to facilitate the coagulation process. G3-induced blood coagulation was further confirmed with a mouse model in a real-time manner. Taken together, these results indicate that versican may represent a new target for the development of therapies against atherosclerosis.
Collapse
Affiliation(s)
- Peng-Sheng Zheng
- Sunnybrook & Women's College Health Sciences Centre, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ney A, Booms P, Epple G, Mörgelin M, Guo G, Kettelgerdes G, Gessner R, Robinson PN. Calcium-dependent self-association of the C-type lectin domain of versican. Int J Biochem Cell Biol 2006; 38:23-9. [PMID: 16159712 DOI: 10.1016/j.biocel.2005.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 07/03/2005] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
Versican is a large (1-2 x 10(6) Da) chondroitin-sulfate proteoglycan that can form large aggregates by means of interaction with hyaluronan and also binds to a series of other extracellular matrix proteins, chemokines and cell-surface molecules. Versican is a multifunctional molecule with roles in cell adhesion, matrix assembly, cell migration and proliferation. Characterization of the binding interactions mediated by the various domains of versican is a first step towards understanding the functions of versican and interacting molecules in the extracellular matrix. In this study we investigated a recombinant construct corresponding to the C-type lectin domain of versican and demonstrated a calcium-dependent self-association of this region by blot overlay and plasmon surface resonance assays. Electron microscopy provided further evidence of the relevance of the binding reaction by demonstrating a mixture of monomers, dimers and complex aggregates of recombinant versican C-type lectin domain. This binding reaction could contribute to the ability of versican to organize formation of the proteoglycan extracellular matrix by inducing binding of individual versican molecules or by modulating binding reactions to other matrix components.
Collapse
Affiliation(s)
- Andreas Ney
- Institute of Medical Genetics,Charité University Hospital, Humboldt University, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB. The interaction of versican with its binding partners. Cell Res 2005; 15:483-94. [PMID: 16045811 DOI: 10.1038/sj.cr.7290318] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Versican belongs to the family of the large aggregating chondroitin sulfate proteoglycans located primarily within the extracellular matrix (ECM). Versican, like other members of its family, has unique N- and C-terminal globular regions, each with multiple motifs. A large glycosaminoglycan-binding region lies between them. This review will begin by outlining these structures, in the context of ECM proteoglycans. The diverse binding partners afforded to versican by virtue of its modular design will then be examined. These include ECM components, such as hyaluronan, type I collagen, tenascin-R, fibulin-1, and -2, fibrillin-1, fibronectin, P- and L-selectins, and chemokines. Versican also binds to the cell surface proteins CD44, integrin beta 1, epidermal growth factor receptor, and P-selectin glycoprotein ligand-1. These multiple interactors play important roles in cell behaviour, and the roles of versican in modulating such processes are discussed.
Collapse
Affiliation(s)
- Yao Jiong Wu
- Sunnybrook and Women's College Health Sciences Centre, 2075 Bayview Avenue, Toronto M4N 3M5 Canada
| | | | | | | | | |
Collapse
|
15
|
Wu Y, Wu J, Lee DY, Yee A, Cao L, Zhang Y, Kiani C, Yang BB. Versican protects cells from oxidative stress-induced apoptosis. Matrix Biol 2005; 24:3-13. [PMID: 15748997 DOI: 10.1016/j.matbio.2004.11.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 11/02/2004] [Accepted: 11/29/2004] [Indexed: 11/16/2022]
Abstract
Oxidant injury plays a critical role in the degenerative changes that are characterized by a decline in parenchymal cell numbers and viability, and occur with aging and in the etiology of many diseases. The extracellular proteoglycan versican is widely distributed in the extracellular matrix surrounding the cells. This study examines whether versican plays a role in protecting cells from free radical-induced apoptosis. Stable expression of versican or its C-terminal domain significantly decreased H(2)O(2)-induced cellular apoptosis. Cells in adherent monolayer were more resistant to H(2)O(2)-induced apoptosis than cells cultured in suspension. While vigorous trypsinization caused integrin cleavage and rendered the cells more susceptible to H(2)O(2)-induced damages, expression of versican or its C-terminal domain enhanced cell attachment and expression of beta1 integrin and fibronectin. Enhanced cell-matrix interaction by addition of manganese (MnCl(2)) to cultures also significantly diminished H(2)O(2)-induced apoptosis. The results suggest that versican plays an important role in reducing oxidant injury through an enhancement of cell-matrix interaction.
Collapse
Affiliation(s)
- Yaojiong Wu
- Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sheng W, Wang G, Wang Y, Liang J, Wen J, Zheng PS, Wu Y, Lee V, Slingerland J, Dumont D, Yang BB. The roles of versican V1 and V2 isoforms in cell proliferation and apoptosis. Mol Biol Cell 2005; 16:1330-40. [PMID: 15635104 PMCID: PMC551496 DOI: 10.1091/mbc.e04-04-0295] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 12/10/2004] [Accepted: 12/12/2004] [Indexed: 01/17/2023] Open
Abstract
Versican is a large chondroitin sulfate proteoglycan belonging to the lectican family. Alternative splicing of versican generates at least four isoforms named V0, V1, V2, and V3. We have shown that the versican V1 isoform not only enhanced cell proliferation, but also modulated cell cycle progression and protected the cells from apoptosis. Futhermore, the V1 isoform was able to not only activate proto-oncogene EGFR expression and modulate its downstream signaling pathway, but also induce p27 degradation and enhance CDK2 kinase activity. As well, the V1 isoform down-regulated the expression of the proapoptotic protein Bad. By contrast, the V2 isoform exhibited opposite biological activities by inhibiting cell proliferation and down-regulated the expression of EGFR and cyclin A. Furthermore, V2 did not contribute apoptotic resistance to the cells. In light of these results, we are reporting opposite functions for the two versican isoforms whose expression is differentially regulated. Our studies suggest that the roles of these two isoforms are associated with the subdomains CSbeta and CSalpha, respectively. These results were confirmed by silencing the expression of versican V1 with small interfering RNA (siRNA), which abolished V1-enhanced cell proliferation and V1-induced reduction of apoptosis.
Collapse
Affiliation(s)
- Wang Sheng
- Sunnybrook & Women's College Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wu Y, Chen L, Cao L, Sheng W, Yang BB. Overexpression of the C-terminal PG-M/versican domain impairs growth of tumor cells by intervening in the interaction between epidermal growth factor receptor and beta1-integrin. J Cell Sci 2005; 117:2227-37. [PMID: 15126624 DOI: 10.1242/jcs.01057] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Versican is highly expressed in many types of tumors. In a previous study, we found that a G3 mutant [G3DeltaEGF; a versican G3 domain lacking two epidermal growth factor (EGF)-like motifs] exerted a dominant-negative effect on versican secretion and binding. Here, we report that astrocytoma U87 cells expressing the versican G3 mutant lost the hallmark of cell transformation and tumorigenesis in vitro and in vivo. U87 cells expressing G3DeltaEGF had enhanced cell adhesion and spreading, but lost the tumor characteristic of anchorage-independent growth. When U87 cells were deprived of serum, FAK was quickly dephosphorylated, integrin/EGF-receptor (EGFR) complexes dissociated and the cells retained an appropriate level of EGFR phosphorylation. These cells quickly detached, migrated, rounded, reorganized and survived. However, after serum withdrawal from G3DeltaEGF-transfected U87 cells, sustained FAK phosphorylation and integrin-EGFR association were observed, but a greatly reduced EGFR phosphorylation. These cells remained spread and continued to grow before undergoing massive apoptosis. The addition of EGF promoted U87 cell rounding but had little effect on G3DeltaEGF-transfected cells owing to reduced EGFR phosphorylation. Our study sheds light on the question of how the matrix molecule versican modulates tumorigenesis by affecting integrin and EGFR signals.
Collapse
Affiliation(s)
- Yaojiong Wu
- Sunnybrook & Women's College Health Sciences Centre and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M4N 3M5, Canada
| | | | | | | | | |
Collapse
|
18
|
Zheng PS, Vais D, Lapierre D, Liang YY, Lee V, Yang BL, Yang BB. PG-M/versican binds to P-selectin glycoprotein ligand-1 and mediates leukocyte aggregation. J Cell Sci 2004; 117:5887-95. [PMID: 15522894 DOI: 10.1242/jcs.01516] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1), a glycoprotein expressed on the cell surface of leukocytes, binds to selectins and mediates leukocyte rolling on the vascular endothelium. Here we report that PSGL-1 binds to the C-terminal (G3 domain) of the extracellular proteoglycan PG-M/versican. Cells transfected with PSGL-1 or a shorter form containing the binding site, or cells expressing endogenous PSGL-1 aggregate in the presence of versican or G3 product. The aggregation appears to be induced by G3 multimers that bind to PSGL-1 and form a network. Endogenous versican and/or G3-containing fragments also bind to PSGL-1 in human plasma. Removal of the endogenous G3-containing fragments reduces the effect of plasma on leukocyte aggregation. Finally, the roles of G3-containing fragments in leukocyte aggregation were confirmed in a mouse model. Taken together, our results strongly support a physiologically relevant role for PSGL-1/versican binding and may have implications in the immunoresponse.
Collapse
Affiliation(s)
- Peng-Sheng Zheng
- Sunnybrook and Women's College Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Wu Y, Sheng W, Chen L, Dong H, Lee V, Lu F, Wong CS, Lu WY, Yang BB. Versican V1 isoform induces neuronal differentiation and promotes neurite outgrowth. Mol Biol Cell 2004; 15:2093-104. [PMID: 14978219 PMCID: PMC404007 DOI: 10.1091/mbc.e03-09-0667] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 01/12/2004] [Accepted: 01/27/2004] [Indexed: 11/11/2022] Open
Abstract
The chondroitin sulfate proteoglycan versican is one of the major extracellular components in the developing and adult brain. Here, we show that isoforms of versican play different roles in neuronal differentiation and neurite outgrowth. Expression of versican V1 isoform in PC12 cells induced complete differentiation, whereas expression of V2 induced an aborted differentiation accompanied by apoptosis. V1 promoted neurite outgrowth of hippocampal neurons, but V2 failed to do so. V1 transfection enhanced expression of epidermal growth factor receptor and integrins, and facilitated sustained extracellular signal-regulated kinase/MAPK phosphorylation. Blockade of the epidermal growth factor receptor, beta1 integrin, or Src significantly inhibited neuronal differentiation. Finally, we demonstrated that versican V1 isoform also promoted differentiation of neural stem cells into neurons. Our results have implications for understanding how versican regulates neuronal development, function, and repair.
Collapse
Affiliation(s)
- Yaojiong Wu
- Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|