1
|
Bagatella S, Monney C, Gross N, Bernier Gosselin V, Schüpbach-Regula G, Hemphill A, Oevermann A. Intravacuolar persistence in neutrophils facilitates Listeria monocytogenes spread to co-cultured cells. mBio 2025; 16:e0270024. [PMID: 40067021 PMCID: PMC11980584 DOI: 10.1128/mbio.02700-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/10/2025] [Indexed: 04/10/2025] Open
Abstract
The bacterium Listeria monocytogenes (Lm) causes listeriosis in humans and ruminants. Acute lesions are predominantly infiltrated by polymorphonuclear neutrophils (PMNs), considered to be the efficient bactericidal arm of innate immunity. However, recent evidence suggests that PMNs cannot achieve antilisterial sterilizing immunity and that Lm may persist within PMNs. Despite this, interactions between PMNs and Lm remain poorly understood. In this study, we characterized the listericidal activity and interaction dynamics of bovine PMNs with Lm ex vivo. Phagocytosed Lm failed to escape into the PMN cytosol and was primarily targeted by phagolysosomal mechanisms. However, PMNs enabled prolonged intravacuolar survival of a resilient Lm subpopulation, largely as viable but non-culturable (VBNC) bacteria. This resilient Lm population could spread from PMNs to a cell line, resuscitate, and complete its canonical life cycle, thereby perpetuating the infection. Therefore, we identify PMNs as a mobile niche for Lm survival and provide evidence that PMNs harbor VBNC bacteria, potentially facilitating Lm dissemination within the host. IMPORTANCE Listeria monocytogenes (Lm) is a significant foodborne pathogen responsible for high hospitalization rates in humans, especially vulnerable groups such as the elderly, pregnant women, and immunocompromised individuals. In animals like ruminants, Lm infection leads to severe disease manifestations, notably brainstem encephalitis. This study uncovers a novel mechanism by which bovine neutrophils (PMNs) harbor Lm in a viable but non-culturable (VBNC) state, enabling the bacteria to hide in the host. PMNs, traditionally viewed as bacteria killers, may serve as Trojan horses, allowing Lm to persist and spread within the host. This discovery has broad implications for understanding Lm's persistence, its role in recurrent infections, and the development of new therapeutic strategies targeting VBNC forms of Lm to improve treatment outcomes and disease control.
Collapse
Affiliation(s)
- Stefano Bagatella
- Division of Neurological Sciences, NeuroCenter, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Camille Monney
- Division of Neurological Sciences, NeuroCenter, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Natascha Gross
- Division of Neurological Sciences, NeuroCenter, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, NeuroCenter, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Hampton MB, Dickerhof N. Inside the phagosome: A bacterial perspective. Immunol Rev 2023; 314:197-209. [PMID: 36625601 DOI: 10.1111/imr.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The neutrophil phagosome is one of the most hostile environments that bacteria must face and overcome if they are to succeed as pathogens. Targeting bacterial defense mechanisms should lead to new therapies that assist neutrophils to kill pathogens, but this has not yet come to fruition. One of the limiting factors in this effort has been our incomplete knowledge of the complex biochemistry that occurs within the rapidly changing environment of the phagosome. The same compartmentalization that protects host tissue also limits our ability to measure events within the phagosome. In this review, we highlight the limitations in our knowledge, and how the contribution of bacteria to the phagosomal environment is often ignored. There appears to be significant heterogeneity among phagosomes, and it is important to determine whether survivors have more efficient defenses or whether they are ingested into less threatening environments than other bacteria. As part of these efforts, we discuss how monitoring or recovering bacteria from phagosomes can provide insight into the conditions they have faced. We also encourage the use of unbiased screening approaches to identify bacterial genes that are essential for survival inside neutrophil phagosomes.
Collapse
Affiliation(s)
- Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
3
|
Ashby LV, Springer R, Loi VV, Antelmann H, Hampton MB, Kettle AJ, Dickerhof N. Oxidation of bacillithiol during killing of Staphylococcus aureus USA300 inside neutrophil phagosomes. J Leukoc Biol 2022; 112:591-605. [PMID: 35621076 PMCID: PMC9796752 DOI: 10.1002/jlb.4hi1021-538rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/29/2022] [Indexed: 01/07/2023] Open
Abstract
Targeting immune evasion tactics of pathogenic bacteria may hold the key to treating recalcitrant bacterial infections. Staphylococcus aureus produces bacillithiol (BSH), its major low-molecular-weight thiol, which is thought to protect this opportunistic human pathogen against the bombardment of oxidants inside neutrophil phagosomes. Here, we show that BSH was oxidized when human neutrophils phagocytosed S. aureus, but provided limited protection to the bacteria. We used mass spectrometry to measure the oxidation of BSH upon exposure of S. aureus USA300 to either a bolus of hypochlorous acid (HOCl) or a flux generated by the neutrophil enzyme myeloperoxidase. Oxidation of BSH and loss of bacterial viability were strongly correlated (r = 0.99, p < 0.001). BSH was fully oxidized after exposure of S. aureus to lethal doses of HOCl. However, there was no relationship between the initial BSH levels and the dose of HOCl required for bacterial killing. In contrast to the HOCl systems, only 50% of total BSH was oxidized when neutrophils killed the majority of phagocytosed bacteria. Oxidation of BSH was decreased upon inhibition of myeloperoxidase, implicating HOCl in phagosomal BSH oxidation. A BSH-deficient S. aureus USA300 mutant was slightly more susceptible to treatment with either HOCl or ammonia chloramine, or to killing within neutrophil phagosomes. Collectively, our data show that myeloperoxidase-derived oxidants react with S. aureus inside neutrophil phagosomes, leading to partial BSH oxidation, and contribute to bacterial killing. However, BSH offers only limited protection against the neutrophil's multifaceted killing mechanisms.
Collapse
Affiliation(s)
- Louisa V Ashby
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Reuben Springer
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Vu Van Loi
- Freie Universität Berlin, Department of Biology, Chemistry, PharmacyInstitute of Biology‐MicrobiologyBerlinGermany
| | - Haike Antelmann
- Freie Universität Berlin, Department of Biology, Chemistry, PharmacyInstitute of Biology‐MicrobiologyBerlinGermany
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| |
Collapse
|
4
|
Parker HA, Dickerhof N, Forrester L, Ryburn H, Smyth L, Messens J, Aung HL, Cook GM, Kettle AJ, Hampton MB. Mycobacterium smegmatis Resists the Bactericidal Activity of Hypochlorous Acid Produced in Neutrophil Phagosomes. THE JOURNAL OF IMMUNOLOGY 2021; 206:1901-1912. [PMID: 33753427 DOI: 10.4049/jimmunol.2001084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022]
Abstract
Neutrophils are often the major leukocyte at sites of mycobacterial infection, yet little is known about their ability to kill mycobacteria. In this study we have investigated whether the potent antibacterial oxidant hypochlorous acid (HOCl) contributes to killing of Mycobacterium smegmatis when this bacterium is phagocytosed by human neutrophils. We found that M. smegmatis were ingested by neutrophils into intracellular phagosomes but were killed slowly. We measured a t 1/2 of 30 min for the survival of M. smegmatis inside neutrophils, which is 5 times longer than that reported for Staphylococcus aureus and 15 times longer than Escherichia coli Live-cell imaging indicated that neutrophils generated HOCl in phagosomes containing M. smegmatis; however, inhibition of HOCl production did not alter the rate of bacterial killing. Also, the doses of HOCl that are likely to be produced inside phagosomes failed to kill isolated bacteria. Lethal doses of reagent HOCl caused oxidation of mycothiol, the main low-m.w. thiol in this bacterium. In contrast, phagocytosed M. smegmatis maintained their original level of reduced mycothiol. Collectively, these findings suggest that M. smegmatis can cope with the HOCl that is produced inside neutrophil phagosomes. A mycothiol-deficient mutant was killed by neutrophils at the same rate as wild-type bacteria, indicating that mycothiol itself is not the main driver of M. smegmatis resistance. Understanding how M. smegmatis avoids killing by phagosomal HOCl could provide new opportunities to sensitize pathogenic mycobacteria to destruction by the innate immune system.
Collapse
Affiliation(s)
- Heather A Parker
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand;
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Lorna Forrester
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Heath Ryburn
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand.,Department of Microbiology and Immunology, Otago School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Leon Smyth
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Joris Messens
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, 1050 Brussels, Belgium.,Brussels Center for Redox Biology, 1050 Brussels, Belgium; and.,Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Htin L Aung
- Department of Microbiology and Immunology, Otago School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand;
| |
Collapse
|
5
|
Königstorfer A, Ashby LV, Bollar GE, Billiot CE, Gray MJ, Jakob U, Hampton MB, Winterbourn CC. Induction of the reactive chlorine-responsive transcription factor RclR in Escherichia coli following ingestion by neutrophils. Pathog Dis 2021; 79:ftaa079. [PMID: 33351093 PMCID: PMC7797021 DOI: 10.1093/femspd/ftaa079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023] Open
Abstract
Neutrophils generate hypochlorous acid (HOCl) and related reactive chlorine species as part of their defence against invading microorganisms. In isolation, bacteria respond to reactive chlorine species by upregulating responses that provide defence against oxidative challenge. Key questions are whether these responses are induced when bacteria are phagocytosed by neutrophils, and whether this provides them with a survival advantage. We investigated RclR, a transcriptional activator of the rclABC operon in Escherichia coli that has been shown to be specifically activated by reactive chlorine species. We first measured induction by individual reactive chlorine species, and showed that HOCl itself activates the response, as do chloramines (products of HOCl reacting with amines) provided they are cell permeable. Strong RclR activation was seen in E. coli following phagocytosis by neutrophils, beginning within 5 min and persisting for 40 min. RclR activation was suppressed by inhibitors of NOX2 and myeloperoxidase, providing strong evidence that it was due to HOCl production in the phagosome. RclR activation demonstrates that HOCl, or a derived chloramine, enters phagocytosed bacteria in sufficient amount to induce this response. Although RclR was induced in wild-type bacteria following phagocytosis, we detected no greater sensitivity to neutrophil killing of mutants lacking genes in the rclABC operon.
Collapse
Affiliation(s)
- Andreas Königstorfer
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Louisa V Ashby
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Gretchen E Bollar
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, 845 19th St, Birmingham AL 35294, United States
| | - Caitlin E Billiot
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, 845 19th St, Birmingham AL 35294, United States
| | - Michael J Gray
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, 845 19th St, Birmingham AL 35294, United States
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N-University, Ann Arbor MI 48109-1085, United States
| | - Mark B Hampton
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Christine C Winterbourn
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| |
Collapse
|
6
|
Dickerhof N, Isles V, Pattemore P, Hampton MB, Kettle AJ. Exposure of Pseudomonas aeruginosa to bactericidal hypochlorous acid during neutrophil phagocytosis is compromised in cystic fibrosis. J Biol Chem 2019; 294:13502-13514. [PMID: 31341024 DOI: 10.1074/jbc.ra119.009934] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/21/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloperoxidase is a major neutrophil antimicrobial protein, but its role in immunity is often overlooked because individuals deficient in this enzyme are usually in good health. Within neutrophil phagosomes, myeloperoxidase uses superoxide generated by the NADPH oxidase to oxidize chloride to the potent bactericidal oxidant hypochlorous acid (HOCl). In this study, using phagocytosis assays and LC-MS analyses, we monitored GSH oxidation in Pseudomonas aeruginosa to gauge their exposure to HOCl inside phagosomes. Doses of reagent HOCl that killed most of the bacteria oxidized half the cells' GSH, producing mainly glutathione disulfide (GSSG) and other low-molecular-weight disulfides. Glutathione sulfonamide (GSA), a HOCl-specific product, was also formed. When neutrophils phagocytosed P. aeruginosa, half of the bacterial GSH was lost. Bacterial GSA production indicated that HOCl had reacted with the bacterial cells, oxidized their GSH, and was sufficient to be solely responsible for bacterial killing. Inhibition of NADPH oxidase and myeloperoxidase lowered GSA formation in the bacterial cells, but the bacteria were still killed, presumably by compensatory nonoxidative mechanisms. Of note, bacterial GSA formation in neutrophils from patients with cystic fibrosis (CF) was normal during early phagocytosis, but it was diminished at later time points, which was mirrored by a small decrease in bacterial killing. In conclusion, myeloperoxidase generates sufficient HOCl within neutrophil phagosomes to kill ingested bacteria. The unusual kinetics of phagosomal HOCl production in CF neutrophils confirm a role for the cystic fibrosis transmembrane conductance regulator in maintaining HOCl production in neutrophil phagosomes.
Collapse
Affiliation(s)
- Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand.
| | - Vivienne Isles
- Children's Outreach Nursing Service, Christchurch Hospital, Christchurch 8011, New Zealand
| | - Philip Pattemore
- Department of Paediatrics, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand
| |
Collapse
|
7
|
Klobuch S, Steinberg T, Bruni E, Mirbeth C, Heilmeier B, Ghibelli L, Herr W, Reichle A, Thomas S. Biomodulatory Treatment With Azacitidine, All- trans Retinoic Acid and Pioglitazone Induces Differentiation of Primary AML Blasts Into Neutrophil Like Cells Capable of ROS Production and Phagocytosis. Front Pharmacol 2018; 9:1380. [PMID: 30542286 PMCID: PMC6278634 DOI: 10.3389/fphar.2018.01380] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023] Open
Abstract
Effective and tolerable salvage therapies for elderly patients with chemorefractory acute myeloid leukemia (AML) are limited and usually do not change the poor clinical outcome. We recently described in several chemorefractory elderly AML patients that a novel biomodulatory treatment regimen consisting of low-dose azacitidine (AZA) in combination with PPARγ agonist pioglitazone (PGZ) and all-trans retinoic acid (ATRA) induced complete remission of leukemia and also triggered myeloid differentiation with rapid increase of peripheral blood neutrophils. Herein, we further investigated our observations and comprehensively analyzed cell differentiation in primary AML blasts after treatment with ATRA, AZA, and PGZ ex vivo. The drug combination was found to significantly inhibit cell growth as well as to induce cell differentiation in about half of primary AML blasts samples independent of leukemia subtype. Notably and in comparison to ATRA/AZA/PGZ triple-treatment, effects on cell growth and myeloid differentiation with ATRA monotherapy was much less efficient. Morphological signs of myeloid cell differentiation were further confirmed on a functional basis by demonstrating increased production of reactive oxygen species as well as enhanced phagocytic activity in AML blasts treated with ATRA/AZA/PGZ. In conclusion, we show that biomodulatory treatment with ATRA/AZA/PGZ can induce phenotypical and functional differentiation of primary AML blasts into neutrophil like cells, which aside from its antileukemic activity may lower neutropenia associated infection rates in elderly AML patients in vivo. Clinical impact of the ATRA/AZA/PGZ treatment regimen is currently further investigated in a randomized clinical trial in chemorefractory AML patients (NCT02942758).
Collapse
Affiliation(s)
- Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tim Steinberg
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Emanuele Bruni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Carina Mirbeth
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University Hospital Regensburg, Regensburg, Germany
| | - Bernhard Heilmeier
- Department of Oncology and Hematology, Hospital Barmherzige Brueder, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University Hospital Regensburg, Regensburg, Germany
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Degrossoli A, Müller A, Xie K, Schneider JF, Bader V, Winklhofer KF, Meyer AJ, Leichert LI. Neutrophil-generated HOCl leads to non-specific thiol oxidation in phagocytized bacteria. eLife 2018; 7:32288. [PMID: 29506649 PMCID: PMC5839695 DOI: 10.7554/elife.32288] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
Abstract
Phagocytic immune cells kill pathogens in the phagolysosomal compartment with a cocktail of antimicrobial agents. Chief among them are reactive species produced in the so-called oxidative burst. Here, we show that bacteria exposed to a neutrophil-like cell line experience a rapid and massive oxidation of cytosolic thiols. Using roGFP2-based fusion probes, we could show that this massive breakdown of the thiol redox homeostasis was dependent on phagocytosis, presence of NADPH oxidase and ultimately myeloperoxidase. Interestingly, the redox-mediated fluorescence change in bacteria expressing a glutathione-specific Grx1-roGFP2 fusion protein or an unfused roGFP2 showed highly similar reaction kinetics to the ones observed with roGFP2-Orp1, under all conditions tested. We recently observed such an indiscriminate oxidation of roGFP2-based fusion probes by HOCl with fast kinetics in vitro. In line with these observations, abating HOCl production in immune cells with a myeloperoxidase inhibitor significantly attenuated the oxidation of all three probes in bacteria. A group of cells of the immune system defends the body against infections by wrapping themselves around bacteria, and effectively ‘eating’ them. During this process, called phagocytosis, the cell also douses the bacterium with a deadly cocktail of chemicals, including an antiseptic – hydrogen peroxide – and bleach. This mixture chemically burns, and then kills, the invader. The immune cells create hydrogen peroxide and bleach through chemical reactions that require two enzymes, NOX2 and MPO. The NOX2 enzyme is activated first, and produces a compound which is then transformed into hydrogen peroxide. In turn, hydrogen peroxide is used by MPO to make bleach. Phagocytosis is still poorly understood, and difficult to study: for example, it is not clear when the toxic mix is released, and which of its components are the most important. Here, Degrossoli et al. peer into this process: to do so, they genetically engineer bacteria and give them a built-in chemical burn tracker. The bacteria are made to carry fluorescent proteins which normally glow under blue light, but start to also react to violet light if they are exposed to a chemical burn. Under the microscope, when these bacteria encounter immune cells, they start glowing under violet light only a few seconds after they have been phagocytized. This shows that, during phagocytosis, the chemical mix is used almost immediately. The new technique also reveals that cells without a working NOX2 enzyme – which cannot produce hydrogen peroxide – could not burn the bacteria. However, hydrogen peroxide is also used by MPO to create bleach. If just MPO is deactivated, the cells can burn the bacteria, but much less efficiently. This, and the speed with which these fluorescent proteins were burnt, shows that the bleach is the main component of the toxic mix used during phagocytosis. Chronic granulomatous disease is a condition where patients can have a faulty version of NOX2, which makes it harder for them to fight infection. Understanding the mechanisms and the enzymes associated with phagocytosis could lead to improved treatment in the future.
Collapse
Affiliation(s)
- Adriana Degrossoli
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Alexandra Müller
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Kaibo Xie
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Jannis F Schneider
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Verian Bader
- Institute for Biochemistry and Pathobiochemistry - Molecular Cell Biology, Ruhr-Universität Bochum, Bochum, Germany
| | - Konstanze F Winklhofer
- Institute for Biochemistry and Pathobiochemistry - Molecular Cell Biology, Ruhr-Universität Bochum, Bochum, Germany
| | - Andreas J Meyer
- INRES - Chemical Signalling, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lars I Leichert
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
9
|
Abstract
Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes.
Collapse
Affiliation(s)
- Guoshun Wang
- Departments of Microbiology and Immunology, Genetics and Medicine, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
10
|
Aijaz I, Koudelka GB. Tetrahymena phagocytic vesicles as ecological micro-niches of phage transfer. FEMS Microbiol Ecol 2017; 93:3061358. [PMID: 28334205 DOI: 10.1093/femsec/fix030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/01/2017] [Indexed: 11/14/2022] Open
Abstract
The microbial communities in natural environments such as soil, pond water, or animal rumens are composed of a diverse mixture of bacteria and protozoa including ciliates or flagellates. In such microbiomes, a major source of bacterial mortality is grazing by phagocytic protists. Many protists are omnivorous heterotrophs, feeding on a range of different bacterial species. Due to this indiscriminate feeding, different bacterial species can assemble together in the same phagocytic vesicles where they can potentially exchange genetic material. Here we show that Tetrahymena thermophila imports and accumulates phage donor and recipient bacterial strains in its phagocytic vesicles and that under laboratory conditions the ingested bacteria remain viable for ≥2 h. Prophages in the ingested bacteria induce immediately after ingestion, and the released phages are concentrated in the phagocytic vesicles of the ciliate. These phages retain their ability to infect phage-susceptible bacterial strains. As a consequence of being confined within the phagosome, the frequency of lysogen formation in these vesicles increases 6-fold as compared with the bulk solution. Collectively, these observations suggest that T. thermophila aids in dissemination of bacteriophages by accumulating susceptible bacteria and phages in their phagocytic vesicles.
Collapse
|
11
|
Nault L, Bouchab L, Dupré-Crochet S, Nüße O, Erard M. Environmental Effects on Reactive Oxygen Species Detection-Learning from the Phagosome. Antioxid Redox Signal 2016; 25:564-76. [PMID: 27225344 DOI: 10.1089/ars.2016.6747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) fulfill numerous roles in biology ranging from signal transduction to the induction of cell death. To advance our understanding of these sometimes contradictory roles, quantitative, specific, and sensitive ROS measurements are required. RECENT ADVANCES Several organic or genetically encoded probes were successfully developed for ROS detection. CRITICAL ISSUES In some cases, ROS production occurs in a harsh environment such as low pH or high concentration of proteases. However, the ROS sensor may be sensitive to such environmental conditions and therefore becomes inaccurate. While the sensitivity of many ROS sensors to pH is known, many other environmental conditions remain unexplored. This article illustrates the interference between ROS sensors and their environment using the phagosome as an example. In the phagosome, pH changes, high concentration of ROS, and the presence of many proteases generate a hostile and rapidly changing environment. FUTURE DIRECTIONS Difficulties due to cell movement and continuous formation of new phagosomes can be reduced by ratio measurements, if appropriate dyes are identified. For detection in live cells and subcellular locations, fluorescent proteins (FPs) offer several advantages and are used to create biosensors for ROS. Some FPs are directly sensitive to certain ROS as shown here. Although this may compromise their use in an environment with high levels of ROS, it can also be exploited for ROS measurement directly with the FPs themselves. For all types of ROS detection, we suggest a set of basic guidelines for testing the environmental sensitivity of an ROS sensor. Antioxid. Redox Signal. 25, 564-576.
Collapse
Affiliation(s)
- Laurent Nault
- Laboratoire de Chimie Physique, Université Paris-Sud, CNRS UMR 8000, Université Paris Saclay , Orsay, France
| | - Leïla Bouchab
- Laboratoire de Chimie Physique, Université Paris-Sud, CNRS UMR 8000, Université Paris Saclay , Orsay, France
| | - Sophie Dupré-Crochet
- Laboratoire de Chimie Physique, Université Paris-Sud, CNRS UMR 8000, Université Paris Saclay , Orsay, France
| | - Oliver Nüße
- Laboratoire de Chimie Physique, Université Paris-Sud, CNRS UMR 8000, Université Paris Saclay , Orsay, France
| | - Marie Erard
- Laboratoire de Chimie Physique, Université Paris-Sud, CNRS UMR 8000, Université Paris Saclay , Orsay, France
| |
Collapse
|
12
|
Arnold JW, Spacht D, Koudelka GB. Determinants that govern the recognition and uptake of
Escherichia coli
O157 : H7 by
Acanthamoeba castellanii. Cell Microbiol 2016; 18:1459-70. [DOI: 10.1111/cmi.12591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Jason W. Arnold
- Department of Biological Sciences University at Buffalo Buffalo NY 14260 USA
| | - Drew Spacht
- Department of Biology Mercyhurst University Erie PA 16546 USA
- Department of Entomology The Ohio State University 318 W. 12th Ave. 300 Aronoff Laboratory Columbus OH 43210 USA
| | - Gerald B. Koudelka
- Department of Biological Sciences University at Buffalo Buffalo NY 14260 USA
| |
Collapse
|
13
|
Kim Y, Choi M, Manjare ST, Jon S, Churchill DG. Diselenide-based probe for the selective imaging of hypochlorite in living cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra04257k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A non-traditional and robust probe skeleton was derivatized for chemosensing applications to investigate a potential novel mode of hypochlorite detection.
Collapse
Affiliation(s)
- Youngsam Kim
- Molecular Logic Gate Laboratory
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - Minsuk Choi
- Department of Biological Sciences
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | | | - Sangyong Jon
- Department of Biological Sciences
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - David G. Churchill
- Molecular Logic Gate Laboratory
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| |
Collapse
|
14
|
Cho H, Jeong DW, Liu Q, Yeo WS, Vogl T, Skaar EP, Chazin WJ, Bae T. Calprotectin Increases the Activity of the SaeRS Two Component System and Murine Mortality during Staphylococcus aureus Infections. PLoS Pathog 2015; 11:e1005026. [PMID: 26147796 PMCID: PMC4492782 DOI: 10.1371/journal.ppat.1005026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/16/2015] [Indexed: 11/19/2022] Open
Abstract
Calprotectin, the most abundant cytoplasmic protein in neutrophils, suppresses the growth of Staphylococcus aureus by sequestering the nutrient metal ions Zn and Mn. Here we show that calprotectin can also enhance the activity of the SaeRS two component system (TCS), a signaling system essential for production of over 20 virulence factors in S. aureus. The activity of the SaeRS TCS is repressed by certain divalent ions found in blood or neutrophil granules; however, the Zn bound-form of calprotectin relieves this repression. During staphylococcal encounter with murine neutrophils or staphylococcal infection of the murine peritoneal cavity, calprotectin increases the activity of the SaeRS TCS as well as the production of proinflammatory cytokines such as IL-1β and TNF-α, resulting in higher murine mortality. These results suggest that, under certain conditions, calprotectin can be exploited by S. aureus to increase bacterial virulence and host mortality. Staphylococcus aureus is an important human pathogen causing skin infections and a variety of life-threatening diseases such as pneumonia, sepsis, and toxic shock syndrome. Previous study showed that the growth of S. aureus in abscesses is suppressed by the host antimicrobial protein calprotectin, which sequesters Zn and Mn from bacterial usage. During bacterial infection, calprotectin also plays an important role in the production of proinflammatory cytokines. Although the antimicrobial activity of calprotectin has been well defined, it is not known how the proinflammatory property of calprotectin affects staphylococcal infection. In this study, we found that the Zn-binding property of calprotectin increases the pathogenic potential of S. aureus by enhancing the activity of the SaeRS two component system in S. aureus. We also found that, under certain infection conditions, the proinflammatory property of calprotectin is rather detrimental to host survival. Our study illustrates that the important antimicrobial protein can be exploited by S. aureus to render the bacterium a more effective pathogen, and provides an example of the intricate tug-of-war between host and a bacterial pathogen.
Collapse
Affiliation(s)
- Hoonsik Cho
- Indiana University School of Medicine-Northwest, Gary, Indiana, United States of America
| | - Do-Won Jeong
- Indiana University School of Medicine-Northwest, Gary, Indiana, United States of America
| | - Qian Liu
- Indiana University School of Medicine-Northwest, Gary, Indiana, United States of America
| | - Won-Sik Yeo
- Indiana University School of Medicine-Northwest, Gary, Indiana, United States of America
| | - Thomas Vogl
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Walter J. Chazin
- Department of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Taeok Bae
- Indiana University School of Medicine-Northwest, Gary, Indiana, United States of America
- * E-mail:
| |
Collapse
|
15
|
Roemeling MD, Williams J, Beckman JS, Hurst JK. Imidazole catalyzes chlorination by unreactive primary chloramines. Free Radic Biol Med 2015; 82:167-78. [PMID: 25660996 PMCID: PMC4387080 DOI: 10.1016/j.freeradbiomed.2015.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 01/24/2023]
Abstract
Hypochlorous acid and simple chloramines (RNHCl) are stable biologically derived chlorinating agents. In general, the chlorination potential of HOCl is much greater than that of RNHCl, allowing it to oxidize or chlorinate a much wider variety of reaction partners. However, in this study we demonstrate by kinetic analysis that the reactivity of RNHCl can be dramatically promoted by imidazole and histidyl model compounds via intermediary formation of the corresponding imidazole chloramines. Two biologically relevant reactions were investigated--loss of imidazole-catalyzed chlorinating capacity and phenolic ring chlorination using fluorescein and the tyrosine analog, 4-hydroxyphenylacetic acid (HPA). HOCl reacted stoichiometrically with imidazole, N-acetylhistidine (NAH), or imidazoleacetic acid to generate the corresponding imidazole chloramines which subsequently decomposed. Chloramine (NH2Cl) also underwent a markedly accelerated loss in chlorinating capacity when NAH was present, although in this case N-α-acetylhistidine chloramine (NAHCl) did not accumulate, indicating that the catalytic intermediate must be highly reactive. Mixing HOCl with 1-methylimidazole (MeIm) led to very rapid loss in chlorinating capacity via formation of a highly reactive chlorinium ion (MeImCl(+)) intermediate; this behavior suggests that the reactive forms of the analogous imidazole chloramines are their conjugate acids, e.g., the imidazolechlorinium ion (HImCl(+)). HOCl-generated imidazole chloramine (ImCl) reacted rapidly with fluorescein in a specific acid-catalyzed second-order reaction to give 3'-monochloro and 3',5'-dichloro products. Equilibrium constants for the transchlorination reactions HOCl + HIm = H2O + ImCl and NH2Cl + HIm = NH3 + ImCl were estimated from the dependence of the rate constants on [HIm]/[HOCl] and literature data. Acid catalysis again suggests that the actual chlorinating agent is HImCl(+); consistent with this interpretation, MeIm markedly catalyzed fluorescein chlorination by HOCl. Time-dependent imidazole-catalyzed HPA chlorination by NH2Cl was also demonstrated by product analyses. Quantitative assessment of the data suggests that physiological levels of histidyl groups will react with primary chloramines to generate a flux of imidazole chloramine sufficient to catalyze biological chlorination via HImCl(+), particularly in environments that generate high concentrations of HOCl such as the neutrophil phagosome.
Collapse
Affiliation(s)
- Margo D Roemeling
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis OR, USA
| | - Jared Williams
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis OR, USA
| | - Joseph S Beckman
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis OR, USA; Environmental Health Sciences Center, Oregon State University, Corvallis OR, USA; Linus Pauling Institute, Oregon State University, Corvallis OR, USA
| | - James K Hurst
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis OR, USA.
| |
Collapse
|
16
|
Green JN, Kettle AJ, Winterbourn CC. Protein chlorination in neutrophil phagosomes and correlation with bacterial killing. Free Radic Biol Med 2014; 77:49-56. [PMID: 25236747 DOI: 10.1016/j.freeradbiomed.2014.08.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/06/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
Abstract
Neutrophils ingest and kill bacteria within phagocytic vacuoles. We investigated where they produce hypochlorous acid (HOCl) following phagocytosis by measuring conversion of protein tyrosine residues to 3-chlorotyrosine. We also examined how varying chloride availability affects the relationship between HOCl formation in the phagosome and bacterial killing. Phagosomal proteins, isolated following ingestion of opsonized magnetic beads, contained 11.4 Cl-Tyr per thousand tyrosine residues. This was 12 times higher than the level in proteins from the rest of the neutrophil and ~6 times higher than previously recorded for protein from ingested bacteria. These results indicate that HOCl production is largely localized to the phagosomes and a substantial proportion reacts with phagosomal protein before reaching the microbe. This will in part detoxify the oxidant but should also form chloramines which could contribute to the killing mechanism. Neutrophils were either suspended in chloride-free gluconate buffer or pretreated with formyl-Met-Leu-Phe, a procedure that has been reported to deplete intracellular chloride. These treatments, alone or in combination, decreased both chlorination in phagosomes and killing of Staphylococcus aureus by up to 50%. There was a strong positive correlation between the two effects. Killing was predominantly oxidant and myeloperoxidase dependent (88% inhibition by diphenylene iodonium and 78% by azide). These results imply that lowering the chloride concentration limits HOCl production and oxidative killing. They support a role for HOCl generation, rather than an alternative myeloperoxidase activity, in the killing process.
Collapse
Affiliation(s)
- Jessie N Green
- Department of Pathology, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, New Zealand
| | - Anthony J Kettle
- Department of Pathology, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, New Zealand
| | - Christine C Winterbourn
- Department of Pathology, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, New Zealand.
| |
Collapse
|
17
|
Nauseef WM. Myeloperoxidase in human neutrophil host defence. Cell Microbiol 2014; 16:1146-55. [PMID: 24844117 DOI: 10.1111/cmi.12312] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 12/21/2022]
Abstract
Human neutrophils represent the predominant leucocyte in circulation and the first responder to infection. Concurrent with ingestion of microorganisms, neutrophils activate and assemble the NADPH oxidase at the phagosome, thereby generating superoxide anion and hydrogen peroxide. Concomitantly, granules release their contents into the phagosome, where the antimicrobial proteins and enzymes synergize with oxidants to create an environment toxic to the captured microbe. The most rapid and complete antimicrobial action by human neutrophils against many organisms relies on the combined efforts of the azurophilic granule protein myeloperoxidase and hydrogen peroxide from the NADPH oxidase to oxidize chloride, thereby generating hypochlorous acid and a host of downstream reaction products. Although individual components of the neutrophil antimicrobial response exhibit specific activities in isolation, the situation in the environment of the phagosome is far more complicated, a consequence of multiple and complex interactions among oxidants, proteins and their by-products. In most cases, the cooperative interactions among the phagosomal contents, both from the host and the microbe, culminate in loss of viability of the ingested organism.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Veterans Administration Medical Center, Iowa City, IA, 52242, USA
| |
Collapse
|
18
|
Peluso I, Manafikhi H, Reggi R, Palmery M. Interference of flavonoids with fluorescent intracellular probes: methodological implications in the evaluation of the oxidative burst by flow cytometry. Cytometry A 2014; 85:663-77. [PMID: 24889089 DOI: 10.1002/cyto.a.22490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/10/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022]
Abstract
The evaluation of oxidative burst is particularly relevant in many pathological and subclinical conditions. Flow cytometry provides quick and accurate measures of the reactive oxygen species production by leukocytes in most situations. However, spurious results, related to probes' efflux may be observed in several instances. Many factors affect the evaluation of the oxidative burst with fluorescent probes that require intracellular deacetylation and could be substrate of the multidrug resistance proteins (MDR). After discussing the implications of the efflux of fluorophores in the normalization strategies in flow cytometry assays, we have pointed out the possible interference of flavonoids with fluorescet probes' staining and signal. We have also reviewed the results from human intervention studies regarding the evaluation of oxidative burst with these probes. In vitro, at concentrations close to post-ingestion circulating levels, some flavonoids and their metabolites could interfere with probes' staining and fluorescence signal through different mechanisms, such as the inhibition of esterases, the modulation of the MDR-mediate efflux of probe and the inhibition of the oxidation of probe. These effects may explain the contrasting results obtained by human intervention studies. Finally, also inflammatory state or the use of drugs substrate of MDR proteins could affect the evaluation of the oxidative burst with intracellular probes.
Collapse
Affiliation(s)
- Ilaria Peluso
- Department of Physiology and Pharmacology, "V. Erspamer," "Sapienza" University of Rome, Italy
| | | | | | | |
Collapse
|
19
|
Berthelot V, Steinmetz V, Alvarez LA, Houée-Levin C, Merola F, Rusconi F, Erard M. An analytical workflow for the molecular dissection of irreversibly modified fluorescent proteins. Anal Bioanal Chem 2013; 405:8789-98. [PMID: 24026516 DOI: 10.1007/s00216-013-7326-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 12/01/2022]
Abstract
Owing to their ability to be genetically expressed in live cells, fluorescent proteins have become indispensable markers in cellular and biochemical studies. These proteins can undergo a number of covalent chemical modifications that may affect their photophysical properties. Among other mechanisms, such covalent modifications may be induced by reactive oxygen species (ROS), as generated along a variety of biological pathways or through the action of ionizing radiations. In a previous report [1], we showed that the exposure of cyan fluorescent protein (ECFP) to amounts of (•)OH that mimic the conditions of intracellular oxidative bursts (associated with intense ROS production) leads to observable changes in its photophysical properties in the absence of any direct oxidation of the ECFP chromophore. In the present work, we analyzed the associated structural modifications of the protein in depth. Following the quantified production of (•)OH, we devised a complete analytical workflow based on chromatography and mass spectrometry that allowed us to fully characterize the oxidation events. While methionine, tyrosine, and phenylalanine were the only amino acids that were found to be oxidized, semi-quantitative assessment of their oxidation levels showed that the protein is preferentially oxidized at eight residue positions. To account for the preferred oxidation of a few, poorly accessible methionine residues, we propose a multi-step reaction pathway supported by data from pulsed radiolysis experiments. The described experimental workflow is widely generalizable to other fluorescent proteins, and opens the door to the identification of crucial covalent modifications that affect their photophysics.
Collapse
Affiliation(s)
- Vivien Berthelot
- Laboratoire de Chimie Physique, UMR CNRS 8000, Building 350, 91405, Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Kettle AJ, Albrett AM, Chapman AL, Dickerhof N, Forbes LV, Khalilova I, Turner R. Measuring chlorine bleach in biology and medicine. Biochim Biophys Acta Gen Subj 2013; 1840:781-93. [PMID: 23872351 DOI: 10.1016/j.bbagen.2013.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chlorine bleach, or hypochlorous acid, is the most reactive two-electron oxidant produced in appreciable amounts in our bodies. Neutrophils are the main source of hypochlorous acid. These champions of the innate immune system use it to fight infection but also direct it against host tissue in inflammatory diseases. Neutrophils contain a rich supply of the enzyme myeloperoxidase. It uses hydrogen peroxide to convert chloride to hypochlorous acid. SCOPE OF REVIEW We give a critical appraisal of the best methods to measure production of hypochlorous acid by purified peroxidases and isolated neutrophils. Robust ways of detecting it inside neutrophil phagosomes where bacteria are killed are also discussed. Special attention is focused on reaction-based fluorescent probes but their visual charm is tempered by stressing their current limitations. Finally, the strengths and weaknesses of biomarker assays that capture the footprints of chlorine in various pathologies are evaluated. MAJOR CONCLUSIONS Detection of hypochlorous acid by purified peroxidases and isolated neutrophils is best achieved by measuring accumulation of taurine chloramine. Formation of hypochlorous acid inside neutrophil phagosomes can be tracked using mass spectrometric analysis of 3-chlorotyrosine and methionine sulfoxide in bacterial proteins, or detection of chlorinated fluorescein on ingestible particles. Reaction-based fluorescent probes can also be used to monitor hypochlorous acid during phagocytosis. Specific biomarkers of its formation during inflammation include 3-chlorotyrosine, chlorinated products of plasmalogens, and glutathione sulfonamide. GENERAL SIGNIFICANCE These methods should bring new insights into how chlorine bleach is produced by peroxidases, reacts within phagosomes to kill bacteria, and contributes to inflammation. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, P.O. Box 4345, Christchurch, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
21
|
Dupré-Crochet S, Erard M, Nüβe O. ROS production in phagocytes: why, when, and where? J Leukoc Biol 2013; 94:657-70. [PMID: 23610146 DOI: 10.1189/jlb.1012544] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the phagocytosis field, ROS production by the phagocyte NOX has been associated with pathogen killing for the last 50 years. Since the discovery of nonphagocyte NOX, numerous other roles for ROS production have been identified. Oxidative stress and ROS-mediated signaling have received much attention in recent years. Much lower concentrations of ROS may be required for signaling compared with microbial killing. Based on the discoveries in nonphagocytic cells, it became logical to look for ROS functions distinct from pathogen killing, even in phagocytes. ROS are now linked to various forms of cell death, to chemotaxis, and to numerous modifications of cellular processes, including the NOX itself. ROS functions are clearly concentration-dependent over a wide range of concentrations. How much is required for which function? Which species are required for how much time? Is ROS signaling only a side effect of bactericidal ROS production? One major obstacle to answer these questions is the difficulty of reliable quantitative ROS detection. Signal transduction often takes place on a subcellular scale over periods of seconds or minutes, so the detection methods need to provide appropriate time and space resolution. We present examples of local ROS production, decreased degradation, signaling events, and potentially ROS-sensitive functions. We attempt to illustrate the current limitations for quantitative spatiotemporal ROS detection and point out directions for ongoing development. Probes for localized ROS detection and for combined detection of ROS, together with protein localization or other cellular parameters, are constantly improved.
Collapse
|
22
|
Winterbourn CC, Kettle AJ. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid Redox Signal 2013; 18:642-60. [PMID: 22881869 DOI: 10.1089/ars.2012.4827] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE When neutrophils kill microorganisms, they ingest them into phagosomes and bombard them with a burst of reactive oxygen species. RECENT ADVANCES This review focuses on what oxidants are produced and how they kill. The neutrophil NADPH oxidase is activated and shuttles electrons from NADPH in the cytoplasm to oxygen in the phagosomal lumen. Superoxide is generated in the narrow space between the ingested organism and the phagosomal membrane and kinetic modeling indicates that it reaches a concentration of around 20 μM. Degranulation leads to a very high protein concentration with up to millimolar myeloperoxidase (MPO). MPO has many substrates, but its main phagosomal reactions should be to dismutate superoxide and, provided adequate chloride, catalyze efficient conversion of hydrogen peroxide to hypochlorous acid (HOCl). Studies with specific probes have shown that HOCl is produced in the phagosome and reacts with ingested bacteria. The amount generated should be high enough to kill. However, much of the HOCl reacts with phagosomal proteins. Generation of chloramines may contribute to killing, but the full consequences of this are not yet clear. CRITICAL ISSUES Isolated neutrophils kill most of the ingested microorganisms rapidly by an MPO-dependent mechanism that is almost certainly due to HOCl. However, individuals with MPO deficiency rarely have problems with infection. A possible explanation is that HOCl provides a frontline response that kills most of the microorganisms, with survivors killed by nonoxidative processes. The latter may deal adequately with low-level infection but with high exposure, more efficient HOCl-dependent killing is required. FUTURE DIRECTIONS Better quantification of HOCl and other oxidants in the phagosome should clarify their roles in antimicrobial action.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand.
| | | |
Collapse
|
23
|
Cho JS, Guo Y, Ramos RI, Hebroni F, Plaisier SB, Xuan C, Granick JL, Matsushima H, Takashima A, Iwakura Y, Cheung AL, Cheng G, Lee DJ, Simon SI, Miller LS. Neutrophil-derived IL-1β is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog 2012; 8:e1003047. [PMID: 23209417 PMCID: PMC3510260 DOI: 10.1371/journal.ppat.1003047] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 10/05/2012] [Indexed: 02/07/2023] Open
Abstract
Neutrophil abscess formation is critical in innate immunity against many pathogens. Here, the mechanism of neutrophil abscess formation was investigated using a mouse model of Staphylococcus aureus cutaneous infection. Gene expression analysis and in vivo multispectral noninvasive imaging during the S. aureus infection revealed a strong functional and temporal association between neutrophil recruitment and IL-1β/IL-1R activation. Unexpectedly, neutrophils but not monocytes/macrophages or other MHCII-expressing antigen presenting cells were the predominant source of IL-1β at the site of infection. Furthermore, neutrophil-derived IL-1β was essential for host defense since adoptive transfer of IL-1β-expressing neutrophils was sufficient to restore the impaired neutrophil abscess formation in S. aureus-infected IL-1β-deficient mice. S. aureus-induced IL-1β production by neutrophils required TLR2, NOD2, FPR1 and the ASC/NLRP3 inflammasome in an α-toxin-dependent mechanism. Taken together, IL-1β and neutrophil abscess formation during an infection are functionally, temporally and spatially linked as a consequence of direct IL-1β production by neutrophils. Invasive infections caused by the human pathogen Staphylococcus aureus result in more deaths annually than infections caused by any other single infectious agent in the United States. Although neutrophil recruitment and abscess formation is crucial for effective host defense against this pathogen, how neutrophils sense and mount an inflammatory response are not completely clear. Using gene expression analysis and in vivo bioluminescence and fluorescence imaging, we found that neutrophil recruitment during a S. aureus cutaneous infection is functionally and temporally linked to IL-1β/IL-1R activation. Surprisingly, neutrophils themselves were determined to be the most abundant cell type that produced IL-1β during infection. Further, neutrophil-derived IL-1β, in the absence of other cellular sources of IL-1β, was sufficient for neutrophil recruitment, abscess formation, and bacterial clearance. Finally, mouse neutrophils produced IL-1β in direct response to live S. aureus in vitro. These findings expand our understanding of the acute neutrophil response to infection in which early recruited neutrophils serve as a source of IL-1β that is essential for amplifying and sustaining the neutrophilic response to promote abscess formation and bacterial clearance. Therapies aimed at promoting IL-1β production by neutrophils may be an effective immunotherapeutic strategy to control S. aureus infections.
Collapse
Affiliation(s)
- John S. Cho
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Yi Guo
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Romela Irene Ramos
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Frank Hebroni
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Seema B. Plaisier
- Department of Translational Immunology, Dirks/Dougherty Laboratory for Cancer Research, John Wayne Cancer Institute, Santa Monica, California, United States of America
| | - Caiyun Xuan
- Department of Translational Immunology, Dirks/Dougherty Laboratory for Cancer Research, John Wayne Cancer Institute, Santa Monica, California, United States of America
| | - Jennifer L. Granick
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Hironori Matsushima
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Akira Takashima
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Yoichiro Iwakura
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, Japan
| | - Ambrose L. Cheung
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Delphine J. Lee
- Department of Translational Immunology, Dirks/Dougherty Laboratory for Cancer Research, John Wayne Cancer Institute, Santa Monica, California, United States of America
| | - Scott I. Simon
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
Current viewpoints concerning the bactericidal mechanisms of neutrophils are reviewed from a perspective that emphasizes challenges presented by the inability to duplicate ex vivo the intracellular milieu. Among the challenges considered are the influences of confinement upon substrate availability and reaction dynamics, direct and indirect synergistic interactions between individual toxins, and bacterial responses to stressors. Approaches to gauging relative contributions of various oxidative and nonoxidative toxins within neutrophils using bacteria and bacterial mimics as intrinsic probes are also discussed.
Collapse
Affiliation(s)
- James K Hurst
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
25
|
Nüsse O. Biochemistry of the phagosome: the challenge to study a transient organelle. ScientificWorldJournal 2011; 11:2364-81. [PMID: 22194668 PMCID: PMC3236389 DOI: 10.1100/2011/741046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/26/2011] [Indexed: 12/21/2022] Open
Abstract
Phagocytes are specialized cells of the immune system, designed to engulf and destroy harmful microorganisms inside the newly formed phagosome. The latter is an intracellular organelle that is transformed into a toxic environment within minutes and disappears once the pathogen is destroyed. Reactive oxygen species and reactive nitrogen species are produced inside the phagosome. Intracellular granules or lysosomes of the phagocyte fuse with the phagosome and liberate their destructive enzymes. This process of phagocytosis efficiently protects against most infections; however, some microorganisms avoid their destruction and cause severe damage. To understand such failure of phagosomal killing, we need to learn more about the actual destruction process in the phagosome. This paper summarizes methods to investigate the biochemistry of the phagosome and discusses some of their limitations. In accordance with the nature of the phagosome, the issue of localization and temporal dynamics is emphasized, and recent developments are highlighted.
Collapse
Affiliation(s)
- Oliver Nüsse
- Département de Biologie, Université Paris-Sud, Bâtiment 443, rue des Adeles, 91405 Orsay, France.
| |
Collapse
|
26
|
Yang YC, Lu HH, Wang WT, Liau I. Selective and Absolute Quantification of Endogenous Hypochlorous Acid with Quantum-Dot Conjugated Microbeads. Anal Chem 2011; 83:8267-72. [DOI: 10.1021/ac202077x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yi-Cyun Yang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsueh-Han Lu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Ti Wang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Ian Liau
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
27
|
Loynes CA, Martin JS, Robertson A, Trushell DMI, Ingham PW, Whyte MKB, Renshaw SA. Pivotal Advance: Pharmacological manipulation of inflammation resolution during spontaneously resolving tissue neutrophilia in the zebrafish. J Leukoc Biol 2010; 87:203-12. [PMID: 19850882 PMCID: PMC2812557 DOI: 10.1189/jlb.0409255] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Zebrafish are a unique model for pharmacological manipulation of physiological processes such as inflammation; they are small and permeable to many small molecular compounds, and being transparent, they permit the visualization and quantitation of the inflammatory response by observation of transgenically labeled inflammatory cell populations. Using a transgenic line specifically labeling neutrophils in vivo (mpx:GFP), we studied the effects of a range of pharmacological agents on the resolution of inflammation in vivo. These agents were selected for their ability to modulate neutrophil function and lifespan in human neutrophils in vitro. Agents delaying neutrophil apoptosis (LPS, dbcAMP, and several caspase inhibitors) all lead to a delay in resolution of neutrophilic inflammation. Reciprocally, pyocyanin and roscovitine (inducers of neutrophil apoptosis) lead to reduced neutrophil numbers. The occurrence of apoptosis was observed by time-lapse analysis and confirmed by dual staining for neutrophil-specific mpx activity (TSA staining) and an apoptotic marker (TUNEL). During inflammation, macrophages follow neutrophils into the inflamed site, and TUNEL/TSA dual-positive material can be demonstrated within macrophages, consistent with their uptake of apoptotic neutrophils. This model has several advantages over mammalian models and lends itself to the study of pharmaceutical agents modulating inflammation.
Collapse
Affiliation(s)
- Catherine A Loynes
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Alvarez L, Levin CH, Merola F, Bizouarn T, Pasquier HÃ, Baciou L, Rusconi F, Erard M. Are the Fluorescent Properties of the Cyan Fluorescent Protein Sensitive to Conditions of Oxidative Stress? Photochem Photobiol 2010; 86:55-61. [DOI: 10.1111/j.1751-1097.2009.00617.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Suquet C, Warren JJ, Seth N, Hurst JK. Comparative study of HOCl-inflicted damage to bacterial DNA ex vivo and within cells. Arch Biochem Biophys 2009; 493:135-42. [PMID: 19850004 DOI: 10.1016/j.abb.2009.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 12/13/2022]
Abstract
The prospects for using bacterial DNA as an intrinsic probe for HOCl and secondary oxidants/chlorinating agents associated with it has been evaluated using both in vitro and in vivo studies. Single-strand and double-strand breaks occurred in bare plasmid DNA that had been exposed to high levels of HOCl, although these reactions were very inefficient compared to polynucleotide chain cleavage caused by the OH.-generating reagent, peroxynitrite. Plasmid nicking was not increased when intact Escherichia coli were exposed to HOCl; rather, the amount of recoverable plasmid diminished in a dose-dependent manner. At concentration levels of HOCl exceeding lethal doses, genomic bacterial DNA underwent extensive fragmentation and the amount of precipitable DNA-protein complexes increased several-fold. The 5-chlorocytosine content of plasmid and genomic DNA isolated from HOCl-exposed E. coli was also slightly elevated above controls, as measured by mass spectrometry of the deaminated product, 5-chlorouracil. However, the yields were not dose-dependent over the bactericidal concentration range. Genomic DNA recovered from E. coli that had been subjected to phagocytosis by human neutrophils occasionally showed small increases in 5-chlorocytosine content when compared to analogous cellular reactions where myeloperoxidase activity was inhibited by azide ion. Overall, the amount of isolable 5-chlorouracil from the HOCl-exposed bacterial cells was far less than the damage manifested in polynucleotide bond cleavage and cross-linking.
Collapse
Affiliation(s)
- Christine Suquet
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| | | | | | | |
Collapse
|
30
|
Optical probes for detection and quantification of neutrophils’ oxidative burst. A review. Anal Chim Acta 2009; 649:8-23. [DOI: 10.1016/j.aca.2009.06.063] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 11/20/2022]
|
31
|
Schwartz J, Leidal KG, Femling JK, Weiss JP, Nauseef WM. Neutrophil bleaching of GFP-expressing staphylococci: probing the intraphagosomal fate of individual bacteria. THE JOURNAL OF IMMUNOLOGY 2009; 183:2632-41. [PMID: 19620311 DOI: 10.4049/jimmunol.0804110] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Successful host defense against bacteria such as Staphylococcus aureus (SA) depends on a prompt response by circulating polymorphonuclear leukocytes (PMN). Stimulated PMN create in their phagosomes an environment inhospitable to most ingested bacteria. Granules that fuse with the phagosome deliver an array of catalytic and noncatalytic antimicrobial peptides, while activation of the NADPH oxidase at the phagosomal membrane generates reactive oxygen species within the phagosome, including hypochlorous acid (HOCl), formed by the oxidation of chloride by the granule protein myeloperoxidase in the presence of H(2)O(2). In this study, we used SA-expressing cytosolic GFP to provide a novel probe of the fate of SA in human PMN. PMN bleaching of GFP in SA required phagocytosis, active myeloperoxidase, H(2)O(2) from the NADPH oxidase, and chloride. Not all ingested SA were bleached, and the number of cocci within PMN-retaining fluorescent GFP closely correlated with the number of viable bacteria remaining intracellularly. The percent of intracellular fluorescent and viable SA increased at higher multiplicity of infection and when SA presented to PMN had been harvested from the stationary phase of growth. These studies demonstrate that the loss of GFP fluorescence in ingested SA provides a sensitive experimental probe for monitoring biochemical events within individual phagosomes and for identifying subpopulations of SA that resist intracellular PMN cytotoxicity. Defining the molecular basis of SA survival within PMN should provide important insights into bacterial and host properties that limit PMN antistaphylococcal action and thus contribute to the pathogenesis of staphylococcal infection.
Collapse
Affiliation(s)
- Jamie Schwartz
- Department of Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, Iowa City, IA 52240, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Macrophages and neutrophils are essential elements of host cellular defense systems that function, at least in part, by generating respiration-driven oxidative toxins in response to external stimuli. In both cells, encapsulation by phagocytosis provides a mechanism to direct the toxins against the microbes. The toxic chemicals formed by these two phagocytic cells differ markedly, as do the enzymatic catalysts that generate them. Nitrite ion is microbicidal under certain conditions, is generated by activated macrophages, and is present at elevated concentration levels at infection sites. In this review, we consider potential roles that nitrite might play in cellular disinfection by these phagocytes within the context of available experimental information. Although the suggested roles are plausible, based upon the chemical and biochemical reactivity of NO2(-), studies to date provide little support for their implementation within phagosomes.
Collapse
Affiliation(s)
- Jonathan L. Cape
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| | - James K. Hurst
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| |
Collapse
|
33
|
Abstract
The innate host response system is comprised of various mechanisms for orchestrating host response to microbial infection of the oral cavity. The heterogeneity of the oral cavity and the associated microenvironments that are produced give rise to different chemistries that affect the innate defense system. One focus of this review is on how these spatial differences influence the two major defensive peroxidases of the oral cavity, salivary peroxidase (SPO) and myeloperoxidase (MPO). With hydrogen peroxide (H(2)O(2)) as an oxidant, the defensive peroxidases use inorganic ions to produce antimicrobials that are generally more effective than H(2)O(2) itself. The concentrations of the inorganic substrates are different in saliva vs. gingival crevicular fluid (GCF). Thus, in the supragingival regime, SPO and MPO work in unison for the exclusive production of hypothiocyanite (OSCN(-), a reactive inorganic species), which constantly bathes nascent plaques. In contrast, MPO is introduced to the GCF during inflammatory response, and in that environment it is capable of producing hypochlorite (OCl(-)), a chemically more powerful oxidant that is implicated in host tissue damage. A second focus of this review is on inter-person variation that may contribute to different peroxidase function. Many of these differences are attributed to dietary or smoking practices that alter the concentrations of relevant inorganic species in the oral cavity (e.g.: fluoride, F(-); cyanide, CN(-); cyanate, OCN(-); thiocyanate, SCN(-); and nitrate, NO(3)(-)). Because of the complexity of the host and microflora biology and the associated chemistry, it is difficult to establish the significance of the human peroxidase systems during the pathogenesis of oral diseases. The problem is particularly complex with respect to the gingival sulcus and periodontal pockets (where the very different defensive stratagems of GCF and saliva co-mingle). Despite this complexity, intriguing in vitro and in vivo studies are reviewed here that reveal the interplay between peroxidase function and associated inorganic chemistry.
Collapse
Affiliation(s)
- M T Ashby
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
34
|
Prajsnar TK, Cunliffe VT, Foster SJ, Renshaw SA. A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens. Cell Microbiol 2008; 10:2312-25. [PMID: 18715285 DOI: 10.1111/j.1462-5822.2008.01213.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the emergence of multiply resistant Staphylococcus aureus, there is an urgent need to better understand the molecular determinants of S. aureus pathogenesis. A model of staphylococcal pathogenesis in zebrafish embryos has been established, in which host phagocytes are able to mount an effective immune response, preventing overwhelming infection from small inocula. Myeloid cell depletion, by pu.1 morpholino-modified antisense injection, removes this immune protection. Macrophages and neutrophils are both implicated in this immune response, phagocytosing circulating bacteria. In addition, in vivo phagocyte/bacteria interactions can be visualized within transparent embryos. A preliminary screen for bacterial pathogenesis determinants has shown that strains bearing mutations in perR, pheP and saeR are attenuated. perR and pheP mutants are deficient in growth in vivo, and their virulence is not fully restored by myeloid cell depletion. On the other hand, saeR mutants are able to grow in vivo, and are completely restored to virulence by myeloid cell depletion. Thus specific pathogen gene function can be matched with particular facets of host response. Zebrafish are a new addition to the tools available for the study of S. aureus pathogenesis, and may provide insights into the interactions of bacterial and host genomes in determining the outcome of infection.
Collapse
Affiliation(s)
- Tomasz K Prajsnar
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Western Bank, Sheffield S102TN, UK
| | | | | | | |
Collapse
|
35
|
Palazzolo-Ballance AM, Reniere ML, Braughton KR, Sturdevant DE, Otto M, Kreiswirth BN, Skaar EP, DeLeo FR. Neutrophil microbicides induce a pathogen survival response in community-associated methicillin-resistant Staphylococcus aureus. THE JOURNAL OF IMMUNOLOGY 2008; 180:500-9. [PMID: 18097052 DOI: 10.4049/jimmunol.180.1.500] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In recent years, there has been a dramatic increase in the incidence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections. MW2 (pulsed-field type USA400), the prototype CA-MRSA strain, is highly virulent and has enhanced ability to evade killing by neutrophils. Although progress has been made, the molecular basis for enhanced virulence of CA-MRSA remains incompletely defined. To that end, we studied resistance of MW2 to key microbicides of human neutrophils. Hydrogen peroxide (H2O2), hypochlorous acid, and azurophilic granule proteins had significant bacteriostatic but limited staphylocidal activity toward MW2 under the conditions tested. An MW2-specific microarray revealed common changes in S. aureus gene expression following exposure to each microbicide, such as up-regulation of transcripts involved in gene regulation (e.g., saeRS and kdpDE) and stress response. Azurophilic granule proteins elicited the greatest number of changes in MW2 transcripts, including up-regulation of mRNAs encoding multiple toxins and hemolysins (e.g., hlgA, hlgB, hlgC, hla, lukS-PV, lukF-PV, sec4, and set17-26). Notably, H2O2 triggered up-regulation of transcripts related to heme/iron uptake (e.g., isdA, isdB, and isdCDEFsrtBisdG), and an isogenic isdAB-negative strain of MW2 had increased susceptibility to H2O2 (p<0.001) and human neutrophils (p<0.05) compared with the wild-type parental strain. These findings reveal a S. aureus survival response wherein Iron-regulated surface determinant (Isd) proteins are important for resistance to innate host defense. Collectively, the data provide an enhanced view of the mechanisms used by S. aureus to circumvent destruction by the innate immune system.
Collapse
Affiliation(s)
- Amy M Palazzolo-Ballance
- Laboratory of Human Bacterial Pathogenesis, Research Technologies Section, Genomics Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Neutrophils constitute the dominant cell in the circulation that mediates the earliest innate immune human responses to infection. The morbidity and mortality from infection rise dramatically in patients with quantitative or qualitative neutrophil defects, providing clinical confirmation of the important role of normal neutrophils for human health. Neutrophil-dependent anti-microbial activity against ingested microbes represents the collaboration of multiple agents, including those prefabricated during granulocyte development in the bone marrow and those generated de novo following neutrophil activation. Furthermore, neutrophils cooperate with extracellular agents as well as other immune cells to optimally kill and degrade invading microbes. This brief review focuses attention on two examples of the integrated nature of neutrophil-mediated anti-microbial action within the phagosome. The importance and complexity of myeloperoxidase-mediated events illustrate a collaboration of anti-microbial responses that are endogenous to the neutrophil, whereas the synergy between the phagocyte NADPH (nicotinamide adenine dinucleotide phosphate) oxidase and plasma-derived group IIA phospholipase A(2) exemplifies the collective effects of the neutrophil with an exogenous factor to achieve degradation of ingested staphylococci.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program, Department of Medicine, University of Iowa, Iowa City, IA 52241, USA.
| |
Collapse
|
37
|
Palazzolo-Ballance AM, Suquet C, Hurst JK. Pathways for intracellular generation of oxidants and tyrosine nitration by a macrophage cell line. Biochemistry 2007; 46:7536-48. [PMID: 17530864 PMCID: PMC2584613 DOI: 10.1021/bi700123s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two transformed murine macrophage cell lines (RAW 264.7 ATCC TIB-71 and CRL-2278) were examined for oxidant production at various times following activation by using a set of fluorescence and ESR-active probes. Stimulation with a soluble agonist or activation with bacterial lipopolysaccharide plus gamma-interferon caused only very small initial increases in O2 consumption above basal rates; however, at 2-4 h post-activation, respiration increased to 2-3-fold and remained at these elevated levels over the subsequent lifetime of the cell (20-30 h). Oxidation reactions were confined primarily within the cell, as was demonstrated by using phagocytosable dichlorodihydrofluorescein-conjugated latex beads and cyclic hydroxylamines with differing membrane permeabilities. From the intrinsic reactivities of these probes and the time course of their oxidations, one infers the induction of apparent peroxidase activity beginning at approximately 2 h post-activation coinciding with the increase in overall respiratory rate; this acquired capability was accompanied by accumulation of a stable horseradish peroxidase-reactive oxidant, presumably H2O2, in the extracellular medium. Nitrite ion rapidly accumulated in the extracellular medium over a period of 5-8 h post-activation in both cell lines, indicating the presence of active nitric oxide synthase (iNOS) during that period. Prostaglandin endoperoxide H synthase (COX-2) activity was detected at 15-20 h post-activation by the use of a sensitive peroxide assay in conjunction with a COX-2 specific inhibitor (DuP-697). Superoxide formation was detected by reaction with hydroethidine within the first hour following activation, but not thereafter. Consistent with the absence of significant respiratory stimulation, the amount of O2*- formed was very small; comparative reactions of cyclic hydroxylamine probes indicated that virtually none of the O2*- was discharged into the external medium. Myeloperoxidase (MPO) activity was probed at various times post-activation by using fluorescein-conjugated polyacrylamide beads, which efficiently trap MPO-generated HOCl in neutrophils to give stable chlorofluorescein products. However, chlorination of the dye was not detected under any conditions in RAW cells, virtually precluding MPO involvement in their intracellular reactions. This same probe was used to determine changes in intraphagosomal pH, which increased slowly from approximately 6.5 to approximately 8.2 over a 20 h post-phagocytosis period. The cumulative data suggest that activation is followed by sequential induction of an endogenous peroxidase, iNOS, and COX-2, with NADPH oxidase-derived O2*- playing a minimal role in the direct generation of intracellular oxidants. To account for reported observations of intracellular tyrosine nitration late in the life cycles of macrophages, we propose a novel mechanism wherein iNOS-generated NO2- is used by COX-2 to produce NO2* as a terminal microbicidal oxidant and nitrating agent.
Collapse
|
38
|
Fexby S, Bjarnsholt T, Jensen PØ, Roos V, Høiby N, Givskov M, Klemm P. Biological Trojan horse: Antigen 43 provides specific bacterial uptake and survival in human neutrophils. Infect Immun 2007; 75:30-4. [PMID: 17030570 PMCID: PMC1828374 DOI: 10.1128/iai.01117-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli is a versatile pathogen causing millions of infections in humans every year. This bacterium can form multicellular aggregates when it expresses a self-associating protein, antigen 43 (Ag43), on its surface. We have discovered that Ag43-expressing E. coli cells are efficiently taken up by human defense cells, polymorphonuclear neutrophils (PMNs), in an opsonin-independent manner. Surprisingly, the phagocytosed bacteria were not immediately killed but resided as tight aggregates within the PMNs. Our observations indicate that Ag43-mediated uptake and survival in PMNs constitute a mechanism to subvert one of the primary defense mechanisms of the human body.
Collapse
Affiliation(s)
- Sara Fexby
- Center for Biomedical Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
39
|
Halliwell B. Phagocyte-derived reactive species: salvation or suicide? Trends Biochem Sci 2006; 31:509-15. [PMID: 16890439 DOI: 10.1016/j.tibs.2006.07.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 06/23/2006] [Accepted: 07/20/2006] [Indexed: 12/27/2022]
Abstract
Activated phagocytes produce "reactive oxygen, halogen and nitrogen species" that help to kill some types of microorganism. How these species destroy microorganisms remains, however, an enigma: both direct oxidative damage and indirect damage (whereby reactive species promote the actions of other antibacterial agents) are involved, and no single mechanism is likely to account for the killing of all microorganisms. Phagocyte-derived reactive species are known to injure human tissues and to contribute to inflammation. Recently, however, we have learned that they can also be anti-inflammatory by modulating the immune response. These data have implications for the proposed use of antioxidants to treat inflammation.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, MD7 Level 2, 117597 Singapore.
| |
Collapse
|
40
|
Song H, Bao S, Ramanadham S, Turk J. Effects of biological oxidants on the catalytic activity and structure of group VIA phospholipase A2. Biochemistry 2006; 45:6392-406. [PMID: 16700550 PMCID: PMC2044503 DOI: 10.1021/bi060502a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Group VIA phospholipase A(2) (iPLA(2)beta) is expressed in phagocytes, vascular cells, pancreatic islet beta-cells, neurons, and other cells and plays roles in transcriptional regulation, cell proliferation, apoptosis, secretion, and other events. A bromoenol lactone (BEL) suicide substrate used to study iPLA(2)beta functions inactivates iPLA(2)beta by alkylating Cys thiols. Because thiol redox reactions are important in signaling and some cells that express iPLA(2)beta produce biological oxidants, iPLA(2)beta might be subject to redox regulation. We report that biological concentrations of H(2)O(2), NO, and HOCl inactivate iPLA(2)beta, and this can be partially reversed by dithiothreitol (DTT). Oxidant-treated iPLA(2)beta modifications were studied by LC-MS/MS analyses of tryptic digests and included DTT-reversible events, e.g., formation of disulfide bonds and sulfenic acids, and others not so reversed, e.g., formation of sulfonic acids, Trp oxides, and Met sulfoxides. W(460) oxidation could cause irreversible inactivation because it is near the lipase consensus sequence ((463)GTSTG(467)), and site-directed mutagenesis of W(460) yields active mutant enzymes that exhibit no DTT-irreversible oxidative inactivation. Cys651-sulfenic acid formation could be one DTT-reversible inactivation event because Cys651 modification correlates closely with activity loss and its mutagenesis reduces sensitivity to inhibition. Intermolecular disulfide bond formation might also cause reversible inactivation because oxidant-treated iPLA(2)beta contains DTT-reducible oligomers, and oligomerization occurs with time- and temperature-dependent iPLA(2)beta inactivation that is attenuated by DTT or ATP. Subjecting insulinoma cells to oxidative stress induces iPLA(2)beta oligomerization, loss of activity, and subcellular redistribution and reduces the rate of release of arachidonate from phospholipids. These findings raise the possibility that redox reactions affect iPLA(2)beta functions.
Collapse
Affiliation(s)
- Haowei Song
- Medicine Department Mass Spectrometry Facility, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
41
|
Murphy R, DeCoursey TE. Charge compensation during the phagocyte respiratory burst. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:996-1011. [PMID: 16483534 DOI: 10.1016/j.bbabio.2006.01.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 01/04/2006] [Accepted: 01/11/2006] [Indexed: 11/25/2022]
Abstract
The phagocyte NADPH oxidase produces superoxide anion (O(2)(.-)) by the electrogenic process of moving electrons across the cell membrane. This charge translocation must be compensated to prevent self-inhibition by extreme membrane depolarization. Examination of the mechanisms of charge compensation reveals that these mechanisms perform several other vital functions beyond simply supporting oxidase activity. Voltage-gated proton channels compensate most of the charge translocated by the phagocyte NADPH oxidase in human neutrophils and eosinophils. Quantitative modeling of NADPH oxidase in the plasma membrane supports this conclusion and shows that if any other conductance is present, it must be miniscule. In addition to charge compensation, proton flux from the cytoplasm into the phagosome (a) helps prevent large pH excursions both in the cytoplasm and in the phagosome, (b) minimizes osmotic disturbances, and (c) provides essential substrate protons for the conversion of O(2)(*-) to H(2)O(2) and then to HOCl. A small contribution by K+ or Cl- fluxes may offset the acidity of granule contents to keep the phagosome pH near neutral, facilitating release of bactericidal enzymes. In summary, the mechanisms used by phagocytes for charge compensation during the respiratory burst would still be essential to phagocyte function, even if NADPH oxidase were not electrogenic.
Collapse
Affiliation(s)
- Ricardo Murphy
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|