1
|
Hirane N, Yokoi Y, Kobayashi A, Yamada M, Konno T, Kumeta H, Wakui H, Otaki M, Miura Y, Kakisaka T, Kamiyama T, Taketomi A, Nouso K, Kimura S, Nishimura SI. Site-Specific O-Glycosylation in Oncofetal Fibronectin IIICS Domain Creates Cancer Stage-Specific Biomarkers. J Am Chem Soc 2025; 147:12170-12184. [PMID: 40162478 DOI: 10.1021/jacs.5c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Despite the pathological importance of oncofetal fibronectin isoforms associated with cancer cell progression and metastasis, our understanding of the structural and molecular details that occurred in this abundant and ubiquitous extracellular matrix component remains largely unknown. Here, we communicate that site-specific O-glycosylation in the oncofetal fibronectin creates cancer stage-specific serum biomarkers for hepatocellular carcinoma (HCC) by quantitative MS-based glycoproteomic approach. Selective reaction monitoring (SRM) using a structure-defined synthetic glycopeptide library enabled absolute quantitation of the targeted label-free tryptic fragments bearing cancer-relevant O-glycans derived from the type III homology connective segment (IIICS) domain of the oncofetal fibronectin (onfFN) in the sera of HCC patients and healthy controls. We found site-specific O-glycoform alteration from T/sialyl T antigens to Tn/sialyl Tn antigens at the consecutive threonine residues 2155Thr-Thr-Ala2157 within this fragment during cancer progression. Surprisingly, this dynamic glycoform alteration is observed specifically in the patient sera diagnosed newly as stage 2-4 groups not in the normal control and stage 1 patient groups. Our results provide compelling evidence that site-specific glycoform changes observed in the onfFN IIICS domain during the tumor proliferation elaborate new class cancer stage-relevant "dynamic epitopes" as highly potential cancer diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Nozomi Hirane
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
- ENU Pharma, Inc. Satellite Laboratory, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Yasuhiro Yokoi
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
- ENU Pharma, Inc. Satellite Laboratory, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Aiko Kobayashi
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Misaki Yamada
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Taiki Konno
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Hiroyuki Kumeta
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Hajime Wakui
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Michiru Otaki
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Yoshiaki Miura
- ENU Pharma, Inc. Satellite Laboratory, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Tatsuhiko Kakisaka
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Satoshi Kimura
- Department of Laboratory Medicine and Central Clinical Laboratory, Showa University, Northern Yokohama Hospital, Yokohama 224-8503, Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
- ENU Pharma, Inc. Satellite Laboratory, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Gao Y, Du T, Yang L, Wu L. Research progress of KL-6 in respiratory system diseases. Crit Rev Clin Lab Sci 2024; 61:599-615. [PMID: 38773736 DOI: 10.1080/10408363.2024.2350374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024]
Abstract
This article comprehensively elucidates the discovery of Krebs von den Lungen-6 (KL-6), its structural features, functional mechanisms, and the current research status in various respiratory system diseases. Discovered in 1985, KL-6 was initially considered a tumor marker, but its elevated levels in interstitial lung disease (ILD) led to its recognition as a relevant serum marker for ILD. KL-6 is primarily produced by type 2 alveolar epithelial cell regeneration. Over the past 30 years since the discovery of KL-6, the number of related research papers has steadily increased annually. Following the coronavirus disease 2019 (COVID-19) pandemic, there has been a sudden surge in relevant literature. Despite KL-6's potential as a biomarker, its value in the diagnosis, treatment, and prognosis varies across different respiratory diseases, including ILD, idiopathic pulmonary fibrosis (IPF), COVID-19, and lung cancer. Therefore, as an important serum biomarker in respiratory system diseases, the value of KL-6 still requires further investigation.
Collapse
Affiliation(s)
- Yi Gao
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianming Du
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Lianbo Yang
- Department of Reparative and Reconstructive Surgery, the Second Hospital of Dalian Medical University, Dalian, China
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Das PK, Sahoo A, Veeranki VD. Recombinant monoclonal antibody production in yeasts: Challenges and considerations. Int J Biol Macromol 2024; 266:131379. [PMID: 38580014 DOI: 10.1016/j.ijbiomac.2024.131379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Monoclonal antibodies (mAbs) are laboratory-based engineered protein molecules with a monovalent affinity or multivalent avidity towards a specific target or antigen, which can mimic natural antibodies that are produced in the human immune systems to fight against detrimental pathogens. The recombinant mAb is one of the most effective classes of biopharmaceuticals produced in vitro by cloning and expressing synthetic antibody genes in a suitable host. Yeast is one of the potential hosts among others for the successful production of recombinant mAbs. However, there are very few yeast-derived mAbs that got the approval of the regulatory agencies for direct use for treatment purposes. Certain challenges encountered by yeasts for recombinant antibody productions need to be overcome and a few considerations related to antibody structure, host engineering, and culturing strategies should be followed for the improved production of mAbs in yeasts. In this review, the drawbacks related to the metabolic burden of the host, culturing conditions including induction mechanism and secretion efficiency, solubility and stability, downstream processing, and the pharmacokinetic behavior of the antibody are discussed, which will help in developing the yeast hosts for the efficient production of recombinant mAbs.
Collapse
Affiliation(s)
- Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Venkata Dasu Veeranki
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
4
|
Shiratori K, Yokoi Y, Wakui H, Hirane N, Otaki M, Hinou H, Yoneyama T, Hatakeyama S, Kimura S, Ohyama C, Nishimura SI. Selective reaction monitoring approach using structure-defined synthetic glycopeptides for validating glycopeptide biomarkers pre-determined by bottom-up glycoproteomics. RSC Adv 2022; 12:21385-21393. [PMID: 35975084 PMCID: PMC9347767 DOI: 10.1039/d2ra02903k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Clusterin is a heavily glycosylated protein that is upregulated in various cancer and neurological diseases. The findings by the Hancock and Iliopoulos group that levels of the tryptic glycopeptide derived from plasma clusterin, 372Leu-Ala-Asn-Leu-Thr-Gln-Gly-Glu-Asp-Gln-Tyr-Tyr-Leu-Arg385 with a biantennary disialyl N-glycan (A2G2S2 or FA2G2S2) at Asn374 differed significantly prior to and after curative nephrectomy for clear cell renal cell carcinoma (RCC) patients motivated us to verify the feasibility of this glycopeptide as a novel biomarker of RCC. To determine the precise N-glycan structure attached to Asn374, whether A2G2S2 is composed of the Neu5Acα2,3Gal or/and the Neu5Acα2,6Gal moiety, we synthesized key glycopeptides having one of the two putative isomers. Selective reaction monitoring assay using synthetic glycopeptides as calibration standards allowed "top-down glycopeptidomics" for the absolute quantitation of targeted label-free glycopeptides in a range from 313.3 to 697.5 nM in the complex tryptic digests derived from serum samples of RCC patients and healthy controls. Our results provided evidence that the Asn374 residue of human clusterin is modified dominantly with the Neu5Acα2,6Gal structure and the levels of clusterin bearing an A2G2S2 with homo Neu5Acα2,6Gal terminals at Asn374 decrease significantly in RCC patients as compared with healthy controls. The present study elicits that a new strategy integrating the bottom-up glycoproteomics with top-down glycopeptidomics using structure-defined synthetic glycopeptides enables the confident identification and quantitation of the glycopeptide targets pre-determined by the existing methods for intact glycopeptide profiling.
Collapse
Affiliation(s)
- Kouta Shiratori
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Yasuhiro Yokoi
- ENU Pharma, Co., Ltd N7, W6, Kita-ku Sapporo 060-0807 Japan
| | - Hajime Wakui
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Nozomi Hirane
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Michiru Otaki
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Tohru Yoneyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Shingo Hatakeyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Satoshi Kimura
- Department of Laboratory Medicine and Central Clinical Laboratory, Showa University, Northern Yokohama Hospital Yokohama 224-8503 Japan
| | - Chikara Ohyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
- ENU Pharma, Co., Ltd N7, W6, Kita-ku Sapporo 060-0807 Japan
| |
Collapse
|
5
|
Dlamini Z, Hull R, Mbatha SZ, Alaouna M, Qiao YL, Yu H, Chatziioannou A. Prognostic Alternative Splicing Signatures in Esophageal Carcinoma. Cancer Manag Res 2021; 13:4509-4527. [PMID: 34113176 PMCID: PMC8186946 DOI: 10.2147/cmar.s305464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023] Open
Abstract
Alternative splicing (AS) is a method of increasing the number of proteins that the genome is capable of coding for, by altering the pre-mRNA during its maturation. This process provides the ability of a broad range of proteins to arise from a single gene. AS events are known to occur in up to 94% of human genes. Cumulative data have shown that aberrant AS functionality is a major factor in human diseases. This review focuses on the contribution made by aberrant AS functionality in the development and progression of esophageal cancer. The changes in the pattern of expression of alternately spliced isoforms in esophageal cancer can be used as diagnostic or prognostic biomarkers. Additionally, these can be used as targets for the development of new treatments for esophageal cancer.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| | - Rodney Hull
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| | - Sikhumbuzo Z Mbatha
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Mohammed Alaouna
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - You-Lin Qiao
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Cancer Institute/Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Herbert Yu
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Aristotelis Chatziioannou
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Center of Systems Biology, Biomedical Research Foundation Academy of Athens, Athens, Greece.,e-NIOS Applications PC, Kallithea, Athens, 17676, Greece
| |
Collapse
|
6
|
Wakui H, Tanaka Y, Ose T, Matsumoto I, Kato K, Min Y, Tachibana T, Sato M, Naruchi K, Martin FG, Hinou H, Nishimura SI. A straightforward approach to antibodies recognising cancer specific glycopeptidic neoepitopes. Chem Sci 2020; 11:4999-5006. [PMID: 34122956 PMCID: PMC8159228 DOI: 10.1039/d0sc00317d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 11/18/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Aberrantly truncated immature O-glycosylation in proteins occurs in essentially all types of epithelial cancer cells, which was demonstrated to be a common feature of most adenocarcinomas and strongly associated with cancer proliferation and metastasis. Although extensive efforts have been made toward the development of anticancer antibodies targeting MUC1, one of the most studied mucins having cancer-relevant immature O-glycans, no anti-MUC1 antibody recognises carbohydrates and the proximal MUC1 peptide region, concurrently. Here we present a general strategy that allows for the creation of antibodies interacting specifically with glycopeptidic neoepitopes by using homogeneous synthetic MUC1 glycopeptides designed for the streamlined process of immunization, antibody screening, three-dimensional structure analysis, epitope mapping and biochemical analysis. The X-ray crystal structure of the anti-MUC1 monoclonal antibody SN-101 complexed with the antigenic glycopeptide provides for the first time evidence that SN-101 recognises specifically the essential epitope by forming multiple hydrogen bonds both with the proximal peptide and GalNAc linked to the threonine residue, concurrently. Remarkably, the structure of the MUC1 glycopeptide in complex with SN-101 is identical to its solution NMR structure, an extended conformation induced by site-specific glycosylation. We demonstrate that this method accelerates dramatically the development of a new class of designated antibodies targeting a variety of "dynamic neoepitopes" elaborated by disease-specific O-glycosylation in the immunodominant mucin domains and mucin-like sequences found in intrinsically disordered regions of many proteins.
Collapse
Affiliation(s)
- Hajime Wakui
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Toyoyuki Ose
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Isamu Matsumoto
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University 3-1-1, Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Yao Min
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Masaharu Sato
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9 W15, Chuo-ku Sapporo 060-0009 Japan
| | - Kentaro Naruchi
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9 W15, Chuo-ku Sapporo 060-0009 Japan
| | - Fayna Garcia Martin
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| |
Collapse
|
7
|
Impaired O-Glycosylation at Consecutive Threonine TTX Motifs in Mucins Generates Conformationally Restricted Cancer Neoepitopes. Biochemistry 2020; 59:1221-1241. [PMID: 32155332 DOI: 10.1021/acs.biochem.0c00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoantibody signatures of circulating mucin fragments stem from cancer tissues, and microenvironments are promising biomarkers for cancer diagnosis and therapy. This study highlights dynamic epitopes generated by aberrantly truncated immature O-glycosylation at consecutive threonine motifs (TTX) found in mucins and intrinsically disordered proteins (IDPs). NMR analysis of synthetic mucin models having glycosylated TTX motifs and colonic MUC2 tandem repeats (TRs) containing TTP and TTL moieties unveils a general principle that O-glycosylation at TTX motifs generates a highly extended and rigid conformation in IDPs. We demonstrate that the specific conformation of glycosylated TTX motifs in MUC2 TRs is rationally rearranged by concerted motions of multiple dihedral angles and noncovalent interactions between the carbohydrate and peptide region. Importantly, this canonical conformation of glycosylated TTX motifs minimizes steric crowding of glycans attached to threonine residues, in which O-glycans possess restricted orientations permitting further sugar extension. An antiadhesive microarray displaying synthetic MUC2 derivatives elicited the presence of natural autoantibodies to MUC2 with impaired O-glycosylation at TTX motifs in sera of healthy volunteers and patients diagnosed with early stage colorectal cancer (CRC). Interestingly, autoantibody levels in sera of the late stage CRC patients were distinctly lower than those of early stage CRC and normal individuals, indicating that the anti-MUC2 humoral response to MUC2 neoepitopes correlates inversely with the CRC stage of patients. Our results uncovered the structural basis of the creation of dynamic epitopes by immature O-glycosylation at TTX motifs in mucins that facilitates the identification of high-potential targets for cancer diagnosis and therapy.
Collapse
|
8
|
Singh J, Her C, Supekar N, Boons G, Krishnan VV, Brooks CL. Role of glycosylation on the ensemble of conformations in the MUC1 immunodominant epitope. J Pept Sci 2019; 26:e3229. [DOI: 10.1002/psc.3229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Jaideep Singh
- Department of ChemistryCalifornia State University 2555 E San Ramon Avenue Fresno CA 93740 USA
| | - Cheenou Her
- Department of ChemistryCalifornia State University 2555 E San Ramon Avenue Fresno CA 93740 USA
| | - Nitin Supekar
- Department of ChemistryThe University of Georgia 140 Cedar Street Athens GA 30602 USA
- Complex Carbohydrate Research CenterThe University of Georgia 315 Riverbend Road Athens GA 3062 USA
| | - Geert‐Jan Boons
- Department of ChemistryThe University of Georgia 140 Cedar Street Athens GA 30602 USA
- Complex Carbohydrate Research CenterThe University of Georgia 315 Riverbend Road Athens GA 3062 USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular ResearchUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Viswanathan V. Krishnan
- Department of ChemistryCalifornia State University 2555 E San Ramon Avenue Fresno CA 93740 USA
- Department of Pathology & Laboratory MedicineUniversity of California Davis School of Medicine 95616 Davis CA
| | - Cory L. Brooks
- Department of ChemistryCalifornia State University 2555 E San Ramon Avenue Fresno CA 93740 USA
| |
Collapse
|
9
|
Hinou H, Kikuchi S, Ochi R, Igarashi K, Takada W, Nishimura SI. Synthetic glycopeptides reveal specific binding pattern and conformational change at O-mannosylated position of α-dystroglycan by POMGnT1 catalyzed GlcNAc modification. Bioorg Med Chem 2019; 27:2822-2831. [PMID: 31079966 DOI: 10.1016/j.bmc.2019.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/06/2023]
Abstract
Structural and functional effects of core M1 type glycan modification catalyzed by protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) were investigated using a core M1 glycoform focused library of an α-dystroglycan fragment, 372TRGAIIQTPTLGPIQPTRV390. Evanescent-field fluorescence-assisted microarray system illuminated the specific binding pattern of plant lectins that can discriminate the glycan structure of core M1 glycan of the library. The comparative NMR analysis of synthetic glycopeptide having different length of the O-mannosylated glycans revealed a conformational change of the peptide backbone along with core M1 disaccharide formation. No long-range NOE signals of glycan-amino acid nor inter amino acid indicate the conformational change is induced by steric hindrance of core M1, the sole 1,2-O-modified form among protein binding sugar residue found in mammals.
Collapse
Affiliation(s)
- Hiroshi Hinou
- Graduate School of Life Science, Frontier Research Center for Advanced Material & Life Science, Hokkaido University, N21, W11, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals Co. Ltd., Sapporo, Japan.
| | - Seiya Kikuchi
- Graduate School of Life Science, Frontier Research Center for Advanced Material & Life Science, Hokkaido University, N21, W11, Sapporo 001-0021, Japan
| | - Rika Ochi
- Graduate School of Life Science, Frontier Research Center for Advanced Material & Life Science, Hokkaido University, N21, W11, Sapporo 001-0021, Japan
| | | | | | - Shin-Ichiro Nishimura
- Graduate School of Life Science, Frontier Research Center for Advanced Material & Life Science, Hokkaido University, N21, W11, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals Co. Ltd., Sapporo, Japan
| |
Collapse
|
10
|
Zhou D, Xu L, Huang W, Tonn T. Epitopes of MUC1 Tandem Repeats in Cancer as Revealed by Antibody Crystallography: Toward Glycopeptide Signature-Guided Therapy. Molecules 2018; 23:molecules23061326. [PMID: 29857542 PMCID: PMC6099590 DOI: 10.3390/molecules23061326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormally O-glycosylated MUC1 tandem repeat glycopeptide epitopes expressed by multiple types of cancer have long been attractive targets for therapy in the race against genetic mutations of tumor cells. Glycopeptide signature-guided therapy might be a more promising avenue than mutation signature-guided therapy. Three O-glycosylated peptide motifs, PDTR, GSTA, and GVTS, exist in a tandem repeat HGVTSAPDTRPAPGSTAPPA, containing five O-glycosylation sites. The exact peptide and sugar residues involved in antibody binding are poorly defined. Co-crystal structures of glycopeptides and respective monoclonal antibodies are very few. Here we review 3 groups of monoclonal antibodies: antibodies which only bind to peptide portion, antibodies which only bind to sugar portion, and antibodies which bind to both peptide and sugar portions. The antigenicity of peptide and sugar portions of glyco-MUC1 tandem repeat were analyzed according to available biochemical and structural data, especially the GSTA and GVTS motifs independent from the most studied PDTR. Tn is focused as a peptide-modifying residue in vaccine design, to induce glycopeptide-binding antibodies with cross reactivity to Tn-related tumor glycans, but not glycans of healthy cells. The unique requirement for the designs of antibody in antibody-drug conjugate, bi-specific antibodies, and chimeric antigen receptors are also discussed.
Collapse
Affiliation(s)
- Dapeng Zhou
- Shanghai Pulmonary Hospital Affiliated with Tongji University School of Medicine, Shanghai 200092, China.
| | - Lan Xu
- Laboratory of Antibody Structure, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201203, China.
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and iHuman Institute, ShanghaiTech University, Shanghai 201203, China.
| | - Torsten Tonn
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, D-01307 Dresden, Germany.
- Medical Faculty, Carl Gustav Carus Technical University Dresden, D-01307 Dresden, Germany.
| |
Collapse
|
11
|
Martínez-Sáez N, Peregrina JM, Corzana F. Principles of mucin structure: implications for the rational design of cancer vaccines derived from MUC1-glycopeptides. Chem Soc Rev 2018; 46:7154-7175. [PMID: 29022615 DOI: 10.1039/c6cs00858e] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer is currently one of the world's most serious public health problems. Significant efforts are being made to develop new strategies that can eradicate tumours selectively without detrimental effects to healthy cells. One promising approach is focused on the design of vaccines that contain partially glycosylated mucins in their formulation. Although some of these vaccines are in clinical trials, a lack of knowledge about the molecular basis that governs the antigen presentation, and the interactions between antigens and the elicited antibodies has limited their success thus far. This review focuses on the most significant milestones achieved to date in the conformational analysis of tumour-associated MUC1 derivatives both in solution and bound to antibodies. The effect that the carbohydrate scaffold has on the peptide backbone structure and the role of the sugar in molecular recognition by antibodies are emphasised. The outcomes summarised in this review may be a useful guide to develop new antigens for the design of cancer vaccines in the near future.
Collapse
Affiliation(s)
- Nuria Martínez-Sáez
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño, Spain.
| | | | | |
Collapse
|
12
|
Glycosylated and non-glycosylated quantum dot-displayed peptides trafficked indiscriminately inside lung cancer cells but discriminately sorted in normal lung cells: An indispensable part in nanoparticle-based intracellular drug delivery. Asian J Pharm Sci 2017; 13:197-211. [PMID: 32104393 PMCID: PMC7032100 DOI: 10.1016/j.ajps.2017.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/17/2017] [Accepted: 12/04/2017] [Indexed: 11/10/2022] Open
Abstract
Difference in sub-cellular trafficking of glycosylated and naked peptides, between normal and lung cancer cells, was established. Normal lung tissue discriminately sorted glycosylated from non-glycosylated peptides by allowing golgi localization of the glycosylated peptides while restricting golgi entry of the naked peptides. This mechanism was surprisingly not observed in its cancer cell counterpart. Lung cancer cells tend to allow unrestricted localization of both glycosylated and naked peptides in the golgi apparatus. This newly discovered difference in sub-cellular trafficking between normal and lung cancer cells could potentially be used as an effective strategy in targeted intracellular delivery, especially targeting golgi-resident enzymes for possible treatment of diseases associated with glycans and glycoproteins, such as, congenital disease of glycosylation (CDG). This very important detail in intracellular trafficking inside normal and cancer cells is an indispensable part in nanoparticle-based intracellular drug delivery.
Collapse
|
13
|
Abstract
AbstractCancer immunotherapy based on tumor vaccine is very promising and intriguing for carcinoma treatment. Herein, antitumor nanovaccines consisting of self-assembled chitosan (CS) nanoparticles and two-component mucin1 (MUC1) glycopeptide antigens were reported. Two different kinds of polyanionic electrolyte [sodium tripolyphosphate (TPP) and γ-poly-L-glutamic acid (γ-PGA)] were combined with chitosan polymers to fabricate the diameter of nearly 400–500 nm CS nanoparticles by electrostatic interactions. The nanovaccines were constructed by physically mixing MUC1 glycopeptide antigens with CS nanoparticles, which reduced vaccine constructing complexity compared with traditional chemical total synthetic vaccines. Immunological studies revealed that the CS/γ-PGA nanoparticle could dramatically enhance the immunogenicity of peptide epitope and produce significantly high titers of IgG antibody which was even better than Freund’s adjuvant-containing vaccines.
Collapse
|
14
|
Leiria Campo V, Riul TB, Oliveira Bortot L, Martins-Teixeira MB, Fiori Marchiori M, Iaccarino E, Ruvo M, Dias-Baruffi M, Carvalho I. A Synthetic MUC1 Glycopeptide Bearing βGalNAc-Thr as a Tn Antigen Isomer Induces the Production of Antibodies against Tumor Cells. Chembiochem 2017; 18:527-538. [PMID: 28068458 DOI: 10.1002/cbic.201600473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/05/2017] [Indexed: 01/01/2023]
Abstract
This study presents the synthesis of the novel protected O-glycosylated amino acid derivatives 1 and 2, containing βGalNAc-SerOBn and βGalNAc-ThrOBn units, respectively, as mimetics of the natural Tn antigen (αGalNAc-Ser/Thr), along with the solid-phase assembly of the glycopeptides NHAcSer-Ala-Pro-Asp-Thr[αGalNAc]-Arg-Pro-Ala-Pro-Gly-BSA (3-BSA) and NHAcSer-Ala-Pro-Asp-Thr[βGalNAc]-Arg-Pro-Ala-Pro-Gly-BSA (4-BSA), bearing αGalNAc-Thr or βGalNAc-Thr units, respectively, as mimetics of MUC1 tumor mucin glycoproteins. According to ELISA tests, immunizations of mice with βGalNAc-glycopeptide 4-BSA induced higher sera titers (1:320 000) than immunizations with αGalNAc-glycopeptide 3-BSA (1:40 000). Likewise, flow cytometry assays showed higher capacity of the obtained anti-glycopeptide 4-BSA antibodies to recognize MCF-7 tumor cells. Cross-recognition between immunopurified anti-βGalNAc antibodies and αGalNAc-glycopeptide and vice versa was also verified. Lastly, molecular dynamics simulations and surface plasmon resonance (SPR) showed that βGalNAc-glycopeptide 4 can interact with a model antitumor monoclonal antibody (SM3). Taken together, these data highlight the improved immunogenicity of the unnatural glycopeptide 4-BSA, bearing βGalNAc-Thr as Tn antigen isomer.
Collapse
Affiliation(s)
- Vanessa Leiria Campo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Thalita B Riul
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Leandro Oliveira Bortot
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Maristela B Martins-Teixeira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo Fiori Marchiori
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Emanuela Iaccarino
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134, Napoli, Italy.,Second University of Naples, via Vivaldi 43, 81100, Caserta, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, 80134, Napoli, Italy
| | - Marcelo Dias-Baruffi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Ivone Carvalho
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
15
|
Pett C, Cai H, Liu J, Palitzsch B, Schorlemer M, Hartmann S, Stergiou N, Lu M, Kunz H, Schmitt E, Westerlind U. Microarray Analysis of Antibodies Induced with Synthetic Antitumor Vaccines: Specificity against Diverse Mucin Core Structures. Chemistry 2017; 23:3875-3884. [PMID: 27957769 DOI: 10.1002/chem.201603921] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 01/08/2023]
Abstract
Glycoprotein research is pivotal for vaccine development and biomarker discovery. Many successful methodologies for reliably increasing the antigenicity toward tumor-associated glycopeptide structures have been reported. Deeper insights into the quality and specificity of the raised polyclonal, humoral reactions are often not addressed, despite the fact that an immunological memory, which produces antibodies with cross-reactivity to epitopes exposed on healthy cells, may cause autoimmune diseases. In the current work, three MUC1 antitumor vaccine candidates conjugated with different immune stimulants are evaluated immunologically. For assessment of the influence of the immune stimulant on antibody recognition, a comprehensive library of mucin 1 glycopeptides (>100 entries) is synthesized and employed in antibody microarray profiling; these range from small tumor-associated glycans (TN , STN , and T-antigen structures) to heavily extended O-glycan core structures (type-1 and type-2 elongated core 1-3 tri-, tetra-, and hexasaccharides) glycosylated in variable density at the five different sites of the MUC1 tandem repeat. This is one of the most extensive glycopeptide libraries ever made through total synthesis. On tumor cells, the core 2 β-1,6-N-acetylglucosaminyltransferase-1 (C2GlcNAcT-1) is down-regulated, resulting in lower amounts of the branched core 2 structures, which favor formation of linear core 1 or core 3 structures, and in particular, truncated tumor-associated antigen structures. The core 2 structures are commonly found on healthy cells and the elucidation of antibody cross-reactivity to such epitopes may predict the tumor-selectivity and safety of synthetic vaccines. With the extended mucin core structures in hand, antibody cross-reactivity toward the branched core 2 glycopeptide epitopes is explored. It is observed that the induced antibodies recognize MUC1 peptides with very high glycosylation site specificity. The nature of the antibody response is characteristically different for antibodies directed to glycosylation sites in either the immune-dominant PDTR or the GSTA domain. All antibody sera show high reactivity to the tumor-associated saccharide structures on MUC1. Extensive glycosylation with branched core 2 structures, typically found on healthy cells, abolishes antibody recognition of the antisera and suggests that all vaccine conjugates preferentially induce a tumor-specific humoral immune response.
Collapse
Affiliation(s)
- Christian Pett
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Hui Cai
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Jia Liu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn Palitzsch
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Manuel Schorlemer
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Sebastian Hartmann
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Natascha Stergiou
- University Medical Center, Institute of Immunology, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, Geb. 708, 55101, Mainz, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Horst Kunz
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Edgar Schmitt
- University Medical Center, Institute of Immunology, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, Geb. 708, 55101, Mainz, Germany
| | - Ulrika Westerlind
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| |
Collapse
|
16
|
Artigas G, Hinou H, Garcia-Martin F, Gabius HJ, Nishimura SI. Synthetic Mucin-Like Glycopeptides as Versatile Tools to Measure Effects of Glycan Structure/Density/Position on the Interaction with Adhesion/Growth-Regulatory Galectins in Arrays. Chem Asian J 2016; 12:159-167. [DOI: 10.1002/asia.201601420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Gerard Artigas
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku; Sapporo 060-0009 Japan
| | - Fayna Garcia-Martin
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry; Faculty of Veterinary Medicine; Ludwig-Maximilians-University Munich; Veterinärstr. 13 80539 München Germany
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku; Sapporo 060-0009 Japan
| |
Collapse
|
17
|
Fernández EMS, Navo CD, Martínez-Sáez N, Gonçalves-Pereira R, Somovilla VJ, Avenoza A, Busto JH, Bernardes GJL, Jiménez-Osés G, Corzana F, Fernández JMG, Mellet CO, Peregrina JM. Tn Antigen Mimics Based on sp2-Iminosugars with Affinity for an anti-MUC1 Antibody. Org Lett 2016; 18:3890-3. [DOI: 10.1021/acs.orglett.6b01899] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Claudio D. Navo
- Dept.
Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Nuria Martínez-Sáez
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Rita Gonçalves-Pereira
- Dept.
Química Orgánica, Facultad de Química, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Víctor J. Somovilla
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Alberto Avenoza
- Dept.
Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Jesús H. Busto
- Dept.
Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Gonçalo J. L. Bernardes
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Gonzalo Jiménez-Osés
- Dept.
Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
- Institute
of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC), Zaragoza, Spain
| | - Francisco Corzana
- Dept.
Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - José M. García Fernández
- Instituto
de Investigaciones Químicas (IIQ), CSIC−Universidad de Sevilla, E-41092 Sevilla, Spain
| | - Carmen Ortiz Mellet
- Dept.
Química Orgánica, Facultad de Química, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - Jesús M. Peregrina
- Dept.
Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| |
Collapse
|
18
|
Rojas-Ocáriz V, Compañón I, Aydillo C, Castro-Loṕez J, Jiménez-Barbero J, Hurtado-Guerrero R, Avenoza A, Zurbano MM, Peregrina JM, Busto JH, Corzana F. Design of α-S-Neoglycopeptides Derived from MUC1 with a Flexible and Solvent-Exposed Sugar Moiety. J Org Chem 2016; 81:5929-41. [PMID: 27305427 DOI: 10.1021/acs.joc.6b00833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of vaccines based on MUC1 glycopeptides is a promising approach to treat cancer. We present herein several sulfa-Tn antigens incorporated in MUC1 sequences that possess a variable linker between the carbohydrate (GalNAc) and the peptide backbone. The main conformations of these molecules in solution have been evaluated by combining NMR experiments and molecular dynamics simulations. The linker plays a key role in the modulation of the conformation of these compounds at different levels, blocking a direct contact between the sugar moiety and the backbone, promoting a helix-like conformation for the glycosylated residue and favoring the proper presentation of the sugar unit for molecular recognition events. The feasibility of these novel compounds as mimics of MUC1 antigens has been validated by the X-ray diffraction structure of one of these unnatural derivatives complexed to an anti-MUC1 monoclonal antibody. These features, together with potential lack of immune suppression, render these unnatural glycopeptides promising candidates for designing alternative therapeutic vaccines against cancer.
Collapse
Affiliation(s)
- Víctor Rojas-Ocáriz
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Ismael Compañón
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Carlos Aydillo
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Jorge Castro-Loṕez
- BIFI, University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit , Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Jesús Jiménez-Barbero
- Structural Biology Unit, CIC bioGUNE , Parque Tecnológico de Bizkaia Building 801 A, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science , 48011 Bilbao, Spain.,Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas , CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ramón Hurtado-Guerrero
- BIFI, University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit , Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain.,Fundación ARAID , 50018 Zaragoza, Spain
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - María M Zurbano
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Jesús H Busto
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| |
Collapse
|
19
|
Chandler KB, Costello CE. Glycomics and glycoproteomics of membrane proteins and cell-surface receptors: Present trends and future opportunities. Electrophoresis 2016; 37:1407-19. [PMID: 26872045 PMCID: PMC4889498 DOI: 10.1002/elps.201500552] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
Abstract
Membrane proteins mediate cell-cell interactions and adhesion, the transfer of ions and metabolites, and the transmission of signals from the extracellular environment to the cell interior. The extracellular domains of most cell membrane proteins are glycosylated, often at multiple sites. There is a growing awareness that glycosylation impacts the structure, interaction, and function of membrane proteins. The application of glycoproteomics and glycomics methods to membrane proteins has great potential. However, challenges also arise from the unique physical properties of membrane proteins. Successful analytical workflows must be developed and disseminated to advance functional glycoproteomics and glycomics studies of membrane proteins. This review explores the opportunities and challenges related to glycomic and glycoproteomic analysis of membrane proteins, including discussion of sample preparation, enrichment, and MS/MS analyses, with a focus on recent successful workflows for analysis of N- and O-linked glycosylation of mammalian membrane proteins.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
20
|
Martínez-Sáez N, Supekar NT, Wolfert MA, Bermejo IA, Hurtado-Guerrero R, Asensio JL, Jiménez-Barbero J, Busto JH, Avenoza A, Boons GJ, Peregrina JM, Corzana F. Mucin architecture behind the immune response: design, evaluation and conformational analysis of an antitumor vaccine derived from an unnatural MUC1 fragment. Chem Sci 2016; 7:2294-2301. [PMID: 29910919 PMCID: PMC5977504 DOI: 10.1039/c5sc04039f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/06/2015] [Indexed: 02/01/2023] Open
Abstract
A tripartite cancer vaccine candidate, containing a quaternary amino acid (α-methylserine) in the most immunogenic domain of MUC1, has been synthesized and examined for antigenic properties in transgenic mice. The vaccine which is glycosylated with GalNAc at the unnatural amino acid, was capable of eliciting potent antibody responses recognizing both glycosylated and unglycosylated tumour-associated MUC1 peptides and native MUC1 antigen present on cancer cells. The peptide backbone of the novel vaccine presents the bioactive conformation in solution and is more resistant to enzymatic degradation than the natural counter part. In spite of these features, the immune response elicited by the unnatural vaccine was not improved compared to a vaccine candidate containing natural threonine. These observations were rationalized by conformational studies, indicating that the presentation and dynamics of the sugar moiety displayed by the MUC1 derivative play a critical role in immune recognition. It is clear that engineered MUC1-based vaccines bearing unnatural amino acids have to be able to emulate the conformational properties of the glycosidic linkage between the GalNAc and the threonine residues. The results described here will be helpful to the rational design of efficacious cancer vaccines.
Collapse
Affiliation(s)
- Nuria Martínez-Sáez
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , Madre de Dios 53 , 26006 Logroño , Spain . ;
| | - Nitin T Supekar
- Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , USA .
| | - Margreet A Wolfert
- Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , USA .
| | - Iris A Bermejo
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , Madre de Dios 53 , 26006 Logroño , Spain . ;
| | - Ramón Hurtado-Guerrero
- BIFI , University of Zaragoza , BIFI-IQFR (CSIC) Joint Unit , Mariano Esquillor s/n , Campus Rio Ebro , Edificio I+D , Zaragoza , Spain
- Fundación ARAID , 50018 , Zaragoza , Spain
| | - Juan L Asensio
- Instituto de Química Orgánica General , IQOG-CSIC , Juan de la Cierva 3 , 28006 Madrid , Spain
| | - Jesús Jiménez-Barbero
- Structural Biology Unit , CIC bioGUNE , Parque Tecnológico de Bizkaia Building 801A , 48160 Derio , Spain
- IKERBASQUE , Basque Foundation for Science , 48011 Bilbao , Spain
- Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas , CSIC , Ramiro de Maeztu 9 , 28040 Madrid , Spain
| | - Jesús H Busto
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , Madre de Dios 53 , 26006 Logroño , Spain . ;
| | - Alberto Avenoza
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , Madre de Dios 53 , 26006 Logroño , Spain . ;
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , USA .
| | - Jesús M Peregrina
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , Madre de Dios 53 , 26006 Logroño , Spain . ;
| | - Francisco Corzana
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , Madre de Dios 53 , 26006 Logroño , Spain . ;
| |
Collapse
|
21
|
Hinou H, Abe Y, Hayakawa S, Naruchi K, Fujitani N, Nishimura SI. Solid-phase synthesis of C-mannosylated glycopeptide on WSXWS motif of human erythropoietin receptor. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Hayakawa S, Koide R, Hinou H, Nishimura SI. Synthetic Human NOTCH1 EGF Modules Unraveled Molecular Mechanisms for the Structural and Functional Roles of Calcium Ions and O-Glycans in the Ligand-Binding Region. Biochemistry 2016; 55:776-87. [DOI: 10.1021/acs.biochem.5b01284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shun Hayakawa
- Graduate
School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Ryosuke Koide
- Graduate
School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Graduate
School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
- Medicinal Chemistry Pharmaceuticals, Company Ltd., N21, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Graduate
School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
- Medicinal Chemistry Pharmaceuticals, Company Ltd., N21, W12, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
23
|
Rangappa S, Artigas G, Miyoshi R, Yokoi Y, Hayakawa S, Garcia-Martin F, Hinou H, Nishimura SI. Effects of the multiple O-glycosylation states on antibody recognition of the immunodominant motif in MUC1 extracellular tandem repeats. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00100a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The conformational impact of the clusteredO-glycans strongly influences recognition by antibodies of the cancer-relevant epitope in the MUC1 extracellular tandem repeat domain.
Collapse
Affiliation(s)
- Shobith Rangappa
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Gerard Artigas
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Risho Miyoshi
- Medicinal Chemistry Pharmaceuticals Co., Ltd
- Sapporo 001-0021
- Japan
| | - Yasuhiro Yokoi
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Shun Hayakawa
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Fayna Garcia-Martin
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| |
Collapse
|
24
|
Sungsuwan S, Yin Z, Huang X. Lipopeptide-Coated Iron Oxide Nanoparticles as Potential Glycoconjugate-Based Synthetic Anticancer Vaccines. ACS APPLIED MATERIALS & INTERFACES 2015; 7. [PMID: 26200668 PMCID: PMC4724168 DOI: 10.1021/acsami.5b05497] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Although iron oxide magnetic nanoparticles (NPs) have been widely utilized in molecular imaging and drug delivery studies, they have not been evaluated as carriers for glycoconjugate-based anticancer vaccines. Tumor-associated carbohydrate antigens (TACAs) are attractive targets for the development of anticancer vaccines. Due to the weak immunogenicity of these antigens, it is highly challenging to elicit strong anti-TACA immune responses. With their high biocompatibilities and large surface areas, magnetic NPs were synthesized for TACA delivery. The magnetic NPs were coated with phospholipid-functionalized TACA glycopeptides through hydrophobic-hydrophobic interactions without the need for any covalent linkages. Multiple copies of glycopeptides were presented on NPs, potentially leading to enhanced interactions with antibody-secreting B cells through multivalent binding. Mice immunized with the NPs generated strong antibody responses, and the glycopeptide structures important for high antibody titers were identified. The antibodies produced were capable of recognizing both mouse and human tumor cells expressing the glycopeptide, resulting in tumor cell death through complement-mediated cytotoxicities. These results demonstrate that magnetic NPs can be a new and simple platform for multivalently displaying TACA and boosting anti-TACA immune responses without the need for a typical protein carrier.
Collapse
|
25
|
Martínez-Sáez N, Castro-López J, Valero-González J, Madariaga D, Compañón I, Somovilla VJ, Salvadó M, Asensio JL, Jiménez-Barbero J, Avenoza A, Busto JH, Bernardes GJL, Peregrina JM, Hurtado-Guerrero R, Corzana F. Deciphering the Non-Equivalence of Serine and Threonine O-Glycosylation Points: Implications for Molecular Recognition of the Tn Antigen by an anti-MUC1 Antibody. Angew Chem Int Ed Engl 2015; 54:9830-4. [PMID: 26118689 PMCID: PMC4552995 DOI: 10.1002/anie.201502813] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/06/2015] [Indexed: 11/11/2022]
Abstract
The structural features of MUC1-like glycopeptides bearing the Tn antigen (α-O-GalNAc-Ser/Thr) in complex with an anti MUC-1 antibody are reported at atomic resolution. For the α-O-GalNAc-Ser derivative, the glycosidic linkage adopts a high-energy conformation, barely populated in the free state. This unusual structure (also observed in an α-S-GalNAc-Cys mimic) is stabilized by hydrogen bonds between the peptidic fragment and the sugar. The selection of a particular peptide structure by the antibody is thus propagated to the carbohydrate through carbohydrate/peptide contacts, which force a change in the orientation of the sugar moiety. This seems to be unfeasible in the α-O-GalNAc-Thr glycopeptide owing to the more limited flexibility of the side chain imposed by the methyl group. Our data demonstrate the non-equivalence of Ser and Thr O-glycosylation points in molecular recognition processes. These features provide insight into the occurrence in nature of the APDTRP epitope for anti-MUC1 antibodies.
Collapse
Affiliation(s)
- Nuria Martínez-Sáez
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | - Jorge Castro-López
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Edificio I+D, 50018 Zaragoza (Spain).,Fundación ARAID, Edificio Pignatelli 36, Zaragoza (Spain)
| | - Jessika Valero-González
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Edificio I+D, 50018 Zaragoza (Spain).,Fundación ARAID, Edificio Pignatelli 36, Zaragoza (Spain)
| | - David Madariaga
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Víctor J Somovilla
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | - Míriam Salvadó
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK).,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcellí Domingo s/n, 43007 Tarragona (Spain)
| | - Juan L Asensio
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)
| | - Jesús Jiménez-Barbero
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia Building 801 A, 48160 Derio (Spain).,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain).,Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Alberto Avenoza
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Jesús H Busto
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK).,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa (Portugal)
| | - Jesús M Peregrina
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Edificio I+D, 50018 Zaragoza (Spain). .,Fundación ARAID, Edificio Pignatelli 36, Zaragoza (Spain).
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).
| |
Collapse
|
26
|
Martínez-Sáez N, Castro-López J, Valero-González J, Madariaga D, Compañón I, Somovilla VJ, Salvadó M, Asensio JL, Jiménez-Barbero J, Avenoza A, Busto JH, Bernardes GJL, Peregrina JM, Hurtado-Guerrero R, Corzana F. Deciphering the Non-Equivalence of Serine and ThreonineO-Glycosylation Points: Implications for Molecular Recognition of the Tn Antigen by an anti-MUC1 Antibody. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition. Proc Natl Acad Sci U S A 2015; 112:6955-60. [PMID: 25971727 DOI: 10.1073/pnas.1507329112] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation.
Collapse
|
28
|
Madariaga D, Martínez-Sáez N, Somovilla VJ, Coelho H, Valero-González J, Castro-López J, Asensio JL, Jiménez-Barbero J, Busto JH, Avenoza A, Marcelo F, Hurtado-Guerrero R, Corzana F, Peregrina JM. Detection of tumor-associated glycopeptides by lectins: the peptide context modulates carbohydrate recognition. ACS Chem Biol 2015; 10:747-56. [PMID: 25457745 DOI: 10.1021/cb500855x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tn antigen (α-O-GalNAc-Ser/Thr) is a convenient cancer biomarker that is recognized by antibodies and lectins. This work yields remarkable results for two plant lectins in terms of epitope recognition and reveals that these receptors show higher affinity for Tn antigen when it is incorporated in the Pro-Asp-Thr-Arg (PDTR) peptide region of mucin MUC1. In contrast, a significant affinity loss is observed when Tn antigen is located in the Ala-His-Gly-Val-Thr-Ser-Ala (AHGVTSA) or Ala-Pro-Gly-Ser-Thr-Ala-Pro (APGSTAP) fragments. Our data indicate that the charged residues, Arg and Asp, present in the PDTR sequence establish noteworthy fundamental interactions with the lectin surface as well as fix the conformation of the peptide backbone, favoring the presentation of the sugar moiety toward the lectin. These results may help to better understand glycopeptide-lectin interactions and may contribute to engineer new binding sites, allowing novel glycosensors for Tn antigen detection to be designed.
Collapse
Affiliation(s)
- David Madariaga
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Nuria Martínez-Sáez
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Víctor J. Somovilla
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Helena Coelho
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jessika Valero-González
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jorge Castro-López
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Juan L. Asensio
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jesús Jiménez-Barbero
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jesús H. Busto
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Alberto Avenoza
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Filipa Marcelo
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Ramón Hurtado-Guerrero
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Francisco Corzana
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jesús M. Peregrina
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| |
Collapse
|
29
|
Madariaga D, Martínez-Sáez N, Somovilla VJ, García-García L, Berbis MÁ, Valero-Gónzalez J, Martín-Santamaría S, Hurtado-Guerrero R, Asensio JL, Jiménez-Barbero J, Avenoza A, Busto JH, Corzana F, Peregrina JM. Serine versus Threonine Glycosylation with α-O-GalNAc: Unexpected Selectivity in Their Molecular Recognition with Lectins. Chemistry 2014; 20:12616-27. [DOI: 10.1002/chem.201403700] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 12/17/2022]
|
30
|
Kahkhaie KR, Moaven O, Abbaszadegan MR, Montazer M, Gholamin M. Specific MUC1 Splice Variants Are Correlated With Tumor Progression in Esophageal Cancer. World J Surg 2014; 38:2052-7. [DOI: 10.1007/s00268-014-2523-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Matsushita T, Takada W, Igarashi K, Naruchi K, Miyoshi R, Garcia-Martin F, Amano M, Hinou H, Nishimura SI. A straightforward protocol for the preparation of high performance microarray displaying synthetic MUC1 glycopeptides. Biochim Biophys Acta Gen Subj 2013; 1840:1105-16. [PMID: 24246952 DOI: 10.1016/j.bbagen.2013.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/07/2013] [Accepted: 11/08/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Human serum MUC1 peptide fragments bearing aberrant O-glycans are secreted from columnar epithelial cell surfaces and known as clinically important serum biomarkers for the epithelial carcinoma when a specific monoclonal antibody can probe disease-relevant epitopes. Despite the growing importance of MUC1 glycopeptides as biomarkers, the precise epitopes of most anti-MUC1 monoclonal antibodies remains unclear. METHODS A novel protocol for the fabrication of versatile microarray displaying peptide/glycopeptide library was investigated for the construction of highly sensitive and accurate epitope mapping assay of various anti-MUC1 antibodies. RESULTS Selective imine-coupling between aminooxy-functionalized methacrylic copolymer with phosphorylcholine unit and synthetic MUC1 glycopeptides-capped by a ketone linker at N-terminus provided a facile and seamless protocol for the preparation of glycopeptides microarray platform. It was demonstrated that anti-KL-6 monoclonal antibody shows an extremely specific and strong binding affinity toward MUC1 fragments carrying sialyl T antigen (Neu5Acα2,3Galβ1,3GalNAcα1→) at Pro-Asp-Thr-Arg motif when compared with other seven anti-MUC1 monoclonal antibodies such as VU-3D1, VU-12E1, VU-11E2, Ma552, VU-3C6, SM3, and DF3. The present microarray also uncovered the occurrence of IgG autoantibodies in healthy human sera that bind specifically with sialyl T antigen attached at five potential O-glycosylation sites of MUC1 tandem repeats. CONCLUSION We established a straightforward strategy toward the standardized microarray platform allowing highly sensitive and accurate epitope mapping analysis by reducing the background noise due to nonspecific protein adsorption. GENERAL SIGNIFICANCE The present approach would greatly accelerate the discovery research of new class autoantibodies as well as the development of therapeutic mAbs reacting specifically with disease-relevant epitopes.
Collapse
Affiliation(s)
- Takahiko Matsushita
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan
| | | | | | - Kentaro Naruchi
- Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Risho Miyoshi
- Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Fayna Garcia-Martin
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan
| | - Maho Amano
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, N22, W11 Kita-ku, Sapporo 001-0021, Japan; Medicinal Chemistry Pharmaceuticals, Co. Ltd., N22, W12, Kita-ku, Sapporo 001-0021, Japan.
| |
Collapse
|
32
|
Barchi JJ. Mucin-Type Glycopeptide Structure in Solution: Past, Present, and Future. Biopolymers 2013; 99:713-23. [DOI: 10.1002/bip.22313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 06/05/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory; Center for Cancer Research, National Cancer Institute at Frederick; Frederick; MD; 21702
| |
Collapse
|