1
|
Chen DF, Roe LT, Li Y, Borges AL, Zhang JY, Babbar P, Maji S, Stevens MG, Correy GJ, Diolaiti ME, Smith DH, Ashworth A, Stroud RM, Kelly MJ, Bondy-Denomy J, Fraser JS. AcrIF11 is a potent CRISPR-specific ADP-ribosyltransferase encoded by phage and plasmid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609590. [PMID: 39253479 PMCID: PMC11383003 DOI: 10.1101/2024.08.26.609590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Phage-encoded anti-CRISPR (Acr) proteins inhibit CRISPR-Cas systems to allow phage replication and lysogeny maintenance. Most of the Acrs characterized to date are stable stoichiometric inhibitors, and while enzymatic Acrs have been characterized biochemically, little is known about their potency, specificity, and reversibility. Here, we examine AcrIF11, a widespread phage and plasmid-encoded ADP-ribosyltransferase (ART) that inhibits the Type I-F CRISPR-Cas system. We present an NMR structure of an AcrIF11 homolog that reveals chemical shift perturbations consistent with NAD (cofactor) binding. In experiments that model both lytic phage replication and MGE/lysogen stability under high targeting pressure, AcrIF11 is a highly potent CRISPR-Cas inhibitor and more robust to Cas protein level fluctuations than stoichiometric inhibitors. Furthermore, we demonstrate that AcrIF11 is remarkably specific, predominantly ADP-ribosylating Csy1 when expressed in P. aeruginosa. Given the reversible nature of ADP-ribosylation, we hypothesized that ADPr eraser enzymes (macrodomains) could remove ADPr from Csy1, a potential limitation of PTM-based CRISPR inhibition. We demonstrate that diverse macrodomains can indeed remove the modification from Csy1 in P. aeruginosa lysate. Together, these experiments connect the in vitro observations of AcrIF11's enzymatic activity to its potent and specific effects in vivo, clarifying the advantages and drawbacks of enzymatic Acrs in the evolutionary arms race between phages and bacteria.
Collapse
Affiliation(s)
- Daphne F. Chen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Leah T. Roe
- Department of Chemistry, University of California, Berkeley, CA
| | - Yuping Li
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA
| | | | - Jenny Y. Zhang
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA
| | - Palak Babbar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Sourobh Maji
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Maisie G.V. Stevens
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Morgan E. Diolaiti
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Dominique H. Smith
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Mark J.S. Kelly
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA
| |
Collapse
|
2
|
Tsuge H, Habuka N, Yoshida T. General ADP-Ribosylation Mechanism Based on the Structure of ADP-Ribosyltransferase-Substrate Complexes. Toxins (Basel) 2024; 16:313. [PMID: 39057953 PMCID: PMC11281641 DOI: 10.3390/toxins16070313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
ADP-ribosylation is a ubiquitous modification of proteins and other targets, such as nucleic acids, that regulates various cellular functions in all kingdoms of life. Furthermore, these ADP-ribosyltransferases (ARTs) modify a variety of substrates and atoms. It has been almost 60 years since ADP-ribosylation was discovered. Various ART structures have been revealed with cofactors (NAD+ or NAD+ analog). However, we still do not know the molecular mechanisms of ART. It needs to be better understood how ART specifies the target amino acids or bases. For this purpose, more information is needed about the tripartite complex structures of ART, the cofactors, and the substrates. The tripartite complex is essential to understand the mechanism of ADP-ribosyltransferase. This review updates the general ADP-ribosylation mechanism based on ART tripartite complex structures.
Collapse
Affiliation(s)
- Hideaki Tsuge
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 6038555, Japan
| | - Noriyuki Habuka
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 6038555, Japan
| | - Toru Yoshida
- Faculty of Sciences, Japan Women’s University, Tokyo 1120015, Japan
| |
Collapse
|
3
|
Takahashi-Nakaguchi A, Horiuchi Y, Yamamoto M, Totsuka Y, Wakabayashi K. Pierisin, Cytotoxic and Apoptosis-Inducing DNA ADP-Ribosylating Protein in Cabbage Butterfly. Toxins (Basel) 2024; 16:270. [PMID: 38922164 PMCID: PMC11209040 DOI: 10.3390/toxins16060270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Pierisin-1 was serendipitously discovered as a strong cytotoxic and apoptosis-inducing protein from pupae of the cabbage butterfly Pieris rapae against cancer cell lines. This 98-kDa protein consists of the N-terminal region (27 kDa) and C-terminal region (71 kDa), and analysis of their biological function revealed that pierisin-1 binds to cell surface glycosphingolipids on the C-terminal side, is taken up into the cell, and is cleaved to N- and C-terminal portions, where the N-terminal portion mono-ADP-ribosylates the guanine base of DNA in the presence of NAD to induce cellular genetic mutation and apoptosis. Unlike other ADP-ribosyltransferases, pieisin-1 was first found to exhibit DNA mono-ADP-ribosylating activity and show anti-cancer activity in vitro and in vivo against various cancer cell lines. Pierisin-1 was most abundantly produced during the transition from the final larval stage to the pupal stage of the cabbage butterfly, and this production was regulated by ecdysteroid hormones. This suggests that pierisn-1 might play a pivotal role in the process of metamorphosis. Moreover, pierisin-1 could contribute as a defense factor against parasitization and microbial infections in the cabbage butterfly. Pierisin-like proteins in butterflies were shown to be present not only among the subtribe Pierina but also among the subtribes Aporiina and Appiadina, and pierisin-2, -3, and -4 were identified in these butterflies. Furthermore, DNA ADP-ribosylating activities were found in six different edible clams. Understanding of the biological nature of pierisin-1 with DNA mono-ADP-ribosylating activity could open up exciting avenues for research and potential therapeutic applications, making it a subject of great interest in the field of molecular biology and biotechnology.
Collapse
Affiliation(s)
| | - Yu Horiuchi
- Aquatic Food Research Laboratory, Central Research Institute, Tokyo Innovation Center, Nissui Corporation, 1-32-3 Shichikoku, Hachioji City 192-0991, Japan
| | - Masafumi Yamamoto
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Yukari Totsuka
- Department of Environmental Health Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
4
|
Gholami A, Minai-Tehrani D, Mahdizadeh SJ, Saenz-Mendez P, Eriksson LA. Structural Insights into Pseudomonas aeruginosa Exotoxin A-Elongation Factor 2 Interactions: A Molecular Dynamics Study. J Chem Inf Model 2023; 63:1578-1591. [PMID: 36802593 PMCID: PMC10015456 DOI: 10.1021/acs.jcim.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Exotoxin A (ETA) is an extracellular secreted toxin and a single-chain polypeptide with A and B fragments that is produced by Pseudomonas aeruginosa. It catalyzes the ADP-ribosylation of a post-translationally modified histidine (diphthamide) on eukaryotic elongation factor 2 (eEF2), which results in the inactivation of the latter and the inhibition of protein biosynthesis. Studies show that the imidazole ring of diphthamide plays an important role in the ADP-ribosylation catalyzed by the toxin. In this work, we employ different in silico molecular dynamics (MD) simulation approaches to understand the role of diphthamide versus unmodified histidine in eEF2 on the interaction with ETA. Crystal structures of the eEF2-ETA complexes with three different ligands NAD+, ADP-ribose, and βTAD were selected and compared in the diphthamide and histidine containing systems. The study shows that NAD+ bound to ETA remains very stable in comparison with other ligands, enabling the transfer of ADP-ribose to the N3 atom of the diphthamide imidazole ring in eEF2 during ribosylation. We also show that unmodified histidine in eEF2 has a negative impact on ETA binding and is not a suitable target for the attachment of ADP-ribose. Analyzing of radius of gyration and COM distances for NAD+, βTAD, and ADP-ribose complexes revealed that unmodified His affects the structure and destabilizes the complex with all different ligands throughout the MD simulations.
Collapse
Affiliation(s)
- Asma Gholami
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden.,Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Dariush Minai-Tehrani
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Sayyed Jalil Mahdizadeh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden
| | - Patricia Saenz-Mendez
- Department of Engineering and Chemical Sciences, Karlstad University, 651 88 Karlstad, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden
| |
Collapse
|
5
|
Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. ADP-ribosylation systems in bacteria and viruses. Comput Struct Biotechnol J 2021; 19:2366-2383. [PMID: 34025930 PMCID: PMC8120803 DOI: 10.1016/j.csbj.2021.04.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
ADP-ribosylation is an ancient posttranslational modification present in all kingdoms of life. The system likely originated in bacteria where it functions in inter- and intra-species conflict, stress response and pathogenicity. It was repeatedly adopted via lateral transfer by eukaryotes, including humans, where it has a pivotal role in epigenetics, DNA-damage repair, apoptosis, and other crucial pathways including the immune response to pathogenic bacteria and viruses. In other words, the same ammunition used by pathogens is adapted by eukaryotes to fight back. While we know quite a lot about the eukaryotic system, expanding rather patchy knowledge on bacterial and viral ADP-ribosylation would give us not only a better understanding of the system as a whole but a fighting advantage in this constant arms race. By writing this review we hope to put into focus the available information and give a perspective on how this system works and can be exploited in the search for therapeutic targets in the future. The relevance of the subject is especially highlighted by the current situation of being amid the world pandemic caused by a virus harbouring and dependent on a representative of such a system.
Collapse
Affiliation(s)
- Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
6
|
Nilov DK, Pushkarev SV, Gushchina IV, Manasaryan GA, Kirsanov KI, Švedas VK. Modeling of the Enzyme-Substrate Complexes of Human Poly(ADP-Ribose) Polymerase 1. BIOCHEMISTRY (MOSCOW) 2020; 85:99-107. [PMID: 32079521 DOI: 10.1134/s0006297920010095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a key DNA repair enzyme and an important target in cancer treatment. Conventional methods of studying the reaction mechanism of PARP-1 have limitations because of the complex structure of PARP-1 substrates; however, the necessary data can be obtained by molecular modeling. In this work, a molecular dynamics model for the PARP-1 enzyme-substrate complex containing NAD+ molecule and the end of the poly(ADP-ribose) chain in the form of ADP molecule was obtained for the first time. Interactions with the active site residues have been characterized where Gly863, Lys903, Glu988 play a crucial role, and the SN1-like mechanism for the enzymatic ADP-ribosylation reaction has been proposed. Models of PARP-1 complexes with more sophisticated two-unit fragments of the growing polymer chain as well as competitive inhibitors 3-aminobenzamide and 7-methylguanine have been obtained by molecular docking.
Collapse
Affiliation(s)
- D K Nilov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - S V Pushkarev
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - I V Gushchina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - G A Manasaryan
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, 119991, Russia
| | - K I Kirsanov
- Blokhin National Medical Research Center of Oncology, Institute of Carcinogenesis, Moscow, 115478, Russia
| | - V K Švedas
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| |
Collapse
|
7
|
Freire DM, Gutierrez C, Garza-Garcia A, Grabowska AD, Sala AJ, Ariyachaokun K, Panikova T, Beckham KSH, Colom A, Pogenberg V, Cianci M, Tuukkanen A, Boudehen YM, Peixoto A, Botella L, Svergun DI, Schnappinger D, Schneider TR, Genevaux P, de Carvalho LPS, Wilmanns M, Parret AHA, Neyrolles O. An NAD + Phosphorylase Toxin Triggers Mycobacterium tuberculosis Cell Death. Mol Cell 2019; 73:1282-1291.e8. [PMID: 30792174 PMCID: PMC6436930 DOI: 10.1016/j.molcel.2019.01.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 01/13/2023]
Abstract
Toxin-antitoxin (TA) systems regulate fundamental cellular processes in bacteria and represent potential therapeutic targets. We report a new RES-Xre TA system in multiple human pathogens, including Mycobacterium tuberculosis. The toxin, MbcT, is bactericidal unless neutralized by its antitoxin MbcA. To investigate the mechanism, we solved the 1.8 Å-resolution crystal structure of the MbcTA complex. We found that MbcT resembles secreted NAD+-dependent bacterial exotoxins, such as diphtheria toxin. Indeed, MbcT catalyzes NAD+ degradation in vitro and in vivo. Unexpectedly, the reaction is stimulated by inorganic phosphate, and our data reveal that MbcT is a NAD+ phosphorylase. In the absence of MbcA, MbcT triggers rapid M. tuberculosis cell death, which reduces mycobacterial survival in macrophages and prolongs the survival of infected mice. Our study expands the molecular activities employed by bacterial TA modules and uncovers a new class of enzymes that could be exploited to treat tuberculosis and other infectious diseases.
Collapse
Affiliation(s)
- Diana Mendes Freire
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Acely Garza-Garcia
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna D Grabowska
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Ambre J Sala
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31400 Toulouse, France
| | - Kanchiyaphat Ariyachaokun
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Terezie Panikova
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Katherine S H Beckham
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - André Colom
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Vivian Pogenberg
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Michele Cianci
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Anne Tuukkanen
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Yves-Marie Boudehen
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Antonio Peixoto
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Laure Botella
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Thomas R Schneider
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31400 Toulouse, France
| | - Luiz Pedro Sorio de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany; University Hamburg Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Annabel H A Parret
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany.
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France.
| |
Collapse
|
8
|
Tak U, Vlach J, Garza-Garcia A, William D, Danilchanka O, de Carvalho LPS, Saad JS, Niederweis M. The tuberculosis necrotizing toxin is an NAD + and NADP + glycohydrolase with distinct enzymatic properties. J Biol Chem 2019; 294:3024-3036. [PMID: 30593509 PMCID: PMC6398120 DOI: 10.1074/jbc.ra118.005832] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
Upon host infection, Mycobacterium tuberculosis secretes the tuberculosis necrotizing toxin (TNT) into the cytosol of infected macrophages, leading to host cell death by necroptosis. TNT hydrolyzes NAD+ in the absence of any exogenous cofactor, thus classifying it as a β-NAD+ glycohydrolase. However, TNT lacks sequence similarity with other NAD+ hydrolyzing enzymes and lacks the essential motifs involved in NAD+ binding and hydrolysis by these enzymes. In this study, we used NMR to examine the enzymatic activity of TNT and found that TNT hydrolyzes NADP+ as fast as NAD+ but does not cleave the corresponding reduced dinucleotides. This activity of TNT was not inhibited by ADP-ribose or nicotinamide, indicating low affinity of TNT for these reaction products. A selection assay for nontoxic TNT variants in Escherichia coli identified four of six residues in the predicted NAD+-binding pocket and four glycine residues that form a cradle directly below the NAD+-binding site, a conserved feature in the TNT protein family. Site-directed mutagenesis of residues near the predicted NAD+-binding site revealed that Phe727, Arg757, and Arg780 are essential for NAD+ hydrolysis by TNT. These results identify the NAD+-binding site of TNT. Our findings also show that TNT is an NAD+ glycohydrolase with properties distinct from those of other bacterial glycohydrolases. Because many of these residues are conserved within the TNT family, our findings provide insights into understanding the function of the >300 TNT homologs.
Collapse
Affiliation(s)
- Uday Tak
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | - Jiri Vlach
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | | | - Doreen William
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | - Olga Danilchanka
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | | | - Jamil S Saad
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | - Michael Niederweis
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| |
Collapse
|
9
|
Abstract
Transition state theory teaches that chemically stable mimics of enzymatic transition states will bind tightly to their cognate enzymes. Kinetic isotope effects combined with computational quantum chemistry provides enzymatic transition state information with sufficient fidelity to design transition state analogues. Examples are selected from various stages of drug development to demonstrate the application of transition state theory, inhibitor design, physicochemical characterization of transition state analogues, and their progress in drug development.
Collapse
Affiliation(s)
- Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
10
|
Lüscher B, Bütepage M, Eckei L, Krieg S, Verheugd P, Shilton BH. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chem Rev 2017; 118:1092-1136. [PMID: 29172462 DOI: 10.1021/acs.chemrev.7b00122] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posttranslational modifications (PTMs) regulate protein functions and interactions. ADP-ribosylation is a PTM, in which ADP-ribosyltransferases use nicotinamide adenine dinucleotide (NAD+) to modify target proteins with ADP-ribose. This modification can occur as mono- or poly-ADP-ribosylation. The latter involves the synthesis of long ADP-ribose chains that have specific properties due to the nature of the polymer. ADP-Ribosylation is reversed by hydrolases that cleave the glycosidic bonds either between ADP-ribose units or between the protein proximal ADP-ribose and a given amino acid side chain. Here we discuss the properties of the different enzymes associated with ADP-ribosylation and the consequences of this PTM on substrates. Furthermore, the different domains that interpret either mono- or poly-ADP-ribosylation and the implications for cellular processes are described.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Laura Eckei
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany
| | - Brian H Shilton
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University , 52057 Aachen, Germany.,Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario , Medical Sciences Building Room 332, London, Ontario Canada N6A 5C1
| |
Collapse
|
11
|
Saenz-Méndez P, Eriksson M, Eriksson LA. Ligand Selectivity between the ADP-Ribosylating Toxins: An Inverse-Docking Study for Multitarget Drug Discovery. ACS OMEGA 2017; 2:1710-1719. [PMID: 30023642 PMCID: PMC6044789 DOI: 10.1021/acsomega.7b00010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/17/2017] [Indexed: 06/02/2023]
Abstract
Bacterial adenosine 5'-diphosphate-ribosylating toxins are encoded by several human pathogens, such as Pseudomonas aeruginosa (exotoxin A (ETA)), Corynebacterium diphtheriae (diphtheria toxin (DT)), and Vibrio cholerae (cholix toxin (CT)). The toxins modify eukaryotic elongation factor 2, an essential human enzyme in protein synthesis, thereby causing cell death. Targeting external virulence factors, such as the above toxins, is a promising alternative for developing new antibiotics, while at the same time avoiding drug resistance. This study aims to establish a reliable computational methodology to find a "silver bullet" able to target all three toxins. Herein, we have undertaken a detailed analysis of the active sites of ETA, DT, and CT, followed by the determination of the most appropriate selection of the size of the docking sphere. Thereafter, we tested two different approaches for normalizing the docking scores and used these to verify the best target (toxin) for each ligand. The results indicate that the methodology is suitable for identifying selective as well as multitoxin inhibitors, further validating the robustness of inverse docking for target-fishing experiments.
Collapse
Affiliation(s)
- Patricia Saenz-Méndez
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Göteborg, Sweden
- Computational
Chemistry and Biology Group, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Martin Eriksson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Göteborg, Sweden
| | - Leif A. Eriksson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Göteborg, Sweden
| |
Collapse
|
12
|
Billod JM, Saenz-Mendez P, Blomberg A, Eriksson LA. Structures, Properties, and Dynamics of Intermediates in eEF2-Diphthamide Biosynthesis. J Chem Inf Model 2016; 56:1776-86. [PMID: 27525663 DOI: 10.1021/acs.jcim.6b00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The eukaryotic translation Elongation Factor 2 (eEF2) is an essential enzyme in protein synthesis. eEF2 contains a unique modification of a histidine (His699 in yeast; HIS) into diphthamide (DTA), obtained via 3-amino-3-carboxypropyl (ACP) and diphthine (DTI) intermediates in the biosynthetic pathway. This essential and unique modification is also vulnerable, in that it can be efficiently targeted by NAD(+)-dependent ADP-ribosylase toxins, such as diphtheria toxin (DT). However, none of the intermediates in the biosynthesis path is equally vulnerable against the toxins. This study aims to address the different susceptibility of DTA and its precursors against bacterial toxins. We have herein undertaken a detailed in silico study of the structural features and dynamic motion of different His699 intermediates along the diphthamide synthesis pathway (HIS, ACP, DTI, DTA). The study points out that DTA forms a strong hydrogen bond with an asparagine which might explain the ADP-ribosylation mechanism caused by the diphtheria toxin (DT). Finally, in silico mutagenesis studies were performed on the DTA modified protein, in order to hamper the formation of such a hydrogen bond. The results indicate that the mutant structure might in fact be less susceptible to attack by DT and thereby behave similarly to DTI in this respect.
Collapse
Affiliation(s)
- Jean-Marc Billod
- Department of Chemical and Physical Biology, Center for Biological Research, CIB-CSIC , 28040 Madrid, Spain
| | - Patricia Saenz-Mendez
- Computational Chemistry and Biology Group, Facultad de Química, Universidad de la República , 11800 Montevideo, Uruguay
| | | | | |
Collapse
|
13
|
Lyons B, Ravulapalli R, Lanoue J, Lugo MR, Dutta D, Carlin S, Merrill AR. Scabin, a Novel DNA-acting ADP-ribosyltransferase from Streptomyces scabies. J Biol Chem 2016; 291:11198-215. [PMID: 27002155 PMCID: PMC4900268 DOI: 10.1074/jbc.m115.707653] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/12/2016] [Indexed: 11/06/2022] Open
Abstract
A bioinformatics strategy was used to identify Scabin, a novel DNA-targeting enzyme from the plant pathogen 87.22 strain of Streptomyces scabies Scabin shares nearly 40% sequence identity with the Pierisin family of mono-ADP-ribosyltransferase toxins. Scabin was purified to homogeneity as a 22-kDa single-domain enzyme and was shown to possess high NAD(+)-glycohydrolase (Km (NAD) = 68 ± 3 μm; kcat = 94 ± 2 min(-1)) activity with an RSQXE motif; it was also shown to target deoxyguanosine and showed sigmoidal enzyme kinetics (K0.5(deoxyguanosine) = 302 ± 12 μm; kcat = 14 min(-1)). Mass spectrometry analysis revealed that Scabin labels the exocyclic amino group on guanine bases in either single-stranded or double-stranded DNA. Several small molecule inhibitors were identified, and the most potent compounds were found to inhibit the enzyme activity with Ki values ranging from 3 to 24 μm PJ34, a well known inhibitor of poly-ADP-ribosyltransferases, was shown to be the most potent inhibitor of Scabin. Scabin was crystallized, representing the first structure of a DNA-targeting mono-ADP-ribosyltransferase enzyme; the structures of the apo-form (1.45 Å) and with two inhibitors (P6-E, 1.4 Å; PJ34, 1.6 Å) were solved. These x-ray structures are also the first high resolution structures of the Pierisin subgroup of the mono-ADP-ribosyltransferase toxin family. A model of Scabin with its DNA substrate is also proposed.
Collapse
Affiliation(s)
- Bronwyn Lyons
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| | - Ravikiran Ravulapalli
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| | - Jason Lanoue
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| | - Miguel R Lugo
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| | - Debajyoti Dutta
- the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Stephanie Carlin
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| | - A Rod Merrill
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| |
Collapse
|
14
|
Sung VMH. Mechanistic overview of ADP-ribosylation reactions. Biochimie 2015; 113:35-46. [PMID: 25828806 DOI: 10.1016/j.biochi.2015.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
ADP-ribosylation reactions consist of mono-ADP-ribosylation, poly-ADP-ribosylation and cyclic ADP-ribosylation. These reactions play essential roles in many important physiological and pathophysiological events. The types of chemical linkages, the evolutionarily conserved motif within the enzymes to determine the target specificity, stereochemistry of the ADP-ribosylated products, and the chemical reactions taking place among the enzymes and substrates are discussed.
Collapse
Affiliation(s)
- Vicky M-H Sung
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Harvard University, MA 02115, USA.
| |
Collapse
|
15
|
Burgos ES, Vetticatt MJ, Schramm VL. Recycling nicotinamide. The transition-state structure of human nicotinamide phosphoribosyltransferase. J Am Chem Soc 2013; 135:3485-93. [PMID: 23373462 PMCID: PMC3627370 DOI: 10.1021/ja310180c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human nicotinamide phosphoribosyltransferase (NAMPT) replenishes the NAD pool and controls the activities of sirtuins, mono- and poly-(ADP-ribose) polymerases, and NAD nucleosidase. The nature of the enzymatic transition-state (TS) is central to understanding the function of NAMPT. We determined the TS structure for pyrophosphorolysis of nicotinamide mononucleotide (NMN) from kinetic isotope effects (KIEs). With the natural substrates, NMN and pyrophosphate (PPi), the intrinsic KIEs of [1'-(14)C], [1-(15)N], [1'-(3)H], and [2'-(3)H] are 1.047, 1.029, 1.154, and 1.093, respectively. A unique quantum computational approach was used for TS analysis that included structural elements of the catalytic site. Without constraints (e.g., imposed torsion angles), the theoretical and experimental data are in good agreement. The quantum-mechanical calculations incorporated a crucial catalytic site residue (D313), two magnesium atoms, and coordinated water molecules. The TS model predicts primary (14)C, α-secondary (3)H, β-secondary (3)H, and primary (15)N KIEs close to the experimental values. The analysis reveals significant ribocation character at the TS. The attacking PPi nucleophile is weakly interacting (r(C-O) = 2.60 Å), and the N-ribosidic C1'-N bond is highly elongated at the TS (r(C-N) = 2.35 Å), consistent with an A(N)D(N) mechanism. Together with the crystal structure of the NMN·PPi·Mg2·enzyme complex, the reaction coordinate is defined. The enzyme holds the nucleophile and leaving group in relatively fixed positions to create a reaction coordinate with C1'-anomeric migration from NAM to the PPi. The TS is reached by a 0.85 Å migration of C1'.
Collapse
Affiliation(s)
- Emmanuel S Burgos
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | | | | |
Collapse
|
16
|
Romaniuk SI, Kolybo DV, Komisarenko SV. Recombinant diphtheria toxin derivatives: Perspectives of application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012; 38:639-52. [DOI: 10.1134/s106816201206012x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Lou M, Burger SK, Gilpin ME, Gawuga V, Capretta A, Berti PJ. Transition State Analysis of Enolpyruvylshikimate 3-Phosphate (EPSP) Synthase (AroA)-Catalyzed EPSP Hydrolysis. J Am Chem Soc 2012; 134:12958-69. [PMID: 22765279 DOI: 10.1021/ja304339h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meiyan Lou
- Department of Chemistry & Chemical Biology, and †Department of Biochemistry & Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Steven K. Burger
- Department of Chemistry & Chemical Biology, and †Department of Biochemistry & Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Meghann E. Gilpin
- Department of Chemistry & Chemical Biology, and †Department of Biochemistry & Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Vivian Gawuga
- Department of Chemistry & Chemical Biology, and †Department of Biochemistry & Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Alfredo Capretta
- Department of Chemistry & Chemical Biology, and †Department of Biochemistry & Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Paul J. Berti
- Department of Chemistry & Chemical Biology, and †Department of Biochemistry & Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
18
|
Icenogle LM, Hengel SM, Coye LH, Streifel A, Collins CM, Goodlett DR, Moseley SL. Molecular and biological characterization of Streptococcal SpyA-mediated ADP-ribosylation of intermediate filament protein vimentin. J Biol Chem 2012; 287:21481-91. [PMID: 22549780 DOI: 10.1074/jbc.m112.370791] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gram-positive bacterial pathogen Streptococcus pyogenes produces a C3 family ADP-ribosyltransferase designated SpyA (S. pyogenes ADP-ribosyltransferase). Our laboratory has identified a number of eukaryotic protein targets for SpyA, prominent among which are the cytoskeletal proteins actin and vimentin. Because vimentin is an unusual target for modification by bacterial ADP-ribosyltransferases, we quantitatively compared the activity of SpyA on vimentin and actin. Vimentin was the preferred substrate for SpyA (k(cat), 58.5 ± 3.4 min(-1)) relative to actin (k(cat), 10.1 ± 0.6 min(-1)), and vimentin was modified at a rate 9.48 ± 1.95-fold greater than actin. We employed tandem mass spectrometry analysis to identify sites of ADP-ribosylation on vimentin. The primary sites of modification were Arg-44 and -49 in the head domain, with several additional secondary sites identified. Because the primary sites are located in a domain of vimentin known to be important for the regulation of polymerization by phosphorylation, we investigated the effects of SpyA activity on vimentin polymerization, utilizing an in vitro NaCl-induced filamentation assay. SpyA inhibited vimentin filamentation, whereas a catalytic site mutant of SpyA had no effect. Additionally, we demonstrated that expression of SpyA in HeLa cells resulted in collapse of the vimentin cytoskeleton, whereas expression in RAW 264.7 cells impeded vimentin reorganization upon stimulation of this macrophage-like cell line with LPS. We conclude that SpyA modification of vimentin occurs in an important regulatory region of the head domain and has significant functional effects on vimentin assembly.
Collapse
Affiliation(s)
- Laura M Icenogle
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Cen Y, Sauve AA. Transition state of ADP-ribosylation of acetyllysine catalyzed by Archaeoglobus fulgidus Sir2 determined by kinetic isotope effects and computational approaches. J Am Chem Soc 2010; 132:12286-98. [PMID: 20718419 DOI: 10.1021/ja910342d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sirtuins are protein-modifying enzymes distributed throughout all forms of life. These enzymes bind NAD(+), a universal metabolite, and react it with acetyllysine residues to effect deacetylation of protein side chains. This NAD(+)-dependent deacetylation reaction has been observed for sirtuin enzymes derived from archaeal, eubacterial, yeast, metazoan, and mammalian species, suggesting conserved chemical mechanisms for these enzymes. The first chemical step of deacetylation is the reaction of NAD(+) with an acetyllysine residue which forms an enzyme-bound ADPR-peptidylimidate intermediate and nicotinamide. In this manuscript, the transition state for the ADP-ribosylation of acetyllysine is solved for an Archaeoglobus fulgidus sirtuin (Af2Sir2). Kinetic isotope effects (KIEs) were obtained by the competitive substrate method and were [1(N)-(15)N] = 1.024(2), [1'(N)-(14)C] = 1.014(4), [1'(N)-(3)H] = 1.300(3), [2'(N)-(3)H] = 1.099(5), [4'(N)-(3)H] = 0.997(2), [5'(N)-(3)H] = 1.020(5), [4'(N)-(18)O] = 0.984(5). KIEs were calculated for candidate transition state structures using computational methods (Gaussian 03 and ISOEFF 98) in order to match computed and experimentally determined KIEs to solve the transition state. The results indicate that the enzyme stabilizes a highly dissociated oxocarbenium ionlike transition state with very low bond orders to the leaving group nicotinamide and the nucleophile acetyllysine. A concerted yet highly asynchronous substitution mechanism forms the ADPR-peptidylimidate intermediate of the sirtuin deacetylation reaction.
Collapse
Affiliation(s)
- Yana Cen
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | | |
Collapse
|
20
|
Dudev T, Lim C. Factors controlling the mechanism of NAD(+) non-redox reactions. J Am Chem Soc 2010; 132:16533-43. [PMID: 21047075 DOI: 10.1021/ja106600k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
β-Nicotinamide adenine dinucleotide (NAD(+)) is an indispensable coenzyme or substrate for enzymes involved in catalyzing redox and non-redox reactions. ADP-ribosylating enzymes catalyze cleavage of the nicotinamide-glycosyl bond of NAD(+) and addition of a nucleophilic group from their substrate proteins to the N-ribose anomeric carbon of NAD(+). Although the role of the nicotinamide-ribose fragment in the mechanism of NAD(+) hydrolysis has been examined, the role of the doubly negatively charged, flexible, and chemically reactive NAD(+) diphosphate moiety in the reaction process has largely been neglected. Thus, the participation of the pyrophosphate group in stabilizing intra- and intermolecular interactions in the ground state and transition state has not been explored. Furthermore, the roles of other factors such as the type/nucleophilicity of the attacking nucleophile and the medium in influencing the reaction pathway have not been systematically evaluated. In this study, we endeavor to fill in these gaps and elucidate the role of these factors in controlling the NAD(+) nicotinamide-glycosyl bond cleavage. Using density functional theory combined with continuum dielectric methods, we modeled both S(N)1 and S(N)2 reaction pathways and assessed the role of the diphosphate group in stabilizing the (i) NAD(+) ground state, (ii) oxocarbocation intermediate, (iii) reaction product, and (iv) nucleophile. We also assessed the chemical nature of the attacking nucleophile and the role of the protein matrix in affecting the reaction mechanism. Our results reveal an intricate interplay among various factors in controlling the reaction pathway, which in turn suggests ways in which the enzyme can accelerate the reaction.
Collapse
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | |
Collapse
|
21
|
Fahie K, Hu P, Swatkoski S, Cotter RJ, Zhang Y, Wolberger C. Side chain specificity of ADP-ribosylation by a sirtuin. FEBS J 2009; 276:7159-76. [PMID: 19895577 PMCID: PMC2805772 DOI: 10.1111/j.1742-4658.2009.07427.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Endogenous mono-ADP-ribosylation in eukaryotes is involved in regulating protein synthesis, signal transduction, cytoskeletal integrity, and cell proliferation, although few cellular ADP-ribosyltransferases have been identified. The sirtuins constitute a highly conserved family of protein deacetylases, and several family members have also been reported to perform protein ADP-ribosylation. We characterized the ADP-ribosylation reaction of the nuclear sirtuin homolog Trypanosoma brucei SIR2-related protein 1 (TbSIR2RP1) on both acetylated and unacetylated substrates. We demonstrated that an acetylated substrate is not required for ADP-ribosylation to occur, indicating that the reaction performed by TbSIR2RP1 is a genuine enzymatic reaction and not a side reaction of deacetylation. Biochemical and MS data showed that arginine is the major ADP-ribose acceptor for unacetylated substrates, whereas arginine does not appear to be the major ADP-ribose acceptor in reactions with acetylated histone H1.1. We performed combined ab initio quantum mechanical/molecular mechanical molecular dynamics simulations, which indicated that sirtuin ADP-ribosylation at arginine is energetically feasible, and involves a concerted mechanism with a highly dissociative transition state. In comparison with the corresponding nicotinamide cleavage in the deacetylation reaction, the simulations suggest that sirtuin ADP-ribosylation would be several orders slower but less sensitive to nicotinamide inhibition, which is consistent with experimental results. These results suggest that TbSIR2RP1 can perform ADP-ribosylation using two distinct mechanisms, depending on whether or not the substrate is acetylated.
Collapse
Affiliation(s)
- Kamau Fahie
- Department of Biophysics and Biophysical Chemistry, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Po Hu
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Stephen Swatkoski
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert J. Cotter
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Kleine H, Poreba E, Lesniewicz K, Hassa PO, Hottiger MO, Litchfield DW, Shilton BH, Lüscher B. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 2008; 32:57-69. [PMID: 18851833 DOI: 10.1016/j.molcel.2008.08.009] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 05/23/2008] [Accepted: 08/01/2008] [Indexed: 01/17/2023]
Abstract
ADP-ribosylation controls many processes, including transcription, DNA repair, and bacterial toxicity. ADP-ribosyltransferases and poly-ADP-ribose polymerases (PARPs) catalyze mono- and poly-ADP-ribosylation, respectively, and depend on a highly conserved glutamate residue in the active center for catalysis. However, there is an apparent absence of this glutamate for the recently described PARP6-PARP16, raising questions about how these enzymes function. We find that PARP10, in contrast to PARP1, lacks the catalytic glutamate and has transferase rather than polymerase activity. Despite this fundamental difference, PARP10 also modifies acidic residues. Consequently, we propose an alternative catalytic mechanism for PARP10 compared to PARP1 in which the acidic target residue of the substrate functionally substitutes for the catalytic glutamate by using substrate-assisted catalysis to transfer ADP-ribose. This mechanism explains why the novel PARPs are unable to function as polymerases. This discovery will help to illuminate the different biological functions of mono- versus poly-ADP-ribosylation in cells.
Collapse
Affiliation(s)
- Henning Kleine
- Institut für Biochemie und Molekularbiologie, Klinikum, RWTH Aachen University, 52057 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Smith BC, Hallows WC, Denu JM. Mechanisms and molecular probes of sirtuins. CHEMISTRY & BIOLOGY 2008; 15:1002-13. [PMID: 18940661 PMCID: PMC2626554 DOI: 10.1016/j.chembiol.2008.09.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/08/2008] [Accepted: 09/17/2008] [Indexed: 12/12/2022]
Abstract
Sirtuins are critical regulators of many cellular processes, including insulin secretion, the cell cycle, and apoptosis. Sirtuins are associated with a variety of age-associated diseases such as type II diabetes, obesity, and Alzheimer's disease. A thorough understanding of sirtuin chemical mechanisms will aid toward developing novel therapeutics that regulate metabolic disorders and combat associated diseases. In this review, we discuss the unique deacetylase mechanism of sirtuins and how this information might be employed to develop inhibitors and other molecular probes for therapeutic and basic research applications. We also cover physiological regulation of sirtuin activity and how these modes of regulation may be exploited to manipulate sirtuin activity in live cells. Development of molecular probes and drugs that specifically target sirtuins will further understanding of sirtuin biology and potentially afford new treatments of several human diseases.
Collapse
Affiliation(s)
- Brian C. Smith
- Department of Biomolecular Chemistry; University of Wisconsin, Medical School; Madison, WI 53706; USA
| | - William C. Hallows
- Department of Biomolecular Chemistry; University of Wisconsin, Medical School; Madison, WI 53706; USA
| | - John M. Denu
- Department of Biomolecular Chemistry; University of Wisconsin, Medical School; Madison, WI 53706; USA
| |
Collapse
|
24
|
Jørgensen R, Wang Y, Visschedyk D, Merrill AR. The nature and character of the transition state for the ADP-ribosyltransferase reaction. EMBO Rep 2008; 9:802-9. [PMID: 18583986 PMCID: PMC2515215 DOI: 10.1038/embor.2008.90] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/21/2008] [Accepted: 04/21/2008] [Indexed: 11/08/2022] Open
Abstract
Exotoxin A (ExoA) from Pseudomonas aeruginosa is an important virulence factor that belongs to a class of exotoxins that are secreted by pathogenic bacteria which cause human diseases such as cholera, diphtheria, pneumonia and whooping cough. We present the first crystal structures, to our knowledge, of ExoA in complex with elongation factor 2 (eEF2) and intact NAD(+), which indicate a direct role of two active-site loops in ExoA during the catalytic cycle. One loop moves to form a solvent cover for the active site of the enzyme and reaches towards the target residue (diphthamide) in eEF2 forming an important hydrogen bond. The NAD(+) substrate adopts a conformation remarkably different from that of the NAD(+) analogue, betaTAD, observed in previous structures, and fails to trigger any loop movements. Mutational studies of the two loops in the toxin identify several residues important for catalytic activity, in particular Glu 546 and Arg 551, clearly supporting the new complex structures. On the basis of these data, we propose a transition-state model for the toxin-catalysed reaction.
Collapse
Affiliation(s)
- René Jørgensen
- Department of Molecular and Cellular Biology, University of Guelph, Building No. 140, 50 Gordon Street, Guelph, Ontario N1G 2W1, Canada
| | - Yolanda Wang
- Department of Molecular and Cellular Biology, University of Guelph, Building No. 140, 50 Gordon Street, Guelph, Ontario N1G 2W1, Canada
| | - Danielle Visschedyk
- Department of Molecular and Cellular Biology, University of Guelph, Building No. 140, 50 Gordon Street, Guelph, Ontario N1G 2W1, Canada
| | - A Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Building No. 140, 50 Gordon Street, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
25
|
Zhang G. Design, synthesis, and evaluation of bisubstrate analog inhibitors of cholera toxin. Bioorg Med Chem Lett 2008; 18:3724-7. [PMID: 18515100 PMCID: PMC2536626 DOI: 10.1016/j.bmcl.2008.05.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 05/14/2008] [Indexed: 11/15/2022]
Abstract
Bisubstrate analog inhibitors in which a nicotinamide mimic is attached to a series of structurally diversified guanidines (arginine mimics) were synthesized and evaluated for inhibition of cholera toxin. The mechanism-based bisubstrate inhibitors were up to 1400-fold more potent than the natural substrate NAD+ and 400-fold more potent than the artificial substrate diethylamino (benzylidine-amino)guanidine (DEABAG) in an assay toward an intrinsically active mutant of wild-type cholera toxin.
Collapse
Affiliation(s)
- Guangtao Zhang
- Department of Chemistry, University of Washington, PO Box 351700, Seattle, WA 98195, USA.
| |
Collapse
|
26
|
Smith BC, Denu JM. Chemical mechanisms of histone lysine and arginine modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:45-57. [PMID: 18603028 DOI: 10.1016/j.bbagrm.2008.06.005] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
Histone lysine and arginine residues are subject to a wide array of post-translational modifications including methylation, citrullination, acetylation, ubiquitination, and sumoylation. The combinatorial action of these modifications regulates critical DNA processes including replication, repair, and transcription. In addition, enzymes that modify histone lysine and arginine residues have been correlated with a variety of human diseases including arthritis, cancer, heart disease, diabetes, and neurodegenerative disorders. Thus, it is important to fully understand the detailed kinetic and chemical mechanisms of these enzymes. Here, we review recent progress towards determining the mechanisms of histone lysine and arginine modifying enzymes. In particular, the mechanisms of S-adenosyl-methionine (AdoMet) dependent methyltransferases, FAD-dependent demethylases, iron dependent demethylases, acetyl-CoA dependent acetyltransferases, zinc dependent deacetylases, NAD(+) dependent deacetylases, and protein arginine deiminases are covered. Particular attention is paid to the conserved active-site residues necessary for catalysis and the individual chemical steps along the catalytic pathway. When appropriate, areas requiring further work are discussed.
Collapse
Affiliation(s)
- Brian C Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
27
|
Rifamycin antibiotic resistance by ADP-ribosylation: Structure and diversity of Arr. Proc Natl Acad Sci U S A 2008; 105:4886-91. [PMID: 18349144 DOI: 10.1073/pnas.0711939105] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rifamycin antibiotic rifampin is important for the treatment of tuberculosis and infections caused by multidrug-resistant Staphylococcus aureus. Recent iterations of the rifampin core structure have resulted in new drugs and drug candidates for the treatment of a much broader range of infectious diseases. This expanded use of rifamycin antibiotics has the potential to select for increased resistance. One poorly characterized mechanism of resistance is through Arr enzymes that catalyze ADP-ribosylation of rifamycins. We find that genes encoding predicted Arr enzymes are widely distributed in the genomes of pathogenic and nonpathogenic bacteria. Biochemical analysis of three representative Arr enzymes from environmental and pathogenic bacterial sources shows that these have equally efficient drug resistance capacity in vitro and in vivo. The 3D structure of one of these orthologues from Mycobacterium smegmatis was determined and reveals structural homology with ADP-ribosyltransferases important in eukaryotic biology, including poly(ADP-ribose) polymerases (PARPs) and bacterial toxins, despite no significant amino acid sequence homology with these proteins. This work highlights the extent of the rifamycin resistome in microbial genera with the potential to negatively impact the expanded use of this class of antibiotic.
Collapse
|
28
|
Smith BC, Denu JM. Sir2 deacetylases exhibit nucleophilic participation of acetyl-lysine in NAD+ cleavage. J Am Chem Soc 2007; 129:5802-3. [PMID: 17439123 PMCID: PMC2568996 DOI: 10.1021/ja070162w] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Brian C Smith
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 1300 University Avenue, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
29
|
Murkin AS, Birck MR, Rinaldo-Matthis A, Shi W, Taylor EA, Schramm VL. Neighboring group participation in the transition state of human purine nucleoside phosphorylase. Biochemistry 2007; 46:5038-49. [PMID: 17407325 PMCID: PMC2526054 DOI: 10.1021/bi700147b] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The X-ray crystal structures of human purine nucleoside phosphorylase (PNP) with bound inosine or transition-state analogues show His257 within hydrogen bonding distance of the 5'-hydroxyl. The mutants His257Phe, His257Gly, and His257Asp exhibited greatly decreased affinity for Immucillin-H (ImmH), binding this mimic of an early transition state as much as 370-fold (Km/Ki) less tightly than native PNP. In contrast, these mutants bound DADMe-ImmH, a mimic of a late transition state, nearly as well as the native enzyme. These results indicate that His257 serves an important role in the early stages of transition-state formation. Whereas mutation of His257 resulted in little variation in the PNP x DADMe-ImmH x SO4 structures, His257Phe x ImmH x PO4 showed distortion at the 5'-hydroxyl, indicating the importance of H-bonding in positioning this group during progression to the transition state. Binding isotope effect (BIE) and kinetic isotope effect (KIE) studies of the remote 5'-(3)H for the arsenolysis of inosine with native PNP revealed a BIE of 1.5% and an unexpectedly large intrinsic KIE of 4.6%. This result is interpreted as a moderate electronic distortion toward the transition state in the Michaelis complex with continued development of a similar distortion at the transition state. The mutants His257Phe, His257Gly, and His257Asp altered the 5'-(3)H intrinsic KIE to -3, -14, and 7%, respectively, while the BIEs contributed 2, 2, and -2%, respectively. These surprising results establish that forces in the Michaelis complex, reported by the BIEs, can be reversed or enhanced at the transition state.
Collapse
Affiliation(s)
| | | | | | | | | | - Vern L. Schramm
- * To whom correspondence should be addressed. E-mail, ; Telephone, (718) 430-2813; Fax, (718) 430-8565
| |
Collapse
|
30
|
Millen AL, Archibald LAB, Hunter KC, Wetmore SD. A kinetic and thermodynamic study of the glycosidic bond cleavage in deoxyuridine. J Phys Chem B 2007; 111:3800-12. [PMID: 17388517 DOI: 10.1021/jp063841m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Density functional theory was used to study the thermodynamics and kinetics for the glycosidic bond cleavage in deoxyuridine. Two reaction pathways were characterized for the unimolecular decomposition in vacuo. However, these processes are associated with large reaction barriers and highly endothermic reaction energies, which is in agreement with experiments that suggest a (water) nucleophile is required for the nonenzymatic glycosidic bond cleavage. Two (S(N)1 and S(N)2) reaction pathways were characterized for direct hydrolysis of the glycosidic bond by a single water molecule; however, both pathways also involve very large barriers. Activation of the water nucleophile via partial proton abstraction steadily decreases the barrier and leads to a more exothermic reaction energy as the proton affinity of the molecule interacting with water increases. Indeed, our data suggests that the barrier heights and reaction energies range from that for hydrolysis by water to that for hydrolysis by the hydroxyl anion, which represents the extreme of (full) water activation (deprotonation). Hydrogen bonds between small molecules (hydrogen fluoride, water, or ammonia) and the nucleobase were found to further decrease the barrier and overall reaction energy but not to the extent that the same hydrogen-bonding interactions increase the acidity of the nucleobase. Our results suggest that the nature of the nucleophile plays a more important role in reducing the barrier to glycosidic bond cleavage than the nature of the small molecule bound, and models with more than one hydrogen fluoride molecule interacting with the nucleobase provide further support for this conclusion. Our results lead to a greater fundamental understanding of the effects of the nucleophile, activation of the nucleophile, and interactions with the nucleobase for this important biological reaction.
Collapse
Affiliation(s)
- Andrea L Millen
- Department of Chemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick E4L 1G8, Canada
| | | | | | | |
Collapse
|
31
|
Hoff KG, Avalos JL, Sens K, Wolberger C. Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide. Structure 2006; 14:1231-40. [PMID: 16905097 DOI: 10.1016/j.str.2006.06.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/01/2006] [Accepted: 06/02/2006] [Indexed: 11/23/2022]
Abstract
Sirtuin proteins comprise a unique class of NAD+-dependent protein deacetylases. Although several structures of sirtuins have been determined, the mechanism by which NAD+ cleavage occurs has remained unclear. We report the structures of ternary complexes containing NAD+ and acetylated peptide bound to the bacterial sirtuin Sir2Tm and to a catalytic mutant (Sir2Tm(H116Y)). NAD+ in these structures binds in a conformation different from that seen in previous structures, exposing the alpha face of the nicotinamide ribose to the carbonyl oxygen of the acetyl lysine substrate. The NAD+ conformation is identical in both structures, suggesting that proper coenzyme orientation is not dependent on contacts with the catalytic histidine. We also present the structure of Sir2Tm(H116A) bound to deacteylated peptide and 3'-O-acetyl ADP ribose. Taken together, these structures suggest a mechanism for nicotinamide cleavage in which an invariant phenylalanine plays a central role in promoting formation of the O-alkylamidate reaction intermediate and preventing nicotinamide exchange.
Collapse
Affiliation(s)
- Kevin G Hoff
- Department of Biophysics and Biophysical Chemistry, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
32
|
Holbourn KP, Shone CC, Acharya KR. A family of killer toxins. Exploring the mechanism of ADP-ribosylating toxins. FEBS J 2006; 273:4579-93. [PMID: 16956368 DOI: 10.1111/j.1742-4658.2006.05442.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ADP-ribosylating toxins (ADPRTs) are a family of toxins that catalyse the hydrolysis of NAD and the transfer of the ADP-ribose moiety onto a target. This family includes many notorious killers, responsible for thousands of deaths annually including: cholera, enterotoxic Escherichia coli, whooping cough, diphtheria and a plethora of Clostridial binary toxins. Despite their notoriety as pathogens, the ADPRTs have been extensively used as cellular tools to study and elucidate the functions of the small GTPases that they target. There are four classes of ADPRTs and at least one structure representative of each of these classes has been determined. They all share a common fold and several motifs around the active site that collectively facilitate the binding and transfer of the ADP-ribose moiety of NAD to their protein targets. In this review, we present an overview of the physiology and cellular qualities of the bacterial ADPRTs and take an in-depth look at the structural motifs that differentiate the different classes of bacterial ADPRTs in relation to their function.
Collapse
|
33
|
Berti PJ, McCann JAB. Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer. Chem Rev 2006; 106:506-55. [PMID: 16464017 DOI: 10.1021/cr040461t] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Paul J Berti
- Department of Chemistry, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
34
|
Yates SP, Jørgensen R, Andersen GR, Merrill AR. Stealth and mimicry by deadly bacterial toxins. Trends Biochem Sci 2006; 31:123-33. [PMID: 16406634 DOI: 10.1016/j.tibs.2005.12.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/21/2005] [Accepted: 12/21/2005] [Indexed: 11/19/2022]
Abstract
Diphtheria toxin and exotoxin A are well-characterized members of the ADP-ribosyltransferase toxin family that function as virulence factors in the pathogenic bacteria Corynebacterium diphtheriae and Pseudomonas aeruginosa. Recent high-resolution structural data of the Michaelis (enzyme-substrate) complex of the P. aeruginosa toxin with an NAD(+) analog and eukaryotic elongation factor 2 (eEF2) have provided insights into the mechanism of inactivation of protein synthesis caused by these protein factors. In addition, rigorous steady-state and stopped-flow kinetic analyses of the toxin-catalyzed reaction, in combination with inhibitor studies, have resulted in a quantum leap in our understanding of the mechanistic details of this deadly enzyme mechanism. It is now apparent that these toxins use stealth and molecular mimicry in unleashing their toxic strategy in the infected host eukaryotic cell.
Collapse
Affiliation(s)
- Susan P Yates
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
35
|
Abstract
eEF2 (eukaryotic elongation factor 2) occupies an essential role in protein synthesis where it catalyses the translocation of the two tRNAs and the mRNA after peptidyl transfer on the 80 S ribosome. Recent crystal structures of eEF2 and the cryo-electron microscopy reconstruction of its 80 S complex now provide a substantial structural framework for dissecting the functional properties of this factor. The factor can be modified by either phosphorylation or ADP-ribosylation, which results in cessation of translation. We review the structural and functional properties of eEF2 with particular emphasis on the unique diphthamide residue, which is ADP-ribosylated by diphtheria toxin from Corynebacterium diphtheriae and exotoxin A from Pseudomonas aeruginosa.
Collapse
|
36
|
Yates SP, Merrill AR. Characterization of oxidized nicotinamide adenine dinucleotide (NAD(+)) analogues using a high-pressure-liquid-chromatography-based NAD(+)-glycohydrolase assay and comparison with fluorescence-based measurements. Anal Biochem 2005; 340:41-51. [PMID: 15802128 DOI: 10.1016/j.ab.2005.01.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Indexed: 10/25/2022]
Abstract
A high-pressure-liquid-chromatography (HPLC)-based technique was developed to assess the oxidized nicotinamide adenine dinucleotide (NAD(+))-glycohydrolase activity of the catalytic domain of Pseudomonas exotoxin A containing a hexa-His tag. The assay employs reverse-phase chromatography to separate the substrate (NAD(+)) and products (adenosine 5'-diphosphate-ribose and nicotinamide) produced over the reaction time course, whereby the peak area of nicotinamide is correlated using a standard curve. This technique was used to determine whether the NAD(+) analogue, 2'-F-ribo-NAD(+), was a competing substrate or a competitive inhibitor for this toxin. This NAD(+) analogue was hydrolyzed at a rate of 0.2% that of NAD(+) yet retained the same binding affinity for the toxin as the parent compound. Finally, the rate that a fluorescent NAD(+) analogue, epsilon-NAD(+), is hydrolyzed by the toxin was also investigated. This analogue was hydrolyzed six times slower than NAD(+) as determined using HPLC. The rate of hydrolysis of epsilon-NAD(+) calculated using the fluorometric version of the assay shows a sixfold increase in reaction rate compared to that determined by HPLC. This HPLC-based assay is adaptable to any affinity-tagged enzyme that possesses NAD(+)-glycohydrolase activity and offers the advantage of directly measuring the enzyme-catalyzed hydrolytic rate of NAD(+) and its analogues.
Collapse
Affiliation(s)
- Susan P Yates
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | |
Collapse
|
37
|
Jørgensen R, Merrill AR, Yates SP, Marquez VE, Schwan AL, Boesen T, Andersen GR. Exotoxin A-eEF2 complex structure indicates ADP ribosylation by ribosome mimicry. Nature 2005; 436:979-84. [PMID: 16107839 DOI: 10.1038/nature03871] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/03/2005] [Indexed: 11/09/2022]
Abstract
The bacteria causing diphtheria, whooping cough, cholera and other diseases secrete mono-ADP-ribosylating toxins that modify intracellular proteins. Here, we describe four structures of a catalytically active complex between a fragment of Pseudomonas aeruginosa exotoxin A (ETA) and its protein substrate, translation elongation factor 2 (eEF2). The target residue in eEF2, diphthamide (a modified histidine), spans across a cleft and faces the two phosphates and a ribose of the non-hydrolysable NAD+ analogue, betaTAD. This suggests that the diphthamide is involved in triggering NAD+ cleavage and interacting with the proposed oxacarbenium intermediate during the nucleophilic substitution reaction, explaining the requirement of diphthamide for ADP ribosylation. Diphtheria toxin may recognize eEF2 in a manner similar to ETA. Notably, the toxin-bound betaTAD phosphates mimic the phosphate backbone of two nucleotides in a conformational switch of 18S rRNA, thereby achieving universal recognition of eEF2 by ETA.
Collapse
Affiliation(s)
- René Jørgensen
- Centre for Structural Biology, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000, Denmark
| | | | | | | | | | | | | |
Collapse
|
38
|
Yates S, Taylor P, Jørgensen R, Ferraris D, Zhang J, Andersen G, Merrill A. Structure-function analysis of water-soluble inhibitors of the catalytic domain of exotoxin A from Pseudomonas aeruginosa. Biochem J 2005; 385:667-75. [PMID: 15458385 PMCID: PMC1134741 DOI: 10.1042/bj20041480] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 09/24/2004] [Accepted: 09/30/2004] [Indexed: 11/17/2022]
Abstract
The mono-ADPRT (mono-ADP-ribosyltransferase), Pseudomonas aeruginosa ETA (exotoxin A), catalyses the transfer of ADP-ribose from NAD+ to its protein substrate. A series of water-soluble compounds that structurally mimic the nicotinamide moiety of NAD+ was investigated for their inhibition of the catalytic domain of ETA. The importance of an amide locked into a hetero-ring structure and a core hetero-ring system that is planar was a trend evident by the IC50 values. Also, the weaker inhibitors have core ring structures that are less planar and thus more flexible. One of the most potent inhibitors, PJ34, was further characterized and shown to exhibit competitive inhibition with an inhibition constant K(i) of 140 nM. We also report the crystal structure of the catalytic domain of ETA in complex with PJ34, the first example of a mono-ADPRT in complex with an inhibitor. The 2.1 A (1 A=0.1 nm) resolution structure revealed that PJ34 is bound within the nicotinamide-binding pocket and forms stabilizing hydrogen bonds with the main chain of Gly-441 and to the side-chain oxygen of Gln-485, a member of a proposed catalytic loop. Structural comparison of this inhibitor complex with diphtheria toxin (a mono-ADPRT) and with PARPs [poly(ADP-ribose) polymerases] shows similarity of the catalytic residues; however, a loop similar to that found in ETA is present in diphtheria toxin but not in PARP. The present study provides insight into the important features required for inhibitors that mimic NAD+ and their binding to the mono-ADPRT family of toxins.
Collapse
Key Words
- bacterial toxin
- competitive inhibitor
- exotoxin a
- mono-adp-ribosyltransferase
- pseudomonas aeruginosa
- x-ray crystallography
- adprt, adp-ribosyltransferase
- 5-aiq, 5-amino-isoquinoline-hcl
- β-tad, β-methylene-thiazole-4-carboxamide adenine dinucleotide
- dt, diphtheria toxin
- eef2, eukaryotic elongation factor 2
- ε-nad+, 1,n6-etheno-nad+
- eta, exotoxin a
- lb, lineweaver–burk
- nap, 1,8-naphthalimide
- parp, poly(adp-ribose) polymerase
- pe24h, a 24 kda c-terminal, containing a his6 tag, of p. aeruginosa exotoxin a
Collapse
Affiliation(s)
- Susan P. Yates
- *Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Patricia L. Taylor
- *Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - René Jørgensen
- †Macromolecular Crystallography, Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK8000 Aarhus, Denmark
| | - Dana Ferraris
- ‡Guilford Pharmaceuticals, Baltimore, MD 21224, U.S.A
| | - Jie Zhang
- ‡Guilford Pharmaceuticals, Baltimore, MD 21224, U.S.A
| | - Gregers R. Andersen
- †Macromolecular Crystallography, Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK8000 Aarhus, Denmark
| | - A. Rod Merrill
- *Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
39
|
Schramm VL. Enzymatic transition states: thermodynamics, dynamics and analogue design. Arch Biochem Biophys 2005; 433:13-26. [PMID: 15581562 DOI: 10.1016/j.abb.2004.08.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 08/31/2004] [Indexed: 10/26/2022]
Abstract
Kinetic isotope effects and computational chemistry have defined the transition state structures for several members of the N-ribosyltransferase family. Transition state analogues designed to mimic their cognate transition state structures are among the most powerful enzyme inhibitors. In complexes of N-ribosyltransferases with their transition state analogues, the dynamic nature of the transition state is converted to an ordered, thermodynamic structure closely related to the transition state. This phenomenon is documented by peptide bond H/D exchange, crystallography and computational chemistry. Complexes with substrate, transition state and product analogues reveal reaction coordinate motion and catalytic interactions. Isotope-edited spectroscopic analysis and binding specificity of these complexes provides information about specific enzyme-transition state contacts. In combination with protein dynamic QM/MM models, it is proposed that the transition state is reached by stochastic dynamic excursions of the protein groups near the substrates in the closed conformation. Examples from fully dissociated (D(N) *A(N)), hybrid (D(N)A(N)) and symmetric nucleophilic displacement (A(N)D(N)) transition states are found in the N-ribosyltransferases. The success of transition state analogue inhibitor design based on kinetic isotope effects validates this approach to understanding enzymatic transition states.
Collapse
Affiliation(s)
- Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
40
|
Jørgensen R, Yates SP, Teal DJ, Nilsson J, Prentice GA, Merrill AR, Andersen GR. Crystal structure of ADP-ribosylated ribosomal translocase from Saccharomyces cerevisiae. J Biol Chem 2004; 279:45919-25. [PMID: 15316019 DOI: 10.1074/jbc.m406218200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of ADP-ribosylated yeast elongation factor 2 in the presence of sordarin and GDP has been determined at 2.6 A resolution. The diphthamide at the tip of domain IV, which is the target for diphtheria toxin and Pseudomonas aeruginosa exotoxin A, contains a covalently attached ADP-ribose that functions as a very potent inhibitor of the factor. We have obtained an electron density map of ADP-ribosylated translation factor 2 revealing both the ADP-ribosylation and the diphthamide. This is the first structure showing the conformation of an ADP-ribosylated residue and confirms the inversion of configuration at the glycosidic linkage. Binding experiments show that the ADP-ribosylation has limited effect on nucleotide binding affinity, on ribosome binding, and on association with exotoxin A. These results provide insight to the inhibitory mechanism and suggest that inhibition may be caused by erroneous interaction of the translation factor with the codon-anticodon area in the P-site of the ribosome.
Collapse
Affiliation(s)
- René Jørgensen
- Macromolecular Crystallography, Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK8000 Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhou GC, Parikh SL, Tyler PC, Evans GB, Furneaux RH, Zubkova OV, Benjes PA, Schramm VL. Inhibitors of ADP-ribosylating bacterial toxins based on oxacarbenium ion character at their transition states. J Am Chem Soc 2004; 126:5690-8. [PMID: 15125661 DOI: 10.1021/ja038159+] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial exotoxins, cholera toxin (CT), pertussis toxin (PT), and diphtheria toxin (DT), interfere with specific host proteins to cause tissue damage for their respective infections. The common toxic mechanism for these agents is mono-ADP-ribosylation of specific amino acids in G(s)(alpha), G(i)(alpha), and eEF-2 proteins, respectively, by the catalytic A chains of the toxins (CTA, PTA, and DTA). In the absence of acceptor proteins, these toxins also act as NAD(+)-N-ribosyl hydrolases. The transition-state structures for NAD(+) hydrolysis and ADP-ribosylation reactions have oxacarbenium ion character in the ribose. We designed and synthesized analogues of NAD(+) to resemble their oxacarbenium ion transition states. Inhibitors with oxacarbenium mimics replacing the NMN-ribosyl group of NAD(+) show 200-620-fold increased affinity in the hydrolytic and N-ribosyl transferase reactions catalyzed by CTA. These analogues are also inhibitors for the hydrolysis of NAD(+) by PTA with K(i) values of 24-40 microM, but bind with similar affinity to the NAD(+) substrates. Inhibition of the NAD(+) hydrolysis and ADP-ribosyl transferase reactions of DTA gave K(i) values from 19 to 48 microM. Catalytic rate enhancements by the bacterial exotoxins are small, and thus transition-state analogues cannot capture large energies of activation. In the cases of DTA and PTA, analogues known to resemble the transition states bind with approximately the same affinity as substrates. Transition-state analogue interrogation of the bacterial toxins indicates that CTA gains catalytic efficiency from modest transition-state stabilization, but DTA and PTA catalyze ADP-ribosyl transferase reactions more from ground-state destabilization. pH dependence of inhibitor action indicated that both neutral and cationic forms of transition-state analogues bind to DTA with similar affinity. The origin of this similarity is proposed to reside in the cationic nature of NAD(+) both as substrate and at the transition state.
Collapse
Affiliation(s)
- Guo-Chun Zhou
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|