1
|
Lorenzo JP, Molla L, Amro EM, Ibarra IL, Ruf S, Neber C, Gkougkousis C, Ridani J, Subramani PG, Boulais J, Harjanto D, Vonica A, Di Noia JM, Dieterich C, Zaugg JB, Papavasiliou FN. APOBEC2 safeguards skeletal muscle cell fate through binding chromatin and regulating transcription of non-muscle genes during myoblast differentiation. Proc Natl Acad Sci U S A 2024; 121:e2312330121. [PMID: 38625936 PMCID: PMC11047093 DOI: 10.1073/pnas.2312330121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide (APOBEC) family is composed of nucleic acid editors with roles ranging from antibody diversification to RNA editing. APOBEC2, a member of this family with an evolutionarily conserved nucleic acid-binding cytidine deaminase domain, has neither an established substrate nor function. Using a cellular model of muscle differentiation where APOBEC2 is inducibly expressed, we confirmed that APOBEC2 does not have the attributed molecular functions of the APOBEC family, such as RNA editing, DNA demethylation, and DNA mutation. Instead, we found that during muscle differentiation APOBEC2 occupied a specific motif within promoter regions; its removal from those regions resulted in transcriptional changes. Mechanistically, these changes reflect the direct interaction of APOBEC2 with histone deacetylase (HDAC) transcriptional corepressor complexes. We also found that APOBEC2 could bind DNA directly, in a sequence-specific fashion, suggesting that it functions as a recruiter of HDAC to specific genes whose promoters it occupies. These genes are normally suppressed during muscle cell differentiation, and their suppression may contribute to the safeguarding of muscle cell fate. Altogether, our results reveal a unique role for APOBEC2 within the APOBEC family.
Collapse
Affiliation(s)
- J. Paulo Lorenzo
- Division of Immune Diversity, German Cancer Research Center, Heidelberg69120, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg69120, Germany
| | - Linda Molla
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY10065
| | - Elias Moris Amro
- Division of Immune Diversity, German Cancer Research Center, Heidelberg69120, Germany
| | - Ignacio L. Ibarra
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg69117, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg85764, Germany
| | - Sandra Ruf
- Division of Immune Diversity, German Cancer Research Center, Heidelberg69120, Germany
| | - Cedrik Neber
- Division of Immune Diversity, German Cancer Research Center, Heidelberg69120, Germany
| | - Christos Gkougkousis
- Division of Immune Diversity, German Cancer Research Center, Heidelberg69120, Germany
| | - Jana Ridani
- Institut de Recherches Cliniques de Montréal, Montréal, QCH2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QCH4A 3J1, Canada
| | - Poorani Ganesh Subramani
- Institut de Recherches Cliniques de Montréal, Montréal, QCH2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QCH4A 3J1, Canada
| | - Jonathan Boulais
- Institut de Recherches Cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Dewi Harjanto
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY10065
| | - Alin Vonica
- Department of Biology, Nazareth University, Rochester, NY14618
| | - Javier M. Di Noia
- Institut de Recherches Cliniques de Montréal, Montréal, QCH2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QCH4A 3J1, Canada
- Department of Medicine, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg69120, Germany
- German Center for Cardiovascular Research (DZHK) - Partner site Heidelberg/Mannheim, Heidelberg69120, Germany
| | - Judith B. Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg69117, Germany
| | - F. Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg69120, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg69120, Germany
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY10065
| |
Collapse
|
2
|
Abstract
The AID/APOBEC polynucleotide cytidine deaminases have historically been classified as either DNA mutators or RNA editors based on their first identified nucleic acid substrate preference. DNA mutators can generate functional diversity at antibody genes but also cause genomic instability in cancer. RNA editors can generate informational diversity in the transcriptome of innate immune cells, and of cancer cells. Members of both classes can act as antiviral restriction factors. Recent structural work has illuminated differences and similarities between AID/APOBEC enzymes that can catalyse DNA mutation, RNA editing or both, suggesting that the strict functional classification of members of this family should be reconsidered. As many of these enzymes have been employed for targeted genome (or transcriptome) editing, a more holistic understanding will help improve the design of therapeutically relevant programmable base editors. In this Perspective, Pecori et al. provide an overview of the AID/APOBEC cytidine deaminase family, discussing key structural features, how they contribute to viral and tumour evolution and how they can be harnessed for (potentially therapeutic) base-editing purposes.
Collapse
|
3
|
King JJ, Borzooee F, Im J, Asgharpour M, Ghorbani A, Diamond CP, Fifield H, Berghuis L, Larijani M. Structure-Based Design of First-Generation Small Molecule Inhibitors Targeting the Catalytic Pockets of AID, APOBEC3A, and APOBEC3B. ACS Pharmacol Transl Sci 2021; 4:1390-1407. [PMID: 34423273 PMCID: PMC8369683 DOI: 10.1021/acsptsci.1c00091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/12/2022]
Abstract
![]()
Activation-induced
cytidine deaminase (AID) initiates antibody
diversification by mutating immunoglobulin loci in B lymphocytes.
AID and related APOBEC3 (A3) enzymes also induce genome-wide mutations
and lesions implicated in tumorigenesis and tumor progression. The
most prevalent mutation signatures across diverse tumor genomes are
attributable to the mistargeted mutagenic activities of AID/A3s. Thus,
inhibiting AID/A3s has been suggested to be of therapeutic benefit.
We previously used a computational-biochemical approach to gain insight
into the structure of AID’s catalytic pocket, which resulted
in the discovery of a novel type of regulatory catalytic pocket closure
that regulates AID/A3s that we termed the “Schrodinger’s
CATalytic pocket”. Our findings were subsequently confirmed
by direct structural studies. Here, we describe our search for small
molecules that target the catalytic pocket of AID. We identified small
molecules that inhibit purified AID, AID in cell extracts, and endogenous
AID of lymphoma cells. Analogue expansion yielded derivatives with
improved potencies. These were found to also inhibit A3A and A3B,
the two most tumorigenic siblings of AID. Two compounds exhibit low
micromolar IC50 inhibition of AID and A3A, exhibiting the
strongest potency for A3A. Docking suggests key interactions between
their warheads and residues lining the catalytic pockets of AID, A3A,
and A3B and between the tails and DNA-interacting residues on the
surface proximal to the catalytic pocket opening. Accordingly, mutants
of these residues decreased inhibition potency. The chemistry and
abundance of key stabilizing interactions between the small molecules
and residues within and immediately outside the catalytic pockets
are promising for therapeutic development.
Collapse
Affiliation(s)
- Justin J King
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Faezeh Borzooee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Junbum Im
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada.,BC Cancer Research/Terry Fox Labs, University of British Columbia, Vancouver, British Columbia BC V5Z 1L3, Canada
| | - Mahdi Asgharpour
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Atefeh Ghorbani
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Cody P Diamond
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Heather Fifield
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Lesley Berghuis
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Mani Larijani
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| |
Collapse
|
4
|
Insights into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions. Viruses 2021; 13:v13030497. [PMID: 33802945 PMCID: PMC8002816 DOI: 10.3390/v13030497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single-stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is more complicated than others, due to the associated complex RNA binding modes.
Collapse
|
5
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
6
|
Krzysiak TC, Thomas L, Choi YJ, Auclair S, Qian Y, Luan S, Krasnow SM, Thomas LL, Koharudin LMI, Benos PV, Marks DL, Gronenborn AM, Thomas G. An Insulin-Responsive Sensor in the SIRT1 Disordered Region Binds DBC1 and PACS-2 to Control Enzyme Activity. Mol Cell 2018; 72:985-998.e7. [PMID: 30415949 PMCID: PMC6309500 DOI: 10.1016/j.molcel.2018.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/13/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Current models of SIRT1 enzymatic regulation primarily consider the effects of fluctuating levels of its co-substrate NAD+, which binds to the stably folded catalytic domain. By contrast, the roles of the sizeable disordered N- and C-terminal regions of SIRT1 are largely unexplored. Here we identify an insulin-responsive sensor in the SIRT1 N-terminal region (NTR), comprising an acidic cluster (AC) and a 3-helix bundle (3HB), controlling deacetylase activity. The allosteric assistor DBC1 removes a distal N-terminal shield from the 3-helix bundle, permitting PACS-2 to engage the acidic cluster and the transiently exposed helix 3 of the 3-helix bundle, disrupting its structure and inhibiting catalysis. The SIRT1 activator (STAC) SRT1720 binds and stabilizes the 3-helix bundle, protecting SIRT1 from inhibition by PACS-2. Identification of the SIRT1 insulin-responsive sensor and its engagement by the DBC1 and PACS-2 regulatory hub provides important insight into the roles of disordered regions in enzyme regulation and the mode by which STACs promote metabolic fitness.
Collapse
Affiliation(s)
- Troy C Krzysiak
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - You-Jin Choi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Sylvain Auclair
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yiqi Qian
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Shan Luan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Stephanie M Krasnow
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Laura L Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Leonardus M I Koharudin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Daniel L Marks
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
7
|
Salter JD, Smith HC. Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands. Trends Biochem Sci 2018; 43:606-622. [PMID: 29803538 PMCID: PMC6073885 DOI: 10.1016/j.tibs.2018.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022]
Abstract
The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality. Future structural studies will need to address how ssDNA binding away from the active site may enhance catalysis and the mechanism by which RNA binding may modulate catalytic activity on ssDNA. APOBEC proteins catalyze deamination of cytidine or deoxycytidine in either a sequence-specific or semi-specific manner on either DNA or RNA. APOBECs each possess the cytidine deaminase core fold, but sequence and structural differences among loops surrounding the zinc-dependent active site impart differences in sequence-dependent target preferences, binding affinity, catalytic rate, and regulation of substrate access to the active site among the 11 family members. APOBECs also regulate the deamination reaction through additional nucleic acid substrate binding sites located within surface grooves or patches of positive electrostatic potential that are distal to the active site but may do so nonspecifically. Binding of nonsubstrate RNA and RNA-mediated oligomerization by APOBECs that deaminate ssDNA downregulates catalytic activity but also controls APOBEC subcellular or virion localization. The presence of a second, though noncatalytic, cytidine deaminase domain for some APOBECs and the ability of some APOBECs to oligomerize add additional molecular surfaces for positive or negative regulation of catalysis through nucleic acid binding.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA.
| | - Harold C Smith
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
8
|
Sato Y, Ohtsubo H, Nihei N, Kaneko T, Sato Y, Adachi SI, Kondo S, Nakamura M, Mizunoya W, Iida H, Tatsumi R, Rada C, Yoshizawa F. Apobec2 deficiency causes mitochondrial defects and mitophagy in skeletal muscle. FASEB J 2018; 32:1428-1439. [PMID: 29127187 PMCID: PMC5892721 DOI: 10.1096/fj.201700493r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Apobec2 is a member of the activation-induced deaminase/apolipoprotein B mRNA editing enzyme catalytic polypeptide cytidine deaminase family expressed in differentiated skeletal and cardiac muscle. We previously reported that Apobec2 deficiency in mice leads to a shift in muscle fiber type, myopathy, and diminished muscle mass. However, the mechanisms of myopathy caused by Apobec2 deficiency and its physiologic functions are unclear. Here we show that, although Apobec2 localizes to the sarcomeric Z-lines in mouse tissue and cultured myotubes, the sarcomeric structure is not affected in Apobec2-deficient muscle. In contrast, electron microscopy reveals enlarged mitochondria and mitochondria engulfed by autophagic vacuoles, suggesting that Apobec2 deficiency causes mitochondrial defects leading to increased mitophagy in skeletal muscle. Indeed, Apobec2 deficiency results in increased reactive oxygen species generation and depolarized mitochondria, leading to mitophagy as a defensive response. Furthermore, the exercise capacity of Apobec2-/- mice is impaired, implying Apobec2 deficiency results in ongoing muscle dysfunction. The presence of rimmed vacuoles in myofibers from 10-mo-old mice suggests that the chronic muscle damage impairs normal autophagy. We conclude that Apobec2 deficiency causes mitochondrial defects that increase muscle mitophagy, leading to myopathy and atrophy. Our findings demonstrate that Apobec2 is required for mitochondrial homeostasis to maintain normal skeletal muscle function.-Sato, Y., Ohtsubo, H., Nihei, N., Kaneko, T., Sato, Y., Adachi, S.-I., Kondo, S., Nakamura, M., Mizunoya, W., Iida, H., Tatsumi, R., Rada, C., Yoshizawa, F. Apobec2 deficiency causes mitochondrial defects and mitophagy in skeletal muscle.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Naohiro Nihei
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Takane Kaneko
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Yoriko Sato
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shin-Ichi Adachi
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Shinji Kondo
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Iida
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Cristina Rada
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Fumiaki Yoshizawa
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
9
|
King JJ, Larijani M. A Novel Regulator of Activation-Induced Cytidine Deaminase/APOBECs in Immunity and Cancer: Schrödinger's CATalytic Pocket. Front Immunol 2017; 8:351. [PMID: 28439266 PMCID: PMC5382155 DOI: 10.3389/fimmu.2017.00351] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) and its relative APOBEC3 cytidine deaminases boost immune response by mutating immune or viral genes. Because of their genome-mutating activities, AID/APOBECs are also drivers of tumorigenesis. Due to highly charged surfaces, extensive non-specific protein-protein/nucleic acid interactions, formation of polydisperse oligomers, and general insolubility, structure elucidation of these proteins by X-ray crystallography and NMR has been challenging. Hence, almost all available AID/APOBEC structures are of mutated and/or truncated versions. In 2015, we reported a functional structure for AID using a combined computational-biochemical approach. In so doing, we described a new regulatory mechanism that is a first for human DNA/RNA-editing enzymes. This mechanism involves dynamic closure of the catalytic pocket. Subsequent X-ray and NMR studies confirmed our discovery by showing that other APOBEC3s also close their catalytic pockets. Here, we highlight catalytic pocket closure as an emerging and important regulatory mechanism of AID/APOBEC3s. We focus on three sub-topics: first, we propose that variable pocket closure rates across AID/APOBEC3s underlie differential activity in immunity and cancer and review supporting evidence. Second, we discuss dynamic pocket closure as an ever-present internal regulator, in contrast to other proposed regulatory mechanisms that involve extrinsic binding partners. Third, we compare the merits of classical approaches of X-ray and NMR, with that of emerging computational-biochemical approaches, for structural elucidation specifically for AID/APOBEC3s.
Collapse
Affiliation(s)
- Justin J. King
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
10
|
Abstract
Apolipoprotein B mRNA Editing Catalytic Polypeptide-like 1 or APOBEC1 was discovered in 1993 as the zinc-dependent cytidine deaminase responsible for the production of an in frame stop codon in apoB mRNA through modification of cytidine at nucleotide position 6666 to uridine. At the time of this discovery there was much speculation concerning the mechanism of base modification RNA editing which has been rekindled by the discovery of multiple C to U RNA editing events in the 3′ UTRs of mRNAs and the finding that other members of the APOBEC family while able to bind RNA, have the biological function of being DNA mutating enzymes. Current research is addressing the mechanism for these nucleotide modification events that appear not to adhere to the mooring sequence-dependent model for APOBEC1 involving the assembly of a multi protein containing editosome. This review will summarize our current understanding of the structure and function of APOBEC proteins and examine how RNA binding to them may be a regulatory mechanism.
Collapse
Affiliation(s)
- Harold C Smith
- a University of Rochester, School of Medicine and Dentistry , Department of Biochemistry and Biophysics , Rochester , NY , USA
| |
Collapse
|
11
|
The APOBEC Protein Family: United by Structure, Divergent in Function. Trends Biochem Sci 2016; 41:578-594. [PMID: 27283515 DOI: 10.1016/j.tibs.2016.05.001] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 12/13/2022]
Abstract
The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of proteins have diverse and important functions in human health and disease. These proteins have an intrinsic ability to bind to both RNA and single-stranded (ss) DNA. Both function and tissue-specific expression varies widely for each APOBEC protein. We are beginning to understand that the activity of APOBEC proteins is regulated through genetic alterations, changes in their transcription and mRNA processing, and through their interactions with other macromolecules in the cell. Loss of cellular control of APOBEC activities leads to DNA hypermutation and promiscuous RNA editing associated with the development of cancer or viral drug resistance, underscoring the importance of understanding how APOBEC proteins are regulated.
Collapse
|
12
|
Polevoda B, McDougall WM, Bennett RP, Salter JD, Smith HC. Structural and functional assessment of APOBEC3G macromolecular complexes. Methods 2016; 107:10-22. [PMID: 26988126 DOI: 10.1016/j.ymeth.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
There are eleven members in the human APOBEC family of proteins that are evolutionarily related through their zinc-dependent cytidine deaminase domains. The human APOBEC gene clusters arose on chromosome 6 and 22 through gene duplication and divergence to where current day APOBEC proteins are functionally diverse and broadly expressed in tissues. APOBEC serve enzymatic and non enzymatic functions in cells. In both cases, formation of higher-order structures driven by APOBEC protein-protein interactions and binding to RNA and/or single stranded DNA are integral to their function. In some circumstances, these interactions are regulatory and modulate APOBEC activities. We are just beginning to understand how macromolecular interactions drive processes such as APOBEC subcellular compartmentalization, formation of holoenzyme complexes, gene targeting, foreign DNA restriction, anti-retroviral activity, formation of ribonucleoprotein particles and APOBEC degradation. Protein-protein and protein-nucleic acid cross-linking methods coupled with mass spectrometry, electrophoretic mobility shift assays, glycerol gradient sedimentation, fluorescence anisotropy and APOBEC deaminase assays are enabling mapping of interacting surfaces that are essential for these functions. The goal of this methods review is through example of our research on APOBEC3G, describe the application of cross-linking methods to characterize and quantify macromolecular interactions and their functional implications. Given the homology in structure and function, it is proposed that these methods will be generally applicable to the discovery process for other APOBEC and RNA and DNA editing and modifying proteins.
Collapse
Affiliation(s)
- Bogdan Polevoda
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - William M McDougall
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Ryan P Bennett
- OyaGen, Inc, Rochester BioVenture Center, 77 Ridgeland Road, Rochester, NY 14623, USA
| | - Jason D Salter
- OyaGen, Inc, Rochester BioVenture Center, 77 Ridgeland Road, Rochester, NY 14623, USA
| | - Harold C Smith
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA; Wilmot Cancer Institute, 601 Elmwood Avenue, Rochester, NY 14642, USA; Center for RNA Biology, 601 Elmwood Avenue, Rochester, NY 14642, USA; OyaGen, Inc, Rochester BioVenture Center, 77 Ridgeland Road, Rochester, NY 14623, USA; Center for AIDS Research, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
13
|
Functional requirements of AID's higher order structures and their interaction with RNA-binding proteins. Proc Natl Acad Sci U S A 2016; 113:E1545-54. [PMID: 26929374 DOI: 10.1073/pnas.1601678113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID's structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions.
Collapse
|
14
|
Shi K, Carpenter MA, Kurahashi K, Harris RS, Aihara H. Crystal Structure of the DNA Deaminase APOBEC3B Catalytic Domain. J Biol Chem 2015; 290:28120-28130. [PMID: 26416889 DOI: 10.1074/jbc.m115.679951] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 11/06/2022] Open
Abstract
Functional and deep sequencing studies have combined to demonstrate the involvement of APOBEC3B in cancer mutagenesis. APOBEC3B is a single-stranded DNA cytosine deaminase that functions normally as a nuclear-localized restriction factor of DNA-based pathogens. However, it is overexpressed in cancer cells and elicits an intrinsic preference for 5'-TC motifs in single-stranded DNA, which is the most frequently mutated dinucleotide in breast, head/neck, lung, bladder, cervical, and several other tumor types. In many cases, APOBEC3B mutagenesis accounts for the majority of both dispersed and clustered (kataegis) cytosine mutations. Here, we report the first structures of the APOBEC3B catalytic domain in multiple crystal forms. These structures reveal a tightly closed active site conformation and suggest that substrate accessibility is regulated by adjacent flexible loops. Residues important for catalysis are identified by mutation analyses, and the results provide insights into the mechanism of target site selection. We also report a nucleotide (dCMP)-bound crystal structure that informs a multistep model for binding single-stranded DNA. Overall, these high resolution crystal structures provide a framework for further mechanistic studies and the development of novel anti-cancer drugs to inhibit this enzyme, dampen tumor evolution, and minimize adverse outcomes such as drug resistance and metastasis.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics; Institute for Molecular Virology; Masonic Cancer Center.
| | - Michael A Carpenter
- Department of Biochemistry, Molecular Biology, and Biophysics; Institute for Molecular Virology; Masonic Cancer Center
| | - Kayo Kurahashi
- Department of Biochemistry, Molecular Biology, and Biophysics; Institute for Molecular Virology; Masonic Cancer Center
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology, and Biophysics; Institute for Molecular Virology; Masonic Cancer Center; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics; Institute for Molecular Virology; Masonic Cancer Center
| |
Collapse
|
15
|
Feng Y, Love RP, Ara A, Baig TT, Adolph MB, Chelico L. Natural Polymorphisms and Oligomerization of Human APOBEC3H Contribute to Single-stranded DNA Scanning Ability. J Biol Chem 2015; 290:27188-27203. [PMID: 26396192 DOI: 10.1074/jbc.m115.666065] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
APOBEC3H is a deoxycytidine deaminase that can restrict the replication of HIV-1 in the absence of the viral protein Vif that induces APOBEC3H degradation in cells. APOBEC3H exists in humans as seven haplotypes (I-VII) with different cellular stabilities. Of the three stable APOBEC3H haplotypes (II, V, and VII), haplotypes II and V occur most frequently in the population. Despite APOBEC3H being a bona fide restriction factor, there has been no comparative biochemical characterization of APOBEC3H haplotypes. We characterized the ssDNA scanning mechanisms that haplotypes II and V use to search their ssDNA substrate for cytosine-containing deamination motifs. APOBEC3H haplotype II was able to processively deaminate multiple cytosines in a single enzyme-substrate encounter by using sliding, jumping, and intersegmental transfer movements. In contrast, APOBEC3H haplotype V exhibited diminished sliding and intersegmental transfer abilities but was able to jump along ssDNA. Due to an Asp or Glu at amino acid 178 differentiating these APOBEC3H haplotypes, the data indicated that this amino acid on helix 6 contributes to processivity. The diminished processivity of APOBEC3H haplotype V did not result in a reduced efficiency to restrict HIV-1 replication in single-cycle infectivity assays, suggesting a redundancy in the contributions of jumping and intersegmental transfer to mutagenic efficiency. Optimal processivity on ssDNA also required dimerization of APOBEC3H through the β2 strands. The findings support a model in which jumping can compensate for deficiencies in intersegmental transfer and suggest that APOBEC3H haplotypes II and V induce HIV-1 mutagenesis efficiently but by different mechanisms.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Robin P Love
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Anjuman Ara
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Tayyba T Baig
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Madison B Adolph
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
16
|
King JJ, Manuel CA, Barrett CV, Raber S, Lucas H, Sutter P, Larijani M. Catalytic pocket inaccessibility of activation-induced cytidine deaminase is a safeguard against excessive mutagenic activity. Structure 2015; 23:615-27. [PMID: 25728927 DOI: 10.1016/j.str.2015.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/14/2015] [Accepted: 01/22/2015] [Indexed: 12/30/2022]
Abstract
Activation-induced cytidine deaminase (AID) mutates cytidine to uridine at immunoglobulin loci to initiate secondary antibody diversification but also causes genome-wide damage. We previously demonstrated that AID has a relatively low catalytic rate. The structure of AID has not been solved. Thus, to probe the basis for its catalytic lethargy we generated a panel of free or DNA-bound AID models based on eight recently resolved APOBEC structures. Docking revealed that the majority of AID:DNA complexes would be inactive due to substrate binding such that a cytidine is not positioned for deamination. Furthermore, we found that most AID conformations exhibit fully or partially occluded catalytic pockets. We constructed mutant and chimeric AID variants predicted to have altered catalytic pocket accessibility dynamics and observed significant correlation with catalytic rate. Data from modeling simulations and functional tests of AID variants support the notion that catalytic pocket accessibility is an inherent bottleneck for AID activity.
Collapse
Affiliation(s)
- Justin J King
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada.
| | - Courtney A Manuel
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - Crystal V Barrett
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - Susanne Raber
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - Heather Lucas
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - Patricia Sutter
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada.
| |
Collapse
|
17
|
Powell C, Cornblath E, Goldman D. Zinc-binding domain-dependent, deaminase-independent actions of apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 2 (Apobec2), mediate its effect on zebrafish retina regeneration. J Biol Chem 2014; 289:28924-41. [PMID: 25190811 DOI: 10.1074/jbc.m114.603043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Apobec/AID family of cytosine deaminases can deaminate cytosine and thereby contribute to adaptive and innate immunity, DNA demethylation, and the modification of cellular mRNAs. Unique among this family is Apobec2, whose enzymatic activity has been questioned and whose function remains poorly explored. We recently reported that zebrafish Apobec2a and Apobec2b (Apobec2a,2b) regulate retina regeneration; however, their mechanism of action remained unknown. Here we show that although Apobec2a,2b lack cytosine deaminase activity, they require a conserved zinc-binding domain to stimulate retina regeneration. Interestingly, we found that human APOBEC2 is able to functionally substitute for Apobec2a,2b during retina regeneration. By identifying Apobec2-interacting proteins, including ubiquitin-conjugating enzyme 9 (Ubc9); topoisomerase I-binding, arginine/serine-rich, E3 ubiquitin protein ligase (Toporsa); and POU class 6 homeobox 2 (Pou6f2), we uncovered that sumoylation regulates Apobec2 subcellular localization and that nuclear Apobec2 controls Pou6f2 binding to DNA. Importantly, mutations in the zinc-binding domain of Apobec2 diminished its ability to stimulate Pou6f2 binding to DNA, and knockdown of Ubc9 or Pou6f2 suppressed retina regeneration.
Collapse
Affiliation(s)
- Curtis Powell
- From the Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Eli Cornblath
- From the Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel Goldman
- From the Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
18
|
Aydin H, Taylor MW, Lee JE. Structure-guided analysis of the human APOBEC3-HIV restrictome. Structure 2014; 22:668-84. [PMID: 24657093 DOI: 10.1016/j.str.2014.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/20/2014] [Indexed: 01/03/2023]
Abstract
Human APOBEC3 (A3) proteins are host-encoded intrinsic restriction factors that inhibit the replication of many retroviral pathogens. Restriction is believed to occur as a result of the DNA cytosine deaminase activity of the A3 proteins; this activity converts cytosines into uracils in single-stranded DNA retroviral replication intermediates. A3 proteins are also equipped with deamination-independent means to restrict retroviruses that work cooperatively with deamination-dependent restriction pathways. A3 proteins substantially bolster the intrinsic immune system by providing a powerful block to the transmission of retroviral pathogens; however, most retroviruses are able to subvert this replicative restriction in their natural host. HIV-1, for instance, evades A3 proteins through the activity of its accessory protein Vif. Here, we summarize data from recent A3 structural and functional studies to provide perspectives into the interactions between cellular A3 proteins and HIV-1 macromolecules throughout the viral replication cycle.
Collapse
Affiliation(s)
- Halil Aydin
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew W Taylor
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
19
|
APOBEC2 mRNA and protein is predominantly expressed in skeletal and cardiac muscles of chickens. Gene 2014; 539:263-9. [DOI: 10.1016/j.gene.2014.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 11/14/2013] [Accepted: 01/04/2014] [Indexed: 11/18/2022]
|
20
|
Prohaska KM, Bennett RP, Salter JD, Smith HC. The multifaceted roles of RNA binding in APOBEC cytidine deaminase functions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:493-508. [PMID: 24664896 DOI: 10.1002/wrna.1226] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 01/06/2023]
Abstract
Cytidine deaminases have important roles in the regulation of nucleoside/deoxynucleoside pools for DNA and RNA synthesis. The APOBEC family of cytidine deaminases (named after the first member of the family that was described, Apolipoprotein B mRNA Editing Catalytic Subunit 1, also known as APOBEC1 or A1) is a fascinating group of mutagenic proteins that use RNA and single-stranded DNA (ssDNA) as substrates for their cytidine or deoxycytidine deaminase activities. APOBEC proteins and base-modification nucleic acid editing have been the subject of numerous publications, reviews, and speculation. These proteins play diverse roles in host cell defense, protecting cells from invading genetic material, enabling the acquired immune response to antigens and changing protein expression at the level of the genetic code in mRNA or DNA. The amazing power these proteins have for interphase cell functions relies on structural and biochemical properties that are beginning to be understood. At the same time, the substrate selectivity of each member in the family and their regulation remains to be elucidated. This review of the APOBEC family will focus on an open question in regulation, namely what role the interactions of these proteins with RNA have in editing substrate recognition or allosteric regulation of DNA mutagenic and host-defense activities.
Collapse
|
21
|
Li J, Chen Y, Li M, Carpenter MA, McDougle RM, Luengas EM, Macdonald PJ, Harris RS, Mueller JD. APOBEC3 multimerization correlates with HIV-1 packaging and restriction activity in living cells. J Mol Biol 2014; 426:1296-307. [PMID: 24361275 PMCID: PMC3977201 DOI: 10.1016/j.jmb.2013.12.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 12/30/2022]
Abstract
APOBEC3G belongs to a family of DNA cytosine deaminases that are involved in the restriction of a broad number of retroviruses including human immunodeficiency virus type 1 (HIV-1). Prior studies have identified two distinct mechanistic steps in Vif-deficient HIV-1 restriction: packaging into virions and deaminating viral cDNA. APOBEC3A, for example, although highly active, is not packaged and is therefore not restrictive. APOBEC3G, on the other hand, although having weaker enzymatic activity, is packaged into virions and is strongly restrictive. Although a number of studies have described the propensity for APOBEC3 oligomerization, its relevance to HIV-1 restriction remains unclear. Here, we address this problem by examining APOBEC3 oligomerization in living cells using molecular brightness analysis. We find that APOBEC3G forms high-order multimers as a function of protein concentration. In contrast, APOBEC3A, APOBEC3C and APOBEC2 are monomers at all tested concentrations. Among other members of the APOBEC3 family, we show that the multimerization propensities of APOBEC3B, APOBEC3D, APOBEC3F and APOBEC3H (haplotype II) bear more resemblance to APOBEC3G than to APOBEC3A/3C/2. Prior studies have shown that all of these multimerizing APOBEC3 proteins, but not the monomeric family members, have the capacity to package into HIV-1 particles and restrict viral infectivity. This correlation between oligomerization and restriction is further evidenced by two different APOBEC3G mutants, which are each compromised for multimerization, packaging and HIV-1 restriction. Overall, our results imply that multimerization of APOBEC3 proteins may be related to the packaging mechanism and ultimately to virus restriction.
Collapse
Affiliation(s)
- Jinhui Li
- School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Yan Chen
- School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | - Ming Li
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Michael A Carpenter
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Rebecca M McDougle
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Elizabeth M Luengas
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Patrick J Macdonald
- Department of Biomedical Engineering, University of Minnesota, 312 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, 515 Delaware Street Southeast, Minneapolis, MN 55455, USA; Department of Biomedical Engineering, University of Minnesota, 312 Church Street Southeast, Minneapolis, MN 55455, USA.
| |
Collapse
|
22
|
Desimmie BA, Delviks-Frankenberrry KA, Burdick RC, Qi D, Izumi T, Pathak VK. Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all. J Mol Biol 2014; 426:1220-45. [PMID: 24189052 PMCID: PMC3943811 DOI: 10.1016/j.jmb.2013.10.033] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/11/2022]
Abstract
Several members of the APOBEC3 family of cellular restriction factors provide intrinsic immunity to the host against viral infection. Specifically, APOBEC3DE, APOBEC3F, APOBEC3G, and APOBEC3H haplotypes II, V, and VII provide protection against HIV-1Δvif through hypermutation of the viral genome, inhibition of reverse transcription, and inhibition of viral DNA integration into the host genome. HIV-1 counteracts APOBEC3 proteins by encoding the viral protein Vif, which contains distinct domains that specifically interact with these APOBEC3 proteins to ensure their proteasomal degradation, allowing virus replication to proceed. Here, we review our current understanding of APOBEC3 structure, editing and non-editing mechanisms of APOBEC3-mediated restriction, Vif-APOBEC3 interactions that trigger APOBEC3 degradation, and the contribution of APOBEC3 proteins to restriction and control of HIV-1 replication in infected patients.
Collapse
Affiliation(s)
- Belete A Desimmie
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Ryan C Burdick
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - DongFei Qi
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Taisuke Izumi
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
23
|
NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity. Nat Commun 2013; 4:1890. [PMID: 23695684 PMCID: PMC3674325 DOI: 10.1038/ncomms2883] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 02/07/2023] Open
Abstract
Human APOBEC3A (A3A) is a single-stranded DNA (ssDNA) cytidine deaminase that restricts viral pathogens and endogenous retrotransposons and plays a role in the innate immune response. Furthermore, its potential to act as a genomic DNA mutator has implications for a role in carcinogenesis. A deeper understanding of A3A’s deaminase and nucleic acid binding properties, which is central to its biological activities, has been limited by the lack of structural information. Here, we report the NMR solution structure of A3A and show that the critical interface for interaction with ssDNA substrates includes residues extending beyond the catalytic center. Importantly, by monitoring deaminase activity in real time, we find that A3A displays similar catalytic activity on A3A-specific TTCA- or A3G-specific CCCA-containing substrates, involving key determinants immediately 5′ of the reactive C. Our results afford novel mechanistic insights into A3A-mediated deamination and provide the structural basis for further molecular studies.
Collapse
|
24
|
Bélanger K, Savoie M, Rosales Gerpe MC, Couture JF, Langlois MA. Binding of RNA by APOBEC3G controls deamination-independent restriction of retroviruses. Nucleic Acids Res 2013; 41:7438-52. [PMID: 23761443 PMCID: PMC3753645 DOI: 10.1093/nar/gkt527] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 11/19/2022] Open
Abstract
APOBEC3G (A3G) is a host-encoded protein that potently restricts the infectivity of a broad range of retroviruses. This can occur by mechanisms dependent on catalytic activity, resulting in the mutagenic deamination of nascent viral cDNA, and/or by other means that are independent of its catalytic activity. It is not yet known to what extent deamination-independent processes contribute to the overall restriction, how they exactly work or how they are regulated. Here, we show that alanine substitution of either tryptophan 94 (W94A) or 127 (W127A) in the non-catalytic N-terminal domain of A3G severely impedes RNA binding and alleviates deamination-independent restriction while still maintaining DNA mutator activity. Substitution of both tryptophans (W94A/W127A) produces a more severe phenotype in which RNA binding and RNA-dependent protein oligomerization are completely abrogated. We further demonstrate that RNA binding is specifically required for crippling late reverse transcript accumulation, preventing proviral DNA integration and, consequently, restricting viral particle release. We did not find that deaminase activity made a significant contribution to the restriction of any of these processes. In summary, this work reveals that there is a direct correlation between A3G's capacity to bind RNA and its ability to inhibit retroviral infectivity in a deamination-independent manner.
Collapse
Affiliation(s)
- Kasandra Bélanger
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 and Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Mathieu Savoie
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 and Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - María Carla Rosales Gerpe
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 and Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Jean-François Couture
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 and Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5, Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5 and Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
25
|
Siu KK, Sultana A, Azimi FC, Lee JE. Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F. Nat Commun 2013; 4:2593. [PMID: 24185281 PMCID: PMC4956467 DOI: 10.1038/ncomms3593] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023] Open
Abstract
The human APOBEC3 family of DNA cytosine deaminases serves as a front-line intrinsic immune response to inhibit the replication of diverse retroviruses. APOBEC3F and APOBEC3G are the most potent factors against HIV-1. As a countermeasure, HIV-1 viral infectivity factor (Vif) targets APOBEC3s for proteasomal degradation. Here we report the crystal structure of the Vif-binding domain in APOBEC3F and a novel assay to assess Vif-APOBEC3 binding. Our results point to an amphipathic surface that is conserved in APOBEC3s as critical for Vif susceptibility in APOBEC3F. Electrostatic interactions likely mediate Vif binding. Moreover, structure-guided mutagenesis reveals a straight ssDNA-binding groove distinct from the Vif-binding site, and an 'aromatic switch' is proposed to explain DNA substrate specificities across the APOBEC3 family. This study opens new lines of inquiry that will further our understanding of APOBEC3-mediated retroviral restriction and provides an accurate template for structure-guided development of inhibitors targeting the APOBEC3-Vif axis.
Collapse
Affiliation(s)
- Karen K Siu
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Room 6316 Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
26
|
The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat Struct Mol Biol 2012; 19:1005-10. [PMID: 23001005 DOI: 10.1038/nsmb.2378] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/07/2012] [Indexed: 01/22/2023]
Abstract
The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3, referred to as A3) proteins are cellular cytidine deaminases that potently restrict retrovirus replication. However, HIV-1 viral infectivity factor (Vif) counteracts the antiviral activity of most A3 proteins by targeting them for proteasomal degradation. To date, the structure of an A3 protein containing a Vif-binding interface has not been solved. Here, we report a high-resolution crystal structure of APOBEC3C and identify the HIV-1 Vif-interaction interface. Extensive structure-guided mutagenesis revealed the role of a shallow cavity composed of hydrophobic or negatively charged residues between the α2 and α3 helices. This region is distant from the DPD motif (residues 128-130) of APOBEC3G that participates in HIV-1 Vif interaction. These findings provide insight into Vif-A3 interactions and could lead to the development of new pharmacologic anti-HIV-1 compounds.
Collapse
|
27
|
Free Energy Profile of APOBEC3G Protein Calculated by a Molecular Dynamics Simulation. BIOLOGY 2012; 1:245-59. [PMID: 24832225 PMCID: PMC4009775 DOI: 10.3390/biology1020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 11/25/2022]
Abstract
The human APOBEC3G protein (A3G) is a single-stranded DNA deaminase that inhibits the replication of retrotransposons and retroviruses, including HIV-1. Atomic details of A3G’s catalytic mechanism have started to emerge, as the structure of its catalytic domain (A3Gctd) has been revealed by NMR and X-ray crystallography. The NMR and crystal structures are similar overall; however, differences are apparent for β2 strand (β2) and loops close to the catalytic site. To add some insight into these differences and to better characterize A3Gctd dynamics, we calculated its free energy profile by using the Generalized-Born surface area (GBSA) method accompanied with a molecular dynamics simulation. The GBSA method yielded an enthalpy term for A3Gctd’s free energy, and we developed a new method that takes into account the distribution of the protein’s dihedral angles to calculate its entropy term. The structure solved by NMR was found to have a lower energy than that of the crystal structure, suggesting that this conformation is dominant in solution. In addition, β2-loop-β2’ configuration was stable throughout a 20-ns molecular dynamics (MD) simulation. This finding suggests that in solution A3Gctd is not likely to adopt the continuous β2 strand configuration present in the APOBEC2 crystal structure. In the NMR structure, the solvent water accessibility of the catalytic Zn2+ was limited throughout the 20-ns MD simulation. This result explains previous observations in which A3G did not bind or catalyze single cytosine nucleotide, even when at excessive concentrations.
Collapse
|