1
|
Li Z, Di Vagno L, Chawla H, Ni Cheallaigh A, Critcher M, Sammon D, Briggs DC, Chung N, Chang V, Mahoney KE, Cioce A, Murphy LD, Chen YH, Narimatsu Y, Miller RL, Willems LI, Malaker SA, Huang ML, Miller GJ, Hohenester E, Schumann B. Xylosyltransferase Bump-and-hole Engineering to Chemically Manipulate Proteoglycans in Mammalian Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572522. [PMID: 38979271 PMCID: PMC11230170 DOI: 10.1101/2023.12.20.572522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mammalian cells orchestrate signalling through interaction events on their surfaces. Proteoglycans are an intricate part of these interactions, carrying large glycosaminoglycan polysaccharides that recruit signalling molecules. Despite their importance in development, cancer and neurobiology, a relatively small number of proteoglycans have been identified. In addition to the complexity of glycan extension, biosynthetic redundancy in the first protein glycosylation step by two xylosyltransferase isoenzymes XT1 and XT2 complicates annotation of proteoglycans. Here, we develop a chemical genetic strategy that manipulates the glycan attachment site of cellular proteoglycans. By employing a tactic termed bump- and-hole engineering, we engineer the two isoenzymes XT1 and XT2 to specifically transfer a chemically modified xylose analogue to target proteins. The chemical modification contains a bioorthogonal tag, allowing the ability to visualise and profile target proteins modified by both transferases in mammalian cells. The versatility of our approach allows pinpointing glycosylation sites by tandem mass spectrometry, and exploiting the chemical handle to manufacture proteoglycans with defined GAG chains for cellular applications. Engineered XT enzymes permit a view into proteoglycan biology that is orthogonal to conventional techniques in biochemistry.
Collapse
|
2
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
3
|
Hoffman E, Song Y, Zhang F, Asarian L, Downs I, Young B, Han X, Ouyang Y, Xia K, Linhardt RJ, Weiss DJ. Regional and disease-specific glycosaminoglycan composition and function in decellularized human lung extracellular matrix. Acta Biomater 2023; 168:388-399. [PMID: 37433361 PMCID: PMC10528722 DOI: 10.1016/j.actbio.2023.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Decellularized lung scaffolds and hydrogels are increasingly being utilized in ex vivo lung bioengineering. However, the lung is a regionally heterogenous organ with proximal and distal airway and vascular compartments of different structures and functions that may be altered as part of disease pathogenesis. We previously described decellularized normal whole human lung extracellular matrix (ECM) glycosaminoglycan (GAG) composition and functional ability to bind matrix-associated growth factors. We now determine differential GAG composition and function in airway, vascular, and alveolar-enriched regions of decellularized lungs obtained from normal, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) patients. Significant differences were observed in heparan sulfate (HS), chondroitin sulfate (CS), and hyaluronic acid (HA) content and CS/HS compositions between both different lung regions and between normal and diseased lungs. Surface plasmon resonance demonstrated that HS and CS from decellularized normal and COPD lungs similarly bound fibroblast growth factor 2, but that binding was decreased in decellularized IPF lungs. Binding of transforming growth factor β to CS was similar in all three groups but binding to HS was decreased in IPF compared to normal and COPD lungs. In addition, cytokines dissociate faster from the IPF GAGs than their counterparts. The differences in cytokine binding features of IPF GAGs may result from different disaccharide compositions. The purified HS from IPF lung is less sulfated than that from other lungs, and the CS from IPF contains more 6-O-sulfated disaccharide. These observations provide further information for understanding functional roles of ECM GAGs in lung function and disease. STATEMENT OF SIGNIFICANCE: Lung transplantation remains limited due to donor organ availability and need for life-long immunosuppressive medication. One solution, the ex vivo bioengineering of lungs via de- and recellularization has not yet led to a fully functional organ. Notably, the role of glycosaminoglycans (GAGs) remaining in decellularized lung scaffolds is poorly understood despite their important effects on cell behaviors. We have previously investigated residual GAG content of native and decellularized lungs and their respective functionality, and role during scaffold recellularization. We now present a detailed characterization of GAG and GAG chain content and function in different anatomical regions of normal diseased human lungs. These are novel and important observations that further expand knowledge about functional GAG roles in lung biology and disease.
Collapse
Affiliation(s)
- Evan Hoffman
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA
| | - Yuefan Song
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Fuming Zhang
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Loredana Asarian
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA
| | - Isaac Downs
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA
| | - Brad Young
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA
| | - Xiaorui Han
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Yilan Ouyang
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Ke Xia
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Robert J Linhardt
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Daniel J Weiss
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA.
| |
Collapse
|
4
|
Hu Y, Buehler MJ. End-to-End Protein Normal Mode Frequency Predictions Using Language and Graph Models and Application to Sonification. ACS NANO 2022; 16:20656-20670. [PMID: 36416536 DOI: 10.1021/acsnano.2c07681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The prediction of mechanical and dynamical properties of proteins is an important frontier, especially given the greater availability of proteins structures. Here we report a series of models that provide end-to-end predictions of nanodynamical properties of proteins, focused on high-throughput normal mode predictions directly from the amino acid sequence. Using neural network models within the family of Natural Language Processing and graph-based methods, we offer atomistically based mechanistic predictions of key protein mechanical features. The models include an end-to-end long short-term memory (LSTM) model, an end-to-end transformer model, a graph-based transformer model, and an equivariant graph neural network. All four models show exceptional performance, with the graph-based transformer architecture offering the best results but at the cost of requiring a graph structure as input. Conversely, the LSTM and transformer models offer end-to-end sequence-to-property prediction capabilities, providing efficient avenues for protein engineering, analysis, and design. We compare our results against published data based on a Principal Neighborhood Aggregation graph neural network, revealing that the transformer model offers better performance while also being able to predict a large set of the first 64 normal mode frequencies, simultaneously. The use of the end-to-end transformer model may facilitate other downstream applications through the use of transfer learning, and it offers a comprehensive prediction of dynamical properties without any structural knowledge, directly from the amino acid sequence. We demonstrate a potential application in scientific sonification, where the normal mode frequencies are transposed to generate audible signals for a detailed analysis of subtle changes of protein sequences.
Collapse
Affiliation(s)
- Yiwen Hu
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Latchoumane CFV, Chopra P, Sun L, Ahmed A, Palmieri F, Wu HF, Guerreso R, Thorne K, Zeltner N, Boons GJ, Karumbaiah L. Synthetic Heparan Sulfate Hydrogels Regulate Neurotrophic Factor Signaling and Neuronal Network Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28476-28488. [PMID: 35708492 PMCID: PMC10108098 DOI: 10.1021/acsami.2c01575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Three-dimensional (3D) synthetic heparan sulfate (HS) constructs possess promising attributes for neural tissue engineering applications. However, their sulfation-dependent ability to facilitate molecular recognition and cell signaling has not yet been investigated. We hypothesized that fully sulfated synthetic HS constructs (bearing compound 1) that are functionalized with neural adhesion peptides will enhance fibroblast growth factor-2 (FGF2) binding and complexation with FGF receptor-1 (FGFR1) to promote the proliferation and neuronal differentiation of human neural stem cells (hNSCs) when compared to constructs with unsulfated controls (bearing compound 2). We tested this hypothesis in vitro using 2D and 3D substrates consisting of different combinations of HS tetrasaccharides (compounds 3 and 4) and an engineered integrin-binding chimeric peptide (CP), which were assembled using strain-promoted alkyne-azide cycloaddition (SPAAC) chemistry. Results indicated that the adhesion of hNSCs increased significantly when cultured on 2D glass substrates functionalized with chimeric peptide. hNSCs encapsulated in 1-CP hydrogels and cultured in media containing the mitogen FGF2 exhibited significantly higher neuronal differentiation when compared to hNSCs in 2-CP hydrogels. These observations were corroborated by Western blot analysis, which indicated the enhanced binding and retention of both FGF2 and FGFR1 by 1 as well as downstream phosphorylation of extracellular signal-regulated kinases (ERK1/2) and enhanced proliferation of hNSCs. Lastly, calcium activity imaging revealed that both 1 and 2 hydrogels supported the neuronal growth and activity of pre-differentiated human prefrontal cortex neurons. Collectively, these results demonstrate that synthetic HS hydrogels can be tailored to regulate growth factor signaling and neuronal fate and activity.
Collapse
Affiliation(s)
- Charles-Francois V Latchoumane
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, United States
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Lifeng Sun
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3583, The Netherlands
| | - Aws Ahmed
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, United States
| | - Francesco Palmieri
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3583, The Netherlands
| | - Hsueh-Fu Wu
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Rebecca Guerreso
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, United States
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Kristen Thorne
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Nadja Zeltner
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
- Center for Molecular Medicine, University of Georgia, Athens, Georgia 30602, United States
- Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3583, The Netherlands
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, United States
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia 30602, United States
- Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Hu M, Ling Z, Ren X. Extracellular matrix dynamics: tracking in biological systems and their implications. J Biol Eng 2022; 16:13. [PMID: 35637526 PMCID: PMC9153193 DOI: 10.1186/s13036-022-00292-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
The extracellular matrix (ECM) constitutes the main acellular microenvironment of cells in almost all tissues and organs. The ECM not only provides mechanical support, but also mediates numerous biochemical interactions to guide cell survival, proliferation, differentiation, and migration. Thus, better understanding the everchanging temporal and spatial shifts in ECM composition and structure - the ECM dynamics - will provide fundamental insight regarding extracellular regulation of tissue homeostasis and how tissue states transition from one to another during diverse pathophysiological processes. This review outlines the mechanisms mediating ECM-cell interactions and highlights how changes in the ECM modulate tissue development and disease progression, using the lung as the primary model organ. We then discuss existing methodologies for revealing ECM compositional dynamics, with a particular focus on tracking newly synthesized ECM proteins. Finally, we discuss the ramifications ECM dynamics have on tissue engineering and how to implement spatial and temporal specific extracellular microenvironments into bioengineered tissues. Overall, this review communicates the current capabilities for studying native ECM dynamics and delineates new research directions in discovering and implementing ECM dynamics to push the frontier forward.
Collapse
Affiliation(s)
- Michael Hu
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
7
|
Michalak AL, Trieger GW, Trieger KA, Godula K. Stem Cell Microarrays for Assessing Growth Factor Signaling in Engineered Glycan Microenvironments. Adv Healthc Mater 2022; 11:e2101232. [PMID: 34541824 PMCID: PMC8854331 DOI: 10.1002/adhm.202101232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Indexed: 02/03/2023]
Abstract
Extracellular glycans, such as glycosaminoglycans (GAGs), provide an essential regulatory component during the development and maintenance of tissues. GAGs, which harbor binding sites for a range of growth factors (GFs) and other morphogens, help establish gradients of these molecules in the extracellular matrix (ECM) and promote the formation of active signaling complexes when presented at the cell surface. As such, GAGs have been pursued as biologically active components for the development of biomaterials for cell-based regenerative therapies. However, their structural complexity and compositional heterogeneity make establishing structure-function relationships for this class of glycans difficult. Here, a stem cell array platform is described, in which chemically modified heparan sulfate (HS) GAG polysaccharides are conjugated to a gelatin matrix and introduced into a polyacrylamide hydrogel network. This array allowed for direct analysis of HS contributions to the signaling via the FGF2-dependent mitogen activated protein kinase (MAPK) pathway in mouse embryonic stem cells. With the recent emergence of powerful synthetic and recombinant technologies to produce well-defined GAG structures, a platform for analyzing both growth factor binding and signaling in response to the presence of these biomolecules will provide a powerful tool for integrating glycans into biomaterials to advance their biological properties and applications.
Collapse
Affiliation(s)
- Austen L. Michalak
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Greg W. Trieger
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Kelsey A. Trieger
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Kamil Godula
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA,Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| |
Collapse
|
8
|
Garrudo FFF, Mikael PE, Xia K, Silva JC, Ouyang Y, Chapman CA, Hoffman PR, Yu Y, Han X, Rodrigues CAV, Cabral JMS, Morgado J, Ferreira FC, Linhardt RJ. The effect of electrospun scaffolds on the glycosaminoglycan profile of differentiating neural stem cells. Biochimie 2021; 182:61-72. [PMID: 33422570 PMCID: PMC7902476 DOI: 10.1016/j.biochi.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
The use of electrospun scaffolds for neural tissue engineering applications allows a closer mimicry of the native tissue extracellular matrix (ECM), important for the transplantation of cells in vivo. Moreover, the role of the electrospun fiber mat topography on neural stem cell (NSC) differentiation remains to be completely understood. In this work REN-VM cells (NSC model) were differentiated on polycaprolactone (PCL) nanofibers, obtained by wet/wet electrospinning, and on flat glass lamellas. The obtained differentiation profile of NSCs was evaluated using immunofluorescence and qPCR analysis. Glycosaminoglycan (GAG) analysis was successfully emplyed to evaluate changes in the GAG profile of differentiating cells through the use of the highly sensitive liquid chromatography-tandem mass/mass spectrometry (LC-MS/MS) method. Our results show that both culture platforms allow the differentiation of REN-VM cells into neural cells (neurons and astrocytes) similarly. Moreover, LC-MS/MS analysis shows changes in the production of GAGs present both in cell cultures and conditioned media samples. In the media, hyaluronic acid (HA) was detected and correlated with cellular activity and the production of a more plastic extracellular matrix. The cell samples evidence changes in chondroitin sulfate (CS4S, CS6S, CS4S6S) and heparan sulfate (HS6S, HS0S), similar to those previously described in vivo studies and possibly associated with the creation of complex structures, such as perineural networks. The GAG profile of differentiating REN-VM cells on electrospun scaffolds was analyzed for the first time. Our results highlight the advantage of using platforms obtain more reliable and robust neural tissue-engineered transplants.
Collapse
Affiliation(s)
- Fábio F F Garrudo
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY, 12180, USA; Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal; Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Paiyz E Mikael
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY, 12180, USA
| | - Ke Xia
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY, 12180, USA
| | - João C Silva
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY, 12180, USA; Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Yilan Ouyang
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY, 12180, USA
| | - Caitlyn A Chapman
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY, 12180, USA
| | - Pauline R Hoffman
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY, 12180, USA
| | - Yanlei Yu
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY, 12180, USA
| | - Xiaurui Han
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY, 12180, USA
| | - Carlos A V Rodrigues
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Jorge Morgado
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Frederico C Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Robert J Linhardt
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY, 12180, USA.
| |
Collapse
|
9
|
Yu M, Zhang T, Zhang W, Sun Q, Li H, Li JP. Elucidating the Interactions Between Heparin/Heparan Sulfate and SARS-CoV-2-Related Proteins-An Important Strategy for Developing Novel Therapeutics for the COVID-19 Pandemic. Front Mol Biosci 2021; 7:628551. [PMID: 33569392 PMCID: PMC7868326 DOI: 10.3389/fmolb.2020.628551] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Owing to the high mortality and the spread rate, the infectious disease caused by SARS-CoV-2 has become a major threat to public health and social economy, leading to over 70 million infections and 1. 6 million deaths to date. Since there are currently no effective therapeutic or widely available vaccines, it is of urgent need to look for new strategies for the treatment of SARS-CoV-2 infection diseases. Binding of a viral protein onto cell surface heparan sulfate (HS) is generally the first step in a cascade of interaction that is required for viral entry and the initiation of infection. Meanwhile, interactions of selectins and cytokines (e.g., IL-6 and TNF-α) with HS expressed on endothelial cells are crucial in controlling the recruitment of immune cells during inflammation. Thus, structurally defined heparin/HS and their mimetics might serve as potential drugs by competing with cell surface HS for the prevention of viral adhesion and modulation of inflammatory reaction. In this review, we will elaborate coronavirus invasion mechanisms and summarize the latest advances in HS-protein interactions, especially proteins relevant to the process of coronavirus infection and subsequent inflammation. Experimental and computational techniques involved will be emphasized.
Collapse
Affiliation(s)
- Mingjia Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Wei Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Qianyun Sun
- Division of Chemistry, Shandong Institute of Metrology, Jinan, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Jin-ping Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
10
|
Hayes AJ, Melrose J. Aggrecan, the Primary Weight-Bearing Cartilage Proteoglycan, Has Context-Dependent, Cell-Directive Properties in Embryonic Development and Neurogenesis: Aggrecan Glycan Side Chain Modifications Convey Interactive Biodiversity. Biomolecules 2020; 10:E1244. [PMID: 32867198 PMCID: PMC7564073 DOI: 10.3390/biom10091244] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
This review examines aggrecan's roles in developmental embryonic tissues, in tissues undergoing morphogenetic transition and in mature weight-bearing tissues. Aggrecan is a remarkably versatile and capable proteoglycan (PG) with diverse tissue context-dependent functional attributes beyond its established role as a weight-bearing PG. The aggrecan core protein provides a template which can be variably decorated with a number of glycosaminoglycan (GAG) side chains including keratan sulphate (KS), human natural killer trisaccharide (HNK-1) and chondroitin sulphate (CS). These convey unique tissue-specific functional properties in water imbibition, space-filling, matrix stabilisation or embryonic cellular regulation. Aggrecan also interacts with morphogens and growth factors directing tissue morphogenesis, remodelling and metaplasia. HNK-1 aggrecan glycoforms direct neural crest cell migration in embryonic development and is neuroprotective in perineuronal nets in the brain. The ability of the aggrecan core protein to assemble CS and KS chains at high density equips cartilage aggrecan with its well-known water-imbibing and weight-bearing properties. The importance of specific arrangements of GAG chains on aggrecan in all its forms is also a primary morphogenetic functional determinant providing aggrecan with unique tissue context dependent regulatory properties. The versatility displayed by aggrecan in biodiverse contexts is a function of its GAG side chains.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
| |
Collapse
|
11
|
Uhl FE, Zhang F, Pouliot RA, Uriarte JJ, Rolandsson Enes S, Han X, Ouyang Y, Xia K, Westergren-Thorsson G, Malmström A, Hallgren O, Linhardt RJ, Weiss DJ. Functional role of glycosaminoglycans in decellularized lung extracellular matrix. Acta Biomater 2020; 102:231-246. [PMID: 31751810 PMCID: PMC8713186 DOI: 10.1016/j.actbio.2019.11.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 01/17/2023]
Abstract
Despite progress in use of decellularized lung scaffolds in ex vivo lung bioengineering schemes, including use of gels and other materials derived from the scaffolds, the detailed composition and functional role of extracellular matrix (ECM) proteoglycans (PGs) and their glycosaminoglycan (GAG) chains remaining in decellularized lungs, is poorly understood. Using a commonly utilized detergent-based decellularization approach in human autopsy lungs resulted in disproportionate losses of GAGs with depletion of chondroitin sulfate/dermatan sulfate (CS/DS) > heparan sulfate (HS) > hyaluronic acid (HA). Specific changes in disaccharide composition of remaining GAGs were observed with disproportionate loss of NS and NS2S for HS groups and of 4S for CS/DS groups. No significant influence of smoking history, sex, time to autopsy, or age was observed in native vs. decellularized lungs. Notably, surface plasmon resonance demonstrated that GAGs remaining in decellularized lungs were unable to bind key matrix-associated growth factors FGF2, HGF, and TGFβ1. Growth of lung epithelial, pulmonary vascular, and stromal cells cultured on the surface of or embedded within gels derived from decellularized human lungs was differentially and combinatorially enhanced by replenishing specific GAGs and FGF2, HGF, and TGFβ1. In summary, lung decellularization results in loss and/or dysfunction of specific GAGs or side chains significantly affecting matrix-associated growth factor binding and lung cell metabolism. GAG and matrix-associated growth factor replenishment thus needs to be incorporated into schemes for investigations utilizing gels and other materials produced from decellularized human lungs. STATEMENT OF SIGNIFICANCE: Despite progress in use of decellularized lung scaffolds in ex vivo lung bioengineering schemes, including use of gels and other materials derived from the scaffolds, the detailed composition and functional role of extracellular matrix (ECM) proteoglycans (PGs) and their glycosaminoglycan (GAG) chains remaining in decellularized lungs, is poorly understood. In the current studies, we demonstrate that glycosaminoglycans (GAGs) are significantly depleted during decellularization and those that remain are dysfunctional and unable to bind matrix-associated growth factors critical for cell growth and differentiation. Systematically repleting GAGs and matrix-associated growth factors to gels derived from decellularized human lung significantly and differentially affects cell growth. These studies highlight the importance of considering GAGs in decellularized lungs and their derivatives.
Collapse
Affiliation(s)
- Franziska E Uhl
- University of Vermont, Larner College of Medicine, Burlington, VT, United States; Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Robert A Pouliot
- University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Juan J Uriarte
- University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Sara Rolandsson Enes
- University of Vermont, Larner College of Medicine, Burlington, VT, United States; Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Xiaorui Han
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Yilan Ouyang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Anders Malmström
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oskar Hallgren
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Daniel J Weiss
- University of Vermont, Larner College of Medicine, Burlington, VT, United States.
| |
Collapse
|
12
|
Glycosaminoglycans compositional analysis of Urodele axolotl (Ambystoma mexicanum) and Porcine Retina. Glycoconj J 2019; 36:165-174. [PMID: 30963354 DOI: 10.1007/s10719-019-09863-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/26/2022]
Abstract
Retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), are major causes of blindness worldwide. Humans cannot regenerate retina, however, axolotl (Ambystoma mexicanum), a laboratory-bred salamander, can regenerate retinal tissue throughout adulthood. Classic signaling pathways, including fibroblast growth factor (FGF), are involved in axolotl regeneration. Glycosaminoglycan (GAG) interaction with FGF is required for signal transduction in this pathway. GAGs are anionic polysaccharides in extracellular matrix (ECM) that have been implicated in limb and lens regeneration of amphibians, however, GAGs have not been investigated in the context of retinal regeneration. GAG composition is characterized native and decellularized axolotl and porcine retina using liquid chromatography mass spectrometry. Pig was used as a mammalian vertebrate model without the ability to regenerate retina. Chondroitin sulfate (CS) was the main retinal GAG, followed by heparan sulfate (HS), hyaluronic acid, and keratan sulfate in both native and decellularized axolotl and porcine retina. Axolotl retina exhibited a distinctive GAG composition pattern in comparison with porcine retina, including a higher content of hyaluronic acid. In CS, higher levels of 4- and 6- O-sulfation were observed in axolotl retina. The HS composition was greater in decellularized tissues in both axolotl and porcine retina by 7.1% and 15.4%, respectively, and different sulfation patterns were detected in axolotl. Our findings suggest a distinctive GAG composition profile of the axolotl retina set foundation for role of GAGs in homeostatic and regenerative conditions of the axolotl retina and may further our understanding of retinal regenerative models.
Collapse
|
13
|
Trieger GW, Verespy S, Gordts PLSM, Godula K. Efficient Synthesis of Heparinoid Bioconjugates for Tailoring FGF2 Activity at the Stem Cell-Matrix Interface. Bioconjug Chem 2019; 30:833-840. [PMID: 30668905 DOI: 10.1021/acs.bioconjchem.8b00921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heparan sulfate glycosaminoglycans (HS GAGs) attached to proteoglycans harbor high affinity binding sites for various growth factors (GFs) and direct their organization and activity across the cell-matrix interface. Here, we describe a mild and efficient method for generating HS-protein conjugates. The two-step process utilizes a "copper-free click" coupling between differentially sulfated heparinoids primed at their reducing end with an azide handle and a bovine serum albumin protein modified with complementary cyclooctyne functionality. When adsorbed on tissue culture substrates, the glycoconjugates served as extracellular matrix proteoglycan models with the ability to sequester FGF2 and influence mesenchymal stem cell proliferation based on the structure of their HS GAG component.
Collapse
Affiliation(s)
- Greg W Trieger
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States
| | - Stephen Verespy
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States
| | | | - Kamil Godula
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States
| |
Collapse
|
14
|
Pan Y, Wang P, Zhang F, Yu Y, Zhang X, Lin L, Linhardt RJ. Glycosaminoglycans from fish swim bladder: isolation, structural characterization and bioactive potential. Glycoconj J 2017; 35:87-94. [PMID: 29124565 DOI: 10.1007/s10719-017-9804-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/18/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022]
Abstract
The swim bladder of fish is an internal gas-filled organ that allows fish to control their buoyancy and swimming depth. Fish maws (the dried swim bladders of fish) have been used over many centuries as traditional medicines, tonics and a luxurious gourmet food in China and Southeast Asia. Little is known about the structural information of polysaccharides comprising this important functional material of fish tissue. In the present study, the total glycosaminoglycan (GAG) from fish maw was characterized. Two GAGs were identified, chondroitin sulfate (CS, having a molecular weight of 18-40 kDa) and heparan sulfate (HS), corresponding to 95% and 5% of the total GAG, respectively. Chondroitinase digestion showed that the major CS GAG was composed of ΔUA-1 → 3-GalNAc4S (59.7%), ΔUA-1 → 3-GalNAc4,6S (36.5%), ΔUA-1 → 3-GalNAc6S (2.2%) and ΔUA-1 → 3-GalNAc (1.6%) disaccharide units. 1H-NMR analysis and degradation with specific chondroitinases, both CS-type A/C and CS-type B were present in a ratio of 1.4:1. Analysis using surface plasmon resonance showed that fibroblast growth factor (FGF)-2 bound to the CS fraction (KD = 136 nM). These results suggest that this CS may be involved in FGF-signal pathway, mediating tissue repair, regeneration and wound healing. The CS, as the major GAG in fish maw, may have potential pharmacological activity in accelerating wound healing.
Collapse
Affiliation(s)
- Yongxi Pan
- Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Peipei Wang
- Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Yanlei Yu
- Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xing Zhang
- Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Lei Lin
- Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Departments of Biology, Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
15
|
Yang J, Chi L. Characterization of structural motifs for interactions between glycosaminoglycans and proteins. Carbohydr Res 2017; 452:54-63. [PMID: 29065343 DOI: 10.1016/j.carres.2017.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/02/2017] [Accepted: 10/16/2017] [Indexed: 11/24/2022]
Abstract
Glycosaminoglycans (GAGs) are a family of linear and anionic polysaccharides that play essential roles in many biological and physiological processes. Interactions between GAGs and proteins regulate function in many proteins and are related to many human diseases and disorders. The structural motifs and mechanisms for interactions between GAGs and proteins are not fully understood. Specific bindings, including minor but unique sequences sporadically distributed along the GAG chains or variably sulfated domains interspersed by undersulfated regions, may be specifically recognized by defined domains of a variety of proteins. Understanding the molecular basis of these interactions will provide a template for developing novel glycotherapeutic agents. The present article reviews recent methodologies and progress on the characterization of structural motifs in both GAGs and proteins involved in GAG-protein interactions. The analytical approaches are categorized into three groups: affinity-based methods; molecular docking, nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography; and mass spectrometry (MS) techniques. The advantages and limitations of each category of methods are discussed and are based on examples of using these techniques to investigate binding between GAGs and proteins.
Collapse
Affiliation(s)
- Jiyuan Yang
- National Glycoengineering Research Center, Shandong University, Jinan 250100, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Jinan 250100, China.
| |
Collapse
|
16
|
Yang Y, Haeger SM, Suflita MA, Zhang F, Dailey KL, Colbert JF, Ford JA, Picon MA, Stearman RS, Lin L, Liu X, Han X, Linhardt RJ, Schmidt EP. Fibroblast Growth Factor Signaling Mediates Pulmonary Endothelial Glycocalyx Reconstitution. Am J Respir Cell Mol Biol 2017; 56:727-737. [PMID: 28187268 DOI: 10.1165/rcmb.2016-0338oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The endothelial glycocalyx is a heparan sulfate (HS)-rich endovascular structure critical to endothelial function. Accordingly, endothelial glycocalyx degradation during sepsis contributes to tissue edema and organ injury. We determined the endogenous mechanisms governing pulmonary endothelial glycocalyx reconstitution, and if these reparative mechanisms are impaired during sepsis. We performed intravital microscopy of wild-type and transgenic mice to determine the rapidity of pulmonary endothelial glycocalyx reconstitution after nonseptic (heparinase-III mediated) or septic (cecal ligation and puncture mediated) endothelial glycocalyx degradation. We used mass spectrometry, surface plasmon resonance, and in vitro studies of human and mouse samples to determine the structure of HS fragments released during glycocalyx degradation and their impact on fibroblast growth factor receptor (FGFR) 1 signaling, a mediator of endothelial repair. Homeostatic pulmonary endothelial glycocalyx reconstitution occurred rapidly after nonseptic degradation and was associated with induction of the HS biosynthetic enzyme, exostosin (EXT)-1. In contrast, sepsis was characterized by loss of pulmonary EXT1 expression and delayed glycocalyx reconstitution. Rapid glycocalyx recovery after nonseptic degradation was dependent upon induction of FGFR1 expression and was augmented by FGF-promoting effects of circulating HS fragments released during glycocalyx degradation. Although sepsis-released HS fragments maintained this ability to activate FGFR1, sepsis was associated with the downstream absence of reparative pulmonary endothelial FGFR1 induction. Sepsis may cause vascular injury not only via glycocalyx degradation, but also by impairing FGFR1/EXT1-mediated glycocalyx reconstitution.
Collapse
Affiliation(s)
- Yimu Yang
- 1 Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Sarah M Haeger
- 1 Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | | | - Fuming Zhang
- 3 Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - Kyrie L Dailey
- 1 Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - James F Colbert
- 1 Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Joshay A Ford
- 1 Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Mario A Picon
- 1 Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Robert S Stearman
- 4 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Lei Lin
- 3 Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - Xinyue Liu
- 3 Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - Xiaorui Han
- 3 Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Eric P Schmidt
- 1 Department of Medicine, University of Colorado Denver, Aurora, Colorado.,5 Department of Medicine, Denver Health Medical Center, Denver, Colorado
| |
Collapse
|
17
|
Defects in chondrocyte maturation and secondary ossification in mouse knee joint epiphyses due to Snorc deficiency. Osteoarthritis Cartilage 2017; 25:1132-1142. [PMID: 28323137 DOI: 10.1016/j.joca.2017.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 03/05/2017] [Accepted: 03/09/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The role of Snorc, a novel cartilage specific transmembrane proteoglycan, was studied during skeletal development using two Snorc knockout mouse models. Hypothesizing that Snorc, like the other transmembrane proteoglycans, may be a coreceptor, we also studied its interaction with growth factors. METHODS Skeletal development was studied in wild type (WT) and Snorc knockout mice during postnatal development by whole mount staining, X-ray imaging, histomorphometry, immunohistochemistry and qRT-PCR. Snorc promoter activity was studied by applying the LacZ reporter expressed by the targeting construct. Slot blot binding and cell proliferation assays were used to study the interaction of Snorc with several growth factors. RESULTS Snorc expression was localized in the knee epiphyses especially to the prehypertrophic chondrocytes delineating the cartilage canals and secondary ossification center (SOC). Snorc was demonstrated to have a glycosaminoglycan independent affinity to FGF2 and it inhibited FGF2 dependent cell growth of C3H101/2 cells. In Snorc deficient mice, SOCs in knee epiphyses were smaller, and growth plate (GP) maturation was disturbed, but total bone length was not affected. Central proliferative and hypertrophic zones were enlarged with higher extracellular matrix (ECM) volume and rounded chondrocyte morphology at postnatal days P10 and P22. Increased levels of Ihh and Col10a1, and reduced Mmp13 mRNA expression were observed at P10. CONCLUSIONS These findings suggest a role of Snorc in regulation of chondrocyte maturation and postnatal endochondral ossification. The interaction identified between recombinant Snorc core protein and FGF2 suggest functions related to FGF signaling.
Collapse
|
18
|
Costa R, Urbani A, Salvalaio M, Bellesso S, Cieri D, Zancan I, Filocamo M, Bonaldo P, Szabò I, Tomanin R, Moro E. Perturbations in cell signaling elicit early cardiac defects in mucopolysaccharidosis type II. Hum Mol Genet 2017; 26:1643-1655. [DOI: 10.1093/hmg/ddx069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/17/2017] [Indexed: 01/28/2023] Open
|
19
|
Schultz V, Suflita M, Liu X, Zhang X, Yu Y, Li L, Green DE, Xu Y, Zhang F, DeAngelis PL, Liu J, Linhardt RJ. Heparan Sulfate Domains Required for Fibroblast Growth Factor 1 and 2 Signaling through Fibroblast Growth Factor Receptor 1c. J Biol Chem 2017; 292:2495-2509. [PMID: 28031461 PMCID: PMC5313116 DOI: 10.1074/jbc.m116.761585] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/16/2016] [Indexed: 11/06/2022] Open
Abstract
A small library of well defined heparan sulfate (HS) polysaccharides was chemoenzymatically synthesized and used for a detailed structure-activity study of fibroblast growth factor (FGF) 1 and FGF2 signaling through FGF receptor (FGFR) 1c. The HS polysaccharide tested contained both undersulfated (NA) domains and highly sulfated (NS) domains as well as very well defined non-reducing termini. This study examines differences in the HS selectivity of the positive canyons of the FGF12-FGFR1c2 and FGF22-FGFR1c2 HS binding sites of the symmetric FGF2-FGFR2-HS2 signal transduction complex. The results suggest that FGF12-FGFR1c2 binding site prefers a longer NS domain at the non-reducing terminus than FGF22-FGFR1c2 In addition, FGF22-FGFR1c2 can tolerate an HS chain having an N-acetylglucosamine residue at its non-reducing end. These results clearly demonstrate the different specificity of FGF12-FGFR1c2 and FGF22-FGFR1c2 for well defined HS structures and suggest that it is now possible to chemoenzymatically synthesize precise HS polysaccharides that can selectively mediate growth factor signaling. These HS polysaccharides might be useful in both understanding and controlling the growth, proliferation, and differentiation of cells in stem cell therapies, wound healing, and the treatment of cancer.
Collapse
Affiliation(s)
| | | | - Xinyue Liu
- From the Departments of Chemistry and Chemical Biology
| | - Xing Zhang
- From the Departments of Chemistry and Chemical Biology
| | - Yanlei Yu
- From the Departments of Chemistry and Chemical Biology
| | - Lingyun Li
- the Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Dixy E Green
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, and
| | - Yongmei Xu
- the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Fuming Zhang
- From the Departments of Chemistry and Chemical Biology
| | - Paul L DeAngelis
- the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, and
| | - Jian Liu
- the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Robert J Linhardt
- From the Departments of Chemistry and Chemical Biology,
- Biology
- Biomedical Engineering, and
- Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
20
|
Nagarajan B, Sankaranarayanan NV, Patel BB, Desai UR. A molecular dynamics-based algorithm for evaluating the glycosaminoglycan mimicking potential of synthetic, homogenous, sulfated small molecules. PLoS One 2017; 12:e0171619. [PMID: 28182755 PMCID: PMC5300208 DOI: 10.1371/journal.pone.0171619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 01/06/2023] Open
Abstract
Glycosaminoglycans (GAGs) are key natural biopolymers that exhibit a range of biological functions including growth and differentiation. Despite this multiplicity of function, natural GAG sequences have not yielded drugs because of problems of heterogeneity and synthesis. Recently, several homogenous non-saccharide glycosaminoglycan mimetics (NSGMs) have been reported as agents displaying major therapeutic promise. Yet, it remains unclear whether sulfated NSGMs structurally mimic sulfated GAGs. To address this, we developed a three-step molecular dynamics (MD)-based algorithm to compare sulfated NSGMs with GAGs. In the first step of this algorithm, parameters related to the range of conformations sampled by the two highly sulfated molecules as free entities in water were compared. The second step compared identity of binding site geometries and the final step evaluated comparable dynamics and interactions in the protein-bound state. Using a test case of interactions with fibroblast growth factor-related proteins, we show that this three-step algorithm effectively predicts the GAG structure mimicking property of NSGMs. Specifically, we show that two unique dimeric NSGMs mimic hexameric GAG sequences in the protein-bound state. In contrast, closely related monomeric and trimeric NSGMs do not mimic GAG in either the free or bound states. These results correspond well with the functional properties of NSGMs. The results show for the first time that appropriately designed sulfated NSGMs can be good structural mimetics of GAGs and the incorporation of a MD-based strategy at the NSGM library screening stage can identify promising mimetics of targeted GAG sequences.
Collapse
Affiliation(s)
- Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Bhaumik B. Patel
- Hunter Holmes Muire VA Medical Center, Richmond, Virginia, United States of America
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
21
|
Sterner E, Flanagan N, Gildersleeve JC. Perspectives on Anti-Glycan Antibodies Gleaned from Development of a Community Resource Database. ACS Chem Biol 2016; 11:1773-83. [PMID: 27220698 PMCID: PMC4949583 DOI: 10.1021/acschembio.6b00244] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Antibodies are used
extensively for a wide range of basic research
and clinical applications. While an abundant and diverse collection
of antibodies to protein antigens have been developed, good monoclonal
antibodies to carbohydrates are much less common. Moreover, it can
be difficult to determine if a particular antibody has the appropriate
specificity, which antibody is best suited for a given application,
and where to obtain that antibody. Herein, we provide an overview
of the current state of the field, discuss challenges for selecting
and using antiglycan antibodies, and summarize deficiencies in the
existing repertoire of antiglycan antibodies. This perspective was
enabled by collecting information from publications, databases, and
commercial entities and assembling it into a single database, referred
to as the Database of Anti-Glycan Reagents (DAGR). DAGR is a publicly
available, comprehensive resource for anticarbohydrate antibodies,
their applications, availability, and quality.
Collapse
Affiliation(s)
- Eric Sterner
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Natalie Flanagan
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
22
|
Li JP, Kusche-Gullberg M. Heparan Sulfate: Biosynthesis, Structure, and Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:215-73. [PMID: 27241222 DOI: 10.1016/bs.ircmb.2016.02.009] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heparan sulfate (HS) proteoglycans (PGs) are ubiquitously expressed on cell surfaces and in the extracellular matrix of most animal tissues, having essential functions in development and homeostasis, as well as playing various roles in disease processes. The functions of HSPGs are mainly dependent on interactions between the HS-side chains with a variety of proteins including cytokines, growth factors, and their receptors. In a given HS polysaccharide, negatively charged sulfate and carboxylate groups are arranged in various types of domains, generated through strictly regulated biosynthetic reactions and with enormous potential for structural variability. The mode of HS-protein interactions is assessed through binding experiments using saccharides of defined composition in vitro, signaling assays in cell models where HS structures are manipulated, and targeted disruption of genes for biosynthetic enzymes in animals (mouse, zebrafish, Drosophila, and Caenorhabditis elegans) followed by phenotype analysis. Whereas some protein ligands appear to require strictly defined HS structure, others bind to variable saccharide domains without apparent dependence on distinct saccharide sequence. These findings raise intriguing questions concerning the functional significance of regulation in HS biosynthesis and the potential for development of therapeutics targeting HS-protein interactions.
Collapse
Affiliation(s)
- J-P Li
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden; SciLifeLab, University of Uppsala, Uppsala, Sweden.
| | | |
Collapse
|
23
|
Glycoarray Technologies: Deciphering Interactions from Proteins to Live Cell Responses. MICROARRAYS 2016; 5:microarrays5010003. [PMID: 27600069 PMCID: PMC5003448 DOI: 10.3390/microarrays5010003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023]
Abstract
Microarray technologies inspired the development of carbohydrate arrays. Initially, carbohydrate array technology was hindered by the complex structures of glycans and their structural variability. The first designs of glycoarrays focused on the HTP (high throughput) study of protein-glycan binding events, and subsequently more in-depth kinetic analysis of carbohydrate-protein interactions. However, the applications have rapidly expanded and now achieve successful discrimination of selective interactions between carbohydrates and, not only proteins, but also viruses, bacteria and eukaryotic cells, and most recently even live cell responses to immobilized glycans. Combining array technology with other HTP technologies such as mass spectrometry is expected to allow even more accurate and sensitive analysis. This review provides a broad overview of established glycoarray technologies (with a special focus on glycosaminoglycan applications) and their emerging applications to the study of complex interactions between glycans and whole living cells.
Collapse
|
24
|
Li G, Li L, Tian F, Zhang L, Xue C, Linhardt RJ. Glycosaminoglycanomics of cultured cells using a rapid and sensitive LC-MS/MS approach. ACS Chem Biol 2015; 10:1303-10. [PMID: 25680304 DOI: 10.1021/acschembio.5b00011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosaminoglycans (GAGs), a family of polysaccharides widely distributed in eukaryotic cells, are responsible for a wide array of biological functions. Quantitative disaccharide compositional analysis is one of the primary ways to characterize the GAG structure. This structural analysis is typically time-consuming (1-2 weeks) and labor intensive, requiring GAG recovery and multistep purification, prior to the enzymatic/chemical digestion of GAGs, and finally their analysis. Moreover, 10(5)-10(7) cells are usually required for compositional analysis. We report a sensitive, rapid, and quantitative analysis of GAGs present in a small number of cells. Commonly studied cell lines were selected based on phenotypic properties related to the biological functions of GAGs. These cells were lysed using a commercial surfactant reagent, sonicated, and digested with polysaccharide lyases. The resulting disaccharides were recovered by centrifugal filtration, labeled with 2-aminoacridone, and analyzed by liquid chromatography (LC)-mass spectrometry (MS). Using a highly sensitive MS method, multiple reaction monitoring (MRM), the limit of detection for each disaccharide was reduced to 0.5-1.0 pg, as compared with 1.0-5.0 ng obtained using standard LC-MS analysis. Sample preparation time was reduced to 1-2 days, and the cell number required was reduced to 5000 cells for complete GAG characterization to as few as 500 cells for the characterization of the major GAG disaccharide components. Our survey of the glycosaminoglycanomes of the 20 selected cell lines reveals major differences in their GAG amounts and compositions. Structure-function relationships are explored using these data, suggesting the utility of this method in cellular glycobiology.
Collapse
Affiliation(s)
- Guoyun Li
- College of Food Science and Technology, Ocean University of China, Qingdao, Shandong 266003, China
- Department of Chemistry
and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Lingyun Li
- Department of Chemistry
and Chemical Biology, Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Wadsworth Center, New York State, Department of Health, Albany, New York 12201, United States
| | - Fang Tian
- American Type Culture Collection, Manassas, Virginia 20110, United States
| | - Linxia Zhang
- Biomedical
Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Changhu Xue
- College of Food Science and Technology, Ocean University of China, Qingdao, Shandong 266003, China
| | - Robert J. Linhardt
- Biomedical
Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Chemical and Biological
Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Biology,
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
25
|
Sterner E, Masuko S, Li G, Li L, Green DE, Otto NJ, Xu Y, DeAngelis PL, Liu J, Dordick JS, Linhardt RJ. Fibroblast growth factor-based signaling through synthetic heparan sulfate blocks copolymers studied using high cell density three-dimensional cell printing. J Biol Chem 2014; 289:9754-65. [PMID: 24563485 DOI: 10.1074/jbc.m113.546937] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Four well-defined heparan sulfate (HS) block copolymers containing S-domains (high sulfo group content) placed adjacent to N-domains (low sulfo group content) were chemoenzymatically synthesized and characterized. The domain lengths in these HS block co-polymers were ~40 saccharide units. Microtiter 96-well and three-dimensional cell-based microarray assays utilizing murine immortalized bone marrow (BaF3) cells were developed to evaluate the activity of these HS block co-polymers. Each recombinant BaF3 cell line expresses only a single type of fibroblast growth factor receptor (FGFR) but produces neither HS nor fibroblast growth factors (FGFs). In the presence of different FGFs, BaF3 cell proliferation showed clear differences for the four HS block co-polymers examined. These data were used to examine the two proposed signaling models, the symmetric FGF2-HS2-FGFR2 ternary complex model and the asymmetric FGF2-HS1-FGFR2 ternary complex model. In the symmetric FGF2-HS2-FGFR2 model, two acidic HS chains bind in a basic canyon located on the top face of the FGF2-FGFR2 protein complex. In this model the S-domains at the non-reducing ends of the two HS proteoglycan chains are proposed to interact with the FGF2-FGFR2 protein complex. In contrast, in the asymmetric FGF2-HS1-FGFR2 model, a single HS chain interacts with the FGF2-FGFR2 protein complex through a single S-domain that can be located at any position within an HS chain. Our data comparing a series of synthetically prepared HS block copolymers support a preference for the symmetric FGF2-HS2-FGFR2 ternary complex model.
Collapse
Affiliation(s)
- Eric Sterner
- From the Department of Chemical and Biological Engineering
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nikolovska K, Renke JK, Jungmann O, Grobe K, Iozzo RV, Zamfir AD, Seidler DG. A decorin-deficient matrix affects skin chondroitin/dermatan sulfate levels and keratinocyte function. Matrix Biol 2014; 35:91-102. [PMID: 24447999 DOI: 10.1016/j.matbio.2014.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/11/2013] [Accepted: 01/05/2014] [Indexed: 01/06/2023]
Abstract
Decorin is a small leucine-rich proteoglycan harboring a single glycosaminoglycan chain, which, in skin, is mainly composed of dermatan sulfate (DS). Mutant mice with targeted disruption of the decorin gene (Dcn(-/-)) exhibit an abnormal collagen architecture in the dermis and reduced tensile strength, collectively leading to a skin fragility phenotype. Notably, Ehlers-Danlos patients with mutations in enzymes involved in the biosynthesis of DS display a similar phenotype, and recent studies indicate that DS is involved in growth factor binding and signaling. To determine the impact of the loss of DS-decorin in the dermis, we analyzed the glycosaminoglycan content of Dcn(-/-) and wild-type mouse skin. The total amount of chondroitin/dermatan sulfate (CS/DS) was increased in the Dcn(-/-) skin, but was overall less sulfated with a significant reduction in bisulfated ΔDiS2,X (X=4 or 6) disaccharide units, due to the reduced expression of uronyl 2-O sulfotransferase (Ust). With increasing age, sulfation declined; however, Dcn(-/-) CS/DS was constantly undersulfated vis-à-vis wild-type. Functionally, we found altered fibroblast growth factor (Fgf)-7 and -2 binding due to changes in the micro-heterogeneity of skin Dcn(-/-) CS/DS. To better delineate the role of decorin, we used a 3D Dcn(-/-) fibroblast cell culture model. We found that the CS/DS extracts of wild-type and Dcn(-/-) fibroblasts were similar to the skin sugars, and this correlated with the lack of uronyl 2-O sulfotransferase in the Dcn(-/-) fibroblasts. Moreover, Ffg7 binding to total CS/DS was attenuated in the Dcn(-/-) samples. Surprisingly, wild-type CS/DS significantly reduced the binding of Fgf7 to keratinocytes in a concentration dependent manner unlike the Dcn(-/-) CS/DS that only affected the binding at higher concentrations. Although binding to cell-surfaces was quite similar at higher concentrations, keratinocyte proliferation was differentially affected. Higher concentration of Dcn(-/-) CS/DS induced proliferation in contrast to wild-type CS/DS. 3D co-cultures of fibroblasts and keratinocytes showed that, unlike Dcn(-/-) CS/DS, wild-type CS/DS promoted differentiation of keratinocytes. Collectively, our results provide novel mechanistic explanations for the reported defects in wound healing in Dcn(-/-) mice and possibly Ehlers-Danlos patients. Moreover, the lack of decorin-derived DS and an altered CS/DS composition differentially influence keratinocyte behavior.
Collapse
Affiliation(s)
- Katerina Nikolovska
- Insitute of Physiological Chemistry and Pathobiochemistry, Waldeyerstr. 15, University Hospital Münster, University of Münster, D-48149 Münster, Germany
| | - Jana K Renke
- Insitute of Physiological Chemistry and Pathobiochemistry, Waldeyerstr. 15, University Hospital Münster, University of Münster, D-48149 Münster, Germany
| | - Oliver Jungmann
- Insitute of Physiological Chemistry and Pathobiochemistry, Waldeyerstr. 15, University Hospital Münster, University of Münster, D-48149 Münster, Germany
| | - Kay Grobe
- Insitute of Physiological Chemistry and Pathobiochemistry, Waldeyerstr. 15, University Hospital Münster, University of Münster, D-48149 Münster, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Alina D Zamfir
- Department of Chemical and Biological Sciences, "Aurel Vlaicu" University of Arad, Romania and Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Daniela G Seidler
- Insitute of Physiological Chemistry and Pathobiochemistry, Waldeyerstr. 15, University Hospital Münster, University of Münster, D-48149 Münster, Germany.
| |
Collapse
|