1
|
Västberg A, Markova N, Nilsson L, Nylander T, Sivakumar B, Wahlgren M, Elofsson U. Particle formation during peristaltic pumping of therapeutic proteins: Hofmeister anions effect. J Pharm Sci 2025; 114:103700. [PMID: 39954809 DOI: 10.1016/j.xphs.2025.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
This study reveals specific ion effects on particle formation during peristaltic pumping of a monoclonal Antibody (Antibody A). For this purpose, three anions in the direct Hofmeister series were selected, ranging from the kosmotropic SO42- to the more neutral Cl- and the chaotropic SCN-. Protein particle formation during peristaltic pumping is described primarily as a surface-driven mechanism. Therefore, the effect of the anions was hypothesised to affect the particle formation with the smallest amount of protein adsorbing and the least particles formed in the presence of SCN-, followed by the highest in SO42-. The alternative hypothesis was that most protein particles would be formed in SCN- due to the lower intrinsic stability of Antibody A. On the other hand, if none of the factors dominates the particle formation, it would not necessarily follow the Hofmeister series linearly. This was shown to be the case as significantly more particles were formed in the presence of NaCl, which could be explained by the interplay of the protein's intrinsic, colloidal, and interfacial stability. Antibody A had the highest protein adsorption in NaCl and the lowest colloidal stability compared to Na2SO4 or NaSCN, which led to the highest amount of subvisual particles formed during pumping.
Collapse
Affiliation(s)
- Amanda Västberg
- Research Institutes of Sweden, Malvinas Väg 3, 11428 Stockholm, Sweden; Department of Process and Life Science Engineering, Faculty of Engineering LTH, Lund University, Lund, Sweden.
| | | | - Lars Nilsson
- Department of Process and Life Science Engineering, Faculty of Engineering LTH, Lund University, Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Department Chemistry, Faculty of Science, Lund University, Lund, Sweden; NanoLund, Lund University, Lund, Sweden; LINXS Institute of Advanced Neutron and X-Ray Science, Lund, Sweden; School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Marie Wahlgren
- Department of Process and Life Science Engineering, Faculty of Engineering LTH, Lund University, Lund, Sweden
| | - Ulla Elofsson
- Research Institutes of Sweden, Malvinas Väg 3, 11428 Stockholm, Sweden
| |
Collapse
|
2
|
Orr AA, Uwakweh AO, Li X, Karanji AK, Hoag SW, Deredge DJ, MacKerell AD. Mapping the distribution and affinities of ligand interaction sites on human serum albumin. Biophys J 2025:S0006-3495(25)00170-5. [PMID: 40134214 DOI: 10.1016/j.bpj.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025] Open
Abstract
Ligands in many instances interact with a protein at multiple sites with a range of affinities. In this study, ligand-protein interaction sites on human serum albumin (HSA) are mapped using the site-identification by ligand competitive saturation (SILCS)-Biologics approach in conjunction with hydrogen-deuterium exchange (HDX)-mass spectrometry (MS) experiments. Ligands studied include known HSA binders, ibuprofen and ketoprofen, and compounds arginine, alanine, sucrose, and trehalose, excipients used in therapeutic formulations of protein-based drugs. In addition, the impact of excipient binding to HSA on its stability is investigated through temperature-ramp stability studies monitoring solution viscosity. For the studied ligands, interactions that correspond to known drug-binding sites (DSs) are identified. These include previously identified ibuprofen and ketoprofen interaction sites as well as additional sites and, in the case of the excipients, the ligands are shown to also bind at previously unidentified interaction sites, termed excipient sites (ESs) with 20 or more sites identified for the studied compounds. HDX-MS titrations were used to determine dissociation constants for a subset of the interaction sites for ibuprofen, ketoprofen, arginine, and sucrose, which exhibited Kd values in the low micromolar to millimolar range in satisfactory agreement with SILCS-Biologics predicted affinities, validating the computational approach to identify both high- and low-affinity interaction sites. The stability studies indicate the excipients offer protection at low excipient/protein ratios up to 66 with destabilization occurring at ratios above 132 with the exception of sucrose at the t0 time point, indicating that the more favorable affinities of sucrose seen in the SILCS-Biologics and HDX-MS analyses contribute to protein stabilization. These results indicate that ligands can bind to large numbers of interaction sites on proteins, with those interactions having implications for the development of formulations for therapeutic proteins.
Collapse
Affiliation(s)
- Asuka A Orr
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland; SilcsBio LLC, Baltimore, Maryland
| | - Agbo-Oma Uwakweh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland
| | - Xun Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland
| | - Ahmad Kiani Karanji
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland
| | - Stephen W Hoag
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland.
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland.
| |
Collapse
|
3
|
Pargas-Ferrer E, Chang SLL, García K, Azaharez E, Palacio J, Mena MC, Boggiano-Ayo T. Strategy to mitigate aggregation during Protein A chromatography and low pH virus inactivation for a nivolumab biosimilar candidate. J Chromatogr A 2025; 1743:465698. [PMID: 39837187 DOI: 10.1016/j.chroma.2025.465698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Protein A chromatography represents the most prevalent methodology for the capture of monoclonal antibodies. The use of a low pH elution buffer from Protein A has been observed to contribute to product aggregation, particularly in the case of IgG4 antibodies, such as nivolumab. This paper presents a well-defined strategy for addressing this issue. Initial experiments were conducted at scale-down Protein A affinity chromatography to evaluate the use of glycine-HCL and sodium citrate as elution buffers at pH values of 3.25, 3.5, and 3.75. Subsequently, a scale-down screening was conducted to assess the efficacy of various additives in Protein A elution. These included 10 % (w/v) mannitol, 50 mM histidine, 50 mM sucrose, 10 % (v/v) sorbitol, 50 mM arginine, 50 mM trehalose, 0.02 % (v/v) polysorbate 80, 1.5 M urea, and 1 M MgCl2. The three most stabilizing additives were evaluated at the laboratory scale, and the one that demonstrated the greatest ability to maintain the minimum high molecular weight aggregate over time was selected. Lastly, the selected additive was subjected to testing at elevated IgG concentrations during purification. Nivolumab exhibits a markedly pH-dependent propensity for aggregation, and the relative efficacy of glycine-HCL and sodium citrate in mitigating anti-PD1 aggregation within the pH range of 3.25 to 3.75 is subject to variation. The use of buffer 100 mM sodium citrate, pH 3.5 was found to be beneficial. All additives evaluated contribute to reducing nivolumab aggregation, albeit in different ways and to varying degrees of effectiveness. Elution buffer with mannitol, polysorbate 80, or MgCl₂ resulted in a monomer control ratio of approximately twice that observed in the absence of additives. However, the stabilizing role of mannitol was confirmed to be particularly significant, as the ratio of aggregation formed at a low pH was reduced to ≤ 2 % from 15 % in all evaluated scales and at different protein concentrations, while maintaining high biological activity.
Collapse
Affiliation(s)
- Elizabeth Pargas-Ferrer
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Sum Lai Lozada Chang
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Katia García
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Ernesto Azaharez
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Julio Palacio
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Midalys Cabrera Mena
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Tammy Boggiano-Ayo
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| |
Collapse
|
4
|
Donnelly RB, Wagner NJ, Liu Y. Quantifying Long-Time Hydrogen-Deuterium Exchange of Bovine Serum Albumin with Hydrogen-Deuterium Exchange Small-Angle Neutron Scattering. J Phys Chem B 2025; 129:19-27. [PMID: 39688290 DOI: 10.1021/acs.jpcb.4c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Hydrogen-deuterium exchange (HDX) measured by small-angle neutron scattering (HDX-SANS) is used to measure HDX in bovine serum albumin (BSA) under different temperatures and formulation conditions. HDX-SANS measurements are performed at 40, 50, and 60 °C in D2O after storing proteins at 4 °C for 1 week to pre-exchange the readily accessible hydrogens. This enables us to probe the long-time HDX of protons at the core of the BSA proteins, which is more challenging for solvent molecules to access. The HDX kinetics are observed to follow an Arrhenius behavior with an apparent activation energy of 81.4 ± 1 kJ/mol, which is composed of the energy for protein conformational fluctuations and that for exchanging an amide hydrogen. Adding a tonicity agent of 150 mM NaCl has only a very slight effect on the HDX kinetics. Interestingly, we also observed that the formulation with faster HDX kinetics has a lower onset temperature of denaturation. This observation is qualitatively consistent with a previous study of HDX-SANS on a monoclonal antibody (mAb), despite the large difference of the secondary structure between BSA, dominated by alpha helices, and mAb, which is predominantly composed of β-sheets.
Collapse
Affiliation(s)
- Róisín B Donnelly
- Department of Biomedical Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
| | - Norman J Wagner
- Department of Biomedical Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
| | - Yun Liu
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
5
|
Yen L, Henao-Díaz A, Zimmerman J, Giménez-Lirola L. Considerations on the stability of IgG antibody in clinical specimens. J Vet Diagn Invest 2025; 37:13-26. [PMID: 39673476 PMCID: PMC11645686 DOI: 10.1177/10406387241296848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024] Open
Abstract
The 1890s marked a significant milestone with the introduction of antibody-based agglutination and precipitation assays, revolutionizing the detection of bacterial pathogens in both animals and humans. This era also witnessed pivotal contributions to our understanding of humoral immunity, as researchers elucidated the structure and functions of antibody molecules, laying the groundwork for diagnostic applications. Among antibody isotypes, IgG is of paramount importance in diagnostic investigations given its definitive indication of infection or vaccination, coupled with its widespread presence and detectability across various specimen types, such as serum, colostrum, milk, oral fluids, urine, feces, and tissue exudate. Despite their resilience, immunoglobulins are susceptible to structural alterations induced by physicochemical and enzymatic processes, which can compromise the reliability of their detection. Here we review comprehensively the historical milestones, underlying mechanisms, and influencing factors (e.g., temperature, pH, storage) that shape the structural integrity and stability of IgG antibodies in aqueous solutions and various clinical specimens.
Collapse
Affiliation(s)
- Lu Yen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Alexandra Henao-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
- Pig Improvement Company México, Santiago de Querétaro, Querétaro, México
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Luis Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
6
|
Christofi E, O’Hanlon M, Curtis R, Barman A, Keen J, Nagy T, Barran P. Hybrid Mass Spectrometry Applied across the Production of Antibody Biotherapeutics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:44-57. [PMID: 39573914 PMCID: PMC11697328 DOI: 10.1021/jasms.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 01/02/2025]
Abstract
Post expression from the host cells, biotherapeutics undergo downstream processing steps before final formulation. Mass spectrometry and biophysical characterization methods are valuable for examining conformational and stoichiometric changes at these stages, although typically not used in biomanufacturing, where stability is assessed via bulk property studies. Here we apply hybrid MS methods to understand how solution condition changes impact the structural integrity of a biopharmaceutical across the processing pipeline. As an exemplar product, we use the model IgG1 antibody, mAb4. Flexibility, stability, aggregation propensity, and bulk properties are evaluated in relation to perfusion media, purification stages, and formulation solutions. Comparisons with Herceptin, an extensively studied IgG1 antibody, were conducted in a mass spectrometry-compatible solution. Despite presenting similar charge state distributions (CSD) in native MS, mAb4, and Herceptin show distinct unfolding patterns in activated ion mobility mass spectrometry (aIM-MS) and differential scanning fluorimetry (DSF). Herceptin's greater structural stability and aggregation onset temperature (Tagg) are attributed to heavier glycosylation and kappa-class light chains, unlike the lambda-class light chains in mAb4. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) revealed that mAb4 undergoes substantial structural changes during purification, marked by high flexibility, low melting temperature (Tm), and prevalent repulsive protein-protein interactions but transitions to a compact and stable structure in high-salt and formulated environments. Notably, in formulation, the third constant domain (CH3) of the heavy chain retains flexibility and is a region of interest for aggregation. Future work could translate features of interest from comprehensive studies like this to targeted approaches that could be utilized early in the development stage to aid in decision-making regarding targeted mutations or to guide the design space of bioprocesses and formulation choices.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael
Barber Centre for Collaborative Mass Spectrometry, MBCCMS, Princess Street, Manchester M17DN, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, Princess Street, Manchester M17DN, U.K.
| | - Mark O’Hanlon
- Manchester
Institute of Biotechnology, University of
Manchester, Princess Street, Manchester M17DN, U.K.
| | - Robin Curtis
- Manchester
Institute of Biotechnology, University of
Manchester, Princess Street, Manchester M17DN, U.K.
| | - Arghya Barman
- FUJIFILM
Diosynth Biotechnologies, Belasis Ave, Stockton-on-Tees, Billingham TS23 1LH, U.K.
| | - Jeff Keen
- FUJIFILM
Diosynth Biotechnologies, Belasis Ave, Stockton-on-Tees, Billingham TS23 1LH, U.K.
| | - Tibor Nagy
- FUJIFILM
Diosynth Biotechnologies, Belasis Ave, Stockton-on-Tees, Billingham TS23 1LH, U.K.
| | - Perdita Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, MBCCMS, Princess Street, Manchester M17DN, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, Princess Street, Manchester M17DN, U.K.
| |
Collapse
|
7
|
Sreenivasan S, Schöneich C, Rathore AS. Aggregation of therapeutic monoclonal antibodies due to thermal and air/liquid interfacial agitation stress: Occurrence, stability assessment strategies, aggregation mechanism, influencing factors, and ways to enhance stability. Int J Pharm 2024; 666:124735. [PMID: 39326478 DOI: 10.1016/j.ijpharm.2024.124735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Therapeutic proteins, such as monoclonal antibodies (mAbs) are known to undergo stability related issues during various stages of product life cycle resulting in the formation of aggregates and fragments. Aggregates of mAb might result in reduced therapeutic activity and could cause various adverse immunogenic responses. Sample containing mAb undergo aggregation due to various types of stress factors, and there is always a continuous interest among researchers and manufacturers to determine the effect of different factors on the stability of mAb. Thermal stress and air/liquid interfacial agitation stress are among two of the common stress factors to which samples containing mAb are exposed to during various stages. Initial part of this review articles aims to provide a generalized understanding of aggregation of mAb such as size ranges of aggregates, aggregate types, stress factors, analytical techniques, permissible aggregate limits, and stability assessment methods. This article further aims to explain different aspects associated with aggregation of mAb in liquid samples due to thermal and air/liquid interfacial agitation stress. Under each stress category, the occurrence of stress during product life cycle, type of aggregates formed, mechanism of aggregation, strategies used by various researchers to expose mAb containing samples to stress, different factors affecting aggregation, fate of aggregates in human body fluids, and strategies used to enhance mAb stability has been explained in detail. The authors hope that this article provides a detailed understanding about stability of mAb due to thermal and air/liquid interfacial stress with relevance to product life cycle from manufacturing to administration into patients.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
8
|
Zhai Y, Wang T, Chen Q, Guo J. Low-field NMR Works as a Rapid, Automatic, Non-Invasive and Wide-Scale Coverage Technique for Aggregates Indication in Biomacromolecule Development. J Pharm Sci 2024; 113:3034-3044. [PMID: 39098520 DOI: 10.1016/j.xphs.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Protein aggregation is challenging for biopharmaceutical drug, because it affects the stability of protein formulations in real-time. However, current techniques for protein aggregate indication meet a number of limitations including limited aggregate size range, complex pre-treatments and lack of chromatographic approaches. Herein, a rapid, automatic, non-invasive and wide-scale coverage technique for aggregates indication is developed to overcome these challenges. Firstly, the response of low-field nuclear magnetic resonance (LF-NMR) to the aggregates is explored by making a comparison with certain established techniques. LF-NMR achieves a high sensitivity of water proton transverse relaxation rate (R2 of H2O, hereinafter referred as R2(H2O)) to protein aggregates from nanometer to micrometer. Then, the quantitative relationship between R2(H2O) and aggregates is investigated furtherly. R2(H2O) could serve as an all-size coverage protein aggregates indicator during development. As a non-invasive method, LF-NMR does not need any sample handling. It takes only 44 s for one test, and saves a lot of manpower, materials and costs. Compared with other established analytical techniques, the technique developed here could be a powerful tool for a rapid, automatic, non-invasive and wide-scale coverage technique for aggregates indication in biomacromolecule development.
Collapse
Affiliation(s)
- Yihui Zhai
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Tingting Wang
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| | - Quanmin Chen
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Jeremy Guo
- WuXi Biologics, 190 Hedan Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| |
Collapse
|
9
|
Hamuro Y. Interpretation of Hydrogen/Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:819-828. [PMID: 38639434 PMCID: PMC11067899 DOI: 10.1021/jasms.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
This paper sheds light on the meaning of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) data. HDX-MS data provide not structural information but dynamic information on an analyte protein. First, the reaction mechanism of backbone amide HDX reaction is considered and the correlation between the parameters from an X-ray crystal structure and the protection factors of HDX reactions of cytochrome c is evaluated. The presence of H-bonds in a protein structure has a strong influence on HDX rates which represent protein dynamics, while the solvent accessibility only weakly affects the HDX rates. Second, the energy diagrams of the HDX reaction at each residue in the presence and absence of perturbation are described. Whereas the free energy change upon mutation can be directly measured by the HDX rates, the free energy change upon ligand binding may be complicated due to the presence of unbound analyte protein in the protein-ligand mixture. Third, the meanings of HDX and other biophysical techniques are explained using a hypothetical protein folding well. The shape of the protein folding well describes the protein dynamics and provides Boltzmann distribution of open and closed states which yield HDX protection factors, while a protein's crystal structure represents a snapshot near the bottom of the well. All biophysical data should be consistent yet provide different information because they monitor different parts of the same protein folding well.
Collapse
|
10
|
Nolan D, Chin TR, Eamsureya M, Oppenheim S, Paley O, Alves C, Parks G. Modeling the behavior of monoclonal antibodies on hydrophobic interaction chromatography resins. BIORESOUR BIOPROCESS 2024; 11:25. [PMID: 38647931 PMCID: PMC10991917 DOI: 10.1186/s40643-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/01/2024] [Indexed: 04/25/2024] Open
Abstract
Monoclonal antibodies (mAbs) require a high level of purity for regulatory approval and safe administration. High-molecular weight (HMW) species are a common impurity associated with mAb therapies. Hydrophobic interaction chromatography (HIC) resins are often used to remove these HMW impurities. Determination of a suitable HIC resin can be a time and resource-intensive process. In this study, we modeled the chromatographic behavior of seven mAbs across 13 HIC resins using measurements of surface hydrophobicity, surface charge, and thermal stability for mAbs, and hydrophobicity and zeta-potential for HIC resins with high fit quality (adjusted R2 > 0.80). We identified zeta-potential as a novel key modeling parameter. When using these models to select a HIC resin for HMW clearance of a test mAb, we were able to achieve 60% HMW clearance and 89% recovery. These models can be used to expedite the downstream process development for mAbs in an industry setting.
Collapse
Affiliation(s)
- Douglas Nolan
- Takeda Pharmaceuticals America Inc, Lexington, MA, 02421, USA.
| | - Thomas R Chin
- Takeda Pharmaceuticals America Inc, Lexington, MA, 02421, USA
| | - Mick Eamsureya
- Eurofins Lancaster Laboratories Professional Scientific Services, LLC, Lancaster, PA, 17601, USA
| | | | - Olga Paley
- Takeda Pharmaceuticals America Inc, Lexington, MA, 02421, USA
| | - Christina Alves
- Takeda Pharmaceuticals America Inc, Lexington, MA, 02421, USA
| | - George Parks
- Takeda Pharmaceuticals America Inc, Lexington, MA, 02421, USA
| |
Collapse
|
11
|
Karunaratne SP, Jolliffe MC, Trayton I, Shanmugam RK, Darton NJ, Weis DD. Interaction between preservatives and a monoclonal antibody in support of multidose formulation development. Int J Pharm 2023; 648:123600. [PMID: 37967687 DOI: 10.1016/j.ijpharm.2023.123600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Multidose formulations have patient-centric advantages over single-dose formats. A major challenge in developing multidose formulations is the prevention of microbial growth that can potentially be introduced during multiple drawings. The incorporation of antimicrobial preservatives (APs) is a common approach to inhibit this microbial growth. Selection of the right preservative while maintaining drug product stability is often challenging. We explored the effects of three APs, 1.1 % (w/v) benzyl alcohol, 0.62 % (w/v) phenol, and 0.42 % (w/v) m-cresol, on a model immunoglobulin G1 monoclonal antibody, termed the "NIST mAb." As measured by hydrogen exchange-mass spectrometry (HX-MS) and differential scanning calorimetry, conformational stability was decreased in the presence of APs. Specifically, flexibility (faster HX) was significantly increased in the CH2 domain (HC 238-255) across all APs. The addition of phenol caused the greatest conformational destabilization, followed by m-cresol and benzyl alcohol. Storage stability studies conducted by subvisible particle (SVP) analysis at 40 °C over 4 weeks further revealed an increase in SVPs in the presence of phenol and m-cresol but not in the presence of benzyl alcohol. However, as monitored by size exclusion chromatography, there was neither a significant change in the monomeric content nor an accumulation of soluble aggregate in the presence of APs.
Collapse
Affiliation(s)
| | - Madeleine C Jolliffe
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Isabelle Trayton
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Nicholas J Darton
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David D Weis
- Department of Chemistry, The University of Kansas, Lawrence KS, USA.
| |
Collapse
|
12
|
Donnelly RB, Pingali SV, Heroux L, Brinson RG, Wagner NJ, Liu Y. Hydrogen-Deuterium Exchange Dynamics of NISTmAb Measured by Small Angle Neutron Scattering. Mol Pharm 2023; 20:6358-6367. [PMID: 37961914 DOI: 10.1021/acs.molpharmaceut.3c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Understanding protein dynamics and conformational stability holds great significance in biopharmaceutical research. Hydrogen-deuterium exchange (HDX) is a quantitative methodology used to examine these fundamental properties of proteins. HDX involves measuring the exchange of solvent-accessible hydrogens with deuterium, which yields valuable insights into conformational fluctuations and conformational stability. While mass spectrometry is commonly used to measure HDX on the peptide level, we explore a different approach using small-angle neutron scattering (SANS). In this work, SANS is demonstrated as a complementary and noninvasive HDX method (HDX-SANS). By assessing subtle changes in the tertiary and quaternary structure during the exchange process in deuterated buffer, along with the influence of added electrolytes on protein stability, SANS is validated as a complementary HDX technique. The HDX of a model therapeutic antibody, NISTmAb, an IgG1κ, is monitored by HDX-SANS over many hours using several different formulations, including salts from the Hofmeister series of anions, such as sodium perchlorate, sodium thiocyanate, and sodium sulfate. The impact of these formulation conditions on the thermal stability of NISTmAb is probed by differential scanning calorimetry. The more destabilizing salts led to heightened conformational dynamics in mAb solutions even at temperatures significantly below the denaturation point. HDX-SANS is demonstrated as a sensitive and noninvasive technique for quantifying HDX kinetics directly in mAb solution, providing novel information about mAb conformational fluctuations. Therefore, HDX-SANS holds promise as a potential tool for assessing protein stability in formulation.
Collapse
Affiliation(s)
- Róisín B Donnelly
- Department of Biomedical Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Luke Heroux
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert G Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland 20850, United States
| | - Norman J Wagner
- Department of Biomedical Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yun Liu
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
13
|
Hoffstedt M, Stein MO, Baumann K, Wätzig H. Experimentally Observed Conformational Changes in Antibodies Due to Binding and Paratope-epitope Asymmetries. J Pharm Sci 2023; 112:2404-2411. [PMID: 37295605 DOI: 10.1016/j.xphs.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Understanding binding related changes in antibody conformations is important for epitope prediction and antibody refinement. The increase of available data in the PDB allowed a more detailed investigation of the conformational landscape for free and bound antibodies. A dataset containing a total of 835 unique PDB entries of antibodies that were crystallized in complex with their antigen and in a free state was constructed. It was examined for binding related conformation changes. We present further evidence supporting the theory of a pre-existing-equilibrium in experimental data. Multiple sequence alignments did not show binding induced tendencies in the solvent accessibility of residues in any specific position. Evaluating the changes in solvent accessibility per residue revealed a certain binding induced increase for several amino acids. Antibody-antigen interaction statistics were established and quantify a significant directional asymmetry between many interacting antibody and antigen residue pairs, especially a richness in tyrosine in the antibody epitope compared to its paratope. This asymmetry could potentially facilitate an increase in the success rate of computationally guided antibody refinement.
Collapse
Affiliation(s)
- Marc Hoffstedt
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Deutschland
| | - Matthias Oliver Stein
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Deutschland
| | - Knut Baumann
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Deutschland
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Deutschland
| |
Collapse
|
14
|
Liu L, Li X, Chen N, Chen X, Xing L, Zhou X, Liu S. Influence of cadmium ion on denaturation kinetics of hen egg white-lysozyme under thermal and acidic conditions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122650. [PMID: 36989696 DOI: 10.1016/j.saa.2023.122650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
To study the influence of Cd(II) ions on denaturation kinetics of hen egg white lysozyme (HEWL) under thermal and acidic conditions, spontaneous Raman spectroscopy in conjunction with Thioflavin-T fluorescence, AFM imaging, far-UV circular dichroism spectroscopy, and transmittance assays was conducted. Four distinctive Raman spectral markers for protein tertiary and secondary structures were recorded to follow the kinetics of conformational transformation. Through comparing variations of these markers in the presence or absence of Cd(II) ions, Cd(II) ions show an ability to efficiently accelerate the disruption of tertiary structure, and meanwhile, to promote the direct formation of organized β-sheets from the uncoiling of α-helices by skipping intermediate random coils. More significantly, with the action of Cd(II) ions, the initially resulting oligomers with disordered structures tend to assemble into aggregates with random structures like gels more than amyloid fibrils, along with a so-called "off-pathway" denaturation pathway. Our results advance the in-depth understanding of corresponding ion-specific effects.
Collapse
Affiliation(s)
- Liming Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xinfei Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ning Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Shilin Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
15
|
Rembert KB, Zhang J, Lee YJ. Effects of Salts and Surface Charge on the Biophysical Stability of a Low pI Monoclonal Antibody. J Pharm Sci 2023; 112:947-953. [PMID: 36395898 DOI: 10.1016/j.xphs.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
The impact of five representative Hofmeister salts (NaCl, KCl, MgCl2, Na2SO4, and NaSCN) on the thermal stability and aggregation kinetics of a slightly acidic monoclonal antibody (mAb) were investigated under different pH conditions. The thermal stability of the mAb was assessed by measuring the lowest unfolding transition temperature, Tm, with differential scanning fluorimetry. MgCl2 and NaSCN significantly decreased Tm at all three charged states of the mAb, but to the greatest extent when the mAb surface charge was net positive. Non-native aggregation kinetics was monitored by measuring Rayleigh light scattering. When the mAb surface charge was net positive or net neutral, the nucleation rate increased non-monotonically with MgCl2 and NaSCN but decreased monotonically with NaCl, KCl, and Na2SO4. By contrast, when the mAb surface was negatively charged, there were only minor changes in the nucleation rate with all salts tested. Furthermore, there was less structural perturbation and slower aggregation rates when the mAb was net negatively charged than when it was net neutrally or positively charged. The observed salt effects on thermal unfolding are consistent with ion-specific mechanisms dominated by short-range amide backbone binding. On the other hand, the salt effects on nucleation rates appear to be influenced by both amide backbone binding and long-range electrostatic binding of ions to charged amino acid side chains.
Collapse
Affiliation(s)
- Kelvin B Rembert
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Jifeng Zhang
- Department of Drug Delivery and Device Development, Medimmune-AstraZeneca, Gaithersburg, MD 20878, United States.
| | - Young Jong Lee
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States.
| |
Collapse
|
16
|
Christofi E, Barran P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem Rev 2023; 123:2902-2949. [PMID: 36827511 PMCID: PMC10037255 DOI: 10.1021/acs.chemrev.2c00600] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 02/26/2023]
Abstract
The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
17
|
Kalaninová Z, Fojtík L, Chmelík J, Novák P, Volný M, Man P. Probing Antibody Structures by Hydrogen/Deuterium Exchange Mass Spectrometry. Methods Mol Biol 2023; 2718:303-334. [PMID: 37665467 DOI: 10.1007/978-1-0716-3457-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Hydrogen/deuterium exchange (HDX) followed by mass spectrometry detection (MS) provides a fast, reliable, and detailed solution for the assessment of a protein structure. It has been widely recognized as an indispensable tool and already approved by several regulatory agencies as a structural technique for the validation of protein biopharmaceuticals, including antibody-based drugs. Antibodies are of a key importance in life and medical sciences but considered to be challenging analytical targets because of their compact structure stabilized by disulfide bonds and due to the presence of glycosylation. Despite these difficulties, there are already numerous excellent studies describing MS-based antibody structure characterization. In this chapter, we describe a universal HDX-MS workflow. Deeper attention is paid to sample handling, optimization procedures, and feasibility stages, as these elements of the HDX experiment are crucial for obtaining reliable detailed and spatially well-resolved information.
Collapse
Affiliation(s)
- Zuzana Kalaninová
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lukáš Fojtík
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Josef Chmelík
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Novák
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Michael Volný
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Man
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic.
| |
Collapse
|
18
|
Yang Y, Li M, Zhao Y, Lin X, Su Z, Xin F, Du X, Zheng K, Han R, Pan Y, He S, Zhang S. Mechanism and inhibition of abnormal chromatographic behavior of serotype type A inactivated foot and mouth disease virus in high-performance size-exclusion chromatography. J Chromatogr A 2022; 1686:463648. [DOI: 10.1016/j.chroma.2022.463648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/15/2022]
|
19
|
Berger JE, Teixeira SCM, Reed K, Razinkov VI, Sloey CJ, Qi W, Roberts CJ. High-Pressure, Low-Temperature Induced Unfolding and Aggregation of Monoclonal Antibodies: Role of the Fc and Fab Fragments. J Phys Chem B 2022; 126:4431-4441. [PMID: 35675067 DOI: 10.1021/acs.jpcb.1c10528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of high pressure and low temperature on the stability of two different monoclonal antibodies (MAbs) were examined in this work. Fluorescence and small-angle neutron scattering were used to monitor the in situ effects of pressure to infer shifts in tertiary structure and characterize aggregation prone intermediates. Partial unfolding was observed for both MAbs, to different extents, under a range of pressure/temperature conditions. Fourier transform infrared spectroscopy was also used to monitor ex situ changes in secondary structure. Preservation of native secondary structure after incubation at elevated pressures and subzero ° C temperatures was independent of the extent of tertiary unfolding and reversibility. Several combinations of pressure and temperature were also used to discern the respective contributions of the isolated Ab fragments (Fab and Fc) to unfolding and aggregation. The fragments for each antibody showed significantly different partial unfolding profiles and reversibility. There was not a simple correlation between stability of the full MAb and either the Fc or Fab fragment stabilities across all cases, demonstrating a complex relationship to full MAb unfolding and aggregation behavior. That notwithstanding, the combined use of spectroscopic and scattering techniques provides insights into MAb conformational stability and hysteresis in high-pressure, low-temperature environments.
Collapse
Affiliation(s)
- Jordan E Berger
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Susana C M Teixeira
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kaelan Reed
- PharmBIO Products, W. L. Gore & Associates, Elkton, Maryland 21921, United States
| | - Vladimir I Razinkov
- Drug Product Technologies, Amgen, Thousand Oaks, California 91320, United States
| | - Christopher J Sloey
- Drug Product Technologies, Amgen, Thousand Oaks, California 91320, United States
| | - Wei Qi
- Drug Product Technologies, Amgen, Thousand Oaks, California 91320, United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
20
|
Deol HK, Broom HR, Sienbeneichler B, Lee B, Leonenko Z, Meiering EM. Immature ALS-associated mutant superoxide dismutases form variable aggregate structures through distinct oligomerization processes. Biophys Chem 2022; 288:106844. [DOI: 10.1016/j.bpc.2022.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022]
|
21
|
Hamuro Y. Quantitative Hydrogen/Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2711-2727. [PMID: 34749499 DOI: 10.1021/jasms.1c00216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This Account describes considerations for the data generation, data analysis, and data interpretation of a hydrogen/deuterium exchange-mass spectrometry (HDX-MS) experiment to have a quantitative argument. Although HDX-MS has gained its popularity as a biophysical tool, the argument from its data often remains qualitative. To generate HDX-MS data that are more suitable for a quantitative argument, the sequence coverage and sequence resolution should be optimized during the feasibility stage, and the time window coverage and time window resolution should be improved during the HDX stage. To extract biophysically meaningful values for a certain perturbation from medium-resolution HDX-MS data, there are two major ways: (i) estimating the area between the two deuterium buildup curves using centroid values with and without the perturbation when plotted against log time scale and (ii) dissecting into multiple single-exponential curves using the isotope envelopes. To have more accurate arguments for an HDX-MS perturbation study, (i) false negatives due to sequence coverage, (ii) false negatives due to time window coverage, (iii) false positives due to sequence resolution, and (iv) false positives due to allosteric effects should be carefully examined.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, New Jersey 08852, United States
| |
Collapse
|
22
|
Interaction of Aluminum-adjuvanted Recombinant P[4] Protein Antigen With Preservatives: Storage Stability and Backbone Flexibility Studies. J Pharm Sci 2021; 111:970-981. [PMID: 34758340 DOI: 10.1016/j.xphs.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022]
Abstract
Eight antimicrobial preservatives used in parenteral multidose formulations (thimerosal, 2-phenoxy ethanol, phenol, benzyl alcohol, m-cresol, chlorobutanol, methyl paraben, propyl paraben) were examined for their effects on the storage stability (4 °C, 25 °C) of an Alhydrogel® (AH) adjuvanted formulation of the non-replicating rotavirus vaccine (NRRV) recombinant P[4] protein antigen. The stability of AH-adsorbed P[4] was monitored for antigen-antibody binding, conformational stability, and antigen-adjuvant interaction via competitive ELISA, DSC, and SDS-PAGE, respectively. There was an unexpected correlation between increasing storage stability of the AH-adsorbed P[4] and preservative hydrophobicity (log P) (e.g., the parabens and chlorobutanol were least destabilizing). We used hydrogen exchange-mass spectrometry (HX-MS) to better understand the destabilizing effects of temperature and preservative on backbone flexibility of AH-adsorbed P[4]. Thimerosal addition immediately increased the backbone flexibility across much of the AH-adsorbed P[4] protein backbone (except the N-terminal P2 region and residues G17-Y38), and further increase in P[4] backbone flexibility was observed after storage (4 °C, 4 weeks). HX-MS analysis of AH-adsorbed P[4] stored for 4 weeks at 25 °C revealed structural alterations in some regions of the epitope involved in P[4] specific mAb binding. These combined results are discussed in terms of a generalized workflow for multi-dose vaccine formulation development for recombinant protein antigens.
Collapse
|
23
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
24
|
Fan W, Chen XD, Liu LM, Chen N, Zhou XG, Zhang ZH, Liu SL. Concentration-dependent influence of silver nanoparticles on amyloid fibrillation kinetics of hen egg-white lysozyme. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Wei Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-dong Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Li-ming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ning Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-guo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-hong Zhang
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Shi-lin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
25
|
Hamuro Y, Derebe MG, Venkataramani S, Nemeth JF. The effects of intramolecular and intermolecular electrostatic repulsions on the stability and aggregation of NISTmAb revealed by HDX-MS, DSC, and nanoDSF. Protein Sci 2021; 30:1686-1700. [PMID: 34060159 DOI: 10.1002/pro.4129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
The stability and aggregation of NIST monoclonal antibody (NISTmAb) were investigated by hydrogen/deuterium exchange mass spectrometry (HDX-MS), differential scanning calorimetry (DSC), and nano-differential scanning fluorimetry (nanoDSF). NISTmAb was prepared in eight formulations at four different pHs (pH 5, 6, 7, and 8) in the presence and absence of 150 mM NaCl and analyzed by the three methods. The HDX-MS results showed that NISTmAb is more conformationally stable at a pH near its isoelectric point (pI) in the presence of NaCl than a pH far from its pI in the absence of NaCl. The stabilization effects were global and not localized. The midpoint temperature of protein thermal unfolding transition results also showed the CH 2 domain of the protein is more conformationally stable at a pH near its pI. On the other hand, the onset of aggregation temperature results showed that NISTmAb is less prone to aggregate at a pH far from its pI, particularly in the absence of NaCl. These seemingly contradicting results, higher conformational stability yet higher aggregation propensity near the pI than far away from the pI, can be explained by intramolecular and intermolecular electrostatic repulsion using Lumry-Eyring model, which separates folding/unfolding equilibrium and aggregation event. The further a pH from the pI, the higher the net charge of the protein. The higher net charge leads to greater intramolecular and intermolecular electrostatic repulsions. The greater intramolecular electrostatic repulsion destabilizes the protein and the greater intermolecular electrostatic repulsion prevents aggregation of the protein molecules at pH far from the pI.
Collapse
Affiliation(s)
| | - Mehabaw Getahun Derebe
- Janssen R&D, Spring House, Pennsylvania, USA.,Merck & Co., Inc., South San Francisco, California, USA
| | | | | |
Collapse
|
26
|
Jakob LA, Beyer B, Janeiro Ferreira C, Lingg N, Jungbauer A, Tscheließnig R. Protein-protein interactions and reduced excluded volume increase dynamic binding capacity of dual salt systems in hydrophobic interaction chromatography. J Chromatogr A 2021; 1649:462231. [PMID: 34038776 DOI: 10.1016/j.chroma.2021.462231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Deploying two salts in hydrophobic interaction chromatography can significantly increase dynamic binding capacities. Nevertheless, the mechanistic understanding of this phenomenon is lacking. Here, we investigate whether surface tension or ionic strength govern dynamic binding capacities of the chromatographic resin Toyopearl Butyl-650 M in dual salt systems. Small-angle X-ray scattering was employed to analyze the model proteins and the protein-resin adduct in the respective dual salt systems. The dual salt systems incorporate sodium citrate and a secondary sodium salt (acetate, sulfate, or phosphate). As model proteins, we used lysozyme, GFP, and a monoclonal antibody (adalimumab). Moreover, for the protein-resin adduct, we determined the model parameters of a self-avoiding random walk model fitted into the pair density distribution function of the SAXS data. Ionic strength is more predictive for dynamic binding capacities in HIC dual salt systems than surface tension. However, dynamic binding capacities still differ by up to 30 % between the investigated dual salt systems. The proteins exhibit extensive protein-protein interactions in the studied dual salt HIC buffers. We found a correlation of protein-protein interactions with the well-known Hofmeister series. For systems with elevated protein-protein interactions, adsorption isotherms deviate from Langmuirian behavior. This highlights the importance of lateral protein-protein interactions in protein adsorption, where monomolecular protein layers are usually assumed. SAXS analysis of the protein-resin adduct indicates an inverse correlation of the binding capacity and the excluded volume parameter. This is indicative of the deposition of proteins in the cavities of the stationary phase. We hypothesize that increasing protein-protein interactions allow the formation of attractive clusters and multilayers in the cavities, respectively.
Collapse
Affiliation(s)
- Leo A Jakob
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria
| | - Beate Beyer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria; Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna A-1190, Austria
| | | | - Nico Lingg
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria; Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna A-1190, Austria
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria; Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna A-1190, Austria.
| | - Rupert Tscheließnig
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190, Austria
| |
Collapse
|
27
|
Rincon Pabon JP, Kochert BA, Liu YH, Richardson DD, Weis DD. Protein A does not induce allosteric structural changes in an IgG1 antibody during binding. J Pharm Sci 2021; 110:2355-2361. [PMID: 33640336 DOI: 10.1016/j.xphs.2021.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Affinity chromatography is widely used for antibody purification in biopharmaceutical production. Although there is evidence suggesting that affinity chromatography might induce structural changes in antibodies, allosteric changes in structure have not been well-explored. Here, we used hydrogen exchange-mass spectrometry (HX-MS) to reveal conformational changes in the NIST mAb upon binding with a protein A (ProA) matrix. HX-MS measurements of NIST mAb bound to in-solution and resin forms of ProA revealed regions of the CH2 and CH3 domains with increased protection from HX upon ProA binding, consistent with the known ProA binding region. In-solution ProA experiments revealed regions in the Fab with increased HX uptake when the ProA:mAb molar ratio was increased to 2:1, suggesting an allosterically induced increase in backbone flexibility. Such effects were not observed with lower ProA concentration (1:1 molar ratio) or when ProA resin was used, suggesting some kind of change in binding mode. Since all pharmaceutical processes use ProA bound to resin, our results rule out reversible allosteric effects on the NIST mAb during interaction with resin ProA. However, irreversible effects cannot be ruled out since the NIST mAb was previously exposed to ProA during its original purification.
Collapse
Affiliation(s)
- Juan P Rincon Pabon
- Department of Chemistry and the Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Brent A Kochert
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Yan-Hui Liu
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Douglas D Richardson
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - David D Weis
- Department of Chemistry and the Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
28
|
Pathak JA, Nugent S, Bender MF, Roberts CJ, Curtis RJ, Douglas JF. Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal Antibodies. Polymers (Basel) 2021; 13:601. [PMID: 33671342 PMCID: PMC7922252 DOI: 10.3390/polym13040601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
The Huggins coefficient kH is a well-known metric for quantifying the increase in solution viscosity arising from intermolecular interactions in relatively dilute macromolecular solutions, and there has been much interest in this solution property in connection with developing improved antibody therapeutics. While numerous kH measurements have been reported for select monoclonal antibodies (mAbs) solutions, there has been limited study of kH in terms of the fundamental molecular interactions that determine this property. In this paper, we compare measurements of the osmotic second virial coefficient B22, a common metric of intermolecular and interparticle interaction strength, to measurements of kH for model antibody solutions. This comparison is motivated by the seminal work of Russel for hard sphere particles having a short-range "sticky" interparticle interaction, and we also compare our data with known results for uncharged flexible polymers having variable excluded volume interactions because proteins are polypeptide chains. Our observations indicate that neither the adhesive hard sphere model, a common colloidal model of globular proteins, nor the familiar uncharged flexible polymer model, an excellent model of intrinsically disordered proteins, describes the dependence of kH of these antibodies on B22. Clearly, an improved understanding of protein and ion solvation by water as well as dipole-dipole and charge-dipole effects is required to understand the significance of kH from the standpoint of fundamental protein-protein interactions. Despite shortcomings in our theoretical understanding of kH for antibody solutions, this quantity provides a useful practical measure of the strength of interprotein interactions at elevated protein concentrations that is of direct significance for the development of antibody formulations that minimize the solution viscosity.
Collapse
Affiliation(s)
- Jai A. Pathak
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Sean Nugent
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Michael F. Bender
- Vaccine Production Program (VPP), Vaccine Research Center (VRC), Formulation and Stabilization Sciences Department, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 9 W. Watkins Mill Rd., Gaithersburg, MD 20878, USA; (J.A.P.); (S.N.); (M.B.)
| | - Christopher J. Roberts
- Colburn Laboratory, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA;
| | - Robin J. Curtis
- Department of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Jack F. Douglas
- Materials Science and Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8544, USA
| |
Collapse
|
29
|
Merkul E, Muns JA, Sijbrandi NJ, Houthoff H, Nijmeijer B, Rheenen G, Reedijk J, Dongen GAMS. An Efficient Conjugation Approach for Coupling Drugs to Native Antibodies via the Pt
II
Linker
Lx
for Improved Manufacturability of Antibody–Drug Conjugates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eugen Merkul
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Joey A. Muns
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Niels J. Sijbrandi
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Hendrik‐Jan Houthoff
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Bart Nijmeijer
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Gerro Rheenen
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Jan Reedijk
- Leiden Institute of Chemistry Leiden University PO Box 9502 2300 RA Leiden The Netherlands
| | - Guus A. M. S. Dongen
- Department of Radiology and Nuclear Medicine Amsterdam UMC, location VU medical center Amsterdam The Netherlands
| |
Collapse
|
30
|
Merkul E, Muns JA, Sijbrandi NJ, Houthoff H, Nijmeijer B, van Rheenen G, Reedijk J, van Dongen GAMS. An Efficient Conjugation Approach for Coupling Drugs to Native Antibodies via the Pt II Linker Lx for Improved Manufacturability of Antibody-Drug Conjugates. Angew Chem Int Ed Engl 2021; 60:3008-3015. [PMID: 33185916 PMCID: PMC7986738 DOI: 10.1002/anie.202011593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/29/2020] [Indexed: 12/20/2022]
Abstract
The PtII linker [ethylenediamineplatinum(II)]2+ , coined Lx, has emerged as a novel non-conventional approach to antibody-drug conjugates (ADCs) and has shown its potential in preclinical in vitro and in vivo benchmark studies. A crucial improvement of the Lx conjugation reaction from initially <15 % to ca. 75-90 % conjugation efficiency is described, resulting from a systematic screening of all relevant reaction parameters. NaI, a strikingly simple inorganic salt additive, greatly improves the conjugation efficiency as well as the conjugation selectivity simply by exchanging the leaving chloride ligand on Cl-Lx-drug complexes (which are direct precursors for Lx-ADCs) for iodide, thus generating I-Lx-drug complexes as more reactive species. Using this iodide effect, we developed a general and highly practical conjugation procedure that is scalable: our lead Lx-ADC was produced on a 5 g scale with an outstanding conjugation efficiency of 89 %.
Collapse
Affiliation(s)
- Eugen Merkul
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | - Joey A. Muns
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | - Niels J. Sijbrandi
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | | | - Bart Nijmeijer
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | - Gerro van Rheenen
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | - Jan Reedijk
- Leiden Institute of ChemistryLeiden UniversityPO Box 95022300RALeidenThe Netherlands
| | - Guus A. M. S. van Dongen
- Department of Radiology and Nuclear MedicineAmsterdam UMC, location VU medical centerAmsterdamThe Netherlands
| |
Collapse
|
31
|
Hamuro Y. Tutorial: Chemistry of Hydrogen/Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:133-151. [PMID: 33227208 DOI: 10.1021/jasms.0c00260] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemistry related to hydrogen/deuterium exchange-mass spectrometry (HDX-MS) for the analysis of proteins is described. First, the HDX rates of various functional groups in proteins are explained by reviewing the observed rates described in the literature, followed by estimating rates of all types of heteroatom hydrogens in proteins using proton transfer theory and the pKa values. The estimated HDX rates match well with the respective observed rates for most functional groups, with the exception of indole and amide groups. The discrepancies between the observed and estimated HDX rates for these groups are explained by the reaction mechanisms. Second, the factors that affect the HDX rates of backbone amide hydrogen, including side chain, N- and C-terminals, pH, temperature, organic solvent, and isotopes, are discussed. These factors are important for the proper design of exchange reactions and downstream process as well as the analysis and interpretation of HDX-MS data.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, New Jersey 08852, United States
| |
Collapse
|
32
|
Kannan A, Shieh IC, Hristov P, Fuller GG. In-Use Interfacial Stability of Monoclonal Antibody Formulations Diluted in Saline i.v. Bags. J Pharm Sci 2020; 110:1687-1692. [PMID: 33141046 DOI: 10.1016/j.xphs.2020.10.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
The use of monoclonal antibodies (mAbs) for the treatment of a variety of diseases is rapidly growing each year. Many mAbs are administered intravenously using i.v. bags containing 0.9% NaCl (normal saline). We studied the aggregation propensity of these antibody solutions in saline and compared it with a low ionic strength formulation buffer. The mAb studied in this work is prone to aggregate, and is known to form a viscoelastic network at the air-solution interface. We observed that this interfacial elasticity increased when formulated in saline. In the bulk, the mAbs exhibited a tendency to self-associate that was higher in saline. We also studied the aggregation of the mAbs in the presence of polysorbate-20, typically added to formulations to mitigate interfacial aggregation. We observed that with surfactants, the presence of salt in the buffer led to a greater mAb adsorption at the interface and resulted in the formation of more particulate aggregates. Our results show that the addition of salt to the buffer led to differences in the interfacial aggregation in mAb formulations, showing that stress studies used to screen for mAb aggregation intended for i.v. administration should be performed in conditions representative of their intended route of administration.
Collapse
Affiliation(s)
- Aadithya Kannan
- Stanford University, Stanford, CA, USA; Genentech, Inc., South San Francisco, CA, USA
| | - Ian C Shieh
- Genentech, Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|
33
|
Cation Specific Effects on the Domain-Domain Interaction of Heterogeneous Dimeric Protein Revealed by FRET Analysis. J Fluoresc 2020; 30:1121-1129. [PMID: 32648172 DOI: 10.1007/s10895-020-02558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/11/2020] [Indexed: 10/23/2022]
Abstract
Specific monovalent cation effects on the domain-domain interaction of heterogeneous dimeric protein were investigated using green fluorescent protein (GFP)-glutathione-s-transferase (GST) fusion protein as a model protein. Conjugating N-terminal of GST domain with a fluorescence probe Cyanine3, complementary increase and decrease of fluorescence intensities of Cyanine3 and GFP were recognized on the exclusive excitation of GFP and further the fluorescence decay of GFP was remarkably accelerated to show that an excellent Förster type of resonance excitation energy transfer (FRET) pair was constructed between GFP- and GST-domain. The spectral overlap integral and critical distance of the FRET pair were estimated to be 5.96×1013 M-1cm3 and 62.5 Å, respectively. The FRET rate and efficiency evaluated by fluorescence lifetime of the energy donor, GFP, were influenced by the monovalent cations included in the buffer solution to suggest that the domain-domain interactions of GFP-GST fusion protein would be susceptible to cation species and their concentrations. The order affecting the domain-domain interaction was estimated to be Li+>NH4+ >Na+>K+>Cs+, almost corresponding to the reverse Hofmeister series.
Collapse
|
34
|
FTIR Spectroscopy Study of the Secondary Structure Changes in Human Serum Albumin and Trypsin under Neutral Salts. Biomolecules 2020; 10:biom10040606. [PMID: 32295172 PMCID: PMC7226448 DOI: 10.3390/biom10040606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 11/24/2022] Open
Abstract
The effect of neutral salts on protein conformation was first analyzed by Hofmeister in 1888, however, even today this phenomenon is not completely understood. To clarify this effect, we studied changes in the secondary structure of two proteins: human serum albumin with predominantly α-helical structure and porcine pancreas β-trypsin with the typical β-structural arrangement in aqueous solutions of neutral salts (KSCN, KCl, (NH4)2SO4). The changes in the secondary structure were studied at 23 °C and 80 °C by using the second derivative deconvolution method of the IR spectra. Our results demonstrated that the ability of the salts to stabilize/destabilize these two proteins correlates with the Hofmeister series of ions. At the same time, some exceptions were also observed. The destabilization of the native structures of both α-helical albumin and β-structural trypsin upon interaction with neutral salts leads to the formation of intermolecular β-sheets typical for amyloid fibrils or amorphous aggregates. Thus, our quantitative FTIR-spectroscopy analysis allowed us to further clarify the mechanisms and complexity of the neutral salt actions on protein structures which may lead to strategies preventing unwelcome misfolding of proteins.
Collapse
|
35
|
Kalayan J, Henchman RH, Warwicker J. Model for Counterion Binding and Charge Reversal on Protein Surfaces. Mol Pharm 2020; 17:595-603. [PMID: 31887056 DOI: 10.1021/acs.molpharmaceut.9b01047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The structural stability and solubility of proteins in liquid therapeutic formulations is important, especially since new generations of therapeutics are designed for efficacy before consideration of stability. We introduce an electrostatic binding model to measure the net charge of proteins with bound ions in solution. The electrostatic potential on a protein surface is used to separately group together acidic and basic amino acids into patches, which are then iteratively bound with oppositely charged counterions. This model is aimed toward formulation chemists for initial screening of a range of conditions prior to lab-work. Computed results compare well with experimental zeta potential measurements from the literature covering a range of solution conditions. Importantly, the binding model reproduces the charge reversal phenomenon that is observed with polyvalent ion binding to proteins and its dependence on ion charge and concentration. Intriguingly, protein sequence can be used to give similarly good agreement with experiment as protein structure, interpreted as resulting from the close proximity of charged side chains on a protein surface. Further, application of the model to human proteins suggests that polyanion binding and overcharging, including charge reversal for cationic proteins, is a general feature. These results add to evidence that addition of polyanions to protein formulations could be a general mechanism for modulating solution stability.
Collapse
Affiliation(s)
- Jas Kalayan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom, and School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom, and School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Jim Warwicker
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom, and School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| |
Collapse
|
36
|
Oyama H, Koga H, Tadokoro T, Maenaka K, Shiota A, Yokoyama M, Noda M, Torisu T, Uchiyama S. Relation of Colloidal and Conformational Stabilities to Aggregate Formation in a Monoclonal Antibody. J Pharm Sci 2020; 109:308-315. [DOI: 10.1016/j.xphs.2019.10.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/30/2022]
|
37
|
Hu Y, Arora J, Joshi SB, Esfandiary R, Middaugh CR, Weis DD, Volkin DB. Characterization of Excipient Effects on Reversible Self-Association, Backbone Flexibility, and Solution Properties of an IgG1 Monoclonal Antibody at High Concentrations: Part 1. J Pharm Sci 2020; 109:340-352. [DOI: 10.1016/j.xphs.2019.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/13/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022]
|
38
|
Xu AY, Castellanos MM, Mattison K, Krueger S, Curtis JE. Studying Excipient Modulated Physical Stability and Viscosity of Monoclonal Antibody Formulations Using Small-Angle Scattering. Mol Pharm 2019; 16:4319-4338. [DOI: 10.1021/acs.molpharmaceut.9b00687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Amy Yuanyuan Xu
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Maria Monica Castellanos
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Kevin Mattison
- Malvern Panalytical, 117 Flanders Road, Westborough, Massachusetts 01581, United States
| | - Susan Krueger
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| | - Joseph E. Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
39
|
Identification of IgG1 Aggregation Initiation Region by Hydrogen Deuterium Mass Spectrometry. J Pharm Sci 2019; 108:2323-2333. [DOI: 10.1016/j.xphs.2019.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/17/2022]
|
40
|
Hageman TS, Weis DD. Reliable Identification of Significant Differences in Differential Hydrogen Exchange-Mass Spectrometry Measurements Using a Hybrid Significance Testing Approach. Anal Chem 2019; 91:8008-8016. [DOI: 10.1021/acs.analchem.9b01325] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Double-edged effects of aluminium ions on amyloid fibrillation of hen egg-white lysozyme. Int J Biol Macromol 2019; 132:929-938. [PMID: 30954597 DOI: 10.1016/j.ijbiomac.2019.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Elucidating the effects of Al(III) ions on amyloid fibrillation is important to understand the association between metal ions and Alzheimer's disease. Here, Raman spectroscopy was applied to investigate amyloid fibrillation of hen egg-white lysozymes during thermal incubation with Al(III) ions or acids, combined with atomic force microscopy and thioflavin T fluorescence assays. Kinetics of conformational changes in lysozymes were assessed by monitoring six characteristic Raman spectral markers. The peak of Phe residues at 1003 cm-1 and two bands of Trp residues at 759 cm-1 and 1340-1360 cm-1 corresponded to the lysozyme tertiary structure, whereas two NCαC stretching vibrations at 899 cm-1 and 935 cm-1 and an amide I band were associated with the lysozyme skeleton. There may be a four-stage transformation mechanism underlying the kinetics of amyloid fibrillation of lysozymes with the thermal/Al(III) treatment. Comparison of kinetics under thermal/Al(III) and thermal/acid conditions revealed double-edged roles of Al(III) ions in amyloid fibrillation of lysozymes. Specifically, in addition to postponing α-helix degradation, Al(III) ions accelerated conformational transformations from α-helices to organized β-sheets. The present investigation sheds light on the controversial effects of Al(III) ions on amyloid fibrillation of lysozymes.
Collapse
|
42
|
Garcia NK, Deperalta G, Wecksler AT. Current Trends in Biotherapeutic Higher Order Structure Characterization by Irreversible Covalent Footprinting Mass Spectrometry. Protein Pept Lett 2019; 26:35-43. [PMID: 30484396 DOI: 10.2174/0929866526666181128141953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Biotherapeutics, particularly monoclonal antibodies (mAbs), are a maturing class of drugs capable of treating a wide range of diseases. Therapeutic function and solutionstability are linked to the proper three-dimensional organization of the primary sequence into Higher Order Structure (HOS) as well as the timescales of protein motions (dynamics). Methods that directly monitor protein HOS and dynamics are important for mapping therapeutically relevant protein-protein interactions and assessing properly folded structures. Irreversible covalent protein footprinting Mass Spectrometry (MS) tools, such as site-specific amino acid labeling and hydroxyl radical footprinting are analytical techniques capable of monitoring the side chain solvent accessibility influenced by tertiary and quaternary structure. Here we discuss the methodology, examples of biotherapeutic applications, and the future directions of irreversible covalent protein footprinting MS in biotherapeutic research and development. CONCLUSION Bottom-up mass spectrometry using irreversible labeling techniques provide valuable information for characterizing solution-phase protein structure. Examples range from epitope mapping and protein-ligand interactions, to probing challenging structures of membrane proteins. By paring these techniques with hydrogen-deuterium exchange, spectroscopic analysis, or static-phase structural data such as crystallography or electron microscopy, a comprehensive understanding of protein structure can be obtained.
Collapse
Affiliation(s)
- Natalie K Garcia
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| | - Galahad Deperalta
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| | - Aaron T Wecksler
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| |
Collapse
|
43
|
Francisco OA, Clark CJ, Glor HM, Khajehpour M. Do soft anions promote protein denaturation through binding interactions? A case study using ribonuclease A. RSC Adv 2019; 9:3416-3428. [PMID: 35518962 PMCID: PMC9060304 DOI: 10.1039/c8ra10303h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/20/2019] [Indexed: 11/21/2022] Open
Abstract
It has long been known that large soft anions like bromide, iodide and thiocyanate are protein denaturing agents, but their mechanism of action is still unclear. In this work we have investigated the protein denaturing properties of these anions using Ribonuclease A (RNase A) as a model protein system. Salt-induced perturbations to the protein folding free energy were determined using differential scanning calorimetry and the results demonstrate that the addition of sodium iodide and sodium thiocyanate significantly decreases the melting temperature of the protein. In order to account for this reduction in protein stability, we show that the introduction of salts that contain soft anions to the aqueous solvent perturbs the protein unfolding free energy through three mechanisms: (a) screening Coulomb interactions that exist between charged protein residues, (b) Hofmeister effects, and (c) specific anion binding to CH and CH2 moieties in the protein polypeptide backbone. Using the micellization of 1,2-hexanediol as a ruler for hydrophobicity, we have devised a practical methodology that separates the Coulomb and Hofmeister contributions of salts to the protein unfolding free energy. This allowing us to isolate the contribution of soft anion binding interactions to the unfolding process. The analysis shows that binding contributions have the largest magnitude, confirming that it is the binding of soft anions to the polypeptide backbone that is the main promoter of protein unfolding.
Collapse
Affiliation(s)
| | | | - Hayden M Glor
- Department of Chemistry, University of Manitoba Canada
| | - Mazdak Khajehpour
- Department of Chemistry, University of Manitoba Canada
- University of Manitoba 468 Parker Bldg. Winnipeg Manitoba R3T2N2 Canada +1-204-2721546
| |
Collapse
|
44
|
Wang W, Roberts CJ. Protein aggregation – Mechanisms, detection, and control. Int J Pharm 2018; 550:251-268. [DOI: 10.1016/j.ijpharm.2018.08.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
|
45
|
Probing Conformational Diversity of Fc Domains in Aggregation-Prone Monoclonal Antibodies. Pharm Res 2018; 35:220. [PMID: 30255351 DOI: 10.1007/s11095-018-2500-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Fc domains are an integral component of monoclonal antibodies (mAbs) and Fc-based fusion proteins. Engineering mutations in the Fc domain is a common approach to achieve desired effector function and clinical efficacy of therapeutic mAbs. It remains debatable, however, whether molecular engineering either by changing glycosylation patterns or by amino acid mutation in Fc domain could impact the higher order structure of Fc domain potentially leading to increased aggregation propensities in mAbs. METHODS Here, we use NMR fingerprinting analysis of Fc domains, generated from selected Pfizer mAbs with similar glycosylation patterns, to address this question. Specifically, we use high resolution 2D [13C-1H] NMR spectra of Fc fragments, which fingerprints methyl sidechain bearing residues, to probe the correlation of higher order structure with the storage stability of mAbs. Thermal calorimetric studies were also performed to assess the stability of mAb fragments. RESULTS Unlike NMR fingerprinting, thermal melting temperature as obtained from calorimetric studies for the intact mAbs and fragments (Fc and Fab), did not reveal any correlation with the aggregation propensities of mAbs. Despite >97% sequence homology, NMR data suggests that higher order structure of Fc domains could be dynamic and may result in unique conformation(s) in solution. CONCLUSION The overall glycosylation pattern of these mAbs being similar, these conformation(s) could be linked to the inherent plasticity of the Fc domain, and may act as early transients to the overall aggregation of mAbs.
Collapse
|
46
|
Novel salts of dipicolinic acid as viscosity modifiers for high concentration antibody solutions. Int J Pharm 2018; 548:682-688. [DOI: 10.1016/j.ijpharm.2018.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 01/04/2023]
|
47
|
Hale CS, Ornelas DN, Yang JS, Chang L, Vang K, Batarseh RN, Ozaki N, Rodgers VGJ. Interrogating the Osmotic Pressure of Self-Crowded Bovine Serum Albumin Solutions: Implications of Specific Monovalent Anion Effects Relative to the Hofmeister Series. J Phys Chem B 2018; 122:8037-8046. [PMID: 30074781 DOI: 10.1021/acs.jpcb.8b07000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The free-solvent-based (FSB) model and osmotic pressure were used to probe the ion binding and protein hydration for self-crowded bovine serum albumin in 0.15 M NaF, NaCl, NaI, and NaSCN solutions. All experiments were conducted with solutions at pH 7.4. The regressed results of the FSB model behavior to the measured osmotic pressure were excellent, albeit, the osmotic pressure data for NaSCN were noisy. The resulting ion binding and hydration were realistic values and the covariance of the two parameters was exceptionally low, providing substantial credibility to the FSB model. The results showed that the kosmotropic F- and neutral Cl- solutions generated significantly higher ion binding and protein hydration than the chaotropic solutions of I- and SCN-. Further, the ionic strength ratio and resulting hydration implied that the chaotropic solutions had substantially higher aggregation than the other salts investigated. Overall, the FSB model provides an additional, complementary tool to contribute to the analysis of crowded protein solutions relative to anions in the Hofmeister series as it can interrogate crowded solutions directly; something that is not possible with many measurement techniques.
Collapse
Affiliation(s)
- Christopher S Hale
- Department of Bioengineering, B2K Group (Biotransport and Bioreaction Kinetics Group) , University of California , Riverside , California 92521 , United States
| | - Danielle N Ornelas
- Department of Bioengineering, B2K Group (Biotransport and Bioreaction Kinetics Group) , University of California , Riverside , California 92521 , United States
| | - Jennifer S Yang
- Department of Bioengineering, B2K Group (Biotransport and Bioreaction Kinetics Group) , University of California , Riverside , California 92521 , United States
| | - Larry Chang
- Department of Bioengineering, B2K Group (Biotransport and Bioreaction Kinetics Group) , University of California , Riverside , California 92521 , United States
| | - Kevin Vang
- Department of Bioengineering, B2K Group (Biotransport and Bioreaction Kinetics Group) , University of California , Riverside , California 92521 , United States
| | - Ramsey N Batarseh
- Department of Bioengineering, B2K Group (Biotransport and Bioreaction Kinetics Group) , University of California , Riverside , California 92521 , United States
| | - Noriko Ozaki
- Department of Bioengineering, B2K Group (Biotransport and Bioreaction Kinetics Group) , University of California , Riverside , California 92521 , United States
| | - Victor G J Rodgers
- Department of Bioengineering, B2K Group (Biotransport and Bioreaction Kinetics Group) , University of California , Riverside , California 92521 , United States
| |
Collapse
|
48
|
Huang RYC, O'Neil SR, Lipovšek D, Chen G. Conformational Assessment of Adnectin and Adnectin-Drug Conjugate by Hydrogen/Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1524-1531. [PMID: 29736601 DOI: 10.1007/s13361-018-1966-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Higher-order structure (HOS) characterization of therapeutic protein-drug conjugates for comprehensive assessment of conjugation-induced protein conformational changes is an important consideration in the biopharmaceutical industry to ensure proper behavior of protein therapeutics. In this study, conformational dynamics of a small therapeutic protein, adnectin 1, together with its drug conjugate were characterized by hydrogen/deuterium exchange mass spectrometry (HDX-MS) with different spatial resolutions. Top-down HDX allows detailed assessment of the residue-level deuterium content in the payload conjugation region. HDX-MS dataset revealed the ability of peptide-based payload/linker to retain deuterium in HDX experiments. Combined results from intact, top-down, and bottom-up HDX indicated no significant conformational changes of adnectin 1 upon payload conjugation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Richard Y-C Huang
- Pharmaceutical Candidate Optimization, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA.
| | - Steven R O'Neil
- Molecular Discovery Technologies, Research and Development, Bristol-Myers Squibb Company, Waltham, MA, USA
| | - Daša Lipovšek
- Molecular Discovery Technologies, Research and Development, Bristol-Myers Squibb Company, Waltham, MA, USA
| | - Guodong Chen
- Pharmaceutical Candidate Optimization, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA.
| |
Collapse
|
49
|
More AS, Toth RT, Okbazghi SZ, Middaugh CR, Joshi SB, Tolbert TJ, Volkin DB, Weis DD. Impact of Glycosylation on the Local Backbone Flexibility of Well-Defined IgG1-Fc Glycoforms Using Hydrogen Exchange-Mass Spectrometry. J Pharm Sci 2018; 107:2315-2324. [PMID: 29751008 DOI: 10.1016/j.xphs.2018.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/31/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
We have used hydrogen exchange-mass spectrometry to characterize local backbone flexibility of 4 well-defined IgG1-Fc glycoforms expressed and purified from Pichia pastoris, 2 of which were prepared using subsequent in vitro enzymatic treatments. Progressively decreasing the size of the N-linked N297 oligosaccharide from high mannose (Man8-Man12), to Man5, to GlcNAc, to nonglycosylated N297Q resulted in progressive increases in backbone flexibility. Comparison of these results with recently published physicochemical stability and Fcγ receptor binding data with the same set of glycoproteins provide improved insights into correlations between glycan structure and these pharmaceutical properties. Flexibility significantly increased upon glycan truncation in 2 potential aggregation-prone regions. In addition, a correlation was established between increased local backbone flexibility and increased deamidation at asparagine 315. Interestingly, the opposite trend was observed for oxidation of tryptophan 277 where faster oxidation correlated with decreased local backbone flexibility. Finally, a trend of increasing C'E glycopeptide loop flexibility with decreasing glycan size was observed that correlates with their FcγRIIIa receptor binding properties. These well-defined IgG1-Fc glycoforms serve as a useful model system to identify physicochemical stability and local backbone flexibility data sets potentially discriminating between various IgG glycoforms for potential applicability to future comparability or biosimilarity assessments.
Collapse
Affiliation(s)
- Apurva S More
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Ronald T Toth
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Solomon Z Okbazghi
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Thomas J Tolbert
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - David B Volkin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047.
| | - David D Weis
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047; Department of Chemistry, University of Kansas, Lawrence, Kansas 66045.
| |
Collapse
|
50
|
Schaefer JV, Sedlák E, Kast F, Nemergut M, Plückthun A. Modification of the kinetic stability of immunoglobulin G by solvent additives. MAbs 2018. [PMID: 29537925 DOI: 10.1080/19420862.2018.1450126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Biophysical properties of antibody-based biopharmaceuticals are a critical part of their release criteria. In this context, finding the appropriate formulation is equally important as optimizing their intrinsic biophysical properties through protein engineering, and both are mutually dependent. Most previous studies have empirically tested the impact of additives on measures of colloidal stability, while mechanistic aspects have usually been limited to only the thermodynamic stability of the protein. Here we emphasize the kinetic impact of additives on the irreversible denaturation steps of immunoglobulins G (IgG) and their antigen-binding fragments (Fabs), as these are the key committed steps preceding aggregation, and thus especially informative in elucidating the molecular parameters of activity loss. We examined the effects of ten additives on the conformational kinetic stability by differential scanning calorimetry (DSC), using a recently developed three-step model containing both reversible and irreversible steps. The data highlight and help to rationalize different effects of the additives on the properties of full-length IgG, analyzed by onset and aggregation temperatures as well as by kinetic parameters derived from our model. Our results further help to explain the observation that stabilizing mutations in the antigen-binding fragment (Fab) significantly affect the kinetic parameters of its thermal denaturation, but not the aggregation properties of the full-length IgGs. We show that the proper analysis of DSC scans for full-length IgGs and their corresponding Fabs not only helps in ranking their stability in different formats and formulations, but provides important mechanistic insights for improving the conformational kinetic stability of IgGs.
Collapse
Affiliation(s)
- Jonas V Schaefer
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| | - Erik Sedlák
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland.,b Center for Interdisciplinary Biosciences, P.J. Šafárik University , Jesenná 5, Košice , Slovakia
| | - Florian Kast
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| | - Michal Nemergut
- c Department of Biophysics , P.J. Šafárik University , Jesenná 5, Košice , Slovakia
| | - Andreas Plückthun
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| |
Collapse
|