1
|
Zhang Y, Ghosh U, Xie L, Holmes D, Severin KG, Weliky DP. Lipid acyl chain protrusion induced by the influenza virus hemagglutinin fusion peptide detected by NMR paramagnetic relaxation enhancement. Biophys Chem 2023; 299:107028. [PMID: 37247572 PMCID: PMC10330521 DOI: 10.1016/j.bpc.2023.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023]
Abstract
The glycoprotein spikes of membrane-enveloped viruses include a subunit that catalyzes fusion (joining) of the viral and target cell membranes. For influenza virus, this is subunit 2 of hemagglutinin which has a ∼ 20-residue N-terminal fusion peptide (Fp) region that binds target membrane. An outstanding question is whether there are associated membrane changes important for fusion. Several computational studies have found increased "protrusion" of lipid acyl chains near Fp, i.e. one or more chain carbons are closer to the aqueous region than the headgroup phosphorus. Protrusion may accelerate initial joining of outer leaflets of the two membranes into a stalk intermediate. In this study, higher protrusion probability in membrane with vs. without Fp is convincingly detected by larger Mn2+-associated increases in chain 13C NMR transverse relaxation rates (Γ2's). Data analysis provides a ratio Γ2,neighbor/Γ2,distant for lipids neighboring vs. more distant from the Fp. The calculated ratio depends on the number of Fp-neighboring lipids and the experimentally-derived range of 4 to 24 matches the range of increased protrusion probabilities from different simulations. For samples either with or without Fp, the Γ2 values are well-fitted by an exponential decay as the 13C site moves closer to the chain terminus. The decays correlate with free-energy of protrusion proportional to the number of protruded -CH2 groups, with free energy per -CH2 of ∼0.25 kBT. The NMR data support one major fusion role of the Fp to be much greater protrusion of lipid chains, with highest protrusion probability for chain regions closest to the headgroups.
Collapse
Affiliation(s)
- Yijin Zhang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Li Xie
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Holmes
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Kathryn G Severin
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
2
|
Rokonujjaman M, Sahyouni A, Wolfe R, Jia L, Ghosh U, Weliky DP. A large HIV gp41 construct with trimer-of-hairpins structure exhibits V2E mutation-dominant attenuation of vesicle fusion and helicity very similar to V2E attenuation of HIV fusion and infection and supports: (1) hairpin stabilization of membrane apposition with larger distance for V2E; and (2) V2E dominance by an antiparallel β sheet with interleaved fusion peptide strands from two gp41 trimers. Biophys Chem 2023; 293:106933. [PMID: 36508984 PMCID: PMC9879285 DOI: 10.1016/j.bpc.2022.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
There is complete attenuation of fusion and infection mediated by HIV gp160 with gp41 subunit with V2E mutation, and also V2E dominance with WT/V2E mixtures. V2E is at the N-terminus of the ∼25-residue fusion peptide (Fp) which likely binds the target membrane. In this study, large V2E attenuation and dominance were observed for vesicle fusion induced by FP_HM, a large gp41 ectodomain construct with Fp followed by hyperthermostable hairpin with N- and C-helices, and membrane-proximal external region (Mper). FP_HM is a trimer-of-hairpins, the final gp41 structure during fusion. Vesicle fusion and helicity were measured for FP_HM using trimers with different fractions (f's) of WT and V2E proteins. Reductions in FP_HM fusion and helicity vs. fV2E were quantitatively-similar to those for gp160-mediated fusion and infection. Global fitting of all V2E data supports 6 WT gp41 (2 trimers) required for fusion. These data are understood by a model in which the ∼25 kcal/mol free energy for initial membrane apposition is compensated by the thermostable hairpin between the Fp in target membrane and Mper/transmembrane domain in virus membrane. The data support a structural model for V2E dominance with a membrane-bound Fp with antiparallel β sheet and interleaved strands from the two trimers. Relative to fV2E = 0, a longer Fp sheet is stabilized with small fV2E because of salt-bridge and/or hydrogen bonds between E2 on one strand and C-terminal Fp residues on adjacent strands, like R22. A longer Fp sheet results in shorter N- and C-helices, and larger separation during membrane apposition which hinders fusion.
Collapse
Affiliation(s)
- Md Rokonujjaman
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Abdulrazak Sahyouni
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert Wolfe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Lihui Jia
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
3
|
Pachetti M, D'Amico F, Pascolo L, Pucciarelli S, Gessini A, Parisse P, Vaccari L, Masciovecchio C. UV Resonance Raman explores protein structural modification upon fibrillation and ligand interaction. Biophys J 2021; 120:4575-4589. [PMID: 34474016 PMCID: PMC8553600 DOI: 10.1016/j.bpj.2021.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022] Open
Abstract
Amyloids are proteinaceous deposits considered an underlying pathological hallmark of several degenerative diseases. The mechanism of amyloid formation and its inhibition still represent challenging issues, especially when protein structure cannot be investigated by classical biophysical techniques as for the intrinsically disordered proteins (IDPs). In this view, the need to find an alternative way for providing molecular and structural information regarding IDPs prompted us to set a novel, to our knowledge, approach focused on UV Resonance Raman (UVRR) spectroscopy. To test its applicability, we study the fibrillation of hen-egg white lysozyme (HEWL) and insulin as well as their interaction with resveratrol, employing also intrinsic fluorescence spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The increasing of the β-sheet structure content at the end of protein fibrillation probed by FTIR occurs simultaneously with a major solvent exposure of tryptophan (Trp) and tyrosine (Tyr) residues of HEWL and insulin, respectively, as revealed by UVRR and intrinsic fluorescence spectroscopy. However, because the latter technique is successfully used when proteins naturally contain Trp residues, it shows poor performances in the case of insulin, and the information regarding its tertiary structure is exclusively provided by UVRR spectroscopy. The presence of an increased concentration of resveratrol induces mild changes in the secondary structure of both protein fibrils while remodeling HEWL fibril length and promoting the formation of amorphous aggregates in the case of insulin. Although the intrinsic fluorescence spectra of proteins are hidden by resveratrol signal, UVRR Trp and Tyr bands are resonantly enhanced, showing a good sensitivity to the presence of resveratrol and marking a modification in the noncovalent interactions in which they are involved. Our findings demonstrate that UVRR is successfully employed in the study of aggregation-prone proteins and of their interaction with ligands, especially in the case of Trp-lacking proteins.
Collapse
Affiliation(s)
- Maria Pachetti
- Elettra - Sincrotrone Trieste, Trieste, Italy; Department of Physics, University of Trieste, Trieste, Italy; Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
| | | | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Stefania Pucciarelli
- University of Camerino, School of Biosciences and Veterinary Medicine, Camerino, Italy
| | | | - Pietro Parisse
- Elettra - Sincrotrone Trieste, Trieste, Italy; Istituto Officina dei Materiali - CNR (IOM-CNR), Trieste, Italy
| | | | | |
Collapse
|
4
|
Liu CH, Huang SJ, Yu TY. Cholesterol Modulates the Interaction between HIV-1 Viral Protein R and Membrane. MEMBRANES 2021; 11:784. [PMID: 34677550 PMCID: PMC8539443 DOI: 10.3390/membranes11100784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/24/2022]
Abstract
Being a major metabolite for maintaining cellular homeostasis, as well as an important structural component in lipid membrane, cholesterol also plays critical roles in the life cycles of some viruses, including human immunodeficiency virus-1 (HIV-1). The involvement of cholesterol in HIV-1 infectivity, assembly and budding has made it an important research target. Viral protein R (Vpr) is an accessory protein of HIV-1, which is involved in many major events in the life cycle of HIV-1. In addition to its multi-functional roles in the HIV-1 life cycle, it is shown to interact with lipid membrane and form a cation-selective channel. In this work, we examined the effect of cholesterol on the interaction of Vpr and lipid membrane. Using calcein release assay, we found that the membrane permeability induced by the membrane binding of Vpr was significantly reduced in the presence of cholesterol in membrane. In addition, using solid-state NMR (ssNMR) spectroscopy, Vpr was shown to experience multiple chemical environments in lipid membrane, as indicated by the broad line shape of carbonyl 13C resonance of Cys-76 residue ranging from 165-178 ppm, which can be attributed to the existence of complex Vpr-membrane environments. We further showed that the presence of cholesterol in membrane will alter the distribution of Vpr in the complex membrane environments, which may explain the change of the Vpr induced membrane permeability in the presence of cholesterol.
Collapse
Affiliation(s)
- Chun-Hao Liu
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan;
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu 300044, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Ghosh U, Weliky DP. Rapid 2H NMR Transverse Relaxation of Perdeuterated Lipid Acyl Chains of Membrane with Bound Viral Fusion Peptide Supports Large-Amplitude Motions of These Chains That Can Catalyze Membrane Fusion. Biochemistry 2021; 60:2637-2651. [PMID: 34436856 DOI: 10.1021/acs.biochem.1c00316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An early step in cellular infection by a membrane-enveloped virus like HIV or influenza is joining (fusion) of the viral and cell membranes. Fusion is catalyzed by a viral protein that typically includes an apolar "fusion peptide" (fp) segment that binds the target membrane prior to fusion. In this study, the effects of nonhomologous HIV and influenza fp's on lipid acyl chain motion are probed with 2H NMR transverse relaxation rates (R2's) of a perdeuterated DMPC membrane. Measurements were made between 35 and 0 °C, which brackets the membrane liquid-crystalline-to-gel phase transitions. Samples were made with either HIV "GPfp" at pH 7 or influenza "HAfp" at pH 5 or 7. GPfp induces vesicle fusion at pH 7, and HAfp induces more fusion at pH 5 vs 7. GPfp bound to DMPC adopts an intermolecular antiparallel β sheet structure, whereas HAfp is a monomer helical hairpin. The R2's of the no peptide and HAfp, pH 7, samples increase gradually as temperature is lowered. The R2's of GPfp and HAfp, pH 5, samples have very different temperature dependence, with a ∼10× increase in R2CD2 when temperature is reduced from 25 to 20 °C and smaller but still substantial R2's at 10 and 0 °C. The large R2's with GPfp and HAfp, pH 5, are consistent with large-amplitude motions of lipid acyl chains that can aid fusion catalysis by increasing the population of chains near the aqueous phase, which is the chain location for transition states between membrane fusion intermediates.
Collapse
Affiliation(s)
- Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Pattnaik GP, Bhattacharjya S, Chakraborty H. Enhanced Cholesterol-Dependent Hemifusion by Internal Fusion Peptide 1 of SARS Coronavirus-2 Compared to Its N-Terminal Counterpart. Biochemistry 2021; 60:559-562. [PMID: 33569952 PMCID: PMC7885803 DOI: 10.1021/acs.biochem.1c00046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Indexed: 12/16/2022]
Abstract
Membrane fusion is an important step for the entry of the lipid-sheathed viruses into the host cells. The fusion process is being carried out by fusion proteins present in the viral envelope. The class I virus contains a 20-25 amino acid sequence at its N-terminal of the fusion domain, which is instrumental in fusion and is called as a "fusion peptide". However, severe acute respiratory syndrome (SARS) coronaviruses contain more than one fusion peptide sequences. We have shown that the internal fusion peptide 1 (IFP1) of SARS-CoV-2 is far more efficient than its N-terminal counterpart (FP) to induce hemifusion between small unilamellar vesicles. Moreover, the ability of IFP1 to induce hemifusion formation increases dramatically with growing cholesterol content in the membrane. Interestingly, IFP1 is capable of inducing hemifusion but fails to open the pore.
Collapse
Affiliation(s)
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang
Technological University, 60 Nanyang Drive, 637551,
Singapore
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur
University, Jyoti Vihar, Burla, Odisha 768 019,
India
- Centre of Excellence in Natural Products and
Therapeutics, Sambalpur University, Jyoti Vihar, Burla, Odisha
768 019, India
| |
Collapse
|
7
|
The role of fusion peptides in depth-dependent membrane organization and dynamics in promoting membrane fusion. Chem Phys Lipids 2020; 234:105025. [PMID: 33301753 DOI: 10.1016/j.chemphyslip.2020.105025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Abstract
Membrane fusion is an important event in the life of eukaryotes; occurs in several processes such as endocytosis, exocytosis, cellular trafficking, compartmentalization, import of nutrients and export of waste, vesiculation, inter cellular communication, and fertilization. The enveloped viruses as well utilize fusion between the viral envelope and host cell membrane for infection. The stretch of 20-25 amino acids located at the N-terminus of the fusion protein, known as fusion peptide, plays a decisive role in the fusion process. The stalk model of membrane fusion postulated a common route of bilayer transformation for stalk, transmembrane contact, and pore formation; and fusion peptide is believed to facilitate bilayer transformation to promote membrane fusion. The peptide-induced change in depth-dependent organization and dynamics could provide important information in understanding the role of fusion peptide in membrane fusion. In this review, we have discussed about three depth-dependent properties of the membrane such as rigidity, polarity and heterogeneity, and the impact of fusion peptide on these three membrane properties.
Collapse
|
8
|
Heller WT. A small-angle neutron scattering study of the physical mechanism that drives the action of a viral fusion peptide. Chem Phys Lipids 2020; 234:105022. [PMID: 33253755 DOI: 10.1016/j.chemphyslip.2020.105022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Viruses have evolved a variety of ways for delivering their genetic cargo to a target cell. One mechanism relies on a short sequence from a protein of the virus that is referred to as a fusion peptide. In some cases, the isolated fusion peptide is also capable of causing membranes to fuse. Infection by HIV-1 involves the 23 amino acid N-terminal sequence of its gp41 envelope protein, which is capable of causing membranes to fuse by itself, but the mechanism by which it does so is not fully understood. Here, a variant of the gp41 fusion peptide that does not strongly promote fusion was studied in the presence of vesicles composed of a mixture of unsaturated lipids and cholesterol by small-angle neutron scattering and circular dichroism spectroscopy to improve the understanding of the mechanism that drives vesicle fusion. The peptide concentration and cholesterol content govern both the peptide conformation and its impact on the bilayer structure. The results indicate that the mechanism that drives vesicle fusion by the peptide is a strong distortion of the bilayer structure by the peptide when it adopts the β-sheet conformation.
Collapse
Affiliation(s)
- William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States.
| |
Collapse
|
9
|
Ghosh U, Weliky DP. 2H nuclear magnetic resonance spectroscopy supports larger amplitude fast motion and interference with lipid chain ordering for membrane that contains β sheet human immunodeficiency virus gp41 fusion peptide or helical hairpin influenza virus hemagglutinin fusion peptide at fusogenic pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183404. [PMID: 32585207 DOI: 10.1016/j.bbamem.2020.183404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023]
Abstract
Enveloped viruses are surrounded by a membrane which is obtained from an infected host cell during budding. Infection of a new cell requires joining (fusion) of the virus and cell membranes. This process is mediated by a monotopic viral fusion protein with a large ectodomain outside the virus. The ectodomains of class I enveloped viruses have a N-terminal "fusion peptide" (fp) domain that is critical for fusion and binds to the cell membrane. In this study, 2H NMR spectra are analyzed for deuterated membrane with fp from either HIV gp41 (GP) or influenza hemagglutinin (HA) fusion proteins. In addition, the HAfp samples are studied at more fusogenic pH 5 and less fusogenic pH 7. GPfp adopts intermolecular antiparallel β sheet structure whereas HAfp is a monomeric helical hairpin. The data are obtained for a set of temperatures between 35 and 0 °C using DMPC-d54 lipid with perdeuterated acyl chains. The DMPC has liquid-crystalline (Lα) phase with disordered chains at higher temperature and rippled gel (Pβ') or gel phase (Lβ') with ordered chains at lower temperature. At given temperature T, the no peptide and HAfp, pH 7 samples exhibit similar spectral lineshapes. Spectral broadening with reduced temperature correlates with the transition from Lα to Pβ' and then Lβ' phases. At given T, the lineshapes are narrower for HAfp, pH 5 vs. no peptide and HAfp, pH 7 samples, and even narrower for the GPfp sample. These data support larger-amplitude fast (>105 Hz) lipid acyl chain motion for samples with fusogenic peptides, and peptide interference with chain ordering. The NMR data of the present paper correlate with insertion of these peptides into the hydrocarbon core of the membrane and support a significant fusion contribution from the resultant lipid acyl chain disorder, perhaps because of reduced barriers between the different membrane topologies in the fusion pathway. Membrane insertion and lipid perturbation appear common to both β sheet and helical hairpin peptides.
Collapse
Affiliation(s)
- Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Meher G, Sinha S, Pattnaik GP, Ghosh Dastidar S, Chakraborty H. Cholesterol Modulates Membrane Properties and the Interaction of gp41 Fusion Peptide To Promote Membrane Fusion. J Phys Chem B 2019; 123:7113-7122. [PMID: 31345037 DOI: 10.1021/acs.jpcb.9b04577] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An envelope glycoprotein, gp41, is crucial for the entry of human immunodeficiency virus (HIV) into the host cell. The 20-23 N-terminal amino acid sequence of gp41 plays an important role in promoting fusion between viral and host cells. Interestingly, the structure and function of the fusion peptide are extremely sensitive to the characteristics of the lipid environment. In this present work, we have extensively utilized steady-state and time-resolved fluorescence spectroscopy in tandem with molecular dynamics simulation to elucidate peptide binding and peptide-induced perturbation to the membrane. We have used two depth-dependent fluorescence probes, 1,6-diphenyl-1,3,5-hexatriene (DPH) and its trimethylammonium derivative (TMA-DPH), to monitor the effect of peptide binding along the bilayer normal and have reconciled the experimental observation with the insights from the simulated molecular events. We have further monitored the effect of membrane cholesterol on peptide-induced membrane perturbation. The molecular dynamics simulation data show that the peptide alters the membrane properties in the vicinity of the peptide and it penetrates to a larger extent into the bilayer when the membrane contains cholesterol. Our results clearly elucidate that cholesterol alters the membrane physical properties in favor of membrane fusion and interaction pattern of the fusion peptide with the membrane in a concentration-dependent fashion. The role of cholesterol is specifically important as the host eukaryotic cells contain a decent amount of cholesterol that might be critical for the entry of HIV into the host cells.
Collapse
Affiliation(s)
- Geetanjali Meher
- School of Chemistry , Sambalpur University , Jyoti Vihar, Burla , Odisha 768 019 , India
| | - Souvik Sinha
- Division of Bioinformatics , Bose Institute , P-1/12 C.I.T. Scheme VII M , Kolkata 700054 , India
| | - Gourab Prasad Pattnaik
- School of Chemistry , Sambalpur University , Jyoti Vihar, Burla , Odisha 768 019 , India
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics , Bose Institute , P-1/12 C.I.T. Scheme VII M , Kolkata 700054 , India
| | - Hirak Chakraborty
- School of Chemistry , Sambalpur University , Jyoti Vihar, Burla , Odisha 768 019 , India
| |
Collapse
|
11
|
Meher G, Chakraborty H. Membrane Composition Modulates Fusion by Altering Membrane Properties and Fusion Peptide Structure. J Membr Biol 2019; 252:261-272. [PMID: 31011762 PMCID: PMC7079885 DOI: 10.1007/s00232-019-00064-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/12/2019] [Indexed: 01/21/2023]
Abstract
Membrane fusion, one of the most essential processes in the life of eukaryotes, occurs when two separate lipid bilayers merge into a continuous bilayer and internal contents of two separated membranes mingle. There is a certain class of proteins that assist the binding of the viral envelope to the target host cell and catalyzing fusion. All class I viral fusion proteins contain a highly conserved 20–25 amino-acid amphipathic peptide at the N-terminus, which is essential for fusion activity and is termed as the ‘fusion peptide’. It has been shown that insertion of fusion peptides into the host membrane and the perturbation in the membrane generated thereby is crucial for membrane fusion. Significant efforts have been given in the last couple of decades to understand the lipid-dependence of structure and function of the fusion peptide in membranes to understand the role of lipid compositions in membrane fusion. In addition, the lipid compositions further change the membrane physical properties and alter the mechanism and extent of membrane fusion. Therefore, lipid compositions modulate membrane fusion by changing membrane physical properties and altering structure of the fusion peptide.
Collapse
Affiliation(s)
- Geetanjali Meher
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India.
| |
Collapse
|
12
|
Reißer S, Strandberg E, Steinbrecher T, Elstner M, Ulrich AS. Best of Two Worlds? How MD Simulations of Amphiphilic Helical Peptides in Membranes Can Complement Data from Oriented Solid-State NMR. J Chem Theory Comput 2018; 14:6002-6014. [PMID: 30289704 DOI: 10.1021/acs.jctc.8b00283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The membrane alignment of helical amphiphilic peptides in oriented phospholipid bilayers can be obtained as ensemble and time averages from solid state 2H NMR by fitting the quadrupolar splittings to ideal α-helices. At the same time, molecular dynamics (MD) simulations can provide atomistic insight into peptide-membrane systems. Here, we evaluate the potential of MD simulations to complement the experimental NMR data that is available on three exemplary systems: the natural antimicrobial peptide PGLa and the two designer-made peptides MSI-103 and KIA14, whose sequences were derived from PGLa. Each peptide was simulated for 1 μs in a DMPC lipid bilayer. We calculated from the MD simulations the local angles which define the side chain geometry with respect to the peptide helix. The peptide orientation was then calculated (i) directly from the simulation, (ii) from back-calculated MD-derived NMR splittings, and (iii) from experimental 2H NMR splittings. Our findings are that (1) the membrane orientation and secondary structure of the peptides found in the NMR analysis are generally well reproduced by the simulations; (2) the geometry of the side chains with respect to the helix backbone can deviate significantly from the ideal structure depending on the specific residue, but on average all side chains have the same orientation; and (3) for all of our peptides, the azimuthal rotation angle found from the MD-derived splittings is about 15° smaller than the experimental value.
Collapse
Affiliation(s)
- Sabine Reißer
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), KIT , P.O. Box 3640, 76012 Karlsruhe , Germany
| | - Thomas Steinbrecher
- Institute of Physical Chemistry, KIT , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, KIT , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| | - Anne S Ulrich
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany.,Institute of Biological Interfaces (IBG-2), KIT , P.O. Box 3640, 76012 Karlsruhe , Germany
| |
Collapse
|
13
|
Abstract
Solid-state nuclear magnetic resonance (SSNMR) spectroscopy elucidates membrane protein structures and dynamics in atomic detail to yield mechanistic insights. By interrogating membrane proteins in phospholipid bilayers that closely resemble biological membranes, SSNMR spectroscopists have revealed ion conduction mechanisms, substrate transport dynamics, and oligomeric interfaces of seven-transmembrane helix proteins. Research has also identified conformational plasticity underlying virus-cell membrane fusions by complex protein machineries, and β-sheet folding and assembly by amyloidogenic proteins bound to lipid membranes. These studies collectively show that membrane proteins exhibit extensive structural plasticity to carry out their functions. Because of the inherent dependence of NMR frequencies on molecular orientations and the sensitivity of NMR frequencies to dynamical processes on timescales from nanoseconds to seconds, SSNMR spectroscopy is ideally suited to elucidate such structural plasticity, local and global conformational dynamics, protein-lipid and protein-ligand interactions, and protonation states of polar residues. New sensitivity-enhancement techniques, resolution enhancement by ultrahigh magnetic fields, and the advent of 3D and 4D correlation NMR techniques are increasingly aiding these mechanistically important structural studies.
Collapse
Affiliation(s)
- Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Jonathan K Williams
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
14
|
Liang S, Ratnayake PU, Keinath C, Jia L, Wolfe R, Ranaweera A, Weliky DP. Efficient Fusion at Neutral pH by Human Immunodeficiency Virus gp41 Trimers Containing the Fusion Peptide and Transmembrane Domains. Biochemistry 2018; 57:1219-1235. [PMID: 29345922 DOI: 10.1021/acs.biochem.7b00753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV) is membrane-enveloped, and an initial infection step is joining/fusion of viral and cell membranes. This step is catalyzed by gp41, which is a single-pass integral viral membrane protein. The protein contains an ∼170-residue ectodomain located outside the virus that is important for fusion and includes the fusion peptide (FP), N-helix, loop, C-helix, and viral membrane-proximal external region (MPER). The virion initially has noncovalent complexes between three gp41 ectodomains and three gp120 proteins. A gp120 contains ∼500 residues and functions to identify target T-cells and macrophages via binding to specific protein receptors of the target cell membrane. gp120 moves away from the gp41 ectodomain, and the ectodomain is thought to bind to the target cell membrane and mediate membrane fusion. The secondary and tertiary structures of the ectodomain are different in the initial complex with gp120 and the final state without gp120. There is not yet imaging of gp41 during fusion, so the temporal relationship between the gp41 and membrane structures is not known. This study describes biophysical and functional characterization of large gp41 constructs that include the ectodomain and transmembrane domain (TM). Significant fusion is observed of both neutral and anionic vesicles at neutral pH, which reflects the expected conditions of HIV/cell fusion. Fusion is enhanced by the FP, which in HIV/cell fusion likely contacts the host membrane, and the MPER and TM, which respectively interfacially contact and traverse the HIV membrane. Initial contact with vesicles is made by protein trimers that are in a native oligomeric state that reflects the initial complex with gp120 and also is commonly observed for the ectodomain without gp120. Circular dichroism data support helical structure for the N-helix, C-helix, and MPER and nonhelical structure for the FP and loop. Distributions of monomer, trimer, and hexamer states are observed by size-exclusion chromatography (SEC), with dependences on solubilizing detergent and construct. These SEC and other data are integrated into a refined working model of HIV/cell fusion that includes dissociation of the ectodomain into gp41 monomers followed by folding into hairpins that appose the two membranes, and subsequent fusion catalysis by trimers and hexamers of hairpins. The monomer and oligomer gp41 states may therefore satisfy dual requirements for HIV entry of membrane apposition and fusion.
Collapse
Affiliation(s)
- S Liang
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - P U Ratnayake
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - C Keinath
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - L Jia
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - R Wolfe
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - A Ranaweera
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - D P Weliky
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
15
|
Ghosh U, Xie L, Jia L, Liang S, Weliky DP. Closed and Semiclosed Interhelical Structures in Membrane vs Closed and Open Structures in Detergent for the Influenza Virus Hemagglutinin Fusion Peptide and Correlation of Hydrophobic Surface Area with Fusion Catalysis. J Am Chem Soc 2015; 137:7548-51. [PMID: 26039158 PMCID: PMC4481145 DOI: 10.1021/jacs.5b04578] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ∼25 N-terminal "HAfp" residues of the HA2 subunit of the influenza virus hemagglutinin protein are critical for fusion between the viral and endosomal membranes at low pH. Earlier studies of HAfp in detergent support (1) N-helix/turn/C-helix structure at pH 5 with open interhelical geometry and N-helix/turn/C-coil structure at pH 7; or (2) N-helix/turn/C-helix at both pHs with closed interhelical geometry. These different structures led to very different models of HAfp membrane location and different models of catalysis of membrane fusion by HAfp. In this study, the interhelical geometry of membrane-associated HAfp is probed by solid-state NMR. The data are well-fitted to a population mixture of closed and semiclosed structures. The two structures have similar interhelical geometries and are planar with hydrophobic and hydrophilic faces. The different structures of HAfp in detergent vs membrane could be due to the differences in interaction with the curved micelle vs flat membrane with better geometric matching between the closed and semiclosed structures and the membrane. The higher fusogenicity of longer sequences and low pH is correlated with hydrophobic surface area and consequent increased membrane perturbation.
Collapse
Affiliation(s)
- Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Li Xie
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lihui Jia
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Shuang Liang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - David P. Weliky
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
16
|
Quinn CM, Lu M, Suiter CL, Hou G, Zhang H, Polenova T. Magic angle spinning NMR of viruses. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:21-40. [PMID: 25919197 PMCID: PMC4413014 DOI: 10.1016/j.pnmrs.2015.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 05/02/2023]
Abstract
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Christopher L Suiter
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| |
Collapse
|
17
|
Jia L, Liang S, Sackett K, Xie L, Ghosh U, Weliky DP. REDOR solid-state NMR as a probe of the membrane locations of membrane-associated peptides and proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:154-65. [PMID: 25797012 PMCID: PMC4371142 DOI: 10.1016/j.jmr.2014.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/21/2014] [Accepted: 12/24/2014] [Indexed: 06/01/2023]
Abstract
Rotational-echo double-resonance (REDOR) solid-state NMR is applied to probe the membrane locations of specific residues of membrane proteins. Couplings are measured between protein (13)CO nuclei and membrane lipid or cholesterol (2)H and (31)P nuclei. Specific (13)CO labeling is used to enable unambiguous assignment and (2)H labeling covers a small region of the lipid or cholesterol molecule. The (13)CO-(31)P and (13)CO-(2)H REDOR respectively probe proximity to the membrane headgroup region and proximity to specific insertion depths within the membrane hydrocarbon core. One strength of the REDOR approach is use of chemically-native proteins and membrane components. The conventional REDOR pulse sequence with 100 kHz (2)H π pulses is robust with respect to the (2)H quadrupolar anisotropy. The (2)H T1's are comparable to the longer dephasing times (τ's) and this leads to exponential rather than sigmoidal REDOR buildups. The (13)CO-(2)H buildups are well-fitted to A×(1-e(-γτ)) where A and γ are fitting parameters that are correlated as the fraction of molecules (A) with effective (13)CO-(2)H coupling d=3γ/2. The REDOR approach is applied to probe the membrane locations of the "fusion peptide" regions of the HIV gp41 and influenza virus hemagglutinin proteins which both catalyze joining of the viral and host cell membranes during initial infection of the cell. The HIV fusion peptide forms an intermolecular antiparallel β sheet and the REDOR data support major deeply-inserted and minor shallowly-inserted molecular populations. A significant fraction of the influenza fusion peptide molecules form a tight hairpin with antiparallel N- and C-α helices and the REDOR data support a single peptide population with a deeply-inserted N-helix. The shared feature of deep insertion of the β and α fusion peptide structures may be relevant for fusion catalysis via the resultant local perturbation of the membrane bilayer. Future applications of the REDOR approach may include samples that contain cell membrane extracts and use of lower temperatures and dynamic nuclear polarization to reduce data acquisition times.
Collapse
Affiliation(s)
- Lihui Jia
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, United States
| | - Shuang Liang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, United States
| | - Kelly Sackett
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, United States
| | - Li Xie
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, United States
| | - Ujjayini Ghosh
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, United States
| | - David P Weliky
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, United States.
| |
Collapse
|
18
|
Xie L, Jia L, Liang S, Weliky DP. Multiple locations of peptides in the hydrocarbon core of gel-phase membranes revealed by peptide (13)C to lipid (2)H rotational-echo double-resonance solid-state nuclear magnetic resonance. Biochemistry 2015; 54:677-84. [PMID: 25531389 PMCID: PMC4310619 DOI: 10.1021/bi501211x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane locations of peptides and proteins are often critical to their functions. Solid-state rotational-echo double-resonance (REDOR) nuclear magnetic resonance is applied to probe the locations of two peptides via peptide (13)CO to lipid (2)H distance measurements. The peptides are KALP, an α-helical membrane-spanning peptide, and HFP, the β-sheet N-terminal fusion peptide of the HIV gp41 fusion protein that plays an important role in HIV-host cell membrane fusion. Both peptides are shown to have at least two distinct locations within the hydrocarbon core of gel-phase membranes. The multiple locations are attributed to snorkeling of lysine side chains for KALP and to the distribution of antiparallel β-sheet registries for HFP. The relative population of each location is also quantitated. To the best of our knowledge, this is the first clear experimental support of multiple peptide locations within the membrane hydrocarbon core. These data are for gel-phase membranes, but the approach should work for liquid-ordered membranes containing cholesterol and may be applicable to liquid-disordered membranes with appropriate additional analysis to take into account protein and lipid motion. This paper also describes the methodological development of (13)CO-(2)H REDOR using the lyophilized I4 peptide that is α-helical and (13)CO-labeled at A9 and (2)Hα-labeled at A8. The I4 spins are well-approximated as an ensemble of isolated (13)CO-(2)H spin pairs each separated by 5.0 Å with a 37 Hz dipolar coupling. A pulse sequence with rectangular 100 kHz (2)H π pulses results in rapid and extensive buildup of REDOR (ΔS/S0) with a dephasing time (τ). The buildup is well-fit by a simple exponential function with a rate of 24 Hz and an extent close to 1. These parameter values reflect nonradiative transitions between the (2)H spin states during the dephasing period. Each spin pair spends approximately two-thirds of its time in the (13)CO-(2)H (m = ±1) states and approximately one-third of its time in the (13)CO-(2)H (m = 0) state and contributes to the ΔS/S0 buildup during the former but not the latter time segments.
Collapse
Affiliation(s)
- Li Xie
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | | | | | | |
Collapse
|
19
|
Smrt ST, Draney AW, Lorieau JL. The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by inducing membrane curvature. J Biol Chem 2014; 290:228-38. [PMID: 25398882 DOI: 10.1074/jbc.m114.611657] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk.
Collapse
Affiliation(s)
- Sean T Smrt
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Adrian W Draney
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Justin L Lorieau
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| |
Collapse
|
20
|
Lai AL, Freed JH. HIV gp41 fusion peptide increases membrane ordering in a cholesterol-dependent fashion. Biophys J 2014; 106:172-81. [PMID: 24411249 DOI: 10.1016/j.bpj.2013.11.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 10/25/2022] Open
Abstract
Fusion between viral envelopes and host cell membranes, which is mediated by special glycoproteins anchored on the viral membrane, is required for HIV viral entry and infection. The HIV gp41 fusion peptide (FP), which initiates membrane fusion, adopts either an α-helical or β-sheeted structure depending on the cholesterol concentration. We used phosphocholine spin labels on the lipid headgroup and different positions on the acyl chain to detect its perturbation on lipid bilayers containing different cholesterol concentrations by electron-spin resonance. Our findings were as follows. 1), gp41 FP affects the lipid order in the same manner as previously shown for influenza hemagglutinin FP, i.e., it has a cooperative effect versus the peptide/lipid ratio, supporting our hypothesis that membrane ordering is a common prerequisite for viral membrane fusion. 2), gp41 FP induces membrane ordering in all lipid compositions studied, whereas a nonfusion mutant FP perturbs lipid order to a significantly smaller extent. 3), In high-cholesterol-containing lipid bilayers, where gp41 FP is in the β-aggregation conformation, its effect on the lipid ordering reaches deeper into the bilayer. The different extent to which the two conformers perturb is correlated with their fusogenicity. The possible role of the two conformers in membrane fusion is discussed.
Collapse
Affiliation(s)
- Alex L Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
21
|
Eddy MT, Yu TY. Membranes, peptides, and disease: unraveling the mechanisms of viral proteins with solid state nuclear magnetic resonance spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2014; 61-62:1-7. [PMID: 24837131 DOI: 10.1016/j.ssnmr.2014.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 06/03/2023]
Abstract
The interplay between peptides and lipid bilayers drives crucial biological processes. For example, a critical step in the replication cycle of enveloped viruses is the fusion of the viral membrane and host cell endosomal membrane, and these fusion events are controlled by viral fusion peptides. Thus such membrane-interacting peptides are of considerable interest as potential pharmacological targets. Deeper insight is needed into the mechanisms by which fusion peptides and other viral peptides modulate their surrounding membrane environment, and also how the particular membrane environment modulates the structure and activity of these peptides. An important step toward understanding these processes is to characterize the structure of viral peptides in environments that are as biologically relevant as possible. Solid state nuclear magnetic resonance (ssNMR) is uniquely well suited to provide atomic level information on the structure and dynamics of both membrane-associated peptides as well as the lipid bilayer itself; further ssNMR can delineate the contribution of specific membrane components, such as cholesterol, or changing cellular conditions, such as a decrease in pH on membrane-associating peptides. This paper highlights recent advances in the study of three types of membrane associated viral peptides by ssNMR to illustrate the more general power of ssNMR in addressing important biological questions involving membrane proteins.
Collapse
Affiliation(s)
- Matthew T Eddy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1 Sec. 4. Rooservelt Rd., Taipei, 10617, Taiwan.
| |
Collapse
|
22
|
Abstract
Virus-cell fusion is the primary means by which the human immunodeficiency virus-1 (HIV) delivers its genetic material into the human T-cell host. Fusion is mediated in large part by the viral glycoprotein 41 (gp41) which advances through four distinct conformational states: (i) native, (ii) pre-hairpin intermediate, (iii) fusion active (fusogenic), and (iv) post-fusion. The pre-hairpin intermediate is a particularly attractive step for therapeutic intervention given that gp41 N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR) domains are transiently exposed prior to the formation of a six-helix bundle required for fusion. Most peptide-based inhibitors, including the FDA-approved drug T20, target the intermediate and there are significant efforts to develop small molecule alternatives. Here, we review current approaches to studying interactions of inhibitors with gp41 with an emphasis on atomic-level computer modeling methods including molecular dynamics, free energy analysis, and docking. Atomistic modeling yields a unique level of structural and energetic detail, complementary to experimental approaches, which will be important for the design of improved next generation anti-HIV drugs.
Collapse
|
23
|
Sackett K, Nethercott MJ, Zheng Z, Weliky DP. Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel β sheet fusion peptide structure in the final six-helix bundle state. J Mol Biol 2014; 426:1077-94. [PMID: 24246500 PMCID: PMC3944376 DOI: 10.1016/j.jmb.2013.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/18/2013] [Accepted: 11/11/2013] [Indexed: 11/21/2022]
Abstract
The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although the ~20-residue N-terminal fusion peptide (FP) region is critical for fusion, the structure of this region is not well characterized in large gp41 constructs that model the gp41 state at different times during fusion. This paper describes solid-state NMR (SSNMR) studies of FP structure in a membrane-associated construct (FP-Hairpin), which likely models the final fusion state thought to be thermostable trimers with six-helix bundle structure in the region C-terminal of the FP. The SSNMR data show that there are populations of FP-Hairpin with either α helical or β sheet FP conformation. For the β sheet population, measurements of intermolecular (13)C-(13)C proximities in the FP are consistent with a significant fraction of intermolecular antiparallel β sheet FP structure with adjacent strand crossing near L7 and F8. There appears to be negligible in-register parallel structure. These findings support assembly of membrane-associated gp41 trimers through interleaving of N-terminal FPs from different trimers. Similar SSNMR data are obtained for FP-Hairpin and a construct containing the 70 N-terminal residues of gp41 (N70), which is a model for part of the putative pre-hairpin intermediate state of gp41. FP assembly may therefore occur at an early fusion stage. On a more fundamental level, similar SSNMR data are obtained for FP-Hairpin and a construct containing the 34 N-terminal gp41 residues (FP34) and support the hypothesis that the FP is an autonomous folding domain.
Collapse
Affiliation(s)
- Kelly Sackett
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | | | - Zhaoxiong Zheng
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
24
|
Gabrys CM, Qiang W, Sun Y, Xie L, Schmick SD, Weliky DP. Solid-state nuclear magnetic resonance measurements of HIV fusion peptide 13CO to lipid 31P proximities support similar partially inserted membrane locations of the α helical and β sheet peptide structures. J Phys Chem A 2013; 117:9848-59. [PMID: 23418890 PMCID: PMC3932798 DOI: 10.1021/jp312845w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fusion of the human immunodeficiency virus (HIV) membrane and the host cell membrane is an initial step of infection of the host cell. Fusion is catalyzed by gp41, which is an integral membrane protein of HIV. The fusion peptide (FP) is the ∼25 N-terminal residues of gp41 and is a domain of gp41 that plays a key role in fusion catalysis likely through interaction with the host cell membrane. Much of our understanding of the FP domain has been accomplished with studies of "HFP", i.e., a ∼25-residue peptide composed of the FP sequence but lacking the rest of gp41. HFP catalyzes fusion between membrane vesicles and serves as a model system to understand fusion catalysis. HFP binds to membranes and the membrane location of HFP is likely a significant determinant of fusion catalysis perhaps because the consequent membrane perturbation reduces the fusion activation energy. In the present study, many HFPs were synthesized and differed in the residue position that was (13)CO backbone labeled. Samples were then prepared that each contained a singly (13)CO labeled HFP incorporated into membranes that lacked cholesterol. HFP had distinct molecular populations with either α helical or oligomeric β sheet structure. Proximity between the HFP (13)CO nuclei and (31)P nuclei in the membrane headgroups was probed by solid-state NMR (SSNMR) rotational-echo double-resonance (REDOR) measurements. For many samples, there were distinct (13)CO shifts for the α helical and β sheet structures so that the proximities to (31)P nuclei could be determined for each structure. Data from several differently labeled HFPs were then incorporated into a membrane location model for the particular structure. In addition to the (13)CO labeled residue position, the HFPs also differed in sequence and/or chemical structure. "HFPmn" was a linear peptide that contained the 23 N-terminal residues of gp41. "HFPmn_V2E" contained the V2E mutation that for HIV leads to greatly reduced extent of fusion and infection. The present study shows that HFPmn_V2E induces much less vesicle fusion than HFPmn. "HFPtr" contained three strands with HFPmn sequence that were chemically cross-linked near their C-termini. HFPtr mimics the trimeric topology of gp41 and induces much more rapid and extensive vesicle fusion than HFPmn. For HFPmn and HFPtr, well-resolved α and β peaks were observed for A6-, L9-, and L12-labeled samples. For each of these samples, there were similar HFP (13)CO to lipid (31)P proximities in the α and β structures, which evidenced comparable membrane locations of the HFP in either structure including insertion into a single membrane leaflet. The data were also consistent with deeper insertion of HFPtr relative to HFPmn in both the α and β structures. The results supported a strong correlation between the membrane insertion depth of the HFP and its fusogenicity. More generally, the results supported membrane location of the HFP as an important determinant of its fusogenicity. The deep insertion of HFPtr in both the α and β structures provides the most relevant membrane location of the FP for HIV gp41-catalyzed membrane fusion because HIV gp41 is natively trimeric. Well-resolved α and β signals were observed in the HFPmn_V2E samples with L9- and L12- but not A6-labeling. The α signals were much more dominant for L9- and L12-labeled HFPmn_V2E than the corresponding HFPmn or HFPtr. The structural model for the less fusogenic HFPmn_V2E includes a shorter helix and less membrane insertion than either HFPmn or HFPtr. This greater helical population and different helical structure and membrane location could result in less membrane perturbation and lower fusogenicity of HFPmn_V2E and suggest that the β sheet fusion peptide is the most functionally relevant structure of HFPmn, HFPtr, and gp41.
Collapse
Affiliation(s)
- Charles M. Gabrys
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
| | - Wei Qiang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
| | - Yan Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
| | - Li Xie
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
| | - Scott D. Schmick
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
| | - David P. Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
| |
Collapse
|
25
|
Volkov V, Bonn M. Structural Properties of gp41 Fusion Peptide at a Model Membrane Interface. J Phys Chem B 2013; 117:15527-35. [DOI: 10.1021/jp405852r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- V. Volkov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - M. Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
26
|
Ghosh U, Xie L, Weliky DP. Detection of closed influenza virus hemagglutinin fusion peptide structures in membranes by backbone (13)CO- (15)N rotational-echo double-resonance solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2013; 55:139-46. [PMID: 23329392 PMCID: PMC3573761 DOI: 10.1007/s10858-013-9709-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/10/2013] [Indexed: 06/01/2023]
Abstract
The influenza virus fusion peptide is the N-terminal ~20 residues of the HA2 subunit of the hemagglutinin protein and this peptide plays a key role in the fusion of the viral and endosomal membranes during initial infection of a cell. The fusion peptide adopts N-helix/turn/C-helix structure in both detergent and membranes with reports of both open and closed interhelical topologies. In the present study, backbone (13)CO-(15)N REDOR solid-state NMR was applied to the membrane-associated fusion peptide to detect the distribution of interhelical distances. The data clearly showed a large fraction of closed and semi-closed topologies and were best-fitted to a mixture of two structures that do not exchange. One of the earlier open structural models may have incorrect G13 dihedral angles derived from TALOS analysis of experimentally correct (13)C shifts.
Collapse
Affiliation(s)
| | | | - David P. Weliky
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
27
|
Shai Y. ATR-FTIR studies in pore forming and membrane induced fusion peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012. [PMID: 23201348 DOI: 10.1016/j.bbamem.2012.11.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Infrared (IR) spectroscopy has been shown to be very reliable for the characterization, identification and quantification of structural data. Particularly, the Attenuated Total Reflectance (ATR) technique which became one of the best choices to study the structure and organization of membrane proteins and membrane-bound peptides in biologically relevant membranes. An important advantage of IR spectroscopy is its ability to analyze material under a very wide range of conditions including solids, liquids and gases. This method allows elucidation of component secondary structure elements of a peptide or protein in a global manner, and by using site specific isotope labeling allows determination of specific regions. A few advantages in using ATR-FTIR spectroscopy include; a relatively simple technique, allow the determination of peptide orientation in the membrane, allow the determination of secondary structures of very small peptides, and importantly, the method is sensitive to isotopic labeling on the scale of single amino acids. Many studies were reported on the use of ATR-FTIR spectroscopy in order to study the structure and orientation of membrane bound hydrophobic peptides and proteins. The list includes native and de-novo designed peptides, as well as those derived from trans-membrane domains of various receptors (TMDs). The present review will focus on several examples that demonstrate the potential and the simplicity in using the ATR-FTIR approach to determine secondary structures of proteins and peptides when bound, inserted, and oligomerized within membranes. The list includes (i) a channel forming protein/peptide: the Ca(2+) channel phospholamban, (ii) a cell penetrating peptide, (iii) changes in the structure of a transmembrane domain located within ordered and non-ordered domains, and (iv) isotope edited FTIR to directly assign structure to the membrane associated fusion peptide in context of a Key gp41 Structural Motif. Importantly, a unique advantage of infrared spectroscopy is that it allows a simultaneous study of the structure of lipids and proteins in intact biological membranes without an introduction of foreign perturbing probes. Because of the long IR wavelength, light scattering problems are virtually non-existent. This allows the investigation of highly aggregated materials or large membrane fragments. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel.
| |
Collapse
|
28
|
Mohanram H, Nip A, Domadia PN, Bhunia A, Bhattacharjya S. NMR structure, localization, and vesicle fusion of Chikungunya virus fusion peptide. Biochemistry 2012; 51:7863-72. [PMID: 22978677 DOI: 10.1021/bi300901f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The virus-host cell fusion process is mediated by a membrane anchored viral fusion protein that inserts its hydrophobic fusion peptide into the plasma membrane of the host cell, initiating the fusion reaction. Therefore, fusion peptides are an important functional constituent of the fusion proteins of enveloped viruses. In this work, we characterize the fusion peptide or VT18 (V(84)YPFMWGGAYCFCDAENT(101)) of Chikungunya virus (CHIKV) using NMR and fluorescence spectroscopy in zwitterionic lipid environments. Our results demonstrate that the VT18 peptide is able to induce liposome fusions in a pH independent manner and interacts with the zwitterionic lipid vesicles. The NMR derived three-dimensional structure of VT18, in solution of dodecylphosphocholine (DPC) micelles, is typified by extended or β-type conformations for most of the residues, whereby residues M88-W89-G90-G91 adopt a type I β-turn conformation. Strikingly, the aromatic side chains of residues Y85, F87, Y93, and F95 in the VT18 structure are found to be well-packed forming an aromatic core. In particular, residue F87 is situated at the center of the aromatic core establishing a close proximity with other aromatic side chains. Further, the aromatic core residues are also involved in packing interactions with the side chains of residues M88, C94. Paramagnetic relaxation enhancement NMR, using spin labeled doxyl lipids, indicated that the aromatic core residues of VT18 are well inserted into the micelles, whereas the polar residues at the C-terminus may be surface localized. The atomic resolution structure and lipid interactions of CHIKV fusion peptide presented here will aid to uncover the fusion mechanism by the type II viral fusion proteins.
Collapse
Affiliation(s)
- Harini Mohanram
- School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore 637551
| | | | | | | | | |
Collapse
|
29
|
Lai AL, Moorthy AE, Li Y, Tamm LK. Fusion activity of HIV gp41 fusion domain is related to its secondary structure and depth of membrane insertion in a cholesterol-dependent fashion. J Mol Biol 2012; 418:3-15. [PMID: 22343048 DOI: 10.1016/j.jmb.2012.02.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 11/27/2022]
Abstract
The human immunodeficiency virus (HIV) gp41 fusion domain plays a critical role in membrane fusion during viral entry. A thorough understanding of the relationship between the structure and the activity of the fusion domain in different lipid environments helps to formulate mechanistic models on how it might function in mediating membrane fusion. The secondary structure of the fusion domain in small liposomes composed of different lipid mixtures was investigated by circular dichroism spectroscopy. The fusion domain formed an α-helix in membranes containing less than 30 mol% cholesterol and formed β-sheet secondary structure in membranes containing ≥30 mol% cholesterol. EPR spectra of spin-labeled fusion domains also indicated different conformations in membranes with and without cholesterol. Power saturation EPR data were further used to determine the orientation and depth of α-helical fusion domains in lipid bilayers. Fusion and membrane perturbation activities of the gp41 fusion domain were measured by lipid mixing and contents leakage. The fusion domain fused membranes in both its helical form and its β-sheet form. High cholesterol, which induced β-sheets, promoted fusion; however, acidic lipids, which promoted relatively deep membrane insertion as an α-helix, also induced fusion. The results indicate that the structure of the HIV gp41 fusion domain is plastic and depends critically on the lipid environment. Provided that their membrane insertion is deep, α-helical and β-sheet conformations contribute to membrane fusion.
Collapse
Affiliation(s)
- Alex L Lai
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
30
|
Hong GS, Chen CP, Lin MH, Krüger J, Becker CFW, Fink RHA, Fischer WB. Molecular dynamics simulations and conductance studies of the interaction of VP1 N-terminus from Polio virus and gp41 fusion peptide from HIV-1 with lipid membranes. Mol Membr Biol 2012; 29:9-25. [PMID: 22276694 DOI: 10.3109/09687688.2011.644589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The icosahedral Polio virus capsid consists of 60 copies of each of the coat proteins VP1, VP2, VP3 and myristolyated VP4 (myrVP4). Catalyzed by the host cell receptor the Polio virus enters the host cell via externalization of myrVP4 and the N terminal part of VP1. There are several assumptions about the individual role of both of the proteins in the mechanism of membrane attachment and genome injection. We use the first 32 N terminal amino acids of VP1 and applied molecular dynamics simulations to assess its mechanism of function when attached and inserted into hydrated lipid membranes (POPC). Helical models are placed in various positions in regard to the lipid membrane to start with. As a comparison, the first 33 amino acids of the fusion peptide of gp41 of HIV-1 are simulated under identical conditions. Computational data support the idea that VP1 is not penetrating into the membrane to form a pore; it rather lays on the membrane surface and only perturbs the membrane. Furthermore, this idea is strengthened by channel recordings of both peptides showing irregular openings.
Collapse
Affiliation(s)
- Guo-Sheng Hong
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, 155 Li-Non Street, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
31
|
Vogel EP, Curtis-Fisk J, Young KM, Weliky DP. Solid-state nuclear magnetic resonance (NMR) spectroscopy of human immunodeficiency virus gp41 protein that includes the fusion peptide: NMR detection of recombinant Fgp41 in inclusion bodies in whole bacterial cells and structural characterization of purified and membrane-associated Fgp41. Biochemistry 2011; 50:10013-26. [PMID: 21985645 PMCID: PMC3220598 DOI: 10.1021/bi201292e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human immunodeficiency virus (HIV) infection of a host cell begins with fusion of the HIV and host cell membranes and is mediated by the gp41 protein, a single-pass integral membrane protein of HIV. The 175 N-terminal residues make up the ectodomain that lies outside the virus. This work describes the production and characterization of an ectodomain construct containing the 154 N-terminal gp41 residues, including the fusion peptide (FP) that binds to target cell membranes. The Fgp41 sequence was derived from one of the African clade A strains of HIV-1 that have been less studied than European/North American clade B strains. Fgp41 expression at a level of ~100 mg/L of culture was evidenced by an approach that included amino acid type (13)CO and (15)N labeling of recombinant protein and solid-state NMR (SSNMR) spectroscopy of lyophilized whole cells. The approach did not require any protein solubilization or purification and may be a general approach for detection of recombinant protein. The purified Fgp41 yield was ~5 mg/L of culture. SSNMR spectra of membrane-associated Fgp41 showed high helicity for the residues C-terminal of the FP. This was consistent with a "six-helix bundle" (SHB) structure that is the final gp41 state during membrane fusion. This observation and negligible Fgp41-induced vesicle fusion supported a function for SHB gp41 of membrane stabilization and fusion arrest. SSNMR spectra of residues in the membrane-associated FP provided evidence of a mixture of molecular populations with either helical or β-sheet FP conformation. These and earlier SSNMR data strongly support the existence of these populations in the SHB state of membrane-associated gp41.
Collapse
Affiliation(s)
- Erica P. Vogel
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Jaime Curtis-Fisk
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Kaitlin M. Young
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - David P. Weliky
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
32
|
Torres O, Bong D. Determinants of membrane activity from mutational analysis of the HIV fusion peptide. Biochemistry 2011; 50:5195-207. [PMID: 21561063 DOI: 10.1021/bi200696s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have synthesized a small library of 38 variants of the 23-residue fusion peptide domain found at the N-terminus of gp41 glycoprotein of HIV. This hydrophobic, glycine-rich sequence is critical for viral infectivity and is thought to be central in the membrane fusion of viral envelope with the host membrane. There has been extensive discussion regarding the origin of fusogenicity in this viral fusion sequence. Our library of fusion peptide variants was designed to address the biophysical importance of secondary structure, peptide flexibility, glycine content, and placement. We assayed each peptide for its ability to induce lipid mixing and membrane permeablization in synthetic vesicles. We find that the viral fusion peptide may be greatly simplified while retaining fusogenic function and minimizing membrane-permeablizing function; to the best of our knowledge, this is the first attempt to optimize fusogenic function of the HIV fusion peptide through sequence variation. Our data show that many flexible, linear, minimally hydrophobic peptides may achieve the biophysical function of fusion; glycine does not appear to be essential. These findings will be useful in the design of synthetic fusogens for cellular delivery.
Collapse
Affiliation(s)
- Oscar Torres
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|