1
|
Oppong D, Schiff W, Shivamadhu MC, Ahn YH. Chemistry and biology of enzymes in protein glutathionylation. Curr Opin Chem Biol 2023; 75:102326. [PMID: 37245422 PMCID: PMC10524987 DOI: 10.1016/j.cbpa.2023.102326] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023]
Abstract
Protein S-glutathionylation is emerging as a central oxidation that regulates redox signaling and biological processes linked to diseases. In recent years, the field of protein S-glutathionylation has expanded by developing biochemical tools for the identification and functional analyses of S-glutathionylation, investigating knockout mouse models, and developing and evaluating chemical inhibitors for enzymes involved in glutathionylation. This review will highlight recent studies of two enzymes, glutathione transferase omega 1 (GSTO1) and glutaredoxin 1 (Grx1), especially introducing their glutathionylation substrates associated with inflammation, cancer, and neurodegeneration and showcasing the advancement of their chemical inhibitors. Lastly, we will feature protein substrates and chemical inducers of LanC-like protein (LanCL), the first enzyme in protein C-glutathionylation.
Collapse
Affiliation(s)
- Daniel Oppong
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA
| | - William Schiff
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA
| | | | - Young-Hoon Ahn
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Liao P, Wu QY, Li S, Hu KB, Liu HL, Wang HY, Long ZY, Lu XM, Wang YT. The ameliorative effects and mechanisms of abscisic acid on learning and memory. Neuropharmacology 2023; 224:109365. [PMID: 36462635 DOI: 10.1016/j.neuropharm.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Abscisic acid (ABA), a conserved hormone existing in plants and animals, not only regulates blood glucose and inflammation but also has good therapeutic effects on obesity, diabetes, atherosclerosis and inflammatory diseases in animals. Studies have shown that exogenous ABA can pass the blood-brain barrier and inhibit neuroinflammation, promote neurogenesis, enhance synaptic plasticity, improve learning, memory and cognitive ability in the central nervous system. At the same time, ABA plays a crucial role in significant improvement of Alzheimer's disease, depression, and anxiety. Here we review the previous research progress of ABA on the physiological effects and clinical application in the related diseases. By summarizing the biological functions of ABA, we aim to reveal the possible mechanisms of ameliorative function of ABA on learning and memory, to provide a theoretical basis that ABA as a novel and safe drug improves learning memory and cognitive impairment in central system diseases such as aging, neurodegenerative diseases and traumatic brain injury.
Collapse
Affiliation(s)
- Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qing-Yun Wu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kai-Bin Hu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hui-Lin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
3
|
Gonzalez Porras MA, Gransee HM, Denton TT, Shen D, Webb KL, Brinker CJ, Noureddine A, Sieck GC, Mantilla CB. CTB-targeted protocells enhance ability of lanthionine ketenamine analogs to induce autophagy in motor neuron-like cells. Sci Rep 2023; 13:2581. [PMID: 36781993 PMCID: PMC9925763 DOI: 10.1038/s41598-023-29437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Impaired autophagy, a cellular digestion process that eliminates proteins and damaged organelles, has been implicated in neurodegenerative diseases, including motor neuron disorders. Motor neuron targeted upregulation of autophagy may serve as a promising therapeutic approach. Lanthionine ketenamine (LK), an amino acid metabolite found in mammalian brain tissue, activates autophagy in neuronal cell lines. We hypothesized that analogs of LK can be targeted to motor neurons using nanoparticles to improve autophagy flux. Using a mouse motor neuron-like hybrid cell line (NSC-34), we tested the effect of three different LK analogs on autophagy modulation, either alone or loaded in nanoparticles. For fluorescence visualization of autophagy flux, we used a mCherry-GFP-LC3 plasmid reporter. We also evaluated protein expression changes in LC3-II/LC3-I ratio obtained by western blot, as well as presence of autophagic vacuoles per cell obtained by electron microscopy. Delivering LK analogs with targeted nanoparticles significantly enhanced autophagy flux in differentiated motor neuron-like cells compared to LK analogs alone, suggesting the need of a delivery vehicle to enhance their efficacy. In conclusion, LK analogs loaded in nanoparticles targeting motor neurons constitute a promising treatment option to induce autophagy flux, which may serve to mitigate motor neuron degeneration/loss and preserve motor function in motor neuron disease.
Collapse
Affiliation(s)
- Maria A Gonzalez Porras
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Heather M Gransee
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Travis T Denton
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd, College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA, USA
| | - Dunxin Shen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA, USA
| | - Kevin L Webb
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, USA
| | - Achraf Noureddine
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Gary C Sieck
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Carlos B Mantilla
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- MB2-758, St Mary's Hospital, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Single-Cell RNAseq Resolve the Potential Effects of LanCL1 Gene in the Mouse Testis. Cells 2022; 11:cells11244135. [PMID: 36552898 PMCID: PMC9777014 DOI: 10.3390/cells11244135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Infertility affects lots of couples, half of which are caused by male factors. The LanCL1 gene is highly expressed in testis specifically, which might affect the development of sperms. In order to understand the potential functions of the LanCL1 gene in the testis, this study was conducted with constructed transgenic LanCL1 knockout mice. The mouse breeding experiment, semen analysis and single-cell RNAseq of testicular tissue were performed. Results suggested that the LanCL1 gene would significantly influence the reproduction ability and sperm motility of male mice. Single-cell RNAseq also confirmed the high expression of the LanCL1 gene in the spermatocytes and spermatids. Downregulating the LanCL1 gene expression could promote M2 macrophage polarity to maintain testicular homeostasis. Moreover, the LanCL1 gene could affect both the germ cells and stromal cells through various pathways such as the P53 signaling and the PPAR signaling pathway to disturb the normal process of spermatogenesis. However, no effects of the LanCL1 gene in testosterone synthesis and serum testosterone level were shown. Further studies are needed to discuss the mechanisms of the LanCL1 gene in the various cells of the testis independently.
Collapse
|
5
|
Huang C, Yang C, Pang D, Li C, Gong H, Cao X, He X, Chen X, Mu B, Cui Y, Liu W, Luo Q, Cheng A, Jia L, Chen M, Xiao B, Chen Z. Animal models of male subfertility targeted on LanCL1-regulated spermatogenic redox homeostasis. Lab Anim (NY) 2022; 51:133-145. [PMID: 35469022 DOI: 10.1038/s41684-022-00961-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
Abstract
Oxidative stress in spermatozoa is a major contributor to male subfertility, which makes it an informed choice to generate animal models of male subfertility with targeted modifications of the antioxidant systems. However, the critical male germ cell-specific antioxidant mechanisms have not been well defined yet. Here we identify LanCL1 as a major male germ cell-specific antioxidant gene, reduced expression of which is related to human male infertility. Mice deficient in LanCL1 display spermatozoal oxidative damage and impaired male fertility. Histopathological studies reveal that LanCL1-mediated antioxidant response is required for mouse testicular homeostasis, from the initiation of spermatogenesis to the maintenance of viability and functionality of male germ cells. Conversely, a mouse model expressing LanCL1 transgene is protected against high-fat-diet/obesity-induced oxidative damage and subfertility. We further show that germ cell-expressed LanCL1, in response to spermatogenic reactive oxygen species, is regulated by transcription factor specific protein 1 (SP1) during spermatogenesis. This study demonstrates a critical role for the SP1-LanCL1 axis in regulating testicular homeostasis and male fertility mediated by redox balance, and provides evidence that LanCL1 genetically modified mice have attractive applications as animal models of male subfertility.
Collapse
Affiliation(s)
- Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Chengcheng Yang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Dejiang Pang
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Chao Li
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Huan Gong
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xiyue Cao
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xia He
- Clinical Laboratory of the People's Hospital of Ya'an, Ya'an, P. R. China
| | - Xueyao Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bin Mu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yiyuan Cui
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Anchun Cheng
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lanlan Jia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Mina Chen
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Bo Xiao
- Department of Biology, Southern University of Science and Technology, Shenzhen, P. R. China.
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.
| |
Collapse
|
6
|
Hensley K, Danekas A, Farrell W, Garcia T, Mehboob W, White M. At the intersection of sulfur redox chemistry, cellular signal transduction and proteostasis: A useful perspective from which to understand and treat neurodegeneration. Free Radic Biol Med 2022; 178:161-173. [PMID: 34863876 DOI: 10.1016/j.freeradbiomed.2021.11.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
Although we can thoroughly describe individual neurodegenerative diseases from the molecular level through cell biology to histology and clinical presentation, our understanding of them and hence treatment gains have been depressingly limited, partly due to difficulty conceptualizing different diseases as variations within the same overarching pathological rubric. This review endeavors to create such rubric by knitting together the seemingly disparate phenomena of oxidative stress, dysregulated proteostasis, and neuroinflammation into a cohesive triad that highlights mechanistic connectivities. We begin by considering that brain metabolic demands necessitate careful control of oxidative homeostasis, largely through sulfur redox chemistry and glutathione (GSH). GSH is essential for brain antioxidant defense, but also for redox signaling and thus neuroinflammation. Delicate regulation of neuroinflammatory pathways (NFκB, MAPK-p38, and NLRP3 particularly) occurs through S-glutathionylation of protein phosphatases but also through redox-sensing elements like ASK1; the 26S proteasome and cysteine deubiquitinases (DUBs). The relationship amongst triad elements is underscored by our discovery that LanCL1 (lanthionine synthetase-like protein-1) protects against oxidant toxicity; mediates GSH-dependent reactivation of oxidized DUBs; and antagonizes the pro-inflammatory cytokine, tumor necrosis factor-α (TNFα). We highlight currently promising pharmacological efforts to modulate key triad elements and suggest nexus points that might be exploited to further clinical advantage.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA.
| | - Alexis Danekas
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - William Farrell
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Tiera Garcia
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Wafa Mehboob
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Matthew White
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| |
Collapse
|
7
|
Lim KS, Kim HC, Choi BH, Son JW, Lee KT, Choi TJ, Cho YM, Chai HH, Park JE, Park W, Lim C, Kim JM, Lim D. Identification of Monoallelically Expressed Genes Associated with Economic Traits in Hanwoo (Korean Native Cattle). Animals (Basel) 2021; 12:ani12010084. [PMID: 35011190 PMCID: PMC8749587 DOI: 10.3390/ani12010084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Hanwoo, an indigenous Korean cattle breed, has been genetically improved by selecting superior sires called Korean-proven bulls. However, cows still contribute half of the genetic stock of their offspring, and allelic-specific expressed genes have potential, as selective targets of cows, to enhance genetic gain. The aim of this study is to identify genes that have MAEs based on both the genome and transcriptome and to estimate their effects on breeding values (BVs) for economically important traits in Hanwoo. We generated resequencing data for the parents and RNA-sequencing data for the muscle, fat, and brain tissues of the offspring. A total of 3801 heterozygous single nucleotide polymorphisms (SNPs) in offspring were identified and they were located in 1569 genes. Only 14 genes showed MAE (seven expressing maternal alleles and seven expressing paternal alleles). Tissue-specific MAE was observed, and LANCL1 showed maternal allele expression across all tissues. MAE genes were enriched for the biological process of cell death and angiogenesis, which included ACKR3 and PDCL3 genes, whose SNPs were significantly associated with BVs of lean meat production-related traits, such as weight at 12 months of age, carcass weight, and loin eye area. In the current study, monoallelically expressed genes were identified in various adult tissues and these genes were associated with genetic capacity in Hanwoo.
Collapse
Affiliation(s)
- Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Hyung-Chul Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Ju-Whan Son
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Tae-Jeong Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Yong-Min Cho
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Han-Ha Chai
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Chiwoong Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| |
Collapse
|
8
|
Lai KY, Galan SRG, Zeng Y, Zhou TH, He C, Raj R, Riedl J, Liu S, Chooi KP, Garg N, Zeng M, Jones LH, Hutchings GJ, Mohammed S, Nair SK, Chen J, Davis BG, van der Donk WA. LanCLs add glutathione to dehydroamino acids generated at phosphorylated sites in the proteome. Cell 2021; 184:2680-2695.e26. [PMID: 33932340 DOI: 10.1016/j.cell.2021.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/22/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Enzyme-mediated damage repair or mitigation, while common for nucleic acids, is rare for proteins. Examples of protein damage are elimination of phosphorylated Ser/Thr to dehydroalanine/dehydrobutyrine (Dha/Dhb) in pathogenesis and aging. Bacterial LanC enzymes use Dha/Dhb to form carbon-sulfur linkages in antimicrobial peptides, but the functions of eukaryotic LanC-like (LanCL) counterparts are unknown. We show that LanCLs catalyze the addition of glutathione to Dha/Dhb in proteins, driving irreversible C-glutathionylation. Chemo-enzymatic methods were developed to site-selectively incorporate Dha/Dhb at phospho-regulated sites in kinases. In human MAPK-MEK1, such "elimination damage" generated aberrantly activated kinases, which were deactivated by LanCL-mediated C-glutathionylation. Surveys of endogenous proteins bearing damage from elimination (the eliminylome) also suggest it is a source of electrophilic reactivity. LanCLs thus remove these reactive electrophiles and their potentially dysregulatory effects from the proteome. As knockout of LanCL in mice can result in premature death, repair of this kind of protein damage appears important physiologically.
Collapse
Affiliation(s)
- Kuan-Yu Lai
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sébastien R G Galan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Yibo Zeng
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK; UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0FA, UK; The Rosalind Franklin Institute, Oxfordshire OX11 0FA, UK
| | - Tianhui Hina Zhou
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang He
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ritu Raj
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Jitka Riedl
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Shi Liu
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - K Phin Chooi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Neha Garg
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Min Zeng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lyn H Jones
- Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02115, USA
| | - Graham J Hutchings
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0FA, UK; Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Shabaz Mohammed
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK; The Rosalind Franklin Institute, Oxfordshire OX11 0FA, UK
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Benjamin G Davis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK; The Rosalind Franklin Institute, Oxfordshire OX11 0FA, UK.
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Downey A, Olcott M, Spector D, Bird K, Ter Doest A, Pierce Z, Quach E, Sparks S, Super C, Naifeh J, Powers A, White M, Hensley K. Stable knockout of lanthionine synthase C-like protein-1 (LanCL1) from HeLa cells indicates a role for LanCL1 in redox regulation of deubiquitinating enzymes. Free Radic Biol Med 2020; 161:115-124. [PMID: 33049334 DOI: 10.1016/j.freeradbiomed.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Lanthionine synthase C-like protein-1 (LanCL1) is a glutathione (GSH)-binding protein of uncertain function, widely expressed in mammalian cells. Recent data suggests that LanCL1 has glutathione S-transferase (GST)-like activity, while other reports claim that LanCL1 suppresses mitogen-activated kinase (MAPK) phosphorylation. In the present study, recombinant human LanCL1 had less than 10% the specific activity of GST. When CRISPR-Cas9 was used to stably ablate LanCL1 from HeLa cells, the resulting line was sensitized to H2O2 toxicity. [GSH], [GSSG], [GSH]/[GSSG] and GST activity were unaltered by LanCL1 knockout but glutathione reductase and glutathione peroxidase activities were significantly elevated. LanCL1-KO cells did not differ in basal or H2O2-induced p38-MAPK, ERK p42/p44 or JNK phosphorylation; however, MAPK-targeted transcription factor regulators c-Jun and IκBα were significantly decreased. Because c-Jun and IκBα levels are ubiquitin regulated, experiments addressed the hypothesis that LanCL1 affects ubiquitination dynamics. In the presence of the 26S proteasome inhibitor bortezomib, ubiquitinated proteins accumulated faster in LanCL1-KO cells, suggesting that LanCL1 positively regulates deubiquitination. The activity of ubiquitin C-terminal hydrolase (UCH), a major deubiquitinase (DUB) subclass, was significantly decreased in LanCL1-KO cells while protein levels of A20/TNFAIP3, USP9X and USP10 DUBs were significantly reduced. UCH activity in HeLa cell lysates was lost upon treatment with H2O2 and significantly recovered by addition of recombinant LanCL1 plus GSH. Taken together these data suggest that LanCL1 likely does not act as a GST-like enzyme in vivo, but rather modulates ubiquitin-dependent cell signaling pathways through positive regulation of redox-sensitive DUBs.
Collapse
Affiliation(s)
- Aaron Downey
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Melissa Olcott
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Daniel Spector
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Kayla Bird
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | | | - Zachary Pierce
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Evan Quach
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Sawyer Sparks
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Christa Super
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Jefferey Naifeh
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Andrea Powers
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Matthew White
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Kenneth Hensley
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA.
| |
Collapse
|
10
|
Zhang F, Qi N, Zeng Y, Bao M, Chen Y, Liao J, Wei L, Cao D, Huang S, Luo Q, Jiang Y, Mo Z. The Endogenous Alterations of the Gut Microbiota and Feces Metabolites Alleviate Oxidative Damage in the Brain of LanCL1 Knockout Mice. Front Microbiol 2020; 11:557342. [PMID: 33117306 PMCID: PMC7575697 DOI: 10.3389/fmicb.2020.557342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
Altered composition of the gut microbiota has been observed in many neurodegenerative diseases. LanCL1 has been proven to protect neurons and reduce oxidative stress. The present study was designed to investigate alterations of the gut microbiota in LanCL1 knockout mice and to study the interactions between gut bacteria and the brain. Wild-type and LanCL1 knockout mice on a normal chow diet were evaluated at 4 and 8-9 weeks of age. 16s rRNA sequence and untargeted metabolomics analyses were performed to investigate changes in the gut microbiota and feces metabolites. Real-time polymerase chain reaction analysis, AB-PAS staining, and a TUNEL assay were performed to detect alterations in the gut and brain of knockout mice. The serum cytokines of 9-week-old knockout mice, which were detected by a multiplex cytokine assay, were significantly increased. In the central nervous system, there was no increase of antioxidant defense genes even though there was only low activity of glutathione S-transferase in the brain of 8-week-old knockout mice. Interestingly, the gut tight junctions, zonula occludens-1 and occludin, also displayed a downregulated expression level in 8-week-old knockout mice. On the contrary, the production of mucus increased in 8-week-old knockout mice. Moreover, the compositions of the gut microbiota and feces metabolites markedly changed in 8-week-old knockout mice but not in 4-week-old mice. Linear discriminant analysis and t-tests identified Akkermansia as a specific abundant bacteria in knockout mice. Quite a few feces metabolites that have protective effects on the brain were reduced in 8-week-old knockout mice. However, N-acetylsphingosine was the most significant downregulated feces metabolite, which may cause the postponement of neuronal apoptosis. To further investigate the effect of the gut microbiota, antibiotics treatment was given to both types of mice from 5 to 11 weeks of age. After treatment, a significant increase of oxidative damage in the brain of knockout mice was observed, which may have been alleviated by the gut microbiota before. In conclusion, alterations of the gut microbiota and feces metabolites alleviated oxidative damage to the brain of LanCL1 knockout mice, revealing that an endogenous feedback loop mechanism of the microbiota-gut-brain axis maintains systemic homeostasis.
Collapse
Affiliation(s)
- Fangxing Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Nana Qi
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Mengying Bao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yang Chen
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinling Liao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Luyun Wei
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, China
| | - Dehao Cao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, China
| | - Qianqian Luo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| |
Collapse
|
11
|
Tang R, Wu Z, Lu F, Wang C, Wu B, Wang J, Zhu Y. Identification of Critical Pathways and Hub Genes in LanCL1-Overexpressed Prostate Cancer Cells. Onco Targets Ther 2020; 13:7653-7664. [PMID: 32821124 PMCID: PMC7423411 DOI: 10.2147/ott.s252958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
Background Prostate cancer is one of the most common malignancies in urology, especially in developed countries. Our previous studies showed that Lanthionine synthase C-like protein 1 (LanCL1) can promote the proliferation of prostate cancer cells and protect cells from oxidative stress. Also, LanCL1 protects cells by inhibiting the JNK signaling pathway after H2O2 treatment. Materials and Methods In our study, we analyzed the data of RNA-seq to identify the DEGs after LanCL1 overexpression. We performed a functional enrichment analysis with gene set enrichment analysis (GSEA) and a database for annotation, visualization, and integrated discovery (DAVID). We also identified the critical hub gene correlated with disease prognosis by Cox regression analysis. Results A total of 8928 DEGs were identified. Through the analysis of GO and KEGG, we found that DEGs are significantly enriched in categories related to metabolism, cancer-related signaling pathways, and inflammation. The top 15 hub genes were then identified and ranked by degree from the protein–protein interaction network. Survival analysis showed 4 hub genes related to disease prognosis and ICAM1 expression is an independent risk factor for the prognosis. Conclusion Our results suggest the critical genes and pathways that might play key roles after LanCL1 overexpression in prostate cancer. We also provide candidate gene targets that might play important roles in prostate cancer development.
Collapse
Affiliation(s)
- Run Tang
- Department of Urology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, People's Republic of China
| | - Zeming Wu
- Department of Urology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, People's Republic of China
| | - Feng Lu
- Department of Urology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, People's Republic of China
| | - Cheng Wang
- Department of Urology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, People's Republic of China
| | - Bo Wu
- Department of Urology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, People's Republic of China
| | - Jianqing Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Yingxiang Zhu
- Department of Urology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
12
|
Shen D, Hensley K, Denton TT. An overview of sulfur-containing compounds originating from natural metabolites: Lanthionine ketimine and its analogues. Anal Biochem 2019; 591:113543. [PMID: 31862405 DOI: 10.1016/j.ab.2019.113543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Dunxin Shen
- Department Pharmaceutical Sciences, Washington State University, College of Pharmacy & Pharmaceutical Sciences, 412 East Spokane Falls Blvd, Spokane, WA, 99202-2131, USA
| | - Kenneth Hensley
- Department of Biochemistry, Molecular and Cell Sciences, Arkansas College of Osteopathic Medicine, 7000 Chad Colley Blvd, Fort Smith, AR, 72916, USA
| | - Travis T Denton
- Department Pharmaceutical Sciences, Washington State University, College of Pharmacy & Pharmaceutical Sciences, 412 East Spokane Falls Blvd, Spokane, WA, 99202-2131, USA.
| |
Collapse
|
13
|
LanCL1 promotes motor neuron survival and extends the lifespan of amyotrophic lateral sclerosis mice. Cell Death Differ 2019; 27:1369-1382. [PMID: 31570855 PMCID: PMC7206132 DOI: 10.1038/s41418-019-0422-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons. Improving neuronal survival in ALS remains a significant challenge. Previously, we identified Lanthionine synthetase C-like protein 1 (LanCL1) as a neuronal antioxidant defense gene, the genetic deletion of which causes apoptotic neurodegeneration in the brain. Here, we report in vivo data using the transgenic SOD1G93A mouse model of ALS indicating that CNS-specific expression of LanCL1 transgene extends lifespan, delays disease onset, decelerates symptomatic progression, and improves motor performance of SOD1G93A mice. Conversely, CNS-specific deletion of LanCL1 leads to neurodegenerative phenotypes, including motor neuron loss, neuroinflammation, and oxidative damage. Analysis reveals that LanCL1 is a positive regulator of AKT activity, and LanCL1 overexpression restores the impaired AKT activity in ALS model mice. These findings indicate that LanCL1 regulates neuronal survival through an alternative mechanism, and suggest a new therapeutic target in ALS.
Collapse
|
14
|
Tabassum R, Jeong NY. Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases. Int J Med Sci 2019; 16:1386-1396. [PMID: 31692944 PMCID: PMC6818192 DOI: 10.7150/ijms.36516] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Oxidative phosphorylation is a source of energy production by which many cells satisfy their energy requirements. Endogenous reactive oxygen species (ROS) are by-products of oxidative phosphorylation. ROS are formed due to the inefficiency of oxidative phosphorylation, and lead to oxidative stress that affects mitochondrial metabolism. Chronic oxidative stress contributes to the onset of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The immediate consequences of oxidative stress include lipid peroxidation, protein oxidation, and mitochondrial deoxyribonucleic acid (mtDNA) mutation, which induce neuronal cell death. Mitochondrial binding of amyloid-β (Aβ) protein has been identified as a contributing factor in AD. In PD and HD, respectively, α-synuclein (α-syn) and huntingtin (Htt) gene mutations have been reported to exacerbate the effects of oxidative stress. Similarly, abnormalities in mitochondrial dynamics and the respiratory chain occur in ALS due to dysregulation of mitochondrial complexes II and IV. However, oxidative stress-induced dysfunctions in neurodegenerative diseases can be mitigated by the antioxidant function of hydrogen sulfide (H2S), which also acts through the potassium (KATP/K+) ion channel and calcium (Ca2+) ion channels to increase glutathione (GSH) levels. The pharmacological activity of H2S is exerted by both inorganic and organic compounds. GSH, glutathione peroxidase (Gpx), and superoxide dismutase (SOD) neutralize H2O2-induced oxidative damage in mitochondria. The main purpose of this review is to discuss specific causes and effects of mitochondrial oxidative stress in neurodegenerative diseases, and how these are impacted by the antioxidant functions of H2S to support the development of advancements in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Rubaiya Tabassum
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
- Department of Medicine, Graduate School, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
- Department of Medicine, Graduate School, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
| |
Collapse
|
15
|
Bennink S, von Bohl A, Ngwa CJ, Henschel L, Kuehn A, Pilch N, Weißbach T, Rosinski AN, Scheuermayer M, Repnik U, Przyborski JM, Minns AM, Orchard LM, Griffiths G, Lindner SE, Llinás M, Pradel G. A seven-helix protein constitutes stress granules crucial for regulating translation during human-to-mosquito transmission of Plasmodium falciparum. PLoS Pathog 2018; 14:e1007249. [PMID: 30133543 PMCID: PMC6122839 DOI: 10.1371/journal.ppat.1007249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/04/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022] Open
Abstract
The complex life-cycle of the human malaria parasite Plasmodium falciparum requires a high degree of tight coordination allowing the parasite to adapt to changing environments. One of the major challenges for the parasite is the human-to-mosquito transmission, which starts with the differentiation of blood stage parasites into the transmissible gametocytes, followed by the rapid conversion of the gametocytes into gametes, once they are taken up by the blood-feeding Anopheles vector. In order to pre-adapt to this change of host, the gametocytes store transcripts in stress granules that encode proteins needed for parasite development in the mosquito. Here we report on a novel stress granule component, the seven-helix protein 7-Helix-1. The protein, a homolog of the human stress response regulator LanC-like 2, accumulates in stress granules of female gametocytes and interacts with ribonucleoproteins, such as CITH, DOZI, and PABP1. Malaria parasites lacking 7-Helix-1 are significantly impaired in female gametogenesis and thus transmission to the mosquito. Lack of 7-Helix-1 further leads to a deregulation of components required for protein synthesis. Consistently, inhibitors of translation could mimic the 7-Helix-1 loss-of-function phenotype. 7-Helix-1 forms a complex with the RNA-binding protein Puf2, a translational regulator of the female-specific antigen Pfs25, as well as with pfs25-coding mRNA. In accord, gametocytes deficient of 7-Helix-1 exhibit impaired Pfs25 synthesis. Our data demonstrate that 7-Helix-1 constitutes stress granules crucial for regulating the synthesis of proteins needed for life-cycle progression of Plasmodium in the mosquito vector.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Andreas von Bohl
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Che J. Ngwa
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Leonie Henschel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Andrea Kuehn
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Nicole Pilch
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Tim Weißbach
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Alina N. Rosinski
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | | | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Allen M. Minns
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Lindsey M. Orchard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
- Department of Chemistry & Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, United States of America
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
LanCL1 attenuates ischemia-induced oxidative stress by Sirt3-mediated preservation of mitochondrial function. Brain Res Bull 2018; 142:216-223. [PMID: 30075199 DOI: 10.1016/j.brainresbull.2018.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/23/2022]
Abstract
Lanthionine synthetase C-like protein 1 (LanCL1) is homologous to prokaryotic lanthionine cyclases, and has been shown to have novel functions in neuronal redox homeostasis. A recent study showed that LanCL1 expression was developmental and activity-dependent regulated, and LanCL1 transgene protected neurons against oxidative stress. In the present study, the potential protective effects of LanCL1 against ischemia was investigated in an in vitro model mimicked by oxygen and glucose deprivation (OGD) in neuronal HT22 cells. We found that OGD exposure induced a temporal increase and persistent decreases in the expression of LanCL1 at both mRNA and protein levels. Overexpression of LanCL1 by lentivirus (LV-LanCL1) transfection preserved cell viability, reduced lactate dehydrogenase (LDH) release and attenuated apoptosis after OGD. These protective effects were accompanied by decreased protein radical formation, lipid peroxidation and mitochondrial dysfunction. In addition, LanCL1 significantly stimulated mitochondrial enzyme activities and SOD2 deacetylation in a Sirt3-dependent manner. The results of western blot analysis showed that LanCL1-induced activation of Sirt3 was dependent on Akt-PGC-1α pathway. Knockdown of PGC-1α expression using small interfering RNA (siRNA) or blocking Akt activation using specific antagonist partially prevented the protective effects of LanCL1 in HT22 cells. Taken together, our results show that LanCL1 protects against OGD through activating the Akt-PGC-1α-Sirt3 pathway, and may have potential therapeutic value for ischemic stroke.
Collapse
|
17
|
Wang J, Xiao Q, Chen X, Tong S, Sun J, Lv R, Wang S, Gou Y, Tan L, Xu J, Fan C, Ding G. LanCL1 protects prostate cancer cells from oxidative stress via suppression of JNK pathway. Cell Death Dis 2018; 9:197. [PMID: 29416001 PMCID: PMC5833716 DOI: 10.1038/s41419-017-0207-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy in male. Numerous studies have focused on the molecular mechanisms of carcinogenesis and progression, aiming at developing new therapeutic strategies. Here we describe Lanthionine synthase C-like protein 1 (LanCL1), a member of the LanCL family, is a potential prostate cancer susceptibility gene. LanCL1 promotes prostate cancer cell proliferation and helps protect cells from damage caused by oxidative stress. Suppression of LanCL1 by siRNA results in increased cancer cell apoptosis. Clinical data also indicate that LanCL1 upregulation in human prostate cancers correlates with tumor progression. Finally, we demonstrate that LanCL1 plays such important role through inhibiting JNK pathway. Altogether, our results suggest that LanCL1 protects cells from oxidative stress, and promotes cell proliferation. LanCL1 reduces cell death via suppression of JNK signaling pathway.
Collapse
Affiliation(s)
- Jianqing Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 26 Daoqian Rd, Suzhou, 215000, China
| | - Qianyi Xiao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Xu Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shijun Tong
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianliang Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruitu Lv
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Siqing Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuancheng Gou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Tan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianfeng Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Caibin Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 26 Daoqian Rd, Suzhou, 215000, China.
| | - Guanxiong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Multiple-step, one-pot synthesis of 2-substituted-3-phosphono-1-thia-4-aza-2-cyclohexene-5-carboxylates and their corresponding ethyl esters. Bioorg Med Chem Lett 2018; 28:562-565. [PMID: 29398540 DOI: 10.1016/j.bmcl.2018.01.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 11/22/2022]
Abstract
The multiple-step, one-pot procedure for a series of 2-substituted-3-phosphono-1-thia-4-aza-2-cyclohexene-5-carboxylates, analogues of the natural, sulfur amino acid metabolite lanthionine ketimine (LK), its 5-ethyl ester (LKE) and 2-substituted LKEs is described. Initiating the synthesis with the Michaelis-Arbuzov preparation of α-ketophosphonates allows for a wide range of functional variation at the 2-position of the products. Nine new compounds were synthesized with overall yields range from 40 to 62%. In addition, the newly prepared 2-isopropyl-LK-P, 2-n-hexyl-LKE-P and 2-ethyl-LKE were shown to stimulate autophagy in cultured cells better than that of the parent compound, LKE.
Collapse
|
19
|
Leber A, Bassaganya-Riera J, Tubau-Juni N, Zoccoli-Rodriguez V, Lu P, Godfrey V, Kale S, Hontecillas R. Lanthionine Synthetase C-Like 2 Modulates Immune Responses to Influenza Virus Infection. Front Immunol 2017; 8:178. [PMID: 28270815 PMCID: PMC5318425 DOI: 10.3389/fimmu.2017.00178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
Broad-based, host-targeted therapeutics have the potential to ameliorate viral infections without inducing antiviral resistance. We identified lanthionine synthetase C-like 2 (LANCL2) as a new therapeutic target for immunoinflammatory diseases. To examine the therapeutic efficacy of oral NSC61610 administration on influenza, we infected C57BL/6 mice with influenza A H1N1pdm virus and evaluated influenza-related mortality, lung inflammatory profiles, and pulmonary histopathology. Oral treatment with NSC61610 ameliorates influenza virus infection by down-modulating pulmonary inflammation through the downregulation of TNF-α and MCP-1 and reduction in the infiltration of neutrophils. NSC61610 treatment increases IL10-producing CD8+ T cells and macrophages in the lungs during the resolution phase of disease. The loss of LANCL2 or neutralization of IL-10 in mice infected with influenza virus abrogates the ability of NSC61610 to accelerate recovery and induce IL-10-mediated regulatory responses. These studies validate that oral treatment with NSC61610 ameliorates morbidity and mortality and accelerates recovery during influenza virus infection through a mechanism mediated by activation of LANCL2 and subsequent induction of IL-10 responses by CD8+ T cells and macrophages in the lungs.
Collapse
Affiliation(s)
- Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Victoria Zoccoli-Rodriguez
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Pinyi Lu
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Victoria Godfrey
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Shiv Kale
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| |
Collapse
|
20
|
LanCL proteins are not Involved in Lanthionine Synthesis in Mammals. Sci Rep 2017; 7:40980. [PMID: 28106097 PMCID: PMC5247676 DOI: 10.1038/srep40980] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/13/2016] [Indexed: 11/08/2022] Open
Abstract
LanC-like (LanCL) proteins are mammalian homologs of bacterial LanC enzymes, which catalyze the addition of the thiol of Cys to dehydrated Ser residues during the biosynthesis of lanthipeptides, a class of natural products formed by post-translational modification of precursor peptides. The functions of LanCL proteins are currently unclear. A recent proposal suggested that LanCL1 catalyzes the addition of the Cys of glutathione to protein- or peptide-bound dehydroalanine (Dha) to form lanthionine, analogous to the reaction catalyzed by LanC in bacteria. Lanthionine has been detected in human brain as the downstream metabolite lanthionine ketimine (LK), which has been shown to have neuroprotective effects. In this study, we tested the proposal that LanCL1 is involved in lanthionine biosynthesis by constructing LanCL1 knock-out mice and measuring LK concentrations in their brains using a mass spectrometric detection method developed for this purpose. To investigate whether other LanCL proteins (LanCL2/3) may confer a compensatory effect, triple knock-out (TKO) mice were also generated and tested. Very similar concentrations of LK (0.5–2.5 nmol/g tissue) were found in LanCL1 knock-out, TKO and wild type (WT) mouse brains, suggesting that LanCL proteins are not involved in lanthionine biosynthesis.
Collapse
|
21
|
The Sulfur Metabolite Lanthionine: Evidence for a Role as a Novel Uremic Toxin. Toxins (Basel) 2017; 9:toxins9010026. [PMID: 28075397 PMCID: PMC5308258 DOI: 10.3390/toxins9010026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 12/31/2022] Open
Abstract
Lanthionine is a nonproteinogenic amino acid, composed of two alanine residues that are crosslinked on their β-carbon atoms by a thioether linkage. It is biosynthesized from the condensation of two cysteine molecules, while the related compound homolanthionine is formed from the condensation of two homocysteine molecules. The reactions can be carried out by either cystathionine-β-synthase (CBS) or cystathionine-γ-lyase (CSE) independently, in the alternate reactions of the transsulfuration pathway devoted to hydrogen sulfide biosynthesis. Low plasma total hydrogen sulfide levels, probably due to reduced CSE expression, are present in uremia, while homolanthionine and lanthionine accumulate in blood, the latter several fold. Uremic patients display a derangement of sulfur amino acid metabolism with a high prevalence of hyperhomocysteinemia. Uremia is associated with a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity, due to the accumulation of retention products. Lanthionine inhibits hydrogen sulfide production in hepatoma cells, possibly through CBS inhibition, thus providing some basis for the biochemical mechanism, which may significantly contribute to alterations of metabolism sulfur compounds in these subjects (e.g., high homocysteine and low hydrogen sulfide). We therefore suggest that lanthionine is a novel uremic toxin.
Collapse
|
22
|
Dong SH, Tang W, Lukk T, Yu Y, Nair SK, van der Donk WA. The enterococcal cytolysin synthetase has an unanticipated lipid kinase fold. eLife 2015; 4. [PMID: 26226635 PMCID: PMC4550811 DOI: 10.7554/elife.07607] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 07/29/2015] [Indexed: 11/13/2022] Open
Abstract
The enterococcal cytolysin is a virulence factor consisting of two post-translationally modified peptides that synergistically kill human immune cells. Both peptides are made by CylM, a member of the LanM lanthipeptide synthetases. CylM catalyzes seven dehydrations of Ser and Thr residues and three cyclization reactions during the biosynthesis of the cytolysin large subunit. We present here the 2.2 Å resolution structure of CylM, the first structural information on a LanM. Unexpectedly, the structure reveals that the dehydratase domain of CylM resembles the catalytic core of eukaryotic lipid kinases, despite the absence of clear sequence homology. The kinase and phosphate elimination active sites that affect net dehydration are immediately adjacent to each other. Characterization of mutants provided insights into the mechanism of the dehydration process. The structure is also of interest because of the interactions of human homologs of lanthipeptide cyclases with kinases such as mammalian target of rapamycin.
Collapse
Affiliation(s)
- Shi-Hui Dong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Weixin Tang
- Roger Adams Laboratory, Department of Chemistry, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Tiit Lukk
- Cornell High Energy Synchrotron Source, Ithaca, United States
| | - Yi Yu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
23
|
Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in actinobacteria. Appl Environ Microbiol 2015; 81:4339-50. [PMID: 25888176 DOI: 10.1128/aem.00635-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/14/2015] [Indexed: 01/18/2023] Open
Abstract
Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities.
Collapse
|
24
|
Harris-White ME, Ferbas KG, Johnson MF, Eslami P, Poteshkina A, Venkova K, Christov A, Hensley K. A cell-penetrating ester of the neural metabolite lanthionine ketimine stimulates autophagy through the mTORC1 pathway: Evidence for a mechanism of action with pharmacological implications for neurodegenerative pathologies. Neurobiol Dis 2015; 84:60-8. [PMID: 25779968 DOI: 10.1016/j.nbd.2015.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/03/2015] [Accepted: 03/08/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a fundamental cellular recycling process vulnerable to compromise in neurodegeneration. We now report that a cell-penetrating neurotrophic and neuroprotective derivative of the central nervous system (CNS) metabolite, lanthionine ketimine (LK), stimulates autophagy in RG2 glioma and SH-SY5Y neuroblastoma cells at concentrations within or below pharmacological levels reported in previous mouse studies. Autophagy stimulation was evidenced by increased lipidation of microtubule-associated protein 1 light chain 3 (LC3) both in the absence and presence of bafilomycin-A1 which discriminates between effects on autophagic flux versus blockage of autophagy clearance. LKE treatment caused changes in protein level or phosphorylation state of multiple autophagy pathway proteins including mTOR; p70S6 kinase; unc-51-like-kinase-1 (ULK1); beclin-1 and LC3 in a manner essentially identical to effects observed after rapamycin treatment. The LKE site of action was near mTOR because neither LKE nor the mTOR inhibitor rapamycin affected tuberous sclerosis complex (TSC) phosphorylation status upstream from mTOR. Confocal immunofluorescence imaging revealed that LKE specifically decreased mTOR (but not TSC2) colocalization with LAMP2(+) lysosomes in RG2 cells, a necessary event for mTORC1-mediated autophagy suppression, whereas rapamycin had no effect. Suppression of the LK-binding adaptor protein CRMP2 (collapsin response mediator protein-2) by means of shRNA resulted in diminished autophagy flux, suggesting that the LKE action on mTOR localization may occur through a novel mechanism involving CRMP2-mediated intracellular trafficking. These findings clarify the mechanism-of-action for LKE in preclinical models of CNS disease, while suggesting possible roles for natural lanthionine metabolites in regulating CNS autophagy.
Collapse
Affiliation(s)
- Marni E Harris-White
- Veterans Administration-Greater Los Angeles Healthcare System, Los Angeles, USA; David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - Kathie G Ferbas
- Veterans Administration-Greater Los Angeles Healthcare System, Los Angeles, USA; Pepperdine University, Seaver College, Natural Sciences Division, Malibu, CA, USA
| | - Ming F Johnson
- Veterans Administration-Greater Los Angeles Healthcare System, Los Angeles, USA
| | - Pirooz Eslami
- Veterans Administration-Greater Los Angeles Healthcare System, Los Angeles, USA
| | | | - Kalina Venkova
- Department of Pathology, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Alexandar Christov
- Department of Pathology, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Kenneth Hensley
- Department of Pathology, University of Toledo Medical Center, Toledo, OH 43614, USA; Department of Neurosciences, University of Toledo Medical Center, Toledo, OH 43614, USA.
| |
Collapse
|
25
|
Hensley K, Denton TT. Alternative functions of the brain transsulfuration pathway represent an underappreciated aspect of brain redox biochemistry with significant potential for therapeutic engagement. Free Radic Biol Med 2015; 78:123-34. [PMID: 25463282 PMCID: PMC4280296 DOI: 10.1016/j.freeradbiomed.2014.10.581] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/31/2022]
Abstract
Scientific appreciation for the subtlety of brain sulfur chemistry has lagged, despite understanding that the brain must maintain high glutathione (GSH) to protect against oxidative stress in tissue that has both a high rate of oxidative respiration and a high content of oxidation-prone polyunsaturated fatty acids. In fact, the brain was long thought to lack a complete transsulfuration pathway (TSP) for cysteine synthesis. It is now clear that not only does the brain possess a functional TSP, but brain TSP enzymes catalyze a rich array of alternative reactions that generate novel species including the gasotransmitter hydrogen sulfide (H2S) and the atypical amino acid lanthionine (Lan). Moreover, TSP intermediates can be converted to unusual cyclic ketimines via transamination. Cell-penetrating derivatives of one such compound, lanthionine ketimine (LK), have potent antioxidant, neuroprotective, neurotrophic, and antineuroinflammatory actions and mitigate diverse neurodegenerative conditions in preclinical rodent models. This review will explore the source and function of alternative TSP products, and lanthionine-derived metabolites in particular. The known biological origins of lanthionine and its ketimine metabolite will be described in detail and placed in context with recent discoveries of a GSH- and LK-binding brain protein called LanCL1 that is proving essential for neuronal antioxidant defense; and a related LanCL2 homolog now implicated in immune sensing and cell fate determinations. The review will explore possible endogenous functions of lanthionine metabolites and will discuss the therapeutic potential of lanthionine ketimine derivatives for mitigating diverse neurological conditions including Alzheimer׳s disease, stroke, motor neuron disease, and glioma.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology and Department of Neurosciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Travis T Denton
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, P.O. Box 1495, Spokane, WA 99201, USA.
| |
Collapse
|
26
|
Developmental and activity-dependent expression of LanCL1 confers antioxidant activity required for neuronal survival. Dev Cell 2014; 30:479-87. [PMID: 25158856 DOI: 10.1016/j.devcel.2014.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/09/2014] [Accepted: 06/13/2014] [Indexed: 02/05/2023]
Abstract
Production of reactive oxygen species (ROS) increases with neuronal activity that accompanies synaptic development and function. Transcription-related factors and metabolic enzymes that are expressed in all tissues have been described to counteract neuronal ROS to prevent oxidative damage. Here, we describe the antioxidant gene LanCL1 that is prominently enriched in brain neurons. Its expression is developmentally regulated and induced by neuronal activity, neurotrophic factors implicated in neuronal plasticity and survival, and oxidative stress. Genetic deletion of LanCL1 causes enhanced accumulation of ROS in brain, as well as development-related lipid, protein, and DNA damage; mitochondrial dysfunction; and apoptotic neurodegeneration. LanCL1 transgene protects neurons from ROS. LanCL1 protein purified from eukaryotic cells catalyzes the formation of thioether products similar to glutathione S-transferase. These studies reveal a neuron-specific glutathione defense mechanism that is essential for neuronal function and survival.
Collapse
|
27
|
van der Donk WA, Nair SK. Structure and mechanism of lanthipeptide biosynthetic enzymes. Curr Opin Struct Biol 2014; 29:58-66. [PMID: 25460269 DOI: 10.1016/j.sbi.2014.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 02/01/2023]
Abstract
Lanthipeptides are members of the ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. They contain thioether crosslinks generated by dehydration of Ser and Thr residues followed by the addition of the thiol of Cys residues to the dehydroamino acids. Recent studies have revealed unexpected mechanisms of the post-translational modifications, and structural studies have started to provide insights into recognition of the peptide substrates by the modification enzymes.
Collapse
Affiliation(s)
- Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
28
|
Khater S, Mohanty D. Genome-wide search for eliminylating domains reveals novel function for BLES03-like proteins. Genome Biol Evol 2014; 6:2017-33. [PMID: 25062915 PMCID: PMC4159009 DOI: 10.1093/gbe/evu161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacterial phosphothreonine lyases catalyze a novel posttranslational modification involving formation of dehydrobutyrine/dehyroalanine by β elimination of the phosphate group of phosphothreonine or phosphoserine residues in their substrate proteins. Though there is experimental evidence for presence of dehydro amino acids in human proteins, no eukaryotic homologs of these lyases have been identified as of today. A comprehensive genome-wide search for identifying phosphothreonine lyase homologs in eukaryotes was carried out. Our fold-based search revealed structural and catalytic site similarity between bacterial phosphothreonine lyases and BLES03 (basophilic leukemia-expressed protein 03), a human protein with unknown function. Ligand induced conformational changes similar to bacterial phosphothreonine lyases, and movement of crucial arginines in the loop region to the catalytic pocket upon binding of phosphothreonine-containing peptides was seen during docking and molecular dynamics studies. Genome-wide search for BLES03 homologs using sensitive profile-based methods revealed their presence not only in eukaryotic classes such as chordata and fungi but also in bacterial and archaebacterial classes. The synteny of these archaebacterial BLES03-like proteins was remarkably similar to that of type IV lantibiotic synthetases which harbor LanL-like phosphothreonine lyase domains. Hence, context-based analysis reinforced our earlier sequence/structure-based prediction of phosphothreonine lyase catalytic function for BLES03. Our in silico analysis has revealed that BLES03-like proteins with previously unknown function are novel eukaryotic phosphothreonine lyases involved in biosynthesis of dehydro amino acids, whereas their bacterial and archaebacterial counterparts might be involved in biosynthesis of natural products similar to lantibiotics.
Collapse
Affiliation(s)
- Shradha Khater
- Bioinformatics Center, National Institute of Immunology, New Delhi, India
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology, New Delhi, India
| |
Collapse
|
29
|
A Derivative of the Brain Metabolite Lanthionine Ketimine Improves Cognition and Diminishes Pathology in the 3×Tg-AD Mouse Model of Alzheimer Disease. J Neuropathol Exp Neurol 2013; 72:955-69. [DOI: 10.1097/nen.0b013e3182a74372] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Floyd RA, Castro Faria Neto HC, Zimmerman GA, Hensley K, Towner RA. Nitrone-based therapeutics for neurodegenerative diseases: their use alone or in combination with lanthionines. Free Radic Biol Med 2013; 62:145-156. [PMID: 23419732 PMCID: PMC3715559 DOI: 10.1016/j.freeradbiomed.2013.01.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/25/2013] [Accepted: 01/29/2013] [Indexed: 01/12/2023]
Abstract
The possibility of free radical reactions occurring in biological processes led to the development and employment of novel methods and techniques focused on determining their existence and importance in normal and pathological conditions. For this reason the use of nitrones for spin trapping free radicals became widespread in the 1970s and 1980s, when surprisingly the first evidence of their potent biological properties was noted. Since then widespread exploration and demonstration of the potent biological properties of phenyl-tert-butylnitrone (PBN) and its derivatives took place in preclinical models of septic shock and then in experimental stroke. The most extensive commercial effort made to capitalize on the potent properties of the PBN-nitrones was for acute ischemic stroke. This occurred during 1993-2006, when the 2,4-disulfonylphenyl PBN derivative, called NXY-059 in the stroke studies, was shown to be safe in humans and was taken all the way through clinical phase 3 trials and then was deemed to be ineffective. As summarized in this review, because of its excellent human safety profile, 2,4-disulfonylphenyl PBN, now called OKN-007 in the cancer studies, was tested as an anti-cancer agent in several preclinical glioma models and shown to be very effective. Based on these studies this compound is now scheduled to enter into early clinical trials for astrocytoma/glioblastoma multiforme this year. The potential use of OKN-007 in combination with neurotropic compounds such as the lanthionine ketamine esters is discussed for glioblastoma multiforme as well as for various other indications leading to dementia, such as aging, septic shock, and malaria infections. There is much more research and development activity ongoing for various indications with the nitrones, alone or in combination with other active compounds, as briefly noted in this review.
Collapse
Affiliation(s)
- Robert A Floyd
- Experimental Therapeutics, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | - Guy A Zimmerman
- Laboratorio de Immunofarmacologia, Instituto Oswaldo Cruz, IOC, Fiocruz, Rio de Janeiro, Brazil; Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Kenneth Hensley
- Department of Pathology and Department of Neurosciences, University of Toledo Medical Center, Toledo, OH
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
31
|
Hubbard C, Benda E, Hardin T, Baxter T, St. John E, O'Brien S, Hensley K, Holgado AM. Lanthionine ketimine ethyl ester partially rescues neurodevelopmental defects inunc-33(DPYSL2/CRMP2) mutants. J Neurosci Res 2013; 91:1183-90. [DOI: 10.1002/jnr.23239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Caleb Hubbard
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Erica Benda
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Tyler Hardin
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Taylor Baxter
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Elizabeth St. John
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Sean O'Brien
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Kenneth Hensley
- Department of Pathology and Department of Neuroscience; University of Toledo Medical Center; Toledo; Ohio
| | - Andrea M. Holgado
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| |
Collapse
|
32
|
Zhong WX, Wang YB, Peng L, Ge XZ, Zhang J, Liu SS, Zhang XN, Xu ZH, Chen Z, Luo JH. Lanthionine synthetase C-like protein 1 interacts with and inhibits cystathionine β-synthase: a target for neuronal antioxidant defense. J Biol Chem 2012; 287:34189-201. [PMID: 22891245 DOI: 10.1074/jbc.m112.383646] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The finding that eukaryotic lanthionine synthetase C-like protein 1 (LanCL1) is a glutathione-binding protein prompted us to investigate the potential relationship between LanCL1 and cystathionine β-synthase (CBS). CBS is a trans-sulfuration enzyme critical for the reduced glutathione (GSH) synthesis and GSH-dependent defense against oxidative stress. In this study we found that LanCL1 bound to CBS in mouse cortex and HEK293 cells. Mapping studies revealed that the binding region in LanCL1 spans amino acids 158-169, and that in CBS contains N-terminal and C-terminal regulatory domains. Recombinant His-LanCL1 directly bound endogenous CBS from mouse cortical lysates and inhibited its activity. Overexpression of LanCL1 inhibited CBS activity in HEK293 cells. CBS activity is reported to be regulated by oxidative stress. Here we found that oxidative stress induced by H(2)O(2) or glutamate lowered the GSH/GSSG ratio, dissociated LanCL1 from CBS, and elevated CBS activity in primary rat cortical neurons. Decreasing the GSH/GSSG ratio by adding GSSG to cellular extracts also dissociated LanCL1 from CBS. Either lentiviral knockdown of LanCL1 or specific disruption of the LanCL1-CBS interaction using the peptide Tat-LanCL1(153-173) released CBS activity in neurons but occluded CBS activation in response to oxidative stress, indicating the major contribution of the LanCL1-CBS interaction to the regulation of CBS activity. Furthermore, LanCL1 knockdown or Tat-LanCL1(153-173) treatment reduced H(2)O(2) or glutamate-induced neuronal damage. This study implies potential therapeutic value in targeting the LanCL1-CBS interaction for neuronal oxidative stress-related diseases.
Collapse
Affiliation(s)
- Wei-xia Zhong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bassaganya-Riera J, Guri AJ, Lu P, Climent M, Carbo A, Sobral BW, Horne WT, Lewis SN, Bevan DR, Hontecillas R. Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor gamma. J Biol Chem 2011; 286:2504-16. [PMID: 21088297 PMCID: PMC3024745 DOI: 10.1074/jbc.m110.160077] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/16/2010] [Indexed: 01/01/2023] Open
Abstract
Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E(2) and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation.
Collapse
Affiliation(s)
- Josep Bassaganya-Riera
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| | - Amir J. Guri
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| | - Pinyi Lu
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| | - Montse Climent
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| | - Adria Carbo
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| | - Bruno W. Sobral
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| | - William T. Horne
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| | - Stephanie N. Lewis
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - David R. Bevan
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Raquel Hontecillas
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| |
Collapse
|
34
|
Mladkova J, Sanda M, Matouskova E, Selicharova I. Phenotyping breast cancer cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis and affinity chromatography for glutathione-binding proteins. BMC Cancer 2010; 10:449. [PMID: 20731849 PMCID: PMC2933630 DOI: 10.1186/1471-2407-10-449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 08/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transformed phenotypes are common to cell lines derived from various cancers. Proteome profiling is a valuable tool that may reveal uncharacteristic cell phenotypes in transformed cells. Changes in expression of glutathione S-transferases (GSTs) and other proteins interacting with glutathione (GSH) in model cell lines could be of particular interest. METHODS We compared the phenotypes of breast cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis (2-DE). We further separated GSH-binding proteins from the cell lines using affinity chromatography with GSH-Sepharose 4B, performed 2-DE analysis and identified the main protein spots. RESULTS Correlation coefficients among 2-DE gels from the cell lines were lower than 0.65, pointing to dissimilarity among the cell lines. Differences in primary constituents of the cytoskeleton were shown by the 2-D protein maps and western blots. The spot patterns in gels of GSH-binding fractions from primary carcinoma-derived cell lines HCC1937 and EM-G3 were similar to each other, and they differed from the spot patterns of cell lines MCF7 and MDA-MB-231 that were derived from pleural effusions of metastatic mammary carcinoma patients. Major differences in the expression of GST P1-1 and carbonyl reductase [NADPH] 1 were observed among the cell lines, indicating differential abilities of the cell lines to metabolize xenobiotics. CONCLUSIONS Our results confirmed the applicability of targeted affinity chromatography to proteome profiling and allowed us to characterize the phenotypes of four breast cancer cell lines.
Collapse
Affiliation(s)
- Jana Mladkova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic vvi, Prague, Czech Republic
| | | | | | | |
Collapse
|
35
|
Hensley K, Venkova K, Christov A. Emerging biological importance of central nervous system lanthionines. Molecules 2010; 15:5581-94. [PMID: 20714314 PMCID: PMC6257760 DOI: 10.3390/molecules15085581] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 11/17/2022] Open
Abstract
Lanthionine (Lan), the thioether analog of cystine, is a natural but nonproteogenic amino acid thought to form naturally in mammals through promiscuous reactivity of the transsulfuration enzyme cystathionine-beta-synthase (CbetaS). Lanthionine exists at appreciable concentrations in mammalian brain, where it undergoes aminotransferase conversion to yield an unusual cyclic thioether, lanthionine ketimine (LK; 2H-1,4-thiazine-5,6-dihydro-3,5-dicarboxylic acid). Recently, LK was discovered to possess neuroprotective, neuritigenic and anti-inflammatory activities. Moreover, both LK and the ubiquitous redox regulator glutathione (gamma-glutamyl-cysteine-glycine) bind to mammalian lanthionine synthetase-like protein-1 (LanCL1) protein which, along with its homolog LanCL2, has been associated with important physiological processes including signal transduction and insulin sensitization. These findings begin to suggest that Lan and its downstream metabolites may be physiologically important substances rather than mere metabolic waste. This review summarizes the current state of knowledge about lanthionyl metabolites with emphasis on their possible relationships to LanCL1/2 proteins and glutathione. The potential significance of lanthionines in paracrine signaling is discussed with reference to opportunities for utilizing bioavailable pro-drug derivatives of these compounds as novel pharmacophores.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology, University of Toledo Medical Center, Toledo, OH 43614, USA.
| | | | | |
Collapse
|
36
|
Hensley K, Christov A, Kamat S, Zhang XC, Jackson KW, Snow S, Post J. Proteomic identification of binding partners for the brain metabolite lanthionine ketimine (LK) and documentation of LK effects on microglia and motoneuron cell cultures. J Neurosci 2010; 30:2979-88. [PMID: 20181595 PMCID: PMC2836831 DOI: 10.1523/jneurosci.5247-09.2010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/16/2009] [Accepted: 12/24/2009] [Indexed: 11/21/2022] Open
Abstract
Lanthionine ketimine (LK) represents a poorly understood class of thioethers present in mammalian CNS. Previous work has indicated high-affinity interaction of LK with synaptosomal membrane protein(s), but neither LK binding partners nor specific bioactivities have been reported. In this study, LK was chemically synthesized and used as an affinity agent to capture binding partners from mammalian brain lysate. Liquid chromatography with electrospray ionization-mass spectrometry of electrophoretically separated, LK-bound proteins identified polypeptides implicated in axon remodeling or vesicle trafficking and diseases including Alzheimer's disease and schizophrenia: collapsin response mediator protein-2/dihydropyrimidinase-like protein-2 (CRMP2/DRP2/DPYSL2), myelin basic protein, and syntaxin-binding protein-1 (STXBP1/Munc-18). Also identified was the recently discovered glutathione-binding protein lanthionine synthetase-like protein-1. Functional consequences of LK:CRMP2 interactions were probed through immunoprecipitation studies using brain lysate wherein LK was found to increase CRMP2 coprecipitation with its partner neurofibromin-1 but decreased CRMP2 coprecipitation with beta-tubulin. Functional studies of NSC-34 motor neuron-like cells indicated that a cell-permeable LK-ester, LKE, was nontoxic and protective against oxidative challenge with H(2)O(2). LKE-treated NSC-34 cells significantly increased neurite number and length in a serum concentration-dependent manner, consistent with a CRMP2 interaction. Finally, LKE antagonized the activation of EOC-20 microglia by inflammogens. The results are discussed with reference to possible biochemical origins, paracrine functions, neurological significance, and pharmacological potential of lanthionyl compounds.
Collapse
Affiliation(s)
- Kenneth Hensley
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhang W, Wang L, Liu Y, Xu J, Zhu G, Cang H, Li X, Bartlam M, Hensley K, Li G, Rao Z, Zhang XC. Structure of human lanthionine synthetase C-like protein 1 and its interaction with Eps8 and glutathione. Genes Dev 2009; 23:1387-92. [PMID: 19528316 DOI: 10.1101/gad.1789209] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eukaryotic lanthionine synthetase C-like protein 1 (LanCL1) is homologous to prokaryotic lanthionine cyclases, yet its biochemical functions remain elusive. We report the crystal structures of human LanCL1, both free of and complexed with glutathione, revealing glutathione binding to a zinc ion at the putative active site formed by conserved GxxG motifs. We also demonstrate by in vitro affinity analysis that LanCL1 binds specifically to the SH3 domain of a signaling protein, Eps8. Importantly, expression of LanCL1 mutants defective in Eps8 interaction inhibits nerve growth factor (NGF)-induced neurite outgrowth, providing evidence for the biological significance of this novel interaction in cellular signaling and differentiation.
Collapse
Affiliation(s)
- Wenchi Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Chen JG, Ellis BE. GCR2 is a new member of the eukaryotic lanthionine synthetase component C-like protein family. PLANT SIGNALING & BEHAVIOR 2008; 3:307-10. [PMID: 19841654 PMCID: PMC2634266 DOI: 10.4161/psb.3.5.5292] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 11/13/2007] [Indexed: 05/08/2023]
Abstract
GCR2 was recently proposed to represent a G-protein-coupled receptor (GPCR) for the plant hormone, abscisic acid (ABA). We and others provided evidence that GCR2 is unlikely to be a bona fide GPCR because it is not clearly predicted to contain seven transmembrane domains, a structural hallmark for classical GPCRs. Instead, GCR2 shows significant sequence similarity to homologs of bacterial lanthionine synthetase component C (LanC). Here, we provide additional analysis of GCR2 and LanC-like (LANCL) proteins in plants, and propose that GCR2 is a new member of the eukaryotic LANCL protein family.
Collapse
Affiliation(s)
- Jin-Gui Chen
- Department of Botany; University of British Columbia; Vancouver, Canada
| | - Brian E Ellis
- Michael Smith Laboratories; University of British Columbia; Vancouver, Canada
| |
Collapse
|
40
|
Gao Y, Zeng Q, Guo J, Cheng J, Ellis BE, Chen JG. Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1001-13. [PMID: 17894782 DOI: 10.1111/j.1365-313x.2007.03291.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Abscisic acid (ABA) is perceived by several different types of receptors in plant cells. At the cell surface, the ABA signal is proposed to be perceived by GCR2, which mediates ABA responses in seed germination, early seedling development and stomatal movement. GCR2 was also proposed to be a seven-transmembrane (7TM) G-protein-coupled receptor (GPCR). Here we characterize GCR2 and one of its two homologs, GCR2-LIKE 1 (GCL1), in ABA-mediated seed germination and early seedling development in Arabidopsis. We show that loss-of-function mutations in GCL1 did not confer ABA insensitivity. Similarly, we did not observe ABA insensitivity in three independent gcr2 alleles. Furthermore, we generated gcr2 gcl1 double mutants and found that the double mutants still had near wild-type responses to ABA. Consistent with this, we found that the transcription of ABA marker genes was induced by ABA to levels that were comparable in wild type and gcr2 and gcl1 single and double mutants. On the other hand, the loss-of-function alleles of the sole Arabidopsis heterotrimeric G protein alpha subunit, GPA1, were hypersensitive to ABA in the ABA-inhibition of seed germination and early seedling development, disfavoring a genetic coupling of GCR2 by GPA1. Using multiple robust transmembrane prediction systems, GCR2 was predicted not to be a 7TM protein, a structural hallmark of GPCRs. Taken together, our results do not support the notion that GCR2 is an ABA-signaling GPCR in seed germination and early seedling development.
Collapse
Affiliation(s)
- Yajun Gao
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | | | | | | | | | | |
Collapse
|