1
|
Ferraroni M, Angeli A, De Luca V, Capasso C, Supuran CT. Kinetic and structural studies of gamma-carbonic anhydrase from the oral pathogen Porphyromonas gingivalis. J Struct Biol 2025; 217:108154. [PMID: 39647519 DOI: 10.1016/j.jsb.2024.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Porphyromonas gingivalis, a key pathogen in periodontal, plays a critical role in systemic pathologiesdiseases by evading host defence mechanisms and invading periodontal tissues. Targeting its virulence mechanisms and overcoming drug resistance are essential steps toward effective therapeutic development. In this study, we focused on the Carbonic Anhydrase (CA, EC: 4.2.1.1) encoded by P. gingivalis as a potential drug target. We determined the crystal structure of PgiCA γ at a resolution of 2.4 Å and conducted kinetic characterization. The structure revealed that active PgiCA γ forms a trimer, with each monomer comprising a left-handed β-helix capped by a C-terminal α-helix and coordinated to a catalytic zinc ion through three histidine residues. Interestingly, one monomer displayed an atypical α-helix conformation, likely due to close interactions with neighbouring trimers within the crystal lattice (a probable crystallographic artefact). These findings provide new insights into the structural and functional properties of PgiCA γ, emphasizing its potential as a target for the development of novel anti-virulence therapies against P. gingivalis.
Collapse
Affiliation(s)
- Marta Ferraroni
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Andrea Angeli
- NEUROFARBA Department, University of Florence, 50019 Sesto Fiorentino, Florence, Italy.
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
2
|
Bhandary D, de Visser SP, Mukherjee G. Implications of non-native metal substitution in carbonic anhydrase - engineered enzymes and models. Chem Commun (Camb) 2025; 61:612-626. [PMID: 39655561 DOI: 10.1039/d4cc05003g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The enzyme carbonic anhydrase has been intensely studied over decades as a means to understand the role of zinc in hydrating CO2. The naturally occurring enzyme has also been immobilized on distinct heterogeneous platforms, which results in a different hybrid class of catalysts that are useful for the adsorption and hydration of CO2. However, the reusability and robustness of such natural and immobilized systems are substantially affected when tested under industrial conditions, such as high temperature and high flow rate. This led to the generation of model systems in the form of metal-coordination complexes, metal-organic frameworks, metallo-peptide self-assembled supramolecules and nanomaterials that mimic the primary, and, to some extent, secondary coordination sphere of the active site of the natural carbonic anhydrase enzymes. Furthermore, the effects of zinc-substitution by other relevant transition metals in both the naturally occurring enzymes and model systems has been reported. It has been observed that some other transition metal ions in the active site of carbonic anhydrase and its models can also accomplish similar activity, established by various reaction probes and ideas. Herein, we present a comprehensive highlight about substituting zinc in the active site of the modified enzymes and its biomimetic model systems with non-native metal ions and review how they affect the structural orientation and reactivity towards CO2 hydration. In addition, the utility of artificially engineered carbonic anhydrases towards a number of non-natural reactions is also discussed.
Collapse
Affiliation(s)
- Dyuti Bhandary
- Department of Catalysis & Fine Chemicals, CSIR - Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Gourab Mukherjee
- Department of Catalysis & Fine Chemicals, CSIR - Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
3
|
Supuran CT. Multi- and polypharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2025; 77:100004. [PMID: 39952696 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) have been described in organisms overall in the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons and are involved in pH regulation, chemosensing, and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic, or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension, and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or Alzheimer/Parkinson disease management. CAs from pathogenic bacteria, fungi, protozoans, and nematodes have started to be considered as drug targets in recent years, with notable advances being registered. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future due to the emergence of drug design approaches that afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, [iso]coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed because drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide, and high-ceiling diuretics) show effective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. SIGNIFICANCE STATEMENT: CAIs have multiple pharmacologic applications, such as diuretics, antiglaucoma, antiepileptic, antiobesity, antiacute mountain sickness, anti-idiopathic intracranial hypertension, and antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations has started to be investigated recently. Parasite carbonic anhydrases are also drug targets for anti-infectives with novel mechanisms of action that can bypass drug resistance to commonly used agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
4
|
Choi SH, Jin MS. Crystal structure of γ-carbonic anhydrase from the polyextremophilic bacterium Aeribacillus pallidus. Mol Cells 2025; 48:100165. [PMID: 39637945 PMCID: PMC11721427 DOI: 10.1016/j.mocell.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
The polyextremophilic bacterium Aeribacillus pallidus produces a thermo- and alkali-stable γ-carbonic anhydrase (γ-apCA), a homotrimeric metalloenzyme containing a zinc ion in its active site that catalyzes the reversible hydration of carbon dioxide (CO2). Here, we present the first crystal structure of γ-apCA at 1.7-Å resolution, revealing 2 trimers in the asymmetric unit. The overall structure is consistent with other γ-CAs, where each monomer adopts a prism-like structure consisting of an N-terminal left-handed β-helix and a C-terminal α-helix. The active site, located at the interface between 2 monomers, coordinates the zinc ion with 3 histidine residues (H65, H82, and H87) and a water molecule in a tetrahedral configuration. The structural comparison indicates that the amino acid composition at the active site of γ-apCA differs significantly from the prototypic γ-CA from Methanosarcina thermophila. This variation likely accounts for the lack of measurable CO2 hydration activity in γ-apCA. Additionally, the structure reveals noncatalytic zinc and sulfate ions trapped at the trimer core and trimer-trimer noncrystallographic interfaces. These may contribute to stabilizing enzyme assembly and promoting crystal packing.
Collapse
Affiliation(s)
- Seung Hun Choi
- School of Life Sciences, GIST, Gwangju 61005, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, Gwangju 61005, Republic of Korea.
| |
Collapse
|
5
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
6
|
Manaithiya A, Bhowmik R, Bhattacharya K, Ray R, Shyamal SS, Carta F, Supuran CT, Parkkila S, Aspatwar A. A cheminformatics and network pharmacology approach to elucidate the mechanism of action of Mycobacterium tuberculosis γ-carbonic anhydrase inhibitors. Front Pharmacol 2024; 15:1457012. [PMID: 39286631 PMCID: PMC11402817 DOI: 10.3389/fphar.2024.1457012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) carbonic anhydrases (CAs) are critical enzymes that regulate pH by converting CO2 to HCO3 -, essential for Mtb's survival in acidic environments. Inhibiting γ-CAs presents a potential target for novel antituberculosis drugs with unique mechanisms of action. Objective This study aimed to explore the biological connections underlying Mtb pathogenesis and investigate the mechanistic actions of antituberculosis compounds targeting the Cas9 protein. Methods We employed homology modeling and virtual screening to identify compounds with high binding affinities for Cas9 protein. This study used the homology modeling approach employing high-quality AlphaFold DB models for γ-CA. Furthermore, the systems biology approach was used for analyzing the integrated modelling of compounds, integrating data on genes, pathways, phenotypes, and molecular descriptors. Single-cell RNA sequencing was also conducted to profile gene expression. Results Three compounds, F10921405, F08060425, and F14437079, potentially binding to Cas9 protein, have been identified. F10921405 and F08060425 showed significant overlap in their effects on pathways related to the immune response, while F14437079 displayed distinct mechanistic pathways. Expression profiling revealed high levels of genes such as PDE4D, ROCK2, ITK, MAPK10, and SYK in response to F1092-1405 and F0806-0425, and MMP2 and CALCRL in response to F1443-7079. These genes, which play a role in immune modulation and lung tissue integrity, are essential to fight against Mtb. Conclusion The molecular relationship and pathways linked to the mentioned compounds give the study a holistic perspective of targeting Mtb, which is essential in designing specific therapeutic approaches. Subsequent research will involve experimental validation to demonstrate the efficacy of the promising candidates in Mtb infections.
Collapse
Affiliation(s)
- Ajay Manaithiya
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, India
- Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam, India
| | - Rajarshi Ray
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sagar Singh Shyamal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Fabrizio Carta
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
7
|
Angeli A. Bacterial γ-carbonic anhydrases. Enzymes 2024; 55:93-120. [PMID: 39223000 DOI: 10.1016/bs.enz.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrases (CAs) are a ubiquitous family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate and protons, playing pivotal roles in a variety of biological processes including respiration, calcification, acid-base balance, and CO2 fixation. Recent studies have expanded the understanding of CAs, particularly the γ-class from diverse biological sources such as pathogenic bacteria, extremophiles, and halophiles, revealing their unique structural adaptations and functional mechanisms that enable operation under extreme environmental conditions. This chapter discusses the comprehensive catalytic mechanism and structural insights from X-ray crystallography studies, highlighting the molecular adaptations that confer stability and activity to these enzymes in harsh environments. It also explores the modulation mechanism of these enzymes, detailing how different modulators interact with the active site of γ-CAs. Comparative analyzes with other CA classes elucidate the evolutionary trajectories and functional diversifications of these enzymes. The synthesis of this knowledge not only sheds light on the fundamental aspects of CA biology but also opens new avenues for therapeutic and industrial applications, particularly in designing targeted inhibitors for pathogenic bacteria and developing biocatalysts for industrial processes under extreme conditions. The continuous advancement in structural biology promises further insights into this enzyme family, potentially leading to novel applications in medical and environmental biotechnology.
Collapse
Affiliation(s)
- Andrea Angeli
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
8
|
Ferraroni M. Bacterial β-carbonic anhydrases. Enzymes 2024; 55:65-91. [PMID: 39222999 DOI: 10.1016/bs.enz.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
β-Carbonic anhydrases (β-CA; EC 4.2.1.1) are widespread zinc metalloenzymes which catalyze the interconversion of carbon dioxide and bicarbonate. They have been isolated in many pathogenic and non-pathogenic bacteria where they are involved in multiple roles, often related to their growth and survival. β-CAs are structurally distant from the CAs of other classes. In the active site, located at the interface of a fundamental dimer, the zinc ion is coordinated to two cysteines and one histidine. β-CAs have been divided in two subgroups depending on the nature of the fourth ligand on the zinc ion: class I have a zinc open configuration with a hydroxide ion completing the metal coordination, which is the catalytically active species in the mechanism proposed for the β-CAs similar to the well-known of α-CAs, while in class II an Asp residue substitute the hydroxide. This latter active site configuration has been showed to be typical of an inactive form at pH below 8. An Asp-Arg dyad is thought to play a key role in the pH-induced catalytic switch regulating the opening and closing of the active site in class II β-CAs, by displacing the zinc-bound solvent molecule. An allosteric site well-suited for bicarbonate stabilizes the inactive form. This bicarbonate binding site is composed by a triad of well conserved residues, strictly connected to the coordination state of the zinc ion. Moreover, the escort site is a promiscuous site for a variety of ligands, including bicarbonate, at the dimer interface, which may be the route for bicarbonate to the allosteric site.
Collapse
Affiliation(s)
- Marta Ferraroni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Firenze, Italia.
| |
Collapse
|
9
|
Youse MS, Holly KJ, Flaherty DP. Neisseria gonorrhoeae carbonic anhydrase inhibition. Enzymes 2024; 55:243-281. [PMID: 39222993 DOI: 10.1016/bs.enz.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrases (CAs) are ubiquitous enzymes that are found in all kingdoms of life. Though different classes of CAs vary in their roles and structures, their primary function is to catalyze the reaction between carbon dioxide and water to produce bicarbonate and a proton. Neisseria gonorrhoeae encodes for three distinct CAs (NgCAs) from three different families: an α-, a β-, and a γ-isoform. This chapter details the differences between the three NgCAs, summarizing their subcellular locations, roles, essentiality, structures, and enzyme kinetics. These bacterial enzymes have the potential to be drug targets; thus, previous studies have investigated the inhibition of NgCAs-primarily the α-isoform. Therefore, the classes of inhibitors that have been shown to bind to the NgCAs will be discussed as well. These classes include traditional CA inhibitors, such as sulfonamides, phenols, and coumarins, as well as non-traditional inhibitors including anions and thiocarbamates.
Collapse
Affiliation(s)
- Molly S Youse
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Katrina J Holly
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
10
|
Nawaly H, Tanaka A, Toyoshima Y, Tsuji Y, Matsuda Y. Localization and characterization θ carbonic anhydrases in Thalassiosira pseudonana. PHOTOSYNTHESIS RESEARCH 2023; 156:217-229. [PMID: 36862281 DOI: 10.1007/s11120-023-01007-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/12/2023] [Indexed: 05/03/2023]
Abstract
Carbonic anhydrase (CA) is a crucial component for the operation of CO2-concentrating mechanisms (CCMs) in the majority of aquatic photoautotrophs that maintain the global primary production. In the genome of the centric marine diatom, Thalassiosira pseudonana, there are four putative gene sequences that encode θ-type CA, which was a type of CA recently identified in marine diatoms and green algae. In the present study, specific subcellular locations of four θCAs, TpθCA1, TpθCA2, TpθCA3, and TpθCA4 were determined by expressing GFP-fused proteins of these TpθCAs in T. pseudonana. As a result, C-terminal GFP fusion proteins of TpθCA1, TpθCA2, and TpθCA3 were all localized in the chloroplast; TpθCA2 was at the central chloroplast area, and the other two TpθCAs were throughout the chloroplast. Immunogold-labeling transmission electron microscopy was further performed for the transformants expressing TpθCA1:GFP and TpθCA2:GFP with anti-GFP-monoclonal antibody. TpθCA1:GFP was localized in the free stroma area, including the peripheral pyrenoid area. TpθCA2:GFP was clearly located as a lined distribution at the central part of the pyrenoid structure, which was most likely the pyrenoid-penetrating thylakoid. Considering the presence of the sequence encoding the N-terminal thylakoid-targeting domain in the TpθCA2 gene, this localization was likely the lumen of the pyrenoid-penetrating thylakoid. On the other hand, TpθCA4:GFP was localized in the cytoplasm. Transcript analysis of these TpθCAs revealed that TpθCA2 and TpθCA3 were upregulated in atmospheric CO2 (0.04% CO2, LC) levels, while TpθCA1 and TpθCA4 were highly induced under 1% CO2 (HC) condition. The genome-editing knockout (KO) of TpθCA1, by CRISPR/Cas9 nickase, gave a silent phenotype in T. pseudonana under LC-HC conditions, which was in sharp agreement with the case of the previously reported TpθCA3 KO. In sharp contrast, TpθCA2 KO is so far unsuccessful, suggesting a housekeeping role of TpθCA2. The silent phenotype of KO strains of stromal CAs suggests that TpαCA1, TpθCA1, and TpθCA3 may have functional redundancy, but different transcript regulations in response to CO2 of these stromal CAs suggest in part their independent roles.
Collapse
Affiliation(s)
- Hermanus Nawaly
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Atsuko Tanaka
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, 903-0213, Japan
| | - Yui Toyoshima
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Yoshinori Tsuji
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan.
| |
Collapse
|
11
|
Hirakawa Y, Hanawa Y, Yoneda K, Suzuki I. Evolution of a chimeric mitochondrial carbonic anhydrase through gene fusion in a haptophyte alga. FEBS Lett 2022; 596:3051-3059. [PMID: 35997667 DOI: 10.1002/1873-3468.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Carbonic anhydrases (CAs) are a universal enzyme family that catalyses the interconversion of carbon dioxide and bicarbonate, and they are localized in most compartments including mitochondria and plastids. Thus far, eight classes of CAs (α-, β-, γ-, δ-, ζ-, η-, θ- and ι-CA) have been characterized. This study reports an interesting gene encoding a fusion protein of β-CA and ι-CA found in the haptophyte Isochrysis galbana. Recombinant protein assays demonstrated that the C-terminal ι-CA region catalyses CO2 hydration, whereas the N-terminal β-CA region no longer exhibits enzymatic activity. Considering that haptophytes generally have mitochondrion-localized β-CAs and plastid-localized ι-CAs, the fusion CA would show an intermediate stage in which mitochondrial β-CA is replaced by ι-CA in a haptophyte species.
Collapse
Affiliation(s)
- Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Yutaka Hanawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Kohei Yoneda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Japan
| |
Collapse
|
12
|
Di Fiore A, De Luca V, Langella E, Nocentini A, Buonanno M, Maria Monti S, Supuran CT, Capasso C, De Simone G. Biochemical, structural, and computational studies of a γ-carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei. Comput Struct Biotechnol J 2022; 20:4185-4194. [PMID: 36016712 PMCID: PMC9389205 DOI: 10.1016/j.csbj.2022.07.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Melioidosis is a severe disease caused
Burkholderia pseudomallei. γ-carbonic anhydrases (γ-CAs) have been recently
introduced as novel antibacterial drug targets. A new γ-CA from B.
pseudomallei has been investigated by a
multidisciplinary approach. Obtained results provide an important starting point
for developing new anti-melioidosis drugs.
Melioidosis is a severe disease caused by the highly
pathogenic gram-negative bacterium Burkholderia
pseudomallei. Several studies have highlighted the broad
resistance of this pathogen to many antibiotics and pointed out the pivotal
importance of improving the pharmacological arsenal against it. Since γ-carbonic
anhydrases (γ-CAs) have been recently introduced as potential and novel
antibacterial drug targets, in this paper, we report a detailed characterization
of BpsγCA, a γ-CA from B.
pseudomallei by a multidisciplinary approach. In
particular, the enzyme was recombinantly produced and biochemically
characterized. Its catalytic activity at different pH values was measured, the
crystal structure was determined and theoretical pKa calculations were carried
out. Results provided a snapshot of the enzyme active site and dissected the
role of residues involved in the catalytic mechanism and ligand recognition.
These findings are an important starting point for developing new
anti-melioidosis drugs targeting BpsγCA.
Collapse
|
13
|
Gendron A, Allen KD. Overview of Diverse Methyl/Alkyl-Coenzyme M Reductases and Considerations for Their Potential Heterologous Expression. Front Microbiol 2022; 13:867342. [PMID: 35547147 PMCID: PMC9081873 DOI: 10.3389/fmicb.2022.867342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Methyl-coenzyme M reductase (MCR) is an archaeal enzyme that catalyzes the final step of methanogenesis and the first step in the anaerobic oxidation of methane, the energy metabolisms of methanogens and anaerobic methanotrophs (ANME), respectively. Variants of MCR, known as alkyl-coenzyme M reductases, are involved in the anaerobic oxidation of short-chain alkanes including ethane, propane, and butane as well as the catabolism of long-chain alkanes from oil reservoirs. MCR is a dimer of heterotrimers (encoded by mcrABG) and requires the nickel-containing tetrapyrrole prosthetic group known as coenzyme F430. MCR houses a series of unusual post-translational modifications within its active site whose identities vary depending on the organism and whose functions remain unclear. Methanogenic MCRs are encoded in a highly conserved mcrBDCGA gene cluster, which encodes two accessory proteins, McrD and McrC, that are believed to be involved in the assembly and activation of MCR, respectively. The requirement of a unique and complex coenzyme, various unusual post-translational modifications, and many remaining questions surrounding assembly and activation of MCR largely limit in vitro experiments to native enzymes with recombinant methods only recently appearing. Production of MCRs in a heterologous host is an important step toward developing optimized biocatalytic systems for methane production as well as for bioconversion of methane and other alkanes into value-added compounds. This review will first summarize MCR catalysis and structure, followed by a discussion of advances and challenges related to the production of diverse MCRs in a heterologous host.
Collapse
Affiliation(s)
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
14
|
Petreni A, Osman SM, Alasmary FA, Almutairi TM, Nocentini A, Supuran CT. Binding site comparison for coumarin inhibitors and amine/amino acid activators of human carbonic anhydrases. Eur J Med Chem 2021; 226:113875. [PMID: 34634741 DOI: 10.1016/j.ejmech.2021.113875] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 02/08/2023]
Abstract
The first structural analysis comparing the binding mode to the target carbonic anhydrases (CAs, EC 4.2.1.1) of two opposite classes of modulators is presented here: coumarin derivatives act as prodrug CA inhibitors (CAIs), being hydrolyzed by the enzyme esterase activity to 2-hydroxycinnamic acids that occlude the active site entrance; CA activators (CAAs) belonging of the amine and amino acid types, enhance the CA activity by increasing the efficiency of the rate-determining proton shuttling step in the CA catalytic cycle. Analysis of the crystallographic data available for the human CA isoform II in adduct with two coumarin CAIs and some CAAs showed that both types of CA modulators bind in the same region of the enzyme active site, basically interacting with superimposable amino acid residues, that are Trp5, Asn62, His64, Asn67, Gln92, Thr200. A plethora of water molecules also participate in the adducts formation. This structural analysis showed that presence of certain chemical groups in the compound structure is mandatory to produce an activating rather than inhibitory action, such as multiple nitrogen- and oxygen-based moieties capable of shuttling protons or forming extended H-bond networks nearby the proton shuttle residue. This constitutes the only known example among all enzymes of an identical binding site for inhibitors and activators, which, in addition, possess significant pharmacological applications.
Collapse
Affiliation(s)
- Andrea Petreni
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fatmah A Alasmary
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tahani M Almutairi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Alessio Nocentini
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy.
| | - Claudiu T Supuran
- Department NEUROFARBA - Pharmaceutical and nutraceutical section, University of Firenze, via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
15
|
Jensen EL, Receveur-Brechot V, Hachemane M, Wils L, Barbier P, Parsiegla G, Gontero B, Launay H. Structural Contour Map of the Iota Carbonic Anhydrase from the Diatom Thalassiosira pseudonana Using a Multiprong Approach. Int J Mol Sci 2021; 22:ijms22168723. [PMID: 34445427 PMCID: PMC8395977 DOI: 10.3390/ijms22168723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Carbonic anhydrases (CAs) are a family of ubiquitous enzymes that catalyze the interconversion of CO2 and HCO3−. The “iota” class (ι-CA) was first found in the marine diatom Thalassiosira pseudonana (tpι-CA) and is widespread among photosynthetic microalgae and prokaryotes. The ι-CA has a domain COG4875 (or COG4337) that can be repeated from one to several times and resembles a calcium–calmodulin protein kinase II association domain (CaMKII-AD). The crystal structure of this domain in the ι-CA from a cyanobacterium and a chlorarachniophyte has been recently determined. However, the three-dimensional organization of the four domain-containing tpι-CA is unknown. Using biophysical techniques and 3-D modeling, we show that the homotetrameric tpι-CA in solution has a flat “drone-like” shape with a core formed by the association of the first two domains of each monomer, and four protruding arms formed by domains 3 and 4. We also observe that the short linker between domains 3 and 4 in each monomer confers high flexibility, allowing for different conformations to be adopted. We propose the possible 3-D structure of a truncated tpι-CA containing fewer domain repeats using experimental data and discuss the implications of this atypical shape on the activity and metal coordination of the ι-CA.
Collapse
Affiliation(s)
- Erik L. Jensen
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; (E.L.J.); (V.R.-B.); (M.H.); (L.W.); (G.P.)
| | - Véronique Receveur-Brechot
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; (E.L.J.); (V.R.-B.); (M.H.); (L.W.); (G.P.)
| | - Mohand Hachemane
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; (E.L.J.); (V.R.-B.); (M.H.); (L.W.); (G.P.)
| | - Laura Wils
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; (E.L.J.); (V.R.-B.); (M.H.); (L.W.); (G.P.)
| | - Pascale Barbier
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13 402 Marseille, France;
| | - Goetz Parsiegla
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; (E.L.J.); (V.R.-B.); (M.H.); (L.W.); (G.P.)
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; (E.L.J.); (V.R.-B.); (M.H.); (L.W.); (G.P.)
- Correspondence: (B.G.); (H.L.)
| | - Hélène Launay
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France; (E.L.J.); (V.R.-B.); (M.H.); (L.W.); (G.P.)
- Correspondence: (B.G.); (H.L.)
| |
Collapse
|
16
|
Hirakawa Y, Senda M, Fukuda K, Yu HY, Ishida M, Taira M, Kinbara K, Senda T. Characterization of a novel type of carbonic anhydrase that acts without metal cofactors. BMC Biol 2021; 19:105. [PMID: 34006275 PMCID: PMC8132391 DOI: 10.1186/s12915-021-01039-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Background Carbonic anhydrases (CAs) are universal metalloenzymes that catalyze the reversible conversion of carbon dioxide (CO2) and bicarbonate (HCO3-). They are involved in various biological processes, including pH control, respiration, and photosynthesis. To date, eight evolutionarily unrelated classes of CA families (α, β, γ, δ, ζ, η, θ, and ι) have been identified. All are characterized by an active site accommodating the binding of a metal cofactor, which is assumed to play a central role in catalysis. This feature is thought to be the result of convergent evolution. Results Here, we report that a previously uncharacterized protein group, named “COG4337,” constitutes metal-independent CAs from the newly discovered ι-class. Genes coding for COG4337 proteins are found in various bacteria and photosynthetic eukaryotic algae. Biochemical assays demonstrated that recombinant COG4337 proteins from a cyanobacterium (Anabaena sp. PCC7120) and a chlorarachniophyte alga (Bigelowiella natans) accelerated CO2 hydration. Unexpectedly, these proteins exhibited their activity under metal-free conditions. Based on X-ray crystallography and point mutation analysis, we identified a metal-free active site within the cone-shaped α+β barrel structure. Furthermore, subcellular localization experiments revealed that COG4337 proteins are targeted into plastids and mitochondria of B. natans, implicating their involvement in CO2 metabolism in these organelles. Conclusions COG4337 proteins shared a short sequence motif and overall structure with ι-class CAs, whereas they were characterized by metal independence, unlike any known CAs. Therefore, COG4337 proteins could be treated as a variant type of ι-class CAs. Our findings suggested that this novel type of ι-CAs can function even in metal-poor environments (e.g., the open ocean) without competition with other metalloproteins for trace metals. Considering the widespread prevalence of ι-CAs across microalgae, this class of CAs may play a role in the global carbon cycle. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01039-8.
Collapse
Affiliation(s)
- Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Miki Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kodai Fukuda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hong Yang Yu
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,School of High Energy Accelerator Science, SOKENDAI, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Masaki Ishida
- Applied Research Laboratory, Radiation Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Masafumi Taira
- Support Center for Accelerator Science and Technology, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan. .,School of High Energy Accelerator Science, SOKENDAI, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan. .,Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
17
|
Ferry JG. Methanosarcina acetivorans: A Model for Mechanistic Understanding of Aceticlastic and Reverse Methanogenesis. Front Microbiol 2020; 11:1806. [PMID: 32849414 PMCID: PMC7399021 DOI: 10.3389/fmicb.2020.01806] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Acetate-utilizing methanogens are responsible for approximately two-thirds of the one billion metric tons of methane produced annually in Earth's anaerobic environments. Methanosarcina acetivorans has emerged as a model organism for the mechanistic understanding of aceticlastic methanogenesis and reverse methanogenesis applicable to understanding the methane and carbon cycles in nature. It has the largest genome in the Archaea, supporting a metabolic complexity that enables a remarkable ability for adapting to environmental opportunities and challenges. Biochemical investigations have revealed an aceticlastic pathway capable of fermentative and respiratory energy conservation that explains how Ms. acetivorans is able to grow and compete in the environment. The mechanism of respiratory energy conservation also plays a role in overcoming endothermic reactions that are key to reversing methanogenesis.
Collapse
Affiliation(s)
- James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
18
|
Vogler M, Karan R, Renn D, Vancea A, Vielberg MT, Grötzinger SW, DasSarma P, DasSarma S, Eppinger J, Groll M, Rueping M. Crystal Structure and Active Site Engineering of a Halophilic γ-Carbonic Anhydrase. Front Microbiol 2020; 11:742. [PMID: 32411108 PMCID: PMC7199487 DOI: 10.3389/fmicb.2020.00742] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/30/2020] [Indexed: 11/27/2022] Open
Abstract
Environments previously thought to be uninhabitable offer a tremendous wealth of unexplored microorganisms and enzymes. In this paper, we present the discovery and characterization of a novel γ-carbonic anhydrase (γ-CA) from the polyextreme Red Sea brine pool Discovery Deep (2141 m depth, 44.8°C, 26.2% salt) by single-cell genome sequencing. The extensive analysis of the selected gene helps demonstrate the potential of this culture-independent method. The enzyme was expressed in the bioengineered haloarchaeon Halobacterium sp. NRC-1 and characterized by X-ray crystallography and mutagenesis. The 2.6 Å crystal structure of the protein shows a trimeric arrangement. Within the γ-CA, several possible structural determinants responsible for the enzyme's salt stability could be highlighted. Moreover, the amino acid composition on the protein surface and the intra- and intermolecular interactions within the protein differ significantly from those of its close homologs. To gain further insights into the catalytic residues of the γ-CA enzyme, we created a library of variants around the active site residues and successfully improved the enzyme activity by 17-fold. As several γ-CAs have been reported without measurable activity, this provides further clues as to critical residues. Our study reveals insights into the halophilic γ-CA activity and its unique adaptations. The study of the polyextremophilic carbonic anhydrase provides a basis for outlining insights into strategies for salt adaptation, yielding enzymes with industrially valuable properties, and the underlying mechanisms of protein evolution.
Collapse
Affiliation(s)
- Malvina Vogler
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Ram Karan
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Dominik Renn
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandra Vancea
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Marie-Theres Vielberg
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Stefan W. Grötzinger
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Priya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jörg Eppinger
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michael Groll
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Magnus Rueping
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
19
|
Jensen EL, Maberly SC, Gontero B. Insights on the Functions and Ecophysiological Relevance of the Diverse Carbonic Anhydrases in Microalgae. Int J Mol Sci 2020; 21:E2922. [PMID: 32331234 PMCID: PMC7215798 DOI: 10.3390/ijms21082922] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Carbonic anhydrases (CAs) exist in all kingdoms of life. They are metalloenzymes, often containing zinc, that catalyze the interconversion of bicarbonate and carbon dioxide-a ubiquitous reaction involved in a variety of cellular processes. So far, eight classes of apparently evolutionary unrelated CAs that are present in a large diversity of living organisms have been described. In this review, we focus on the diversity of CAs and their roles in photosynthetic microalgae. We describe their essential role in carbon dioxide-concentrating mechanisms and photosynthesis, their regulation, as well as their less studied roles in non-photosynthetic processes. We also discuss the presence in some microalgae, especially diatoms, of cambialistic CAs (i.e., CAs that can replace Zn by Co, Cd, or Fe) and, more recently, a CA that uses Mn as a metal cofactor, with potential ecological relevance in aquatic environments where trace metal concentrations are low. There has been a recent explosion of knowledge about this well-known enzyme with exciting future opportunities to answer outstanding questions using a range of different approaches.
Collapse
Affiliation(s)
- Erik L. Jensen
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France;
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK;
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France;
| |
Collapse
|
20
|
Giri A, Pant D. Carbonic anhydrase modification for carbon management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1294-1318. [PMID: 31797268 DOI: 10.1007/s11356-019-06667-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Carbonic anhydrase modification (chemical and biological) is an attractive strategy for its diverse application to accelerate the absorption of CO2 from a flue gas with improved activity and stability. This article reports various possibilities of CA modification using metal-ligand homologous chemistry, cross-linking agents, and residue- and group-specific and genetic modifications, and assesses their role in carbon management. Chemically modified carbonic anhydrase is able to improve the absorption of carbon dioxide from a gas stream into mediation compounds with enhanced sequestration and mineral formation. Genetically modified CA polypeptide can also increase carbon dioxide conversion. Chemical modification of CA can be categorized in terms of (i) residue-specific modification (involves protein-ligand interaction in terms of substitution/addition) and group-specific modifications (based on the functional groups of the target CA). For every sustainable change, there should be no/limited toxic or immunological response. In this review, several CA modification pathways and biocompatibility rules are proposed as a theoretical support for emerging research in this area.
Collapse
Affiliation(s)
- Anand Giri
- Department of Environmental Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Deepak Pant
- School of Chemical Sciences, Central University of Haryana, Mahendragarh, Haryana, 123029, India.
| |
Collapse
|
21
|
Kim S, Sung J, Yeon J, Choi SH, Jin MS. Crystal Structure of a Highly Thermostable α-Carbonic Anhydrase from Persephonella marina EX-H1. Mol Cells 2019; 42:460-469. [PMID: 31250619 PMCID: PMC6602146 DOI: 10.14348/molcells.2019.0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Bacterial α-type carbonic anhydrase (α-CA) is a zinc metalloenzyme that catalyzes the reversible and extremely rapid interconversion of carbon dioxide to bicarbonate. In this study, we report the first crystal structure of a hyperthermostable α-CA from Persephonella marina EXH1 (pm CA) in the absence and presence of competitive inhibitor, acetazolamide. The structure reveals a compactly folded pm CA homodimer in which each monomer consists of a 10-stranded β-sheet in the center. The catalytic zinc ion is coordinated by three highly conserved histidine residues with an exchangeable fourth ligand (a water molecule, a bicarbonate anion, or the sulfonamide group of acetazolamide). Together with an intramolecular disulfide bond, extensive interfacial networks of hydrogen bonds, ionic and hydrophobic interactions stabilize the dimeric structure and are likely responsible for the high thermal stability. We also identified novel binding sites for calcium ions at the crystallographic interface, which serve as molecular glue linking negatively charged and otherwise repulsive surfaces. Furthermore, this large negatively charged patch appears to further increase the thermostability at alkaline pH range via favorable charge-charge interactions between pm CA and solvent molecules. These findings may assist development of novel α-CAs with improved thermal and/or alkaline stability for applications such as CO2 capture and sequestration.
Collapse
Affiliation(s)
- Subin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| | - Jongmin Sung
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| | - Jungyoon Yeon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| | - Seung Hun Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| |
Collapse
|
22
|
Razzak MA, Lee J, Lee DW, Kim JH, Yoon HS, Hwang I. Expression of seven carbonic anhydrases in red alga Gracilariopsis chorda and their subcellular localization in a heterologous system, Arabidopsis thaliana. PLANT CELL REPORTS 2019; 38:147-159. [PMID: 30446790 DOI: 10.1007/s00299-018-2356-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/07/2018] [Indexed: 05/07/2023]
Abstract
Red alga, Gracilariopsis chorda, contains seven carbonic anhydrases that can be grouped into α-, β- and γ-classes. Carbonic anhydrases (CAHs) are metalloenzymes that catalyze the reversible hydration of CO2. These enzymes are present in all living organisms and play roles in various cellular processes, including photosynthesis. In this study, we identified seven CAH genes (GcCAHs) from the genome sequence of the red alga Gracilariopsis chorda and characterized them at the molecular, cellular and biochemical levels. Based on sequence analysis, these seven isoforms were categorized into four α-class, one β-class, and two γ-class isoforms. RNA sequencing revealed that of the seven CAHs isoforms, six genes were expressed in G. chorda in light at room temperature. In silico analysis revealed that these seven isoforms localized to multiple subcellular locations such as the ER, mitochondria and cytosol. When expressed as green fluorescent protein fusions in protoplasts of Arabidopsis thaliana leaf cells, these seven isoforms showed multiple localization patterns. The four α-class GcCAHs with an N-terminal hydrophobic leader sequence localized to the ER and two of them were further targeted to the vacuole. GcCAHβ1 with no noticeable signal sequence localized to the cytosol. The two γ-class GcCAHs also localized to the cytosol, despite the presence of a predicted presequence. Based on these results, we propose that the red alga G. chorda also employs multiple CAH isoforms for various cellular processes such as photosynthesis.
Collapse
Affiliation(s)
- Md Abdur Razzak
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Jeong Hee Kim
- Department of Biochemistry and Molecular Biology, College of Dentistry, Kyung Hee University, Seoul, 130-701, South Korea
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 130-701, South Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, South Korea.
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
23
|
Aspatwar A, Haapanen S, Parkkila S. An Update on the Metabolic Roles of Carbonic Anhydrases in the Model Alga Chlamydomonas reinhardtii. Metabolites 2018. [PMID: 29534024 PMCID: PMC5876011 DOI: 10.3390/metabo8010022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Carbonic anhydrases (CAs) are metalloenzymes that are omnipresent in nature. CAs catalyze the basic reaction of the reversible hydration of CO2 to HCO3− and H+ in all living organisms. Photosynthetic organisms contain six evolutionarily different classes of CAs, which are namely: α-CAs, β-CAs, γ-CAs, δ-CAs, ζ-CAs, and θ-CAs. Many of the photosynthetic organisms contain multiple isoforms of each CA family. The model alga Chlamydomonas reinhardtii contains 15 CAs belonging to three different CA gene families. Of these 15 CAs, three belong to the α-CA gene family; nine belong to the β-CA gene family; and three belong to the γ-CA gene family. The multiple copies of the CAs in each gene family may be due to gene duplications within the particular CA gene family. The CAs of Chlamydomonas reinhardtii are localized in different subcellular compartments of this unicellular alga. The presence of a large number of CAs and their diverse subcellular localization within a single cell suggests the importance of these enzymes in the metabolic and biochemical roles they perform in this unicellular alga. In the present review, we update the information on the molecular biology of all 15 CAs and their metabolic and biochemical roles in Chlamydomonas reinhardtii. We also present a hypothetical model showing the known functions of CAs and predicting the functions of CAs for which precise metabolic roles are yet to be discovered.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33014 Tampere, Finland.
| | - Susanna Haapanen
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33014 Tampere, Finland.
| | - Seppo Parkkila
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33014 Tampere, Finland.
- Fimlab, Ltd., and Tampere University Hospital, FI-33520 Tampere, Finland.
| |
Collapse
|
24
|
Faridi S, Satyanarayana T. Thermo-alkali-stable α-carbonic anhydrase of Bacillus halodurans: heterologous expression in Pichia pastoris and applicability in carbon sequestration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6838-6849. [PMID: 29264861 DOI: 10.1007/s11356-017-0820-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
Recombinant α-carbonic anhydrase of the polyextremophilic bacterium Bacillus halodurans TSLV1 (rBhCA) has been produced extracellularly in active form in Pichia pastoris under methanol inducible (AOX1) as well as constitutive (GAP) promoters. A marked improvement in rBhCA production was achieved by developing a P. pastoris recombinant that produces rBhCA constitutively as compared to that under inducible promoter. The purified rBhCA from P. pastoris is a glycosylated protein that displays a higher molecular mass (79.5 kDa) than that produced from E. coli recombinant (75 kDa); the former has a Tm of 75 °C, which is slightly higher than that of the latter (72 °C). The former rBhCA exhibits higher thermostability than the latter. The former sequestered CO2 efficiently similar to that of the native BhCA and the latter. This is the first report on the production of recombinant carbonic anhydrase extracellularly in P. pastoris.
Collapse
Affiliation(s)
- Shazia Faridi
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
- Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology (University of Delhi), Azad Hind Fauz Marg, Sector 3 Dwarka, New Delhi, 110078, India.
| |
Collapse
|
25
|
Abstract
Mammalian carbonic anhydrases (CAs; EC 4.2.1.1) of which 16 isoforms are known, are involved in important physiological functions. Their inhibition is exploited pharmacologically for the treatment of many diseases (glaucoma, edema, epilepsy, obesity, hypoxic tumors, neuropathic pain, etc.) but the activators were less investigated till recently. A review on the CA activation is presented, with the activation mechanism, drug design approaches of activators and comparison of the various isoforms activation profiles being discussed. Some CAs, which are abundant in the brain, were recently demonstrated to be activatable by drug-like compounds, affording the possibility to design agents that enhance cognition, with potential therapeutic applications in aging and neurodegenerative diseases as well as tissue engineering.
Collapse
|
26
|
Vullo D, Syrjänen L, Kuuslahti M, Parkkila S, Supuran CT. Anion inhibition studies of a beta carbonic anhydrase from the malaria mosquito Anopheles gambiae. J Enzyme Inhib Med Chem 2018; 33:359-363. [PMID: 29322852 PMCID: PMC6009871 DOI: 10.1080/14756366.2017.1421182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An anion inhibition study of the β-class carbonic anhydrase, AgaCA, from the malaria mosquito Anopheles gambiae is reported. A series of simple as well as complex inorganic anions, and small molecules known to interact with CAs were included in the study. Bromide, iodide, bisulphite, perchlorate, perrhenate, perruthenate, and peroxydisulphate were ineffective AgaCA inhibitors, with KIs > 200 mM. Fluoride, chloride, cyanate, thiocyanate, cyanide, bicarbonate, carbonate, nitrite, nitrate, sulphate, stannate, selenate, tellurate, diphosphate, divanadate, tetraborate, selenocyanide, and trithiocarbonate showed KIs in the range of 1.80–9.46 mM, whereas N,N-diethyldithiocarbamate was a submillimolar AgaCA inhibitor (KI of 0.65 mM). The most effective AgaCA inhibitors were sulphamide, sulphamic acid, phenylboronic acid and phenylarsonic acid, with inhibition constants in the range of 21–84 µM. The control of insect vectors responsible of the transmission of many protozoan diseases is rather difficult nowadays, and finding agents which can interfere with these processes, as the enzyme inhibitors investigated here, may arrest the spread of these diseases worldwide.
Collapse
Affiliation(s)
- Daniela Vullo
- a Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy
| | - Leo Syrjänen
- b Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland.,c Fimlab Laboratories Ltd , Tampere , Finland
| | | | - Seppo Parkkila
- b Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland.,c Fimlab Laboratories Ltd , Tampere , Finland
| | - Claudiu T Supuran
- d Neurofarba Dipartment, Sezione di Scienza Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy
| |
Collapse
|
27
|
Bose H, Satyanarayana T. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives. Front Microbiol 2017; 8:1615. [PMID: 28890712 PMCID: PMC5574912 DOI: 10.3389/fmicb.2017.01615] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.
Collapse
|
28
|
Tomazett MV, Zanoelo FF, Bailão EFC, Bailão AM, Borges CL, Soares CMDA. Molecular and biochemical characterization of carbonic anhydrases of Paracoccidioides. Genet Mol Biol 2016; 39:416-25. [PMID: 27560991 PMCID: PMC5004831 DOI: 10.1590/1678-4685-gmb-2015-0213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/11/2016] [Indexed: 12/02/2022] Open
Abstract
Carbonic anhydrases (CA) belong to the family of zinc metalloenzymes that catalyze
the reversible hydration of carbon dioxide to bicarbonate. In the present work, we
characterized the cDNAs of four Paracoccidioides CAs (CA1, CA2, CA3,
and CA4). In the presence of CO2, there was not a significant increase in
fungal ca1, ca2 and ca4 gene
expression. The ca1 transcript was induced during the
mycelium-to-yeast transition, while ca2 and ca4
gene expression was much higher in yeast cells, when compared to mycelium and
mycelium-to-yeast transition. The ca1 transcript was induced in
yeast cells recovered directly from liver and spleen of infected mice, while
transcripts for ca2 and ca4 were down-regulated.
Recombinant CA1 (rCA1) and CA4 (rCA4), with 33 kDa and 32 kDa respectively, were
obtained from bacteria. The enzymes rCA1 (β-class) and rCA4 (α-class) were
characterized regarding pH, temperature, ions and amino acids addition influence.
Both enzymes were stable at pHs 7.5-8.5 and temperatures of 30-35 °C. The enzymes
were dramatically inhibited by Hg+2 and activated by Zn+2,
while only rCA4 was stimulated by Fe2+. Among the amino acids tested (all
in L configuration), arginine, lysine, tryptophan and histidine enhanced residual
activity of rCA1 and rCA4.
Collapse
Affiliation(s)
- Mariana Vieira Tomazett
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Fabiana Fonseca Zanoelo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.,Laboratório de Bioquímica, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Elisa Flávia Cardoso Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| |
Collapse
|
29
|
Shea MT, Walter ME, Duszenko N, Ducluzeau AL, Aldridge J, King SK, Buan NR. pNEB193-derived suicide plasmids for gene deletion and protein expression in the methane-producing archaeon, Methanosarcina acetivorans. Plasmid 2016; 84-85:27-35. [PMID: 26876941 DOI: 10.1016/j.plasmid.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
Gene deletion and protein expression are cornerstone procedures for studying metabolism in any organism, including methane-producing archaea (methanogens). Methanogens produce coenzymes and cofactors not found in most bacteria, therefore it is sometimes necessary to express and purify methanogen proteins from the natural host. Protein expression in the native organism is also useful when studying post-translational modifications and their effect on gene expression or enzyme activity. We have created several new suicide plasmids to complement existing genetic tools for use in the methanogen, Methanosarcina acetivorans. The new plasmids are derived from the commercially available Escherichia coli plasmid, pNEB193, and cannot replicate autonomously in methanogens. The designed plasmids facilitate markerless gene deletion, gene transcription, protein expression, and purification of proteins with cleavable affinity tags from the methanogen, M. acetivorans.
Collapse
Affiliation(s)
- Mitchell T Shea
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Mary E Walter
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nikolas Duszenko
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Anne-Lise Ducluzeau
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jared Aldridge
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Shannon K King
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nicole R Buan
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.
| |
Collapse
|
30
|
Banerjee S, Deshpande PA. On origin and evolution of carbonic anhydrase isozymes: A phylogenetic analysis from whole-enzyme to active site. Comput Biol Chem 2016; 61:121-9. [PMID: 26878125 DOI: 10.1016/j.compbiolchem.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/09/2015] [Accepted: 01/19/2016] [Indexed: 11/25/2022]
Abstract
Genetic evolution of carbonic anhydrase enzyme provides an interesting instance of functional similarity in spite of structural diversity of the members of a given family of enzymes. Phylogenetic analysis of α-, β- and γ-carbonic anhydrase was carried out to determine the evolutionary relationships among various members of the family with the enzyme marking its presence in a wide range of cellular and chromosomal locations. The presence of more than one class of enzymes in a particular organism was revealed by phylogenetic time tree. The evolutionary relationships among the members of animal, plant and microbial kingdom were developed. The study revises a long-established notion of kingdom-specificity of the different classes of carbonic anhydrases and provides a new version of the presence of multiple classes of carbonic anhydrases in a single organism and the presence of a given class of carbonic anhydrase across different kingdoms.
Collapse
Affiliation(s)
- Srijoni Banerjee
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Parag A Deshpande
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
31
|
The Complex Relationship between Metals and Carbonic Anhydrase: New Insights and Perspectives. Int J Mol Sci 2016; 17:ijms17010127. [PMID: 26797606 PMCID: PMC4730368 DOI: 10.3390/ijms17010127] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/01/2016] [Indexed: 12/22/2022] Open
Abstract
Carbonic anhydrase is a ubiquitous metalloenzyme, which catalyzes the reversible hydration of CO2 to HCO3− and H+. Metals play a key role in the bioactivity of this metalloenzyme, although their relationships with CA have not been completely clarified to date. The aim of this review is to explore the complexity and multi-aspect nature of these relationships, since metals can be cofactors of CA, but also inhibitors of CA activity and modulators of CA expression. Moreover, this work analyzes new insights and perspectives that allow translating new advances in basic science on the interaction between CA and metals to applications in several fields of research, ranging from biotechnology to environmental sciences.
Collapse
|
32
|
Soo VWC, McAnulty MJ, Tripathi A, Zhu F, Zhang L, Hatzakis E, Smith PB, Agrawal S, Nazem-Bokaee H, Gopalakrishnan S, Salis HM, Ferry JG, Maranas CD, Patterson AD, Wood TK. Reversing methanogenesis to capture methane for liquid biofuel precursors. Microb Cell Fact 2016; 15:11. [PMID: 26767617 PMCID: PMC4714516 DOI: 10.1186/s12934-015-0397-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/13/2015] [Indexed: 12/30/2022] Open
Abstract
Background Energy from remote methane reserves is transformative; however, unintended release of this potent greenhouse gas makes it imperative to convert methane efficiently into more readily transported biofuels. No pure microbial culture that grows on methane anaerobically has been isolated, despite that methane capture through anaerobic processes is more efficient than aerobic ones. Results Here we engineered the archaeal methanogen Methanosarcina acetivorans to grow anaerobically on methane as a pure culture and to convert methane into the biofuel precursor acetate. To capture methane, we cloned the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable organism, anaerobic methanotrophic archaeal population 1 (ANME-1) from a Black Sea mat, into M. acetivorans to effectively run methanogenesis in reverse. Starting with low-density inocula, M. acetivorans cells producing ANME-1 Mcr consumed up to 9 ± 1 % of methane (corresponding to 109 ± 12 µmol of methane) after 6 weeks of anaerobic growth on methane and utilized 10 mM FeCl3 as an electron acceptor. Accordingly, increases in cell density and total protein were observed as cells grew on methane in a biofilm on solid FeCl3. When incubated on methane for 5 days, high-densities of ANME-1 Mcr-producing M. acetivorans cells consumed 15 ± 2 % methane (corresponding to 143 ± 16 µmol of methane), and produced 10.3 ± 0.8 mM acetate (corresponding to 52 ± 4 µmol of acetate). We further confirmed the growth on methane and acetate production using 13C isotopic labeling of methane and bicarbonate coupled with nuclear magnetic resonance and gas chromatography/mass spectroscopy, as well as RNA sequencing. Conclusions We anticipate that our metabolically-engineered strain will provide insights into how methane is cycled in the environment by Archaea as well as will possibly be utilized to convert remote sources of methane into more easily transported biofuels via acetate. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0397-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valerie W C Soo
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802-4400, USA.
| | - Michael J McAnulty
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802-4400, USA.
| | - Arti Tripathi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802-4400, USA.
| | - Fayin Zhu
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802-4400, USA.
| | - Limin Zhang
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802-4400, USA. .,Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Emmanuel Hatzakis
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802-4400, USA.
| | - Philip B Smith
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802-4400, USA.
| | - Saumya Agrawal
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, 0632, New Zealand.
| | - Hadi Nazem-Bokaee
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802-4400, USA.
| | - Saratram Gopalakrishnan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802-4400, USA.
| | - Howard M Salis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802-4400, USA.
| | - James G Ferry
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802-4400, USA.
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802-4400, USA.
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802-4400, USA.
| | - Thomas K Wood
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802-4400, USA. .,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802-4400, USA.
| |
Collapse
|
33
|
De Luca V, Vullo D, Del Prete S, Carginale V, Osman SM, AlOthman Z, Supuran CT, Capasso C. Cloning, characterization and anion inhibition studies of a γ-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea. Bioorg Med Chem 2016; 24:835-40. [PMID: 26778292 DOI: 10.1016/j.bmc.2016.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/11/2022]
Abstract
We have cloned, purified and characterized the γ-carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Antarctic bacterium Colwellia psychrerythraea, which is an obligate psychrophile. The enzyme shows a significant catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with the following kinetic parameters: kcat of 6.0×10(5)s(-1) and a kcat/Km of 4.7×10(6)M(-1)×s(-1). This activity was inhibited by the sulfonamide CA inhibitor (CAI) acetazolamide, with a KI of 502nM. A range of anions was also investigated for their inhibitory action against the new enzyme CpsCA. Perchlorate, tetrafluoroborate, fluoride and bromide were not inhibitory, whereas cyanate, thiocyanate, cyanide, hydrogensulfide, carbonate and bicarbonate showed KIs in the range of 1.4-4.4mM. Diethyldithiocarbamate was a better inhibitor (KI of 0.58mM) whereas sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid were the most effective inhibitors detected, with KIs ranging between 8 and 38μM. The present study may shed some more light regarding the role that γ-CAs play in the life cycle of psychrophilic bacteria as the Antarctic one investigated here.
Collapse
Affiliation(s)
- Viviana De Luca
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Daniela Vullo
- Università degliStudi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy; Università degliStudi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Vincenzo Carginale
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Claudiu T Supuran
- Università degliStudi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy.
| |
Collapse
|
34
|
Thermostable Carbonic Anhydrases in Biotechnological Applications. Int J Mol Sci 2015; 16:15456-80. [PMID: 26184158 PMCID: PMC4519908 DOI: 10.3390/ijms160715456] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 01/10/2023] Open
Abstract
Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques, represents an interesting possibility. In this review we will provide an extensive description of the thermostable carbonic anhydrases so far reported and the main processes in which these enzymes have found an application.
Collapse
|
35
|
Ferry JG. Acetate Metabolism in Anaerobes from the Domain Archaea. Life (Basel) 2015; 5:1454-71. [PMID: 26068860 PMCID: PMC4500148 DOI: 10.3390/life5021454] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 01/26/2023] Open
Abstract
Acetate and acetyl-CoA play fundamental roles in all of biology, including anaerobic prokaryotes from the domains Bacteria and Archaea, which compose an estimated quarter of all living protoplasm in Earth's biosphere. Anaerobes from the domain Archaea contribute to the global carbon cycle by metabolizing acetate as a growth substrate or product. They are components of anaerobic microbial food chains converting complex organic matter to methane, and many fix CO2 into cell material via synthesis of acetyl-CoA. They are found in a diversity of ecological habitats ranging from the digestive tracts of insects to deep-sea hydrothermal vents, and synthesize a plethora of novel enzymes with biotechnological potential. Ecological investigations suggest that still more acetate-metabolizing species with novel properties await discovery.
Collapse
Affiliation(s)
- James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
36
|
Syrjänen L, Kuuslahti M, Tolvanen M, Vullo D, Parkkila S, Supuran CT. The β-carbonic anhydrase from the malaria mosquito Anopheles gambiae is highly inhibited by sulfonamides. Bioorg Med Chem 2015; 23:2303-9. [DOI: 10.1016/j.bmc.2015.03.081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 12/22/2022]
|
37
|
Lehneck R, Pöggeler S. A matter of structure: structural comparison of fungal carbonic anhydrases. Appl Microbiol Biotechnol 2014; 98:8433-41. [DOI: 10.1007/s00253-014-5993-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 01/10/2023]
|
38
|
Sulfonamide inhibition studies of the β carbonic anhydrase from Drosophila melanogaster. Bioorg Med Chem Lett 2014; 24:2797-801. [DOI: 10.1016/j.bmcl.2014.04.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 12/13/2022]
|
39
|
Lehneck R, Neumann P, Vullo D, Elleuche S, Supuran CT, Ficner R, Pöggeler S. Crystal structures of two tetrameric β-carbonic anhydrases from the filamentous ascomycete Sordaria macrospora. FEBS J 2014; 281:1759-72. [PMID: 24506675 DOI: 10.1111/febs.12738] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 01/11/2023]
Abstract
UNLABELLED Carbonic anhydrases (CAs) are metalloenzymes catalyzing the reversible hydration of carbon dioxide to bicarbonate (hydrogen carbonate) and protons. CAs have been identified in archaea, bacteria and eukaryotes and can be classified into five groups (α, β, γ, δ, ζ) that are unrelated in sequence and structure. The fungal β-class has only recently attracted attention. In the present study, we investigated the structure and function of the plant-like β-CA proteins CAS1 and CAS2 from the filamentous ascomycete Sordaria macrospora. We demonstrated that both proteins can substitute for the Saccharomyces cerevisiae β-CA Nce103 and exhibit an in vitro CO2 hydration activity (kcat /Km of CAS1: 1.30 × 10(6) m(-1) ·s(-1) ; CAS2: 1.21 × 10(6 ) m(-1) ·s(-1) ). To further investigate the structural properties of CAS1 and CAS2, we determined their crystal structures to a resolution of 2.7 Å and 1.8 Å, respectively. The oligomeric state of both proteins is tetrameric. With the exception of the active site composition, no further major differences have been found. In both enzymes, the Zn(2) (+) -ion is tetrahedrally coordinated; in CAS1 by Cys45, His101 and Cys104 and a water molecule and in CAS2 by the side chains of four residues (Cys56, His112, Cys115 and Asp58). Both CAs are only weakly inhibited by anions, making them good candidates for industrial applications. STRUCTURED DIGITAL ABSTRACT CAS1 and CAS2 bind by x-ray crystallography (View interaction) DATABASE Structural data have been deposited in the Protein Data Bank database under accession numbers 4O1J for CAS1 and 4O1K for CAS2.
Collapse
Affiliation(s)
- Ronny Lehneck
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Development of β -lactamase as a tool for monitoring conditional gene expression by a tetracycline-riboswitch in Methanosarcina acetivorans. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:725610. [PMID: 24678266 PMCID: PMC3942078 DOI: 10.1155/2014/725610] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022]
Abstract
The use of reporter gene fusions to assess cellular processes such as protein targeting and regulation of transcription or translation is established technology in archaeal, bacterial, and eukaryal genetics. Fluorescent proteins or enzymes resulting in chromogenic substrate turnover, like β-galactosidase, have been particularly useful for microscopic and screening purposes. However, application of such methodology is of limited use for strictly anaerobic organisms due to the requirement of molecular oxygen for chromophore formation or color development. We have developed β-lactamase from Escherichia coli (encoded by bla) in conjunction with the chromogenic substrate nitrocefin into a reporter system usable under anaerobic conditions for the methanogenic archaeon Methanosarcina acetivorans. By using a signal peptide of a putative flagellin from M. acetivorans and different catabolic promoters, we could demonstrate growth substrate-dependent secretion of β-lactamase, facilitating its use in colony screening on agar plates. Furthermore, a series of fusions comprised of a constitutive promoter and sequences encoding variants of the synthetic tetracycline-responsive riboswitch (tc-RS) was created to characterize its influence on translation initiation in M. acetivorans. One tc-RS variant resulted in more than 11-fold tetracycline-dependent regulation of bla expression, which is in the range of regulation by naturally occurring riboswitches. Thus, tc-RS fusions represent the first solely cis-active, that is, factor-independent system for controlled gene expression in Archaea.
Collapse
|
41
|
Abstract
The potential of carbonic anhydrase (CA) family as target for the drug design of inhibitors with various medicinal chemistry applications has been recognized from long time, whereas the industrial interest in using these enzymes as biocatalysts for carbon dioxide sequestration and biofuel production is only recently emerging. However, an efficient utilization in these processes often requires stable enzymes, able to work in the harsh conditions typical of the CO2 capture process. In this context CAs active at very high temperatures are of extreme interest. In this chapter we have summarized in a comparative manner all existing data on thermostable CAs both isolated by extremophiles and obtained by protein engineering studies. Among the five CA-classes, the biochemical and structural features of thermostable α-, β- and γ-CAs have been discussed. Data show that so far α-CAs isolated from thermophilic organisms are the best candidates to be used in biotechnological processes, even if plenty of work can be still done in this field also with help of protein engineering.
Collapse
|
42
|
Abstract
Carbonic anhydrase is a metalloenzyme catalyzing the reversible hydration of carbon dioxide to bicarbonate. Five independently evolved classes have been described for which one or more are found in nearly every cell type underscoring the general importance of this ubiquitous enzyme in Nature. The bulk of research to date has centered on the enzymes from mammals and plants with less emphasis on prokaryotes. Prokaryotic carbonic anhydrases play important roles in the ecology of Earth's biosphere including acquisition of CO2 for photosynthesis and the physiology of aerobic and anaerobic prokaryotes decomposing the photosynthate back to CO2 thereby closing the global carbon cycle. This review focuses on the physiology and biochemistry of carbonic anhydrases from prokaryotes belonging to the domains Bacteria and Archaea that play key roles in the ecology of Earth's biosphere.
Collapse
Affiliation(s)
- R Siva Sai Kumar
- Department of Biochemistry and Molecular Biology, Ebery College of Science, The Pennsylvania State University, University Park, PA, USA,
| | | |
Collapse
|
43
|
Herrou J, Crosson S. Molecular structure of the Brucella abortus metalloprotein RicA, a Rab2-binding virulence effector. Biochemistry 2013; 52:9020-8. [PMID: 24251537 DOI: 10.1021/bi401373r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Gram-negative intracellular pathogen Brucella abortus is the causative agent of brucellosis, which is among the most common zoonoses globally. The B. abortus RicA protein binds the host-expressed guanosine nucleotide-binding protein, Rab2, and modulates B. abortus infection biology. We have solved the first X-ray crystal structure of RicA to 2.7 Å resolution and have quantified the affinity of RicA binding to human Rab2 in its GDP-bound and nucleotide-free forms. RicA adopts a classic γ-carbonic anhydrase (γ-CA) fold containing a left-handed β-helix followed by a C-terminal α-helix. Two homotrimers of RicA occupy the crystallographic asymmetric unit. Though no zinc was included in the purification or crystallization buffers, zinc is contained within the RicA crystals, as demonstrated by X-ray fluorescence spectroscopy. Electron density for a Zn(2+) ion coordinated by three histidine residues is evident in the putative active site of RicA. However, purified RicA preparations do not exhibit carbonic anhydrase activity, suggesting that Zn(2+) may not be the physiologically relevant metal cofactor or that RicA is not a bona fide carbonic anhydrase enzyme. Isothermal titration calorimetry (ITC) measurements of purified RicA binding to purified human Rab2 and GDP-Rab2 revealed similar equilibrium affinities (Kd ≈ 35 and 40 μM, respectively). This study thus defines RicA as a Zn(2+)-binding γ-carbonic anhydrase-like protein that binds the human membrane fusion/trafficking protein Rab2 with low micromolar affinity in vitro. These results support a model in which γ-CA family proteins may evolve unique cellular functions while retaining many of the structural hallmarks of archetypal γ-CA enzymes.
Collapse
Affiliation(s)
- Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, Illinois 60637, United States
| | | |
Collapse
|
44
|
Syrjänen L, Vermelho AB, Rodrigues IDA, Corte-Real S, Salonen T, Pan P, Vullo D, Parkkila S, Capasso C, Supuran CT. Cloning, characterization, and inhibition studies of a β-carbonic anhydrase from Leishmania donovani chagasi, the protozoan parasite responsible for leishmaniasis. J Med Chem 2013; 56:7372-81. [PMID: 23977960 DOI: 10.1021/jm400939k] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leishmaniasis is an infection provoked by protozoans belonging to the genus Leishmania. Among the many species and subsepecies of such protozoa, Leishmania donovani chagasi causes visceral leishmaniasis. A β-carbonic anhydrase (CA, EC 4.2.1.1) was cloned and characterized from this organism, denominated here LdcCA. LdcCA possesses effective catalytic activity for the CO2 hydration reaction, with kcat of 9.35 × 10(5) s(-1) and kcat/KM of 5.9 × 10(7) M(-1) s(-1). A large number of aromatic/heterocyclic sulfonamides and 5-mercapto-1,3,4-thiadiazoles were investigated as LdcCA inhibitors. The sulfonamides were medium potency to weak inhibitors (KI values of 50.2 nM-9.25 μM), whereas some heterocyclic thiols inhibited the enzyme with KIs in the range of 13.4-152 nM. Some of the investigated thiols efficiently inhibited the in vivo growth of Leishmania chagasi and Leishmania amazonensis promastigotes, by impairing the flagellar pocket and movement of the parasites and causing their death. The β-CA from Leishmania spp. is proposed here as a new antileishmanial drug target.
Collapse
Affiliation(s)
- Leo Syrjänen
- Institute of Biomedical Technology and BioMediTech, University of Tampere , 33520 Tampere, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 2013; 113:6621-58. [PMID: 23767781 PMCID: PMC3895110 DOI: 10.1021/cr300463y] [Citation(s) in RCA: 1338] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Aaron M. Appel
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - John E. Bercaw
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Andrew B. Bocarsly
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Daniel L. DuBois
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Michel Dupuis
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - James G. Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Etsuko Fujita
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Russ Hille
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Paul J. A. Kenis
- Department of Chemical and Biochemical Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Cheryl A. Kerfeld
- DOE Joint Genome Institute, 2800 Mitchell Drive Walnut Creek, California 94598, United States, and Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall Berkeley, California 94720, United States
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Charles H. F. Peden
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Archie R. Portis
- Departments of Crop Sciences and Plant Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Joost N. H. Reek
- van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Rudolf K. Thauer
- Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Strasse 10, D-35043 Marburg, Germany
| | - Grover L. Waldrop
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
46
|
Del Prete S, De Luca V, Vullo D, Scozzafava A, Carginale V, Supuran CT, Capasso C. Biochemical characterization of the γ-carbonic anhydrase from the oral pathogen Porphyromonas gingivalis, PgiCA. J Enzyme Inhib Med Chem 2013; 29:532-7. [PMID: 23914926 DOI: 10.3109/14756366.2013.822371] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze a simple but physiologically relevant reaction in all life kingdoms, carbon dioxide hydration to bicarbonate and protons. CAs are present in many pathogenic species and are involved in the bicarbonate metabolism/biosynthetic reactions involving this ion. Ubiquity of these enzymes suggests a pivotal role in microbial virulence and pathogenicity. Porphyromonas gingivalis is an anaerobic bacterium, which colonizes the oral cavity, being involved in the pathogenesis of periodontitis, an inflammatory disease leading to tooth loss. Recently, we reported an anion inhibitory study on the γ-CA (denominated PgiCA) identified in the genome of this Gram-negative bacterium. In this paper we continue our research on PgiCA, and describe the biochemical characterization of the recombinant protein, its thermal stability, the oligomeric state and the enzyme kinetics. PgiCA is a polypeptide chain formed of 192 amino acids and displays an identity of 30-33% when compared with the prototypical γ-CAs, CAM or CAMH (from Methanosarcina thermophila) or CcmM (from Thermosynechococcus elongatus). A subunit molecular mass of 21 kDa was estimated by SDS-PAGE, while HPLC size exclusion chromatography under native conditions gave an estimated molecular mass of 65 kDa suggesting that the recombinant enzyme self-associate in a homotrimer, as all other γ-CAs studied so far. Enzyme kinetic analysis showed that PgiCA is 62 times more effective as a catalyst compared to CAM, the only other γ-CA characterized in detail kinetically. All these features represent an interesting attractive for the drug design of inhibitors/activators of this new enzyme.
Collapse
|
47
|
Comparison and analysis of zinc and cobalt-based systems as catalytic entities for the hydration of carbon dioxide. PLoS One 2013; 8:e66187. [PMID: 23840420 PMCID: PMC3688778 DOI: 10.1371/journal.pone.0066187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/05/2013] [Indexed: 11/19/2022] Open
Abstract
In nature, the zinc metalloenzyme carbonic anhydrase II (CAII) efficiently catalyzes the conversion of carbon dioxide (CO2) to bicarbonate under physiological conditions. Many research efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolyl)phosphine, and tris(2-benzimidazolylmethyl)amine, in their complexed form either with the Zn2+ or the Co2+ ion and studied their reaction coordinate for CO2 hydration. These calculations demonstrated that the ability of the complex to maintain a tetrahedral geometry and bind bicarbonate in a unidentate manner were vital for the hydration reaction to proceed favorably. Furthermore, these calculations show that the catalytic activity of the examined zinc complexes was insensitive to coordination states for zinc, while coordination states above four were found to have an unfavorable effect on product release for the cobalt counterparts.
Collapse
|
48
|
Dudutienė V, Zubrienė A, Smirnov A, Gylytė J, Timm D, Manakova E, Gražulis S, Matulis D. 4-Substituted-2,3,5,6-tetrafluorobenzenesulfonamides as inhibitors of carbonic anhydrases I, II, VII, XII, and XIII. Bioorg Med Chem 2013; 21:2093-106. [PMID: 23394791 DOI: 10.1016/j.bmc.2013.01.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/29/2012] [Accepted: 01/03/2013] [Indexed: 11/30/2022]
Abstract
A series of 4-substituted-2,3,5,6-tetrafluorobenezenesulfonamides were synthesized and their binding potencies as inhibitors of recombinant human carbonic anhydrase isozymes I, II, VII, XII, and XIII were determined by the thermal shift assay, isothermal titration calorimetry, and stop-flow CO2 hydration assay. All fluorinated benzenesulfonamides exhibited nanomolar binding potency toward tested CAs and fluorinated benzenesulfonamides posessed higher binding potency than non-fluorinated compounds. The crystal structures of 4-[(4,6-dimethylpyrimidin-2-yl)thio]-2,3,5,6-tetrafluorobenzenesulfonamide in complex with CA II and CA XII, and 2,3,5,6-tetrafluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide in complex with CA XIII were determined. The observed dissociation constants for several fluorinated compounds reached subnanomolar range for CA I isozyme. The affinity and the selectivity of the compounds towards tested isozymes are presented.
Collapse
Affiliation(s)
- Virginija Dudutienė
- Department of Biothermodynamics and Drug Design,Vilnius University Institute of Biotechnology, Graičiūno 8, Vilnius LT-02241, Lithuania
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ferry JG. Carbonic anhydrases of anaerobic microbes. Bioorg Med Chem 2013; 21:1392-5. [DOI: 10.1016/j.bmc.2012.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/02/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
|
50
|
Lira-Silva E, Santiago-Martínez MG, Hernández-Juárez V, García-Contreras R, Moreno-Sánchez R, Jasso-Chávez R. Activation of methanogenesis by cadmium in the marine archaeon Methanosarcina acetivorans. PLoS One 2012; 7:e48779. [PMID: 23152802 PMCID: PMC3495967 DOI: 10.1371/journal.pone.0048779] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/01/2012] [Indexed: 12/01/2022] Open
Abstract
Methanosarcina acetivorans was cultured in the presence of CdCl2 to determine the metal effect on cell growth and biogas production. With methanol as substrate, cell growth and methane synthesis were not altered by cadmium, whereas with acetate, cadmium slightly increased both, growth and methane rate synthesis. In cultures metabolically active, incubations for short-term (minutes) with 10 µM total cadmium increased the methanogenesis rate by 6 and 9 folds in methanol- and acetate-grown cells, respectively. Cobalt and zinc but not copper or iron also activated the methane production rate. Methanogenic carbonic anhydrase and acetate kinase were directly activated by cadmium. Indeed, cells cultured in 100 µM total cadmium removed 41–69% of the heavy metal from the culture and accumulated 231–539 nmol Cd/mg cell protein. This is the first report showing that (i) Cd2+ has an activating effect on methanogenesis, a biotechnological relevant process in the bio-fuels field; and (ii) a methanogenic archaea is able to remove a heavy metal from aquatic environments.
Collapse
Affiliation(s)
- Elizabeth Lira-Silva
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Tlalpan, México D.F., México
| | | | | | | | | | | |
Collapse
|