1
|
Hedger G, Yen HY. The Influence of Phosphoinositide Lipids in the Molecular Biology of Membrane Proteins: Recent Insights from Simulations. J Mol Biol 2025; 437:168937. [PMID: 39793883 PMCID: PMC7617384 DOI: 10.1016/j.jmb.2025.168937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The phosphoinositide family of membrane lipids play diverse and critical roles in eukaryotic molecular biology. Much of this biological activity derives from interactions of phosphoinositide lipids with integral and peripheral membrane proteins, leading to modulation of protein structure, function, and cellular distribution. Since the discovery of phosphoinositides in the 1940s, combined molecular biology, biophysical, and structural approaches have made enormous progress in untangling this vast and diverse cellular network of interactions. More recently, in silico approaches such as molecular dynamics simulations have proven to be an asset in prospectively identifying, characterising, explaining the structural basis of these interactions, and in the best cases providing atomic level testable hypotheses on how such interactions control the function of a given membrane protein. This review details a number of recent seminal discoveries in phosphoinositide biology, enabled by advanced biomolecular simulation, and its integration with molecular biology, biophysical, and structural biology approaches. The results of the simulation studies agree well with experimental work, and in a number of notable cases have arrived at the key conclusion several years in advance of the experimental structures. SUMMARY: Hedger and Yen review developments in simulations of phosphoinositides and membrane proteins.
Collapse
Affiliation(s)
- George Hedger
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| | - Hsin-Yung Yen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
2
|
Di Marino D, Conflitti P, Motta S, Limongelli V. Structural basis of dimerization of chemokine receptors CCR5 and CXCR4. Nat Commun 2023; 14:6439. [PMID: 37833254 PMCID: PMC10575954 DOI: 10.1038/s41467-023-42082-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are prominent drug targets responsible for extracellular-to-intracellular signal transduction. GPCRs can form functional dimers that have been poorly characterized so far. Here, we show the dimerization mechanism of the chemokine receptors CCR5 and CXCR4 by means of an advanced free-energy technique named coarse-grained metadynamics. Our results reproduce binding events between the GPCRs occurring in the minute timescale, revealing a symmetric and an asymmetric dimeric structure for each of the three investigated systems, CCR5/CCR5, CXCR4/CXCR4, and CCR5/CXCR4. The transmembrane helices TM4-TM5 and TM6-TM7 are the preferred binding interfaces for CCR5 and CXCR4, respectively. The identified dimeric states differ in the access to the binding sites of the ligand and G protein, indicating that dimerization may represent a fine allosteric mechanism to regulate receptor activity. Our study offers structural basis for the design of ligands able to modulate the formation of CCR5 and CXCR4 dimers and in turn their activity, with therapeutic potential against HIV, cancer, and immune-inflammatory diseases.
Collapse
Affiliation(s)
- Daniele Di Marino
- Department of Life and Environmental Sciences - New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri 2, 20156, Milan, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Paolo Conflitti
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute, Via G. Buffi 13, CH-6900, Lugano, Switzerland
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Vittorio Limongelli
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute, Via G. Buffi 13, CH-6900, Lugano, Switzerland.
| |
Collapse
|
3
|
Majumder A, Straub JE. The role of structural heterogeneity in the homodimerization of transmembrane proteins. J Chem Phys 2023; 159:134101. [PMID: 37782254 PMCID: PMC10547497 DOI: 10.1063/5.0159801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/27/2023] [Indexed: 10/03/2023] Open
Abstract
The equilibrium association of transmembrane proteins plays a fundamental role in membrane protein function and cellular signaling. While the study of the equilibrium binding of single pass transmembrane proteins has received significant attention in experiment and simulation, the accurate assessment of equilibrium association constants remains a challenge to experiment and simulation. In experiment, there remain wide variations in association constants derived from experimental studies of the most widely studied transmembrane proteins. In simulation, state-of-the art methods have failed to adequately sample the thermodynamically relevant structures of the dimer state ensembles using coarse-grained models. In addition, all-atom force fields often fail to accurately assess the relative free energies of the dimer and monomer states. Given the importance of this fundamental biophysical process, it is essential to address these shortcomings. In this work, we establish an effective computational protocol for the calculation of equilibrium association constants for transmembrane homodimer formation. A set of transmembrane protein homodimers, used in the parameterization of the MARTINI v3 force field, are simulated using metadynamics, based on three collective variables. The method is found to be accurate and computationally efficient, providing a standard to be used in the future simulation studies using coarse-grained or all-atom models.
Collapse
Affiliation(s)
- Ayan Majumder
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - John E. Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
4
|
Sahoo AR, Souza PCT, Meng Z, Buck M. Transmembrane dimers of type 1 receptors sample alternate configurations: MD simulations using coarse grain Martini 3 versus AlphaFold2 Multimer. Structure 2023; 31:735-745.e2. [PMID: 37075749 PMCID: PMC10833135 DOI: 10.1016/j.str.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/07/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
Structures and dynamics of transmembrane (TM) receptor regions are key to understanding their signaling mechanism across membranes. Here we examine configurations of TM region dimers, assembled using the recent Martini 3 force field for coarse-grain (CG) molecular dynamics simulations. At first glance, our results show only a reasonable agreement with ab initio predictions using PREDDIMER and AlphaFold2 Multimer and with nuclear magnetic resonance (NMR)-derived structures. 5 of 11 CG TM structures are similar to the NMR structures (within <3.5 Å root-mean-square deviation [RMSD]) compared with 10 and 9 using PREDDIMER and AlphaFold2, respectively (with 8 structures of the later within 1.5 Å). Surprisingly, AlphaFold2 predictions are closer to NMR structures when the 2001 instead of 2020 database is used for training. The CG simulations reveal that alternative configurations of TM dimers readily interconvert with a predominant population. The implications for transmembrane signaling are discussed, including for the development of peptide-based pharmaceuticals.
Collapse
Affiliation(s)
- Amita R Sahoo
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS & University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Zhiyuan Meng
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
5
|
Majumder A, Kwon S, Straub JE. On Computing Equilibrium Binding Constants for Protein-Protein Association in Membranes. J Chem Theory Comput 2022; 18:3961-3971. [PMID: 35580264 PMCID: PMC11260346 DOI: 10.1021/acs.jctc.2c00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein association in lipid membranes is fundamental to membrane protein function and of great biomedical relevance. All-atom and coarse-grained models have been extensively used to understand the protein-protein interactions in the membrane and to compute equilibrium association constants. However, slow translational and rotational diffusion of protein in membrane presents challenges to the effective sampling of conformations defining the ensembles of free and bound states contributing to the association equilibrium and the free energy of dimerization. We revisit the homodimerization equilibrium of the TM region of glycophorin A. Conformational sampling is performed using umbrella sampling along previously proposed one-dimensional collective variables and compared with sampling over a two-dimensional collective variable space using the MARTINI v2.2 force field. We demonstrate that the one-dimensional collective variables suffer from restricted sampling of the native homodimer conformations leading to a biased free energy landscape. Conversely, simulations along the two-dimensional collective variable effectively characterize the thermodynamically relevant native and non-native interactions contributing to the association equilibrium. These results demonstrate the challenges associated with accurately characterizing binding equilibria when multiple poses contribute to the bound state ensemble.
Collapse
Affiliation(s)
- Ayan Majumder
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Seulki Kwon
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
6
|
Kawamoto S, Liu H, Miyazaki Y, Seo S, Dixit M, DeVane R, MacDermaid C, Fiorin G, Klein ML, Shinoda W. SPICA Force Field for Proteins and Peptides. J Chem Theory Comput 2022; 18:3204-3217. [PMID: 35413197 DOI: 10.1021/acs.jctc.1c01207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A coarse-grained (CG) model for peptides and proteins was developed as an extension of the Surface Property fItting Coarse grAined (SPICA) force field (FF). The model was designed to examine membrane proteins that are fully compatible with the lipid membranes of the SPICA FF. A preliminary version of this protein model was created using thermodynamic properties, including the surface tension and density in the SPICA (formerly called SDK) FF. In this study, we improved the CG protein model to facilitate molecular dynamics (MD) simulations with a reproduction of multiple properties from both experiments and all-atom (AA) simulations. An elastic network model was adopted to maintain the secondary structure within a single chain. The side-chain analogues reproduced the transfer free energy profiles across the lipid membrane and demonstrated reasonable association free energy (potential of mean force) in water compared to those from AA MD. A series of peptides/proteins adsorbed onto or penetrated into the membrane simulated by the CG MD correctly predicted the penetration depths and tilt angles of peripheral and transmembrane peptides/proteins as comparable to those in the orientations of proteins in membranes (OPM) database. In addition, the dimerization free energies of several transmembrane helices within a lipid bilayer were comparable to those from experimental estimation. Application studies on a series of membrane protein assemblies, scramblases, and poliovirus capsids demonstrated the good performance of the SPICA FF.
Collapse
Affiliation(s)
- Shuhei Kawamoto
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Huihui Liu
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yusuke Miyazaki
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sangjae Seo
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Korea Institute of Science and Technology Information, 245 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Mayank Dixit
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Russell DeVane
- Modeling & Simulation, Corporate Research & Development, The Procter and Gamble Company, West Chester, Ohio 45069, United States
| | - Christopher MacDermaid
- Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Giacomo Fiorin
- Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
7
|
Song W, Duncan AL, Sansom MSP. Modulation of adenosine A2a receptor oligomerization by receptor activation and PIP 2 interactions. Structure 2021; 29:1312-1325.e3. [PMID: 34270937 PMCID: PMC8581623 DOI: 10.1016/j.str.2021.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022]
Abstract
GPCRs have been shown to form oligomers, which generate distinctive signaling outcomes. However, the structural nature of the oligomerization process remains uncertain. We have characterized oligomeric configurations of the adenosine A2a receptor (A2aR) by combining large-scale molecular dynamics simulations with Markov state models. These oligomeric structures may also serve as templates for studying oligomerization of other class A GPCRs. Our simulation data revealed that receptor activation results in enhanced oligomerization, more diverse oligomer populations, and a more connected oligomerization network. The active state conformation of the A2aR shifts protein-protein association interfaces to those involving intracellular loop ICL3 and transmembrane helix TM6. Binding of PIP2 to A2aR stabilizes protein-protein interactions via PIP2-mediated association interfaces. These results indicate that A2aR oligomerization is responsive to the local membrane lipid environment. This, in turn, suggests a modulatory effect on A2aR whereby a given oligomerization profile favors the dynamic formation of specific supramolecular signaling complexes.
Collapse
Affiliation(s)
- Wanling Song
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
8
|
Sahoo AR, Buck M. Structural and Functional Insights into the Transmembrane Domain Association of Eph Receptors. Int J Mol Sci 2021; 22:ijms22168593. [PMID: 34445298 PMCID: PMC8395321 DOI: 10.3390/ijms22168593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/04/2022] Open
Abstract
Eph receptors are the largest family of receptor tyrosine kinases and by interactions with ephrin ligands mediate a myriad of processes from embryonic development to adult tissue homeostasis. The interaction of Eph receptors, especially at their transmembrane (TM) domains is key to understanding their mechanism of signal transduction across cellular membranes. We review the structural and functional aspects of EphA1/A2 association and the techniques used to investigate their TM domains: NMR, molecular modelling/dynamics simulations and fluorescence. We also introduce transmembrane peptides, which can be used to alter Eph receptor signaling and we provide a perspective for future studies.
Collapse
Affiliation(s)
- Amita R. Sahoo
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA;
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA;
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
9
|
Franco ML, Nadezhdin KD, Light TP, Goncharuk SA, Soler-Lopez A, Ahmed F, Mineev KS, Hristova K, Arseniev AS, Vilar M. Interaction between the transmembrane domains of neurotrophin receptors p75 and TrkA mediates their reciprocal activation. J Biol Chem 2021; 297:100926. [PMID: 34216618 PMCID: PMC8327350 DOI: 10.1016/j.jbc.2021.100926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
The neurotrophin receptors p75 and tyrosine protein kinase receptor A (TrkA) play important roles in the development and survival of the nervous system. Biochemical data suggest that p75 and TrkA reciprocally regulate the activities of each other. For instance, p75 is able to regulate the response of TrkA to lower concentrations of nerve growth factor (NGF), and TrkA promotes shedding of the extracellular domain of p75 by α-secretases in a ligand-dependent manner. The current model suggests that p75 and TrkA are regulated by means of a direct physical interaction; however, the nature of such interaction has been elusive thus far. Here, using NMR in micelles, multiscale molecular dynamics, FRET, and functional studies, we identified and characterized the direct interaction between TrkA and p75 through their respective transmembrane domains (TMDs). Molecular dynamics of p75-TMD mutants suggests that although the interaction between TrkA and p75 TMDs is maintained upon mutation, a specific protein interface is required to facilitate TrkA active homodimerization in the presence of NGF. The same mutations in the TMD protein interface of p75 reduced the activation of TrkA by NGF as well as reducing cell differentiation. In summary, we provide a structural model of the p75-TrkA receptor complex necessary for neuronal development stabilized by TMD interactions.
Collapse
Affiliation(s)
- María L Franco
- Unit of Molecular Basis of Neurodegeneration, Institute of Biomedicine CSIC, València, Spain
| | - Kirill D Nadezhdin
- Department of Structural Biology, Laboratory of NMR-Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Taylor P Light
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sergey A Goncharuk
- Department of Structural Biology, Laboratory of NMR-Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation; Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Andrea Soler-Lopez
- Unit of Molecular Basis of Neurodegeneration, Institute of Biomedicine CSIC, València, Spain
| | - Fozia Ahmed
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Konstantin S Mineev
- Department of Structural Biology, Laboratory of NMR-Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation; Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander S Arseniev
- Department of Structural Biology, Laboratory of NMR-Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation.
| | - Marçal Vilar
- Unit of Molecular Basis of Neurodegeneration, Institute of Biomedicine CSIC, València, Spain.
| |
Collapse
|
10
|
Lamprakis C, Andreadelis I, Manchester J, Velez-Vega C, Duca JS, Cournia Z. Evaluating the Efficiency of the Martini Force Field to Study Protein Dimerization in Aqueous and Membrane Environments. J Chem Theory Comput 2021; 17:3088-3102. [PMID: 33913726 DOI: 10.1021/acs.jctc.0c00507] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-protein complex assembly is one of the major drivers of biological response. Understanding the mechanisms of protein oligomerization/dimerization would allow one to elucidate how these complexes participate in biological activities and could ultimately lead to new approaches in designing novel therapeutic agents. However, determining the exact association pathways and structures of such complexes remains a challenge. Here, we use parallel tempering metadynamics simulations in the well-tempered ensemble to evaluate the performance of Martini 2.2P and Martini open-beta 3 (Martini 3) force fields in reproducing the structure and energetics of the dimerization process of membrane proteins and proteins in an aqueous solution in reasonable accuracy and throughput. We find that Martini 2.2P systematically overestimates the free energy of association by estimating large barriers in distinct areas, which likely leads to overaggregation when multiple monomers are present. In comparison, the less viscous Martini 3 results in a systematic underestimation of the free energy of association for proteins in solution, while it performs well in describing the association of membrane proteins. In all cases, the near-native dimer complexes are identified as minima in the free energy surface albeit not always as the lowest minima. In the case of Martini 3, we find that the spurious supramolecular protein aggregation present in Martini 2.2P multimer simulations is alleviated and thus this force field may be more suitable for the study of protein oligomerization. We propose that the use of enhanced sampling simulations with a refined coarse-grained force field and appropriately defined collective variables is a robust approach for studying the protein dimerization process, although one should be cautious of the ranking of energy minima.
Collapse
Affiliation(s)
- Christos Lamprakis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Ioannis Andreadelis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - John Manchester
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Camilo Velez-Vega
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - José S Duca
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
11
|
Majumder A, Straub JE. Addressing the Excessive Aggregation of Membrane Proteins in the MARTINI Model. J Chem Theory Comput 2021; 17:2513-2521. [PMID: 33720709 DOI: 10.1021/acs.jctc.0c01253] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The MARTINI model is a widely used coarse-grained force field popular for its capacity to represent a diverse array of complex biomolecules. However, efforts to simulate increasingly realistic models of membranes, involving complex lipid mixtures and multiple proteins, suggest that membrane protein aggregates are overstabilized by the MARTINI v2.2 force field. In this study, we address this shortcoming of the MARTINI model. We determined the free energy of dimerization of four transmembrane protein systems using the nonpolarizable MARTINI model. Comparison with experimental FRET-based estimates of the dimerization free energy was used to quantify the significant overstabilization of each protein homodimer studied. To improve the agreement between simulation and experiment, a single uniform scaling factor, α, was used to enhance the protein-lipid Lennard-Jones interaction. A value of α = 1.04-1.045 was found to provide the best fit to the dimerization free energies for the proteins studied while maintaining the specificity of contacts at the dimer interface. To further validate the modified force field, we performed a multiprotein simulation using both MARTINI v2.2 and the reparameterized MARTINI model. While the original MARTINI model predicts oligomerization of protein into a single aggregate, the reparameterized MARTINI model maintains a dynamic equilibrium between monomers and dimers as predicted by experimental studies. The proposed reparameterization is an alternative to the standard MARTINI model for use in simulations of realistic models of a biological membrane containing diverse lipids and proteins.
Collapse
Affiliation(s)
- Ayan Majumder
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston 02215, Massachusetts, United States
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston 02215, Massachusetts, United States
| |
Collapse
|
12
|
Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 2020; 81:101080. [PMID: 33359620 DOI: 10.1016/j.plipres.2020.101080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
The lipid bilayer is a functional component of cells, forming a stable platform for the initiation of key biological processes, including cell signalling. There are distinct changes in the lipid composition of cell membranes during oncogenic transformation resulting in aberrant activation and inactivation of signalling transduction pathways. Studying the role of the cell membrane in cell signalling is challenging, since techniques are often limited to by timescale, resolution, sensitivity, and averaging. To overcome these limitations, combining 'computational', 'wet-lab' and 'semi-dry' approaches offers the best opportunity to resolving complex biological processes involved in membrane organisation. In this review, we highlight analytical tools that have been applied for the study of cell signalling initiation from the cancer cell membranes through computational microscopy, biological assays, and membrane biophysics. The cancer therapeutic potential of extracellular membrane-modulating agents, such as cholesterol-reducing agents is also discussed, as is the need for future collaborative inter-disciplinary research for studying the role of the cell membrane and its components in cancer therapy.
Collapse
Affiliation(s)
- C Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - S D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - J L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK.
| |
Collapse
|
13
|
Shivgan AT, Marzinek JK, Huber RG, Krah A, Henchman RH, Matsudaira P, Verma CS, Bond PJ. Extending the Martini Coarse-Grained Force Field to N-Glycans. J Chem Inf Model 2020; 60:3864-3883. [PMID: 32702979 DOI: 10.1021/acs.jcim.0c00495] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycans play a vital role in a large number of cellular processes. Their complex and flexible nature hampers structure-function studies using experimental techniques. Molecular dynamics (MD) simulations can help in understanding dynamic aspects of glycans if the force field parameters used can reproduce key experimentally observed properties. Here, we present optimized coarse-grained (CG) Martini force field parameters for N-glycans, calibrated against experimentally derived binding affinities for lectins. The CG bonded parameters were obtained from atomistic (ATM) simulations for different glycan topologies including high mannose and complex glycans with various branching patterns. In the CG model, additional elastic networks are shown to improve maintenance of the overall conformational distribution. Solvation free energies and octanol-water partition coefficients were also calculated for various N-glycan disaccharide combinations. When using standard Martini nonbonded parameters, we observed that glycans spontaneously aggregated in the solution and required down-scaling of their interactions for reproduction of ATM model radial distribution functions. We also optimized the nonbonded interactions for glycans interacting with seven lectin candidates and show that a relatively modest scaling down of the glycan-protein interactions can reproduce free energies obtained from experimental studies. These parameters should be of use in studying the role of glycans in various glycoproteins and carbohydrate binding proteins as well as their complexes, while benefiting from the efficiency of CG sampling.
Collapse
Affiliation(s)
- Aishwary T Shivgan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Jan K Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Roland G Huber
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Alexander Krah
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Paul Matsudaira
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| | - Chandra S Verma
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551
| | - Peter J Bond
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| |
Collapse
|
14
|
Leddon SA, Fettis MM, Abramo K, Kelly R, Oleksyn D, Miller J. The CD28 Transmembrane Domain Contains an Essential Dimerization Motif. Front Immunol 2020; 11:1519. [PMID: 32765524 PMCID: PMC7378745 DOI: 10.3389/fimmu.2020.01519] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
CD28 plays a critical role in regulating immune responses both by enhancing effector T cell activation and differentiation and controlling the development and function of regulatory T cells. CD28 is expressed at the cell surface as a disulfide linked homodimer that is thought to bind ligand monovalently. How ligand binding triggers CD28 to induce intracellular signaling as well as the proximal signaling pathways that are induced are not well-understood. In addition, recent data suggest inside-out signaling initiated by the T cell antigen receptor can enhance CD28 ligand binding, possibly by inducing a rearrangement of the CD28 dimer interface to allow for bivalent binding. To understand how possible conformational changes during ligand-induced receptor triggering and inside-out signaling are mediated, we examined the CD28 transmembrane domain. We identified an evolutionarily conserved YxxxxT motif that is shared with CTLA-4 and resembles the transmembrane dimerization motif within CD3ζ. We show that the CD28 transmembrane domain can drive protein dimerization in a bacterial expression system at levels equivalent to the well-known glycophorin A transmembrane dimerization motif. In addition, ectopic expression of the CD28 transmembrane domain into monomeric human CD25 can drive dimerization in murine T cells as detected by an increase in FRET by flow cytometry. Mutation of the polar YxxxxT motif to hydrophobic leucine residues (Y145L/T150L) attenuated CD28 transmembrane mediated dimerization in both the bacterial and mammalian assays. Introduction of the Y145L/T150L mutation of the CD28 transmembrane dimerization motif into the endogenous CD28 locus by CRISPR resulted in a dramatic loss in CD28 cell surface expression. These data suggest that under physiological conditions the YxxxxT dimerization motif within the CD28 transmembrane domain plays a critical role in the assembly and/or expression of stable CD28 dimers at the cell surface.
Collapse
Affiliation(s)
- Scott A Leddon
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Margaret M Fettis
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Kristin Abramo
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Ryan Kelly
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - David Oleksyn
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Jim Miller
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
15
|
Ghosh DK, Ranjan A. The metastable states of proteins. Protein Sci 2020; 29:1559-1568. [PMID: 32223005 PMCID: PMC7314396 DOI: 10.1002/pro.3859] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/26/2022]
Abstract
The intriguing process of protein folding comprises discrete steps that stabilize the protein molecules in different conformations. The metastable state of protein is represented by specific conformational characteristics, which place the protein in a local free energy minimum state of the energy landscape. The native-to-metastable structural transitions are governed by transient or long-lived thermodynamic and kinetic fluctuations of the intrinsic interactions of the protein molecules. Depiction of the structural and functional properties of metastable proteins is not only required to understand the complexity of folding patterns but also to comprehend the mechanisms of anomalous aggregation of different proteins. In this article, we review the properties of metastable proteins in context of their stability and capability of undergoing atypical aggregation in physiological conditions.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and DiagnosticsUppal, HyderabadTelanganaIndia
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and DiagnosticsUppal, HyderabadTelanganaIndia
| |
Collapse
|
16
|
Buckens OJ, El Hassouni B, Giovannetti E, Peters GJ. The role of Eph receptors in cancer and how to target them: novel approaches in cancer treatment. Expert Opin Investig Drugs 2020; 29:567-582. [PMID: 32348169 DOI: 10.1080/13543784.2020.1762566] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Erythropoietin-producing human hepatocellular (Eph) receptors are among the largest family of tyrosine kinases that are divided into two classes: EphA and EphB receptors. Over the past two decades, their role in cancer has become more evident. AREAS COVERED There is a need for new anticancer treatments and more insight in the emerging role of Eph receptors in cancer. Molecular mechanisms underlying the pro-tumorigenic effects of Eph receptors could be exploited for future therapeutic strategies. This review describes the variability in expression levels and different effects on oncogenic and tumor suppressive downstream signaling of Eph receptors in various cancer types, and the small molecules, antibodies and peptides that target these receptors. EXPERT OPINION The complexity of Eph signaling is a challenge for the definition of clear targets for cancer treatment. Nevertheless, numerous drugs that target EphA2 and EphB4 are currently in clinical trials. However, some Eph targeted drugs also inhibit other tyrosine kinases, so it is unclear to what extent the targeting of Eph receptors contributes to their efficacy. Future research is warranted for an improved understanding of the full network in which Eph receptors function. This will be critical for the improvement of the anticancer effects of drugs that target the Eph receptors.
Collapse
Affiliation(s)
- Oscar J Buckens
- Amsterdam University College , Amsterdam, The Netherlands
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
| | - Btissame El Hassouni
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
- Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza , Pisa, Italy
| | - Godefridus J Peters
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk , Gdansk, Poland
| |
Collapse
|
17
|
Wang YC, Dai Y, Xu GL, Yu W, Quan RL, Zhao YJ. Association Between EphA1 and Tumor Microenvironment in Gastric Carcinoma and its Clinical Significance. Med Sci Monit 2020; 26:e923409. [PMID: 32218416 PMCID: PMC7133419 DOI: 10.12659/msm.923409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND With the growing global burden of gastric carcinoma (GC) and the urgent need for biomolecular targeted therapies, this study aimed to elucidate the relationship between EphA1 and the tumor microenvironment (focusing primarily on the key inflammatory cytokines IL-6 and tumor angiogenic cytokine VEGF) to identify a new potential therapeutic target. MATERIAL AND METHODS IHC and qRT-PCR were performed to quantify the protein and gene expression levels of EphA1, IL-6, and VEGF in normal mucosal tissues, carcinoma tissues, and paracarcinomatous tissues from 57 GC patients. Spearman's rank correlation test was performed to determine the relationship between EphA1, IL-6, and VEGF expression levels. The relationships of EphA1 with clinicopathologic parameter and survival in GC patients were also evaluated. RESULTS The protein and gene expression levels of EphA1 were all attenuated gradually from carcinoma tissues to paracarcinomatous tissues and then to normal mucosal tissues in GC patients. Additionally, significant correlations between the overexpression of EphA1 with aggressive clinicopathological features and shorter survival time of GC patients were verified. In particular, we found a significant positive correlation between the expression of EphA1 and tumor microenvironment hallmark proteins IL-6 and VEGF in carcinoma tissues and paracarcinomatous tissues. CONCLUSIONS EphA1 can promote the occurrence and development of GC by its selective high expression in cancer tissues and its relationship with malignant clinical features and prognosis of GC patients. The underlying potential mechanism appears to involve enhancement of the tumor microenvironment, which via drives the expression of tumor microenvironment hallmark proteins IL-6 and VEGF.
Collapse
Affiliation(s)
- Yong-Cang Wang
- School of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Department of Gastrointestinal Oncology Surgery, Anhui Provincial Cancer Hospital (West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui, P.R. China
| | - Yin Dai
- Department of Gastrointestinal Oncology Surgery, Anhui Provincial Cancer Hospital (West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui, P.R. China
| | - Ge-Liang Xu
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Wei Yu
- Department of Gastrointestinal Oncology Surgery, Anhui Provincial Cancer Hospital (West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui, P.R. China
| | - Rui-Liang Quan
- Department of Gastrointestinal Oncology Surgery, Anhui Provincial Cancer Hospital (West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui, P.R. China
| | - Ya-Jun Zhao
- Department of Gastrointestinal Oncology Surgery, Anhui Provincial Cancer Hospital (West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, Anhui, P.R. China
| |
Collapse
|
18
|
Tseytin I, Mitrovic B, David N, Langenfeld K, Zarivach R, Diepold A, Sal-Man N. The Role of the Small Export Apparatus Protein, SctS, in the Activity of the Type III Secretion System. Front Microbiol 2019; 10:2551. [PMID: 31798543 PMCID: PMC6863770 DOI: 10.3389/fmicb.2019.02551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Many gram-negative pathogens utilize a protein complex, termed the type III secretion system (T3SS), to inject virulence factors from their cytoplasm directly into the host cell. An export apparatus that is formed by five putative integral membrane proteins (SctR/S/T/U/V), resides at the center of the T3SS complex. In this study, we characterized the smallest export apparatus protein, SctS, which contains two putative transmembrane domains (PTMD) that dynamically extract from the inner membrane and adopt a helix-turn-helix structure upon assembly of the T3SS. Replacement of each SctS PTMD with an alternative hydrophobic sequence resulted in abolishment of the T3SS activity, yet SctS self- and hetero-interactions as well as the overall assembly of the T3SS complex were unaffected. Our findings suggest that SctS PTMDs are not crucial for the interactions or the assembly of the T3SS base complex but rather that they are involved in adjusting the orientation of the export apparatus relative to additional T3SS sub-structures, such as the cytoplasmic- and the inner-membrane rings. This ensures the fittings between the dynamic and static components of the T3SS and supports the functionality of the T3SS complex.
Collapse
Affiliation(s)
- Irit Tseytin
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Bosko Mitrovic
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Nofar David
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Katja Langenfeld
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Raz Zarivach
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
19
|
Resolving the conformational dynamics of ErbB growth factor receptor dimers. J Struct Biol 2019; 207:225-233. [PMID: 31163211 DOI: 10.1016/j.jsb.2019.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 12/30/2022]
Abstract
The combinatorial dimerization of the ErbB growth factor receptors (ErbB1- ErbB4) are critical for their function. Here, we have characterized the conformational dynamics of ErbB transmembrane homo-dimers and hetero-dimers by using a coarse-grain simulation framework. All dimers, except ErbB4-4 and ErbB1-4, exhibit at least two conformations. The reported NMR structures correspond to one of these conformations, representing the N-terminal active state in ErbB1-1 (RH2), ErbB2-2 (RH1) and ErbB4-4 (RH) homo-dimers and the LH dimer in ErbB3-3 homo-dimer, validating the computational approach. Further, we predict a right-handed ErbB3-3 dimer conformer that warrants experimental testing. The five hetero-dimers that have not yet been experimentally resolved display prominent right-handed dimers associating by the SmXXXSm motif. Our results provide insights into the constitutive signaling of ErbB4 after cleavage of the extracellular region. The presence of the inactive-like dimer conformers leading to symmetric kinase domains gives clues on the autoinhibition of the receptor dimers. The dimer states characterized here represent an important step towards understanding the combinatorial cross associations in the ErbB family.
Collapse
|
20
|
The Third Transmembrane Domain of EscR Is Critical for Function of the Enteropathogenic Escherichia coli Type III Secretion System. mSphere 2018; 3:3/4/e00162-18. [PMID: 30045964 PMCID: PMC6060343 DOI: 10.1128/msphere.00162-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many Gram-negative bacterial pathogens that cause life-threatening diseases employ a type III secretion system (T3SS) for their virulence. The T3SS comprises several proteins that assemble into a syringe-like structure dedicated to the injection of bacterial virulence factors into the host cells. Although many T3SS proteins are transmembrane proteins, our knowledge of these proteins is limited mostly to their soluble domains. In this study, we found that the third transmembrane domain (TMD) of EscR, a central protein of the T3SS in enteropathogenic E. coli, contributes to protein self-oligomerization. Moreover, we demonstrated that a single aspartic acid residue, located at the core of this TMD, is critical for the activity of the full-length protein and the function of the entire T3SS, possibly due to its involvement in mediating TMD-TMD interactions. Our findings should encourage the mapping of the entire interactome of the T3SS components, including interactions mediated through their TMDs. Many Gram-negative bacterial pathogens utilize a specialized protein delivery system, called the type III secretion system (T3SS), to translocate effector proteins into the host cells. The translocated effectors are crucial for bacterial infection and survival. The base of the T3SS transverses both bacterial membranes and contains an export apparatus that comprises five membrane proteins. Here, we study the export apparatus of enteropathogenic Escherichia coli (EPEC) and characterize its central component, called the EscR protein. We found that the third transmembrane domain (TMD) of EscR mediates strong self-oligomerization in an isolated genetic reporter system. Replacing this TMD sequence with an alternative hydrophobic sequence within the full-length protein resulted in a complete loss of function of the T3SS, further suggesting that the EscR TMD3 sequence has another functional role in addition to its role as a membrane anchor. Moreover, we found that an aspartic acid residue, located at the core of EscR TMD3, is important for the oligomerization propensity of TMD3 and that a point mutation of this residue within the full-length protein abolishes the T3SS activity and the ability of the bacteria to translocate effectors into host cells. IMPORTANCE Many Gram-negative bacterial pathogens that cause life-threatening diseases employ a type III secretion system (T3SS) for their virulence. The T3SS comprises several proteins that assemble into a syringe-like structure dedicated to the injection of bacterial virulence factors into the host cells. Although many T3SS proteins are transmembrane proteins, our knowledge of these proteins is limited mostly to their soluble domains. In this study, we found that the third transmembrane domain (TMD) of EscR, a central protein of the T3SS in enteropathogenic E. coli, contributes to protein self-oligomerization. Moreover, we demonstrated that a single aspartic acid residue, located at the core of this TMD, is critical for the activity of the full-length protein and the function of the entire T3SS, possibly due to its involvement in mediating TMD-TMD interactions. Our findings should encourage the mapping of the entire interactome of the T3SS components, including interactions mediated through their TMDs.
Collapse
|
21
|
Chavent M, Karia D, Kalli AC, Domański J, Duncan AL, Hedger G, Stansfeld PJ, Seiradake E, Jones EY, Sansom MSP. Interactions of the EphA2 Kinase Domain with PIPs in Membranes: Implications for Receptor Function. Structure 2018; 26:1025-1034.e2. [PMID: 29887500 PMCID: PMC6039763 DOI: 10.1016/j.str.2018.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/15/2018] [Accepted: 05/08/2018] [Indexed: 11/29/2022]
Abstract
EphA2 is a member of the receptor tyrosine kinase family. Interactions of the cytoplasmic region of EphA2 with the cell membrane are functionally important and yet remain incompletely characterized. Molecular dynamics simulations combined with biochemical studies reveal the interactions of the transmembrane, juxtamembrane (JM), and kinase domains with the membrane. We describe how the kinase domain is oriented relative to the membrane and how the JM region can modulate this interaction. We highlight the role of phosphatidylinositol phosphates (PIPs) in mediating the interaction of the kinase domain with the membrane and, conversely, how positively charged patches at the kinase surface and in the JM region induce the formation of nanoclusters of PIP molecules in the membrane. Integration of these results with those from previous studies enable computational reconstitution of a near complete EphA2 receptor within a membrane, suggesting a role for receptor-lipid interactions in modulation of EphA2.
Collapse
Affiliation(s)
- Matthieu Chavent
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Institut de Pharmacologie et de Biologie Structurale IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dimple Karia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Antreas C Kalli
- Leeds Institute of Cancer and Pathology, St James's University Hospital, University of Leeds, Leeds, UK
| | - Jan Domański
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - George Hedger
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
22
|
Patel JS, Ytreberg FM. Fast Calculation of Protein-Protein Binding Free Energies Using Umbrella Sampling with a Coarse-Grained Model. J Chem Theory Comput 2018; 14:991-997. [PMID: 29286646 PMCID: PMC5813277 DOI: 10.1021/acs.jctc.7b00660] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Determination
of protein–protein binding affinity values
is key to understanding various underlying biological phenomena, such
as how missense variations change protein–protein binding.
Most existing non-rigorous (fast) and rigorous (slow) methods that
rely on all-atom representation of the proteins force the user to
choose between speed and accuracy. In an attempt to achieve balance
between speed and accuracy, we have combined rigorous umbrella sampling
molecular dynamics simulation with a coarse-grained protein model.
We predicted the effect of missense variations on binding affinity
by selecting three protein–protein systems and comparing results
to empirical relative binding affinity values and to non-rigorous
modeling approaches. We obtained significant improvement both in our
ability to discern stabilizing from destabilizing missense variations
and in the correlation between predicted and experimental values compared
to non-rigorous approaches. Overall our results suggest that using
a rigorous affinity calculation method with coarse-grained protein
models could offer fast and reliable predictions of protein–protein
binding free energies.
Collapse
Affiliation(s)
- Jagdish Suresh Patel
- Center for Modeling Complex Interactions, University of Idaho , Moscow, Idaho 83844, United States
| | - F Marty Ytreberg
- Department of Physics, University of Idaho , Moscow, Idaho 83844, United States
| |
Collapse
|
23
|
Excessive aggregation of membrane proteins in the Martini model. PLoS One 2017; 12:e0187936. [PMID: 29131844 PMCID: PMC5683612 DOI: 10.1371/journal.pone.0187936] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022] Open
Abstract
The coarse-grained Martini model is employed extensively to study membrane protein oligomerization. While this approach is exceptionally promising given its computational efficiency, it is alarming that a significant fraction of these studies demonstrate unrealistic protein clusters, whose formation is essentially an irreversible process. This suggests that the protein-protein interactions are exaggerated in the Martini model. If this held true, then it would limit the applicability of Martini to study multi-protein complexes, as the rapidly clustering proteins would not be able to properly sample the correct dimerization conformations. In this work we first demonstrate the excessive protein aggregation by comparing the dimerization free energies of helical transmembrane peptides obtained with the Martini model to those determined from FRET experiments. Second, we show that the predictions provided by the Martini model for the structures of transmembrane domain dimers are in poor agreement with the corresponding structures resolved using NMR. Next, we demonstrate that the first issue can be overcome by slightly scaling down the Martini protein-protein interactions in a manner, which does not interfere with the other Martini interaction parameters. By preventing excessive, irreversible, and non-selective aggregation of membrane proteins, this approach renders the consideration of lateral dynamics and protein-lipid interactions in crowded membranes by the Martini model more realistic. However, this adjusted model does not lead to an improvement in the predicted dimer structures. This implicates that the poor agreement between the Martini model and NMR structures cannot be cured by simply uniformly reducing the interactions between all protein beads. Instead, a careful amino-acid specific adjustment of the protein-protein interactions is likely required.
Collapse
|
24
|
Death Receptor 5 Activation Is Energetically Coupled to Opening of the Transmembrane Domain Dimer. Biophys J 2017; 113:381-392. [PMID: 28746849 DOI: 10.1016/j.bpj.2017.05.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023] Open
Abstract
The precise mechanism by which binding of tumor necrosis factor ligands to the extracellular domain of their corresponding receptors transmits signals across the plasma membrane has remained elusive. Recent studies have proposed that activation of several tumor necrosis factor receptors, including Death Receptor 5, involves a scissorlike opening of the disulfide-linked transmembrane (TM) dimer. Using time-resolved fluorescence resonance energy transfer, we provide, to our knowledge, the first direct biophysical evidence that Death Receptor 5 TM-dimers open in response to ligand binding. Then, to probe the importance of the closed-to-open TM domain transition in the overall energetics of receptor activation, we designed point-mutants (alanine to phenylalanine) in the predicted, tightly packed TM domain dimer interface. We hypothesized that the bulky residues should destabilize the closed conformation and eliminate the ∼3 kcal/mol energy barrier to TM domain opening and the ∼2 kcal/mol energy difference between the closed and open states, thus oversensitizing the receptor. To test this, we used all-atom molecular dynamics simulations of the isolated TM domain in explicit lipid bilayers coupled to thermodynamic potential of mean force calculations. We showed that single point mutants at the interface altered the energy landscape as predicted, but were not enough to completely eliminate the barrier to opening. However, the computational model did predict that a double mutation at i, i+4 positions at the center of the TM domain dimer eliminates the barrier and stabilizes the open conformation relative to the closed. We tested these mutants in cells with time-resolved fluorescence resonance energy transfer and death assays, and show remarkable agreement with the calculations. The single mutants had a small effect on TM domain separation and cell death, whereas the double mutant significantly increased the TM domain separation and more than doubled the sensitivity of cells to ligand stimulation.
Collapse
|
25
|
Sun F, Chen L, Wei P, Chai M, Ding X, Xu L, Luo SZ. Dimerization and Structural Stability of Amyloid Precursor Proteins Affected by the Membrane Microenvironments. J Chem Inf Model 2017; 57:1375-1387. [DOI: 10.1021/acs.jcim.7b00196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fude Sun
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Long Chen
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Wei
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengya Chai
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiufang Ding
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lida Xu
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
26
|
Gahbauer S, Böckmann RA. Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function. Front Physiol 2016; 7:494. [PMID: 27826255 PMCID: PMC5078798 DOI: 10.3389/fphys.2016.00494] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
The dimerization or even oligomerization of G protein coupled receptors (GPCRs) causes ongoing, controversial debates about its functional role and the coupled biophysical, biochemical or biomedical implications. A continously growing number of studies hints to a relation between oligomerization and function of GPCRs and strengthens the assumption that receptor assembly plays a key role in the regulation of protein function. Additionally, progress in the structural analysis of GPCR-G protein and GPCR-ligand interactions allows to distinguish between actively functional and non-signaling complexes. Recent findings further suggest that the surrounding membrane, i.e., its lipid composition may modulate the preferred dimerization interface and as a result the abundance of distinct dimeric conformations. In this review, the association of GPCRs and the role of the membrane in oligomerization will be discussed. An overview of the different reported oligomeric interfaces is provided and their capability for signaling discussed. The currently available data is summarized with regard to the formation of GPCR oligomers, their structures and dependency on the membrane microenvironment as well as the coupling of oligomerization to receptor function.
Collapse
Affiliation(s)
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-NürnbergErlangen, Germany
| |
Collapse
|
27
|
Abstract
Axon guidance relies on a combinatorial code of receptor and ligand interactions that direct adhesive/attractive and repulsive cellular responses. Recent structural data have revealed many of the molecular mechanisms that govern these interactions and enabled the design of sophisticated mutant tools to dissect their biological functions. Here, we discuss the structure/function relationships of four major classes of guidance cues (ephrins, semaphorins, slits, netrins) and examples of morphogens (Wnt, Shh) and of cell adhesion molecules (FLRT). These cell signaling systems rely on specific modes of receptor-ligand binding that are determined by selective binding sites; however, defined structure-encoded receptor promiscuity also enables cross talk between different receptor/ligand families and can also involve extracellular matrix components. A picture emerges in which a multitude of highly context-dependent structural assemblies determines the finely tuned cellular behavior required for nervous system development.
Collapse
Affiliation(s)
- Elena Seiradake
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, United Kingdom;
| | - E Yvonne Jones
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom;
| | - Rüdiger Klein
- Max Planck Institute of Neurobiology, 82152 Munich-Martinsried, Germany;
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
28
|
Hung HM, Nguyen VP, Ngo ST, Nguyen MT. Theoretical study of the interactions between the first transmembrane segment of NS2 protein and a POPC lipid bilayer. Biophys Chem 2016; 217:1-7. [DOI: 10.1016/j.bpc.2016.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/16/2016] [Accepted: 07/16/2016] [Indexed: 01/22/2023]
|
29
|
Lelimousin M, Limongelli V, Sansom MSP. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations. J Am Chem Soc 2016; 138:10611-22. [PMID: 27459426 PMCID: PMC5010359 DOI: 10.1021/jacs.6b05602] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The epidermal growth
factor receptor (EGFR) is a dimeric membrane
protein that regulates key aspects of cellular function. Activation
of the EGFR is linked to changes in the conformation of the transmembrane
(TM) domain, brought about by changes in interactions of the TM helices
of the membrane lipid bilayer. Using an advanced computational approach
that combines Coarse-Grained molecular dynamics and well-tempered
MetaDynamics (CG-MetaD), we characterize the large-scale motions
of the TM helices, simulating multiple association and dissociation
events between the helices in membrane, thus leading to a free energy
landscape of the dimerization process. The lowest energy state of
the TM domain is a right-handed dimer structure in which the TM helices
interact through the N-terminal small-X3-small sequence
motif. In addition to this state, which is thought to correspond to
the active form of the receptor, we have identified further low-energy
states that allow us to integrate with a high level of detail a range
of previous experimental observations. These conformations may lead
to the active state via two possible activation pathways, which involve
pivoting and rotational motions of the helices, respectively. Molecular
dynamics also reveals correlation between the conformational changes
of the TM domains and of the intracellular juxtamembrane domains,
paving the way for a comprehensive understanding of EGFR signaling
at the cell membrane.
Collapse
Affiliation(s)
- Mickaël Lelimousin
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K.,CERMAV, Université Grenoble Alpes and CNRS , BP 53, F-38041 Grenoble Cedex 9, France
| | - Vittorio Limongelli
- Università della Svizzera Italiana (USI), Faculty of Informatics, Institute of Computational Science - Center for Computational Medicine in Cardiology , via G. Buffi 13, CH-6900 Lugano, Switzerland.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, I-80131 Naples, Italy
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
30
|
Hedger G, Shorthouse D, Koldsø H, Sansom MSP. Free Energy Landscape of Lipid Interactions with Regulatory Binding Sites on the Transmembrane Domain of the EGF Receptor. J Phys Chem B 2016; 120:8154-63. [PMID: 27109430 PMCID: PMC5002933 DOI: 10.1021/acs.jpcb.6b01387] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Lipid molecules can
bind to specific sites on integral membrane
proteins, modulating their structure and function. We have undertaken
coarse-grained simulations to calculate free energy profiles for glycolipids
and phospholipids interacting with modulatory sites on the transmembrane
helix dimer of the EGF receptor within a lipid bilayer environment.
We identify lipid interaction sites at each end of the transmembrane
domain and compute interaction free energy profiles for lipids with
these sites. Interaction free energies ranged from ca. −40
to −4 kJ/mol for different lipid species. Those lipids (glycolipid
GM3 and phosphoinositide PIP2) known to modulate EGFR function
exhibit the strongest binding to interaction sites on the EGFR, and
we are able to reproduce the preference for interaction with GM3 over
other glycolipids suggested by experiment. Mutation of amino acid
residues essential for EGFR function reduce the binding free energy
of these key lipid species. The residues interacting with the lipids
in the simulations are in agreement with those suggested by experimental
(mutational) studies. This approach provides a generalizable tool
for characterizing the interactions of lipids that bind to specific
sites on integral membrane proteins.
Collapse
Affiliation(s)
- George Hedger
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - David Shorthouse
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom.,MRC Cancer Unit, University of Cambridge , MRC Research Centre, Box 197, Cambridge CB2 0X1, United Kingdom
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom.,D. E. Shaw Research , 120 West 45th Street, 39th floor, New York, New York 10036, United States
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
31
|
Chavent M, Seiradake E, Jones EY, Sansom MSP. Structures of the EphA2 Receptor at the Membrane: Role of Lipid Interactions. Structure 2016; 24:337-47. [PMID: 26724997 PMCID: PMC4744086 DOI: 10.1016/j.str.2015.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/19/2015] [Accepted: 11/13/2015] [Indexed: 11/29/2022]
Abstract
Ephs are transmembrane receptors that mediate cell-cell signaling. The N-terminal ectodomain binds ligands and enables receptor clustering, which activates the intracellular kinase. Relatively little is known about the function of the membrane-proximal fibronectin domain 2 (FN2) of the ectodomain. Multiscale molecular dynamics simulations reveal that FN2 interacts with lipid bilayers via a site comprising K441, R443, R465, Q462, S464, S491, W467, F490, and P459-461. FN2 preferentially binds anionic lipids, a preference that is reduced in the mutant K441E + R443E. We confirm these results by measuring the binding of wild-type and mutant FN2 domains to lipid vesicles. In simulations of the complete EphA2 ectodomain plus the transmembrane region, we show that FN2 anchors the otherwise flexible ectodomain at the surface of the bilayer. Altogether, our data suggest that FN2 serves a dual function of interacting with anionic lipids and constraining the structure of the EphA2 ectodomain to adopt membrane-proximal configurations.
Collapse
Affiliation(s)
- Matthieu Chavent
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
32
|
Chen PH, Unger V, He X. Structure of Full-Length Human PDGFRβ Bound to Its Activating Ligand PDGF-B as Determined by Negative-Stain Electron Microscopy. J Mol Biol 2015; 427:3921-34. [PMID: 26463591 DOI: 10.1016/j.jmb.2015.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
Abstract
Members of the receptor tyrosine kinases (RTKs) regulate important cellular functions such as cell growth and migration, which are key steps in angiogenesis, in organ morphogenesis and in the unregulated states, cancer formation. One long-standing puzzle regarding RTKs centers on how the extracellular domain (ECD), which detects and binds to growth factors, is coupled with the intracellular domain kinase activation. While extensive structural works on the soluble portions of RTKs have provided critical insights into RTK structures and functions, lack of a full-length receptor structure has hindered a comprehensive overview of RTK activation. In this study, we successfully purified and determined a 27-Å-resolution structure of PDGFRβ [a full-length human platelet-derived growth factor receptor], in complex with its ligand PDGF-B. In the ligand-stimulated complex, two PDGFRβs assemble into a dimer via an extensive interface essentially running along the full-length of the receptor, suggesting that the membrane-proximal region, the transmembrane helix and the kinase domain of PDGFRβ are involved in dimerization. Major structural differences are seen between the full-length and soluble ECD structures, rationalizing previous experimental data on how membrane-proximal domains modulate receptor ligand-binding affinity and dimerization efficiency. Also, in contrast to the 2-fold symmetry of the ECD, the intracellular kinase domains adopt an asymmetric dimer arrangement, in agreement with prior observations for the closely related KIT receptor. In essence, the structure provides a first glimpse into how platelet-derived growth factor receptor ECD, upon ligand stimulation, is coupled to its intracellular domain kinase activation.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vinzenz Unger
- Interdepartmental Biological Science Program, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Science Institute, Northwestern University, Evanston, IL 60208, USA
| | - Xiaolin He
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
33
|
Maruyama IN. Activation of transmembrane cell-surface receptors via a common mechanism? The "rotation model". Bioessays 2015; 37:959-67. [PMID: 26241732 PMCID: PMC5054922 DOI: 10.1002/bies.201500041] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has long been thought that transmembrane cell-surface receptors, such as receptor tyrosine kinases and cytokine receptors, among others, are activated by ligand binding through ligand-induced dimerization of the receptors. However, there is growing evidence that prior to ligand binding, various transmembrane receptors have a preformed, yet inactive, dimeric structure on the cell surface. Various studies also demonstrate that during transmembrane signaling, ligand binding to the extracellular domain of receptor dimers induces a rotation of transmembrane domains, followed by rearrangement and/or activation of intracellular domains. The paper here describes transmembrane cell-surface receptors that are known or proposed to exist in dimeric form prior to ligand binding, and discusses how these preformed dimers are activated by ligand binding.
Collapse
Affiliation(s)
- Ichiro N Maruyama
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
34
|
Schulpen SH, Theunissen PT, Pennings JL, Piersma AH. Comparison of gene expression regulation in mouse- and human embryonic stem cell assays during neural differentiation and in response to valproic acid exposure. Reprod Toxicol 2015; 56:77-86. [DOI: 10.1016/j.reprotox.2015.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 12/15/2022]
|
35
|
Sun F, Xu L, Chen P, Wei P, Qu J, Chen J, Luo SZ. Insights into the Packing Switching of the EphA2 Transmembrane Domain by Molecular Dynamic Simulations. J Phys Chem B 2015; 119:7816-24. [PMID: 26022644 DOI: 10.1021/acs.jpcb.5b01116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptor tyrosine kinases play an important role in mediating cell migration and adhesion associated with various biology processes. With a single-span transmembrane domain (TMD), the activities of the receptors are regulated by the definite packing configurations of the TMDs. For the EphA2 receptor, increasing studies have been conducted to investigate the packing domains that induce its switching TMD dimerization. However, the inherent transformation mechanisms including the interrelations among the involved packing domains remain unclear. Herein, we applied multiple simulation methods to explore the underlying packing mechanisms within the EphA2 TMD dimer. Our results demonstrated that the G(540)xxxG(544) contributed to the formation of the right-handed configuration while the heptad repeat L(535)xxxG(539)xxA(542)xxxV(546)xxL(549)xxxG(553) motif together with the FFxH(559) region mediated the parallel mode. Furthermore, the FF(557) residues packing mutually as rigid riveting structures were found comparable to the heptad repeat motif in maintaining the parallel configuration. In addition, the H(559) residue associated definitely with the lower bilayer leaflet, which was proved to stabilize the parallel mode significantly. The simulations provide a full range of insights into the essential packing motifs or residues involved in the switching TMD dimer configurations, which can enrich our comprehension toward the EphA2 receptor.
Collapse
Affiliation(s)
- Fude Sun
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lida Xu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Wei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Qu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jialin Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
36
|
Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness. Proc Natl Acad Sci U S A 2015; 112:6353-8. [PMID: 25941408 DOI: 10.1073/pnas.1422446112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DesK is a bacterial thermosensor protein involved in maintaining membrane fluidity in response to changes in environmental temperature. Most likely, the protein is activated by changes in membrane thickness, but the molecular mechanism of sensing and signaling is still poorly understood. Here we aimed to elucidate the mode of action of DesK by studying the so-called "minimal sensor DesK" (MS-DesK), in which sensing and signaling are captured in a single transmembrane segment. This simplified version of the sensor allows investigation of membrane thickness-dependent protein-lipid interactions simply by using synthetic peptides, corresponding to the membrane-spanning parts of functional and nonfunctional mutants of MS-DesK incorporated in lipid bilayers with varying thicknesses. The lipid-dependent behavior of the peptides was investigated by circular dichroism, tryptophan fluorescence, and molecular modeling. These experiments were complemented with in vivo functional studies on MS-DesK mutants. Based on the results, we constructed a model that suggests a new mechanism for sensing in which the protein is present as a dimer and responds to an increase in bilayer thickness by membrane incorporation of a C-terminal hydrophilic motif. This results in exposure of three serines on the same side of the transmembrane helices of MS-DesK, triggering a switching of the dimerization interface to allow the formation of a serine zipper. The final result is activation of the kinase state of MS-DesK.
Collapse
|