1
|
Sen N, Anishchenko I, Bordin N, Sillitoe I, Velankar S, Baker D, Orengo C. Characterizing and explaining the impact of disease-associated mutations in proteins without known structures or structural homologs. Brief Bioinform 2022; 23:bbac187. [PMID: 35641150 PMCID: PMC9294430 DOI: 10.1093/bib/bbac187] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in human proteins lead to diseases. The structure of these proteins can help understand the mechanism of such diseases and develop therapeutics against them. With improved deep learning techniques, such as RoseTTAFold and AlphaFold, we can predict the structure of proteins even in the absence of structural homologs. We modeled and extracted the domains from 553 disease-associated human proteins without known protein structures or close homologs in the Protein Databank. We noticed that the model quality was higher and the Root mean square deviation (RMSD) lower between AlphaFold and RoseTTAFold models for domains that could be assigned to CATH families as compared to those which could only be assigned to Pfam families of unknown structure or could not be assigned to either. We predicted ligand-binding sites, protein-protein interfaces and conserved residues in these predicted structures. We then explored whether the disease-associated missense mutations were in the proximity of these predicted functional sites, whether they destabilized the protein structure based on ddG calculations or whether they were predicted to be pathogenic. We could explain 80% of these disease-associated mutations based on proximity to functional sites, structural destabilization or pathogenicity. When compared to polymorphisms, a larger percentage of disease-associated missense mutations were buried, closer to predicted functional sites, predicted as destabilizing and pathogenic. Usage of models from the two state-of-the-art techniques provide better confidence in our predictions, and we explain 93 additional mutations based on RoseTTAFold models which could not be explained based solely on AlphaFold models.
Collapse
Affiliation(s)
- Neeladri Sen
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Ivan Anishchenko
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Nicola Bordin
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Ian Sillitoe
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Christine Orengo
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
2
|
Kumar TV, Bhat M, Narayanachar SG, Narayan V, Srikanth AK, Anikar S, Shetty S. Molecular and clinical profiling in a large cohort of Asian Indians with glycogen storage disorders. PLoS One 2022; 17:e0270373. [PMID: 35834487 PMCID: PMC9282608 DOI: 10.1371/journal.pone.0270373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Glycogen storage disorders occur due to enzyme deficiencies in the glycogenolysis and gluconeogenesis pathway, encoded by 26 genes. GSD’s present with overlapping phenotypes with variable severity. In this series, 57 individuals were molecularly confirmed for 7 GSD subtypes and their demographic data, clinical profiles and genotype-phenotype co-relations are studied. Genomic DNA from venous blood samples was isolated from clinically affected individuals. Targeted gene panel sequencing covering 23 genes and Sanger sequencing were employed. Various bioinformatic tools were used to predict pathogenicity for new variations. Close parental consanguinity was seen in 76%. Forty-nine pathogenic variations were detected of which 27 were novel. Variations were spread across GSDIa, Ib, III, VI, IXa, b and c. The largest subgroup was GSDIII in 28 individuals with 24 variations (12 novel) in AGL. The 1620+1G>C intronic variation was observed in 5 with GSDVI (PYGL). A total of eleven GSDIX are described with the first Indian report of type IXb. This is the largest study of GSDs from India. High levels of consanguinity in the local population and employment of targeted sequencing panels accounted for the range of GSDs reported here.
Collapse
Affiliation(s)
| | - Meenakshi Bhat
- Clinical Genetics, Centre for Human Genetics, Bengaluru, India
- Pediatric Genetics, Indira Gandhi Institute of Child Health, Bengaluru, India
| | | | - Vinu Narayan
- Clinical Genetics, Centre for Human Genetics, Bengaluru, India
| | | | - Swathi Anikar
- Molecular Genetics, Centre for Human Genetics, Bengaluru, India
| | - Swathi Shetty
- Molecular Genetics, Centre for Human Genetics, Bengaluru, India
- * E-mail:
| |
Collapse
|
3
|
Cappello AR, Curcio R, Lappano R, Maggiolini M, Dolce V. The Physiopathological Role of the Exchangers Belonging to the SLC37 Family. Front Chem 2018; 6:122. [PMID: 29719821 PMCID: PMC5913288 DOI: 10.3389/fchem.2018.00122] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/30/2018] [Indexed: 12/14/2022] Open
Abstract
The human SLC37 gene family includes four proteins SLC37A1-4, localized in the endoplasmic reticulum (ER) membrane. They have been grouped into the SLC37 family due to their sequence homology to the bacterial organophosphate/phosphate (Pi) antiporter. SLC37A1-3 are the less characterized isoforms. SLC37A1 and SLC37A2 are Pi-linked glucose-6-phosphate (G6P) antiporters, catalyzing both homologous (Pi/Pi) and heterologous (G6P/Pi) exchanges, whereas SLC37A3 transport properties remain to be clarified. Furthermore, SLC37A1 is highly homologous to the bacterial glycerol 3-phosphate permeases, so it is supposed to transport also glycerol-3-phosphate. The physiological role of SLC37A1-3 is yet to be further investigated. SLC37A1 seems to be required for lipid biosynthesis in cancer cell lines, SLC37A2 has been proposed as a vitamin D and a phospho-progesterone receptor target gene, while mutations in the SLC37A3 gene appear to be associated with congenital hyperinsulinism of infancy. SLC37A4, also known as glucose-6-phosphate translocase (G6PT), transports G6P from the cytoplasm into the ER lumen, working in complex with either glucose-6-phosphatase-α (G6Pase-α) or G6Pase-β to hydrolyze intraluminal G6P to Pi and glucose. G6PT and G6Pase-β are ubiquitously expressed, whereas G6Pase-α is specifically expressed in the liver, kidney and intestine. G6PT/G6Pase-α complex activity regulates fasting blood glucose levels, whereas G6PT/G6Pase-β is required for neutrophil functions. G6PT deficiency is responsible for glycogen storage disease type Ib (GSD-Ib), an autosomal recessive disorder associated with both defective metabolic and myeloid phenotypes. Several kinds of mutations have been identified in the SLC37A4 gene, affecting G6PT function. An increased autoimmunity risk for GSD-Ib patients has also been reported, moreover, SLC37A4 seems to be involved in autophagy.
Collapse
Affiliation(s)
- Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
4
|
Schlebach JP, Narayan M, Alford C, Mittendorf KF, Carter BD, Li J, Sanders CR. Conformational Stability and Pathogenic Misfolding of the Integral Membrane Protein PMP22. J Am Chem Soc 2015; 137:8758-68. [PMID: 26102530 PMCID: PMC4507940 DOI: 10.1021/jacs.5b03743] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Despite broad biochemical
relevance, our understanding of the physiochemical
reactions that limit the assembly and cellular trafficking of integral
membrane proteins remains superficial. In this work, we report the
first experimental assessment of the relationship between the conformational
stability of a eukaryotic membrane protein and the degree to which
it is retained by cellular quality control in the secretory pathway.
We quantitatively assessed both the conformational equilibrium and
cellular trafficking of 12 variants of the α-helical membrane
protein peripheral myelin protein 22 (PMP22), the intracellular misfolding
of which is known to cause peripheral neuropathies associated with
Charcot–Marie–Tooth disease (CMT). We show that the
extent to which these mutations influence the energetics of Zn(II)-mediated
PMP22 folding is proportional to the observed reduction in cellular
trafficking efficiency. Strikingly, quantitative analyses also reveal
that the reduction of motor nerve conduction velocities in affected
patients is proportional to the extent of the mutagenic destabilization.
This finding provides compelling evidence that the effects of these
mutations on the energetics of PMP22 folding lie at the heart of the
molecular basis of CMT. These findings highlight conformational stability
as a key factor governing membrane protein biogenesis and suggest
novel therapeutic strategies for CMT.
Collapse
Affiliation(s)
| | | | - Catherine Alford
- #Flow Cytometry Core, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37232, United States
| | | | | | - Jun Li
- ⊥Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37232, United States
| | | |
Collapse
|
5
|
The Structure and Function of OxlT, the Oxalate Transporter of Oxalobacter formigenes. J Membr Biol 2014; 248:641-50. [DOI: 10.1007/s00232-014-9728-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/05/2014] [Indexed: 01/01/2023]
|
6
|
Abstract
The SLC37 family members are endoplasmic reticulum (ER)-associated sugar-phosphate/phosphate (P(i)) exchangers. Three of the four members, SLC37A1, SLC37A2, and SLC37A4, function as Pi-linked glucose-6-phosphate (G6P) antiporters catalyzing G6P:P(i) and P(i):P(i) exchanges. The activity of SLC37A3 is unknown. SLC37A4, better known as the G6P transporter (G6PT), has been extensively characterized, functionally and structurally, and is the best characterized family member. G6PT contains 10 transmembrane helices with both N and C termini facing the cytoplasm. The primary in vivo function of the G6PT protein is to translocate G6P from the cytoplasm into the ER lumen where it couples with either the liver/kidney/intestine-restricted glucose-6-phosphatase-α (G6Pase-α or G6PC) or the ubiquitously expressed G6Pase-β (or G6PC3) to hydrolyze G6P to glucose and P(i). The G6PT/G6Pase-α complex maintains interprandial glucose homeostasis, and the G6PT/G6Pase-β complex maintains neutrophil energy homeostasis and functionality. G6PT is highly selective for G6P and is competitively inhibited by cholorogenic acid and its derivatives. Neither SLC37A1 nor SLC37A2 can couple functionally with G6Pase-α or G6Pase-β, and the antiporter activities of SLC37A1 or SLC37A2 are not inhibited by cholorogenic acid. Deficiencies in G6PT cause glycogen storage disease type Ib (GSD-Ib), a metabolic and immune disorder. To date, 91 separate SLC37A4 mutations, including 39 missense mutations, have been identified in GSD-Ib patients. Characterization of missense mutations has yielded valuable information on functionally important residues in the G6PT protein. The biological roles of the other SLC37 proteins remain to be determined and deficiencies have not yet been correlated to diseases.
Collapse
Affiliation(s)
- Janice Y Chou
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | - Brian C Mansfield
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA; Foundation Fighting Blindness, Columbia, Maryland, USA
| |
Collapse
|
7
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: transporters. Br J Pharmacol 2013; 170:1706-96. [PMID: 24528242 PMCID: PMC3892292 DOI: 10.1111/bph.12450] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Transporters are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
8
|
|
9
|
Mohan S S, Perry JJP, Poulose N, Nair BG, Anilkumar G. Homology modeling of GLUT4, an insulin regulated facilitated glucose transporter and docking studies with ATP and its inhibitors. J Biomol Struct Dyn 2013; 26:455-64. [PMID: 19108584 DOI: 10.1080/07391102.2009.10507260] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
GLUT4 is a 12 transmembrane (TM) protein belonging to the Class I facilitated glucose transporter family that transports glucose into the cells in an insulin regulated manner. GLUT4 plays a key role in the maintenance of blood glucose homeostasis and inhibition of glucose transporter activity may lead to insulin resistance, hallmark of type 2 diabetes. No crystal structure data is available for any members of the facilitated glucose transporter family. Here, in this paper, we have generated a homology model of GLUT4 based on experimental data available on GLUT1, a Class I facilitated glucose transporter and the crystal structure data obtained from the Glycerol 3-phosphate transporter. The model identified regions in GLUT4 that form a channel for the transport of glucose along with the substrate interacting residues. Docking and electrostatic potential data analysis of GLUT4 model has mapped an ATP binding region close to the binding site of cytochalasin B and genistein, two GLUT4 inhibitors, and this may explain the mechanism by which these inhibitors could potentially affect the GLUT4 function.
Collapse
Affiliation(s)
- Suma Mohan S
- School of Biotechnology, Amrita University, Kollam, Kerala 690525, India
| | | | | | | | | |
Collapse
|
10
|
Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A, Eberschweiler PT, Gajdos V, Labrune P. Glucose-6-phosphatase deficiency. Orphanet J Rare Dis 2011; 6:27. [PMID: 21599942 PMCID: PMC3118311 DOI: 10.1186/1750-1172-6-27] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 05/20/2011] [Indexed: 01/01/2023] Open
Abstract
Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea). Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty), generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma) and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency). GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia) which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib). Mutations in the genes G6PC (17q21) and SLC37A4 (11q23) respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most commonly confirmed by G6PC (GSDIa) or SLC37A4 (GSDIb) gene analysis, and the indications of liver biopsy to measure G6P activity are getting rarer and rarer. Differential diagnoses include the other GSDs, in particular type III (see this term). However, in GSDIII, glycemia and lactacidemia are high after a meal and low after a fast period (often with a later occurrence than that of type I). Primary liver tumors and Pepper syndrome (hepatic metastases of neuroblastoma) may be evoked but are easily ruled out through clinical and ultrasound data. Antenatal diagnosis is possible through molecular analysis of amniocytes or chorionic villous cells. Pre-implantatory genetic diagnosis may also be discussed. Genetic counseling should be offered to patients and their families. The dietary treatment aims at avoiding hypoglycemia (frequent meals, nocturnal enteral feeding through a nasogastric tube, and later oral addition of uncooked starch) and acidosis (restricted fructose and galactose intake). Liver transplantation, performed on the basis of poor metabolic control and/or hepatocarcinoma, corrects hypoglycemia, but renal involvement may continue to progress and neutropenia is not always corrected in type Ib. Kidney transplantation can be performed in case of severe renal insufficiency. Combined liver-kidney grafts have been performed in a few cases. Prognosis is usually good: late hepatic and renal complications may occur, however, with adapted management, patients have almost normal life span. DISEASE NAME AND SYNONYMS: Glucose-6-phosphatase deficiency or G6P deficiency or glycogen storage disease type I or GSDI or type I glycogenosis or Von Gierke disease or Hepatorenal glycogenosis.
Collapse
Affiliation(s)
- Roseline Froissart
- Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Service de Pédiatrie, APHP, Clamart cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Law CJ, Enkavi G, Wang DN, Tajkhorshid E. Structural basis of substrate selectivity in the glycerol-3-phosphate: phosphate antiporter GlpT. Biophys J 2009; 97:1346-53. [PMID: 19720022 DOI: 10.1016/j.bpj.2009.06.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 06/22/2009] [Accepted: 06/30/2009] [Indexed: 11/15/2022] Open
Abstract
Major facilitators represent the largest superfamily of secondary active transporter proteins and catalyze the transport of an enormous variety of small solute molecules across biological membranes. However, individual superfamily members, although they may be architecturally similar, exhibit strict specificity toward the substrates they transport. The structural basis of this specificity is poorly understood. A member of the major facilitator superfamily is the glycerol-3-phosphate (G3P) transporter (GlpT) from the Escherichia coli inner membrane. GlpT is an antiporter that transports G3P into the cell in exchange for inorganic phosphate (P(i)). By combining large-scale molecular-dynamics simulations, mutagenesis, substrate-binding affinity, and transport activity assays on GlpT, we were able to identify key amino acid residues that confer substrate specificity upon this protein. Our studies suggest that only a few amino acid residues that line the transporter lumen act as specificity determinants. Whereas R45, K80, H165, and, to a lesser extent Y38, Y42, and Y76 contribute to recognition of both free P(i) and the phosphate moiety of G3P, the residues N162, Y266, and Y393 function in recognition of only the glycerol moiety of G3P. It is the latter interactions that give the transporter a higher affinity to G3P over P(i).
Collapse
Affiliation(s)
- Christopher J Law
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
12
|
Pan CJ, Chen SY, Lee S, Chou JY. Structure-function study of the glucose-6-phosphate transporter, an eukaryotic antiporter deficient in glycogen storage disease type Ib. Mol Genet Metab 2009; 96:32-7. [PMID: 19008136 PMCID: PMC3099254 DOI: 10.1016/j.ymgme.2008.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 11/29/2022]
Abstract
Glycogen storage disease type Ib is caused by deficiencies in the glucose-6-phosphate transporter (G6PT), a phosphate (P(i))-linked antiporter capable of homologous (P(i):P(i)) and heterologous (G6P:P(i)) exchanges similar to the bacterial hexose-6-phosphate transporter, UhpT. Protease protection and glycosylation scanning assays have suggested that G6PT is anchored to the endoplasmic reticulum by 10 transmembrane domains. However, recent homology modeling proposed that G6PT may contain 12 helices and that amino acids essential for the functions of UhpT also play important roles in G6PT. Site-directed mutagenesis and in vitro expression assays demonstrated that only one of the four residues critical for UhpT activity is essential in G6PT. Furthermore, glycosylation scanning and protease sensitivity assays showed that the 10-domain model of G6PT is more probable than the 12-domain UhpT-like model.
Collapse
Affiliation(s)
- Chi-Jiunn Pan
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Shih-Yin Chen
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Soojung Lee
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Janice Y. Chou
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
13
|
Tsigelny IF, Greenberg J, Kouznetsova V, Nigam SK. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function. J Bioinform Comput Biol 2008; 6:885-904. [PMID: 18942157 PMCID: PMC2676871 DOI: 10.1142/s0219720008003801] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 01/18/2008] [Accepted: 01/24/2008] [Indexed: 11/18/2022]
Abstract
Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the "rocker switch" may apply to certain MFS transporters, intermediate "tilted" states may exist under certain circumstances or as transitional structures. Although wet lab experimental confirmation is required, our results suggest that transport mechanisms in this transporter family should probably not be assumed to be conserved simply based on standard structural homology considerations. Furthermore, steered molecular dynamics elucidating energetic interactions of ligands with amino acid residues in an appropriately modeled transporter may have predictive value in understanding the impact of mutations and/or polymorphisms on transporter function.
Collapse
Affiliation(s)
- Igor F Tsigelny
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
14
|
Law CJ, Almqvist J, Bernstein A, Goetz RM, Huang Y, Soudant C, Laaksonen A, Hovmöller S, Wang DN. Salt-bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT. J Mol Biol 2008; 378:828-39. [PMID: 18395745 DOI: 10.1016/j.jmb.2008.03.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/05/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (P(i)) down its concentration gradient. Integrating information from a novel combination of structural, molecular dynamics simulations and biochemical studies, we identify the residues involved directly in binding of substrate to the inward-facing conformation of GlpT, thus defining the structural basis for the substrate-specificity of this transporter. The substrate binding mechanism involves protonation of a histidine residue at the binding site. Furthermore, our data suggest that the formation and breaking of inter- and intradomain salt bridges control the conformational change of the transporter that accompanies substrate translocation across the membrane. The mechanism we propose may be a paradigm for organophosphate:phosphate antiporters.
Collapse
Affiliation(s)
- Christopher J Law
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Matherly LH, Hou Z. Structure and function of the reduced folate carrier a paradigm of a major facilitator superfamily mammalian nutrient transporter. VITAMINS AND HORMONES 2008; 79:145-84. [PMID: 18804694 DOI: 10.1016/s0083-6729(08)00405-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Folates are essential for life and folate deficiency contributes to a host of health problems including cardiovascular disease, fetal abnormalities, neurological disorders, and cancer. Antifolates, represented by methotrexate, continue to occupy a unique niche among the modern day pharmacopoeia for cancer along with other pathological conditions. This article focuses on the biology of the membrane transport system termed the "reduced folate carrier" or RFC with a particular emphasis on RFC structure and function. The ubiquitously expressed RFC is the major transporter for folates in mammalian cells and tissues. Loss of RFC expression or function portends potentially profound physiological or developmental consequences. For chemotherapeutic antifolates used for cancer, loss of RFC expression or synthesis of mutant RFC protein with impaired function results in antifolate resistance due to incomplete inhibition of cellular enzyme targets and low levels of substrate for polyglutamate synthesis. The functional properties for RFC were first documented nearly 40 years ago in murine leukemia cells. Since 1994, when RFC was first cloned, tremendous advances in the molecular biology of RFC and biochemical approaches for studying the structure of polytopic membrane proteins have led to an increasingly detailed picture of the molecular structure of the carrier, including its membrane topology, its N-glycosylation, identification of functionally and structurally important domains and amino acids, and helix packing associations. Although no crystal structure for RFC is yet available, biochemical and molecular studies, combined with homology modeling, based on homologous bacterial major facilitator superfamily transporters such as LacY, now permit the development of experimentally testable hypotheses designed to establish RFC structure and mechanism.
Collapse
Affiliation(s)
- Larry H Matherly
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
16
|
Abstract
The major facilitator superfamily (MFS) represents the largest group of secondary active membrane transporters, and its members transport a diverse range of substrates. Recent work shows that MFS antiporters, and perhaps all members of the MFS, share the same three-dimensional structure, consisting of two domains that surround a substrate translocation pore. The advent of crystal structures of three MFS antiporters sheds light on their fundamental mechanism; they operate via a single binding site, alternating-access mechanism that involves a rocker-switch type movement of the two halves of the protein. In the sn-glycerol-3-phosphate transporter (GlpT) from Escherichia coli, the substrate-binding site is formed by several charged residues and a histidine that can be protonated. Salt-bridge formation and breakage are involved in the conformational changes of the protein during transport. In this review, we attempt to give an account of a set of mechanistic principles that characterize all MFS antiporters.
Collapse
Affiliation(s)
- Christopher J. Law
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, U.S.A;
| | - Peter C. Maloney
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, U.S.A;
| | - Da-Neng Wang
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, U.S.A;
| |
Collapse
|
17
|
Lemieux MJ. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure. Mol Membr Biol 2007; 24:333-41. [PMID: 17710637 DOI: 10.1080/09687680701496507] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.
Collapse
Affiliation(s)
- M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Alberta, Edmonton, Canada.
| |
Collapse
|
18
|
Almqvist J, Huang Y, Laaksonen A, Wang DN, Hovmöller S. Docking and homology modeling explain inhibition of the human vesicular glutamate transporters. Protein Sci 2007; 16:1819-29. [PMID: 17660252 PMCID: PMC2206968 DOI: 10.1110/ps.072944707] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
As membrane transporter proteins, VGLUT1-3 mediate the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells. This function is crucial for exocytosis and the role of glutamate as the major excitatory neurotransmitter in the central nervous system. The three transporters, sharing 76% amino acid sequence identity in humans, are highly homologous but differ in regional expression in the brain. Although little is known regarding their three-dimensional structures, hydropathy analysis on these proteins predicts 12 transmembrane segments connected by loops, a topology similar to other members in the major facilitator superfamily, where VGLUT1-3 have been phylogenetically classified. In this work, we present a three-dimensional model for the human VGLUT1 protein based on its distant bacterial homolog in the same superfamily, the glycerol-3-phosphate transporter from Escherichia coli. This structural model, stable during molecular dynamics simulations in phospholipid bilayers solvated by water, reveals amino acid residues that face its pore and are likely to affect substrate translocation. Docking of VGLUT1 substrates to this pore localizes two different binding sites, to which inhibitors also bind with an overall trend in binding affinity that is in agreement with previously published experimental data.
Collapse
Affiliation(s)
- Jonas Almqvist
- Division of Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-10691 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
19
|
Csala M, Marcolongo P, Lizák B, Senesi S, Margittai E, Fulceri R, Magyar JE, Benedetti A, Bánhegyi G. Transport and transporters in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1325-41. [PMID: 17466261 DOI: 10.1016/j.bbamem.2007.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 03/08/2007] [Accepted: 03/15/2007] [Indexed: 12/12/2022]
Abstract
Enzyme activities localized in the luminal compartment of the endoplasmic reticulum are integrated into the cellular metabolism by transmembrane fluxes of their substrates, products and/or cofactors. Most compounds involved are bulky, polar or even charged; hence, they cannot be expected to diffuse through lipid bilayers. Accordingly, transport processes investigated so far have been found protein-mediated. The selective and often rate-limiting transport processes greatly influence the activity, kinetic features and substrate specificity of the corresponding luminal enzymes. Therefore, the phenomenological characterization of endoplasmic reticulum transport contributes largely to the understanding of the metabolic functions of this organelle. Attempts to identify the transporter proteins have only been successful in a few cases, but recent development in molecular biology promises a better progress in this field.
Collapse
Affiliation(s)
- Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Transporter proteins facilitate the transfer of solutes across the cell membrane and have an intricate role in drug absorption, distribution and excretion. Because of their substrate promiscuity, several transporters represent viable pharmacological targets for enhancing drug absorption, preventing drug toxicity or facilitating localized tissue delivery. However, the slow emergence of high-resolution structures for these proteins has hampered the intelligent design of transporter substrates. Nonetheless, currently available functional, as well as structural, data provide an attractive scaffold for generating fusion models that merge substrate-based SARs and protein-based homology structures. The resultant models offer features that extend single modality paradigms in predictive function.
Collapse
Affiliation(s)
- Cheng Chang
- Biophysics Program, Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
21
|
Chang C, Swaan PW. Computational approaches to modeling drug transporters. Eur J Pharm Sci 2005; 27:411-24. [PMID: 16274971 DOI: 10.1016/j.ejps.2005.09.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/27/2005] [Indexed: 11/15/2022]
Abstract
Computational modeling has advanced our understanding of drug absorption, tissue distribution, excretion and toxicity profiles by providing both direct and indirect knowledge of drug-transporter interactions that would otherwise be unavailable using experimental methods. Currently, two complementary approaches are available in modeling transporters: substrate-based and transporter-based methods. The transporter-based approach directly predicts the transporter's three-dimensional structure to assist in understanding the drug transport process, whereas substrate-based models infer such information by studying a group of substrates or inhibitors with measured activities. In this review, the available strategies in both transporter-based and substrate-based approaches are explained and illustrated with applications and case studies. With increasing computational power and continuously improving modeling algorithms, computational techniques can assist in further understanding transporter-substrate interactions as well as, the optimization of transporter-directed drug design.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|
22
|
Yang Q, Wang X, Ye L, Mentrikoski M, Mohammadi E, Kim YM, Maloney PC. Experimental tests of a homology model for OxlT, the oxalate transporter of Oxalobacter formigenes. Proc Natl Acad Sci U S A 2005; 102:8513-8. [PMID: 15932938 PMCID: PMC1150865 DOI: 10.1073/pnas.0503533102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Indexed: 11/18/2022] Open
Abstract
Using the x-ray structure of the glycerol 3-phosphate transporter (GlpT), we devised a model for the distantly related oxalate transporter, OxlT. The model accommodates all earlier biochemical information on OxlT, including the idea that Lys-355 lies on the permeation pathway, and predicts that Lys-355 and a second positive center, Arg-272, comprise the binding site for divalent oxalate. Study of R272K, R272A, and R272Q derivatives verifies that Arg-272 is essential, and comparisons with GlpT show that both anion transporters bind substrates within equivalent domains. In 22 single-cysteine variants in TM7 and TM8, topology as marked by accessibility to Oregon green maleimide is predicted by the model, with similar concordance for 52 positions probed earlier. The model also reconciles cross-linking of a cysteine pair placed near the periplasmic ends of TM2 and TM7, and retrospective study of TM2 and TM11 confirms that positions supporting disulfide trapping lie at a helical interface. Our work describes a pathway to the modeling of OxlT and other transporters in the major facilitator superfamily and outlines simple experimental tests to evaluate such proposals.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Physiology, Johns Hopkins Medical School, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Lemieux MJ, Huang Y, Wang DN. Glycerol-3-phosphate transporter of Escherichia coli: structure, function and regulation. Res Microbiol 2005; 155:623-9. [PMID: 15380549 DOI: 10.1016/j.resmic.2004.05.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 05/14/2004] [Indexed: 11/22/2022]
Abstract
Glycerol-3-phosphate (G3P) plays a major role in glycolysis and phospholipid biosynthesis in the cell. Escherichia coli uses a secondary membrane transporter protein, GlpT, to uptake G3P into the cytoplasm. The crystal structure of the protein was recently determined to 3.3 A resolution. The protein consists of an N- and a C-terminal domain, each formed by a compact bundle of six transmembrane alpha-helices. The substrate-translocation pore is found at the domain interface and faces the cytoplasm. At the closed end of the pore is the substrate binding site, which is formed by two arginine residues. In combination with biochemical data, the crystal structure suggests a single binding site, alternating access mechanism for substrate translocation, namely, the substrate bound at the N- and C-terminal domain interface is transported across the membrane via a rocker-switch type of movement of the domains. Furthermore, GlpT may serve as a structural and mechanistic paradigm for other secondary active membrane transporters.
Collapse
Affiliation(s)
- M Joanne Lemieux
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|