1
|
Watts LM, Sparkes PC, Dewhurst HF, Guilfoyle SE, Pollard AS, Komla-Ebri D, Butterfield NC, Williams GR, Bassett JHD. The GWAS candidate far upstream element binding protein 3 (FUBP3) is required for normal skeletal growth, and adult bone mass and strength in mice. Bone 2025; 195:117472. [PMID: 40139337 DOI: 10.1016/j.bone.2025.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Bone mineral density (BMD) and height are highly heritable traits for which hundreds of genetic loci have been linked through genome wide association studies (GWAS). FUBP3 is a DNA and RNA binding protein best characterised as a transcriptional regulator of c-Myc, but little is known about its role in vivo. Single nucleotide polymorphisms in FUBP3 at the 9q34.11 locus have been associated with BMD, fracture and height in multiple GWAS, but FUBP3 has no previously established role in the skeleton. We analysed Fubp3-deficient mice to determine the consequence of FUBP3 deficiency in vivo. Mice lacking Fubp3 had reduced survival to adulthood and impaired skeletal growth. Bone mass was decreased, most strikingly in the vertebrae, with altered trabecular micro-architecture. Fubp3 deficient bones were also weak. These data provide the first functional demonstration that Fubp3 is required for normal skeletal growth and development and maintenance of adult bone structure and strength, indicating that FUBP3 contributes to the GWAS association of 9q34.11 with variation in height, BMD and fracture.
Collapse
Affiliation(s)
- Laura M Watts
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Penny C Sparkes
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Hannah F Dewhurst
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Andrea S Pollard
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
2
|
Ebersberger S, Hipp C, Mulorz MM, Buchbender A, Hubrich D, Kang HS, Martínez-Lumbreras S, Kristofori P, Sutandy FXR, Llacsahuanga Allcca L, Schönfeld J, Bakisoglu C, Busch A, Hänel H, Tretow K, Welzel M, Di Liddo A, Möckel MM, Zarnack K, Ebersberger I, Legewie S, Luck K, Sattler M, König J. FUBP1 is a general splicing factor facilitating 3' splice site recognition and splicing of long introns. Mol Cell 2023:S1097-2765(23)00516-6. [PMID: 37506698 DOI: 10.1016/j.molcel.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Splicing of pre-mRNAs critically contributes to gene regulation and proteome expansion in eukaryotes, but our understanding of the recognition and pairing of splice sites during spliceosome assembly lacks detail. Here, we identify the multidomain RNA-binding protein FUBP1 as a key splicing factor that binds to a hitherto unknown cis-regulatory motif. By collecting NMR, structural, and in vivo interaction data, we demonstrate that FUBP1 stabilizes U2AF2 and SF1, key components at the 3' splice site, through multivalent binding interfaces located within its disordered regions. Transcriptional profiling and kinetic modeling reveal that FUBP1 is required for efficient splicing of long introns, which is impaired in cancer patients harboring FUBP1 mutations. Notably, FUBP1 interacts with numerous U1 snRNP-associated proteins, suggesting a unique role for FUBP1 in splice site bridging for long introns. We propose a compelling model for 3' splice site recognition of long introns, which represent 80% of all human introns.
Collapse
Affiliation(s)
| | - Clara Hipp
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Miriam M Mulorz
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | | | - Dalmira Hubrich
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Santiago Martínez-Lumbreras
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Panajot Kristofori
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, 70569 Stuttgart, Germany
| | | | | | - Jonas Schönfeld
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Cem Bakisoglu
- Buchmann Institute for Molecular Life Sciences & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Heike Hänel
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Kerstin Tretow
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Mareen Welzel
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | | | - Martin M Möckel
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; CardioPulmonary Institute (CPI), 35392 Gießen, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; Senckenberg Biodiversity and Climate Research Center (S-BIK-F), 60325 Frankfurt am Main, Germany; LOEWE Center for Translational Biodiversity Genomics (TBG), 60325 Frankfurt am Main, Germany
| | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, 70569 Stuttgart, Germany; Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany.
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany.
| | - Julian König
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany.
| |
Collapse
|
3
|
Xu S, Luo C, Chen D, Tang L, Cheng Q, Chen L, Liu Z. circMMD reduction following tumor treating fields inhibits glioblastoma progression through FUBP1/FIR/DVL1 and miR-15b-5p/FZD6 signaling. J Exp Clin Cancer Res 2023; 42:64. [PMID: 36932454 PMCID: PMC10021944 DOI: 10.1186/s13046-023-02642-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Tumor treating fields (TTF) is the latest treatment for GBM. Circular RNA (circRNA) has been demonstrated to play critical roles in tumorigenesis. However, the molecular mechanism of TTF remained largely unknown and the role of circRNA in TTF was not reported. The aim of this study was to elucidate the role and mechanism of circMMD in TTF treatment of GBM. METHODS Divergent primer was designed to verify the existence of circMMD in GBM cells. The prognostic role of circMMD was explored in glioma specimens. The knockdown and overexpressed plasmids were used to evaluate the effect of circMMD on GBM cell proliferation and TTF efficacy. RNA pull-down and RNA immunoprecipitation were performed to identify binding proteins of circMMD. Subcutaneous and intracranial tumor models were established to validate findings in vivo. RESULTS The expression of circMMD was elevated in GBM and its high expression indicated poor prognoses. TTF intervention could reduce circMMD synthesis, which suppressed GBM proliferation and increased TTF-mediated apoptosis. The reduction of circMMD promoted the interaction between FUBP1 and FIR, which decreased DVL1 transcription. Meanwhile, decreased circMMD would promote the activity of miR-15b-5p to degrade FZD6. Finally, the diminished expression of DVL1 and FZD6 expression suppressed the activation of Wnt/β-catenin pathway. CONCLUSIONS Our study revealed a novel mechanism of TTF that TTF-mediated reduction of circMMD could inhibit Wnt/β-catenin pathway to suppress GBM proliferation.
Collapse
Affiliation(s)
- Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, No.87, Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chengke Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, No.87, Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Dikang Chen
- Hunan An Tai Kang Cheng Biotechnology Co., Ltd, Changsha, 410008, China
| | - Lu Tang
- Department of Anesthesiology, Xiangya Hospital, Central South University, ChangshaHunan, 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, No.87, Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ling Chen
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, 100853, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, No.87, Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
4
|
Li S, Yang L, Li Y, Yue W, Xin S, Li J, Long S, Zhang W, Cao P, Lu J. Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling. Microbiol Spectr 2023; 11:e0123722. [PMID: 36728436 PMCID: PMC10101146 DOI: 10.1128/spectrum.01237-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
Epstein-Barr virus (EBV) switches between latent and lytic phases in hosts, which is important in the development of related diseases. However, the underlying mechanism of controlling the viral biphasic life cycle and how EBV mediates this regulation remain largely unknown. This study identified bromodomain-containing protein 7 (BRD7) as a crucial host protein in EBV latent infection. Based on the chromatin immunoprecipitation (ChIP) sequencing of endogenous BRD7 in Burkitt lymphoma cells, we found that EBV drove BRD7 to regulate cellular and viral genomic loci, including the transcriptional activation of c-Myc, a recently reported regulator of EBV latency. Additionally, EBV-mediated BRD7 signals were enriched around the FUSE (far-upstream sequence element) site in chromosome 8 and the enhancer LOC108348026 in the lgH locus, which might activate the c-Myc alleles. Mechanically, EBV-encoded nuclear antigen 1 (EBNA1) bound to BRD7 and colocalized at promoter regions of the related genes, thus serving as cofactors for the maintenance of viral latency. Moreover, the disruption of BRD7 decreased the c-Myc expression, induced the BZLF1 expression, and reactivated the lytic cycle. Our findings reveal the unique role of BRD7 to synergize with EBV in maintaining the viral latency state via chromatin remodeling. This study paves the way for understanding the new molecular mechanism of EBV-induced chromatin remodeling and latent-lytic switch, providing novel therapeutic candidate targets for EBV persistent infection. IMPORTANCE When establishing persistent infection in most human hosts, EBV is usually latent. How the viral latency is maintained in cells remains largely unknown. c-Myc was recently reported to act as a controller of the lytic switch, while whether and how EBV regulates it remain to be explored. Here, we identified that BRD7 is involved in controlling EBV latency. We found that EBV-mediated BRD7 was enriched in both the normal promoter regions and the translocation alleles of c-Myc, and disruption of BRD7 decreased c-Myc expression to reactivate the lytic cycle. We also demonstrated that EBV-encoded EBNA1 bound to and regulated BRD7. Therefore, we reveal a novel mechanism by which EBV can regulate its infection state by coordinating with host BRD7 to target c-Myc. Our findings will help future therapeutic intervention strategies for EBV infection and pathogenesis.
Collapse
Affiliation(s)
- Shen Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Wenxing Yue
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Jing Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Sijing Long
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Wentao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Han H, Best AJ, Braunschweig U, Mikolajewicz N, Li JD, Roth J, Chowdhury F, Mantica F, Nabeel-Shah S, Parada G, Brown KR, O'Hanlon D, Wei J, Yao Y, Zid AA, Comsa LC, Jen M, Wang J, Datti A, Gonatopoulos-Pournatzis T, Weatheritt RJ, Greenblatt JF, Wrana JL, Irimia M, Gingras AC, Moffat J, Blencowe BJ. Systematic exploration of dynamic splicing networks reveals conserved multistage regulators of neurogenesis. Mol Cell 2022; 82:2982-2999.e14. [PMID: 35914530 PMCID: PMC10686216 DOI: 10.1016/j.molcel.2022.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/16/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
Abstract
Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.
Collapse
Affiliation(s)
- Hong Han
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Andrew J Best
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | | | - Jack Daiyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fuad Chowdhury
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona 08003, Spain
| | - Syed Nabeel-Shah
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Guillermo Parada
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kevin R Brown
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Dave O'Hanlon
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jiarun Wei
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yuxi Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abdelrahman Abou Zid
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Lim Caden Comsa
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Mark Jen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jenny Wang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Alessandro Datti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Thomas Gonatopoulos-Pournatzis
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Center for Cancer Research National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey L Wrana
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
Li J, Zhang Z, Guo K, Wu S, Guo C, Zhang X, Wang Z. Identification of a key glioblastoma candidate gene, FUBP3, based on weighted gene co-expression network analysis. BMC Neurol 2022; 22:139. [PMID: 35413821 PMCID: PMC9004042 DOI: 10.1186/s12883-022-02661-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common aggressive malignant brain tumor. However, the molecular mechanism of glioblastoma formation is still poorly understood. To identify candidate genes that may be connected to glioma growth and development, weighted gene co-expression network analysis (WGCNA) was performed to construct a gene co-expression network between gene sets and clinical characteristics. We also explored the function of the key candidate gene. METHODS Two GBM datasets were selected from GEO Datasets. The R language was used to identify differentially expressed genes. WGCNA was performed to construct a gene co-expression network in the GEO glioblastoma samples. A custom Venn diagram website was used to find the intersecting genes. The GEPIA website was applied for survival analysis to determine the significant gene, FUBP3. OS, DSS, and PFI analyses, based on the UCSC Cancer Genomics Browser, were performed to verify the significance of FUBP3. Immunohistochemistry was performed to evaluate the expression of FUBP3 in glioblastoma and adjacent normal tissue. KEGG and GO enrichment analyses were used to reveal possible functions of FUBP3. Microenvironment analysis was used to explore the relationship between FUBP3 and immune infiltration. Immunohistochemistry was performed to verify the results of the microenvironment analysis. RESULTS GSE70231 and GSE108474 were selected from GEO Datasets, then 715 and 694 differentially expressed genes (DEGs) from GSE70231 and GSE108474, respectively, were identified. We then performed weighted gene co-expression network analysis (WGCNA) and identified the most downregulated gene modules of GSE70231 and GSE108474, and 659 and 3915 module genes from GSE70231 and GSE108474, respectively, were selected. Five intersection genes (FUBP3, DAD1, CLIC1, ABR, and DNM1) were calculated by Venn diagram. FUBP3 was then identified as the only significant gene by survival analysis using the GEPIA website. OS, DSS, and PFI analyses verified the significance of FUBP3. Immunohistochemical analysis revealed FUBP3 expression in GBM and adjacent normal tissue. KEGG and GO analyses uncovered the possible function of FUBP3 in GBM. Tumor microenvironment analysis showed that FUBP3 may be connected to immune infiltration, and immunohistochemistry identified a positive correlation between immune cells (CD4 + T cells, CD8 + T cells, and macrophages) and FUBP3. CONCLUSION FUBP3 is associated with immune surveillance in GBM, indicating that it has a great impact on GBM development and progression. Therefore, interventions involving FUBP3 and its regulatory pathway may be a new approach for GBM treatment.
Collapse
Affiliation(s)
- Jianmin Li
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, People's Republic of China.
| | - Zhao Zhang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, People's Republic of China
| | - Ke Guo
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, People's Republic of China
| | - Shuhua Wu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Chong Guo
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, People's Republic of China
| | - Xinfan Zhang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, People's Republic of China
| | - Zi Wang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong Province, People's Republic of China
| |
Collapse
|
7
|
Karagiannakos A, Adamaki M, Tsintarakis A, Vojtesek B, Fåhraeus R, Zoumpourlis V, Karakostis K. Targeting Oncogenic Pathways in the Era of Personalized Oncology: A Systemic Analysis Reveals Highly Mutated Signaling Pathways in Cancer Patients and Potential Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14030664. [PMID: 35158934 PMCID: PMC8833388 DOI: 10.3390/cancers14030664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death globally. One of the main hallmarks in cancer is the functional deregulation of crucial molecular pathways via driver genetic events that lead to abnormal gene expression, giving cells a selective growth advantage. Driver events are defined as mutations, fusions and copy number alterations that are causally implicated in oncogenesis. Molecular analysis on tissues that have originated from a wide range of anatomical areas has shown that mutations in different members of several pathways are implicated in different cancer types. In recent decades, significant efforts have been made to incorporate this knowledge into daily medical practice, providing substantial insight towards clinical diagnosis and personalized therapies. However, since there is still a strong need for more effective drug development, a deep understanding of the involved signaling mechanisms and the interconnections between these pathways is highly anticipated. Here, we perform a systemic analysis on cancer patients included in the Pan-Cancer Atlas project, with the aim to select the ten most highly mutated signaling pathways (p53, RTK-RAS, lipids metabolism, PI-3-Kinase/Akt, ubiquitination, b-catenin/Wnt, Notch, cell cycle, homology directed repair (HDR) and splicing) and to provide a detailed description of each pathway, along with the corresponding therapeutic applications currently being developed or applied. The ultimate scope is to review the current knowledge on highly mutated pathways and to address the attractive perspectives arising from ongoing experimental studies for the clinical implementation of personalized medicine.
Collapse
Affiliation(s)
- Alexandros Karagiannakos
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
| | - Robin Fåhraeus
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Correspondence: (V.Z.); (K.K.)
| | - Konstantinos Karakostis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (V.Z.); (K.K.)
| |
Collapse
|
8
|
Wang X, Xing L, Yang R, Chen H, Wang M, Jiang R, Zhang L, Chen J. The circACTN4 interacts with FUBP1 to promote tumorigenesis and progression of breast cancer by regulating the expression of proto-oncogene MYC. Mol Cancer 2021; 20:91. [PMID: 34116677 PMCID: PMC8194204 DOI: 10.1186/s12943-021-01383-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023] Open
Abstract
Background Recent studies have revealed that circular RNAs (circRNAs) play significant roles in the occurrence and development of many kinds of cancers including breast cancer (BC). However, the potential functions of most circRNAs and the molecular mechanisms underlying progression of BC remain elusive. Method Here, Circular RNA microarray was executed in 4 pairs of breast cancer tissues and para-cancer tissues. The expression and prognostic significance of circACTN4 in BC cells and tissues were determined by qRT-PCR and in situ hybridization. Gain-and loss-of-function experiments were implemented to observe the impacts of circACTN4 on the growth, invasion, and metastasis of BC cells in vitro and in vivo. Mechanistically, chromatin immunoprecipitation, luciferase reporter, RNA pulldown, mass spectrum, RNA immunoprecipitation, fluorescence in situ hybridization and co-immunoprecipitation assays were executed. Results CircACTN4 was significantly upregulated in breast cancer tissues and cells, its expression was correlated with clinical stage and poor prognosis of patients with BC. Ectopic expression of circACTN4 strikingly facilitated the growth, invasion, and metastasis of breast cancer cells in vitro and in vivo. Whereas knockdown of circACTN4 revealed opposite roles. CircACTN4 was mainly distributed in the nucleus. Further mechanistic research proved that circACTN4 could competitively bind to far upstream element binding protein 1 (FUBP1) to prevent the combination between FUBP1 and FIR, thereby activating MYC transcription and facilitating tumor progression of breast cancer. Furthermore, we found that upstream transcription factor 2 (USF2) might promote the biogenesis of circACTN4. Conclusion Our findings uncover a pivotal mechanism that circACTN4 mediated by USF2 might interact with FUBP1 to promote the occurrence and development of breast cancer via enhancing the expression of MYC. CircACTN4 could be a novel potential target for diagnosis and treatment of breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01383-x.
Collapse
Affiliation(s)
- Xiaosong Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Lei Xing
- Department of Endocrine and breast surgery, The First Affiliated Hospital of Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Rui Yang
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Hang Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Min Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Luyu Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China.
| |
Collapse
|
9
|
Folta-Stogniew E. Characterization of Protein-Nucleic Acid Complexes by Size-Exclusion Chromatography Coupled with Light Scattering, Absorbance, and Refractive Index Detectors. Methods Mol Biol 2021; 2263:381-395. [PMID: 33877609 DOI: 10.1007/978-1-0716-1197-5_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Size-exclusion chromatography (SEC) coupled with multiangle light scattering detection (SEC/MALS) enables determination of the molecular weight, oligomeric state, and stoichiometry of protein-nucleic acid complexes in solution. Often such complexes show anomalous behavior on SEC, thus presenting a challenge in determination of molecular weight and stoichiometry based solely on the elution position from SEC. In contrast to analytical ultracentrifugation, the SEC/MALS analysis is not affected by the shape of the complex. Here we describe the use of SEC/MALS for characterization of the stoichiometry of the complex between the reverse transcriptase (RT) domain from group II intron-maturase from Eubacterium rectale and intron RNA, and for monitoring protein dimerization that is driven by interaction between single-stranded DNA upstream of the P1 promoter, known as FUSE and FUSE binding protein-interacting repressor (FIR).
Collapse
Affiliation(s)
- Ewa Folta-Stogniew
- W.M. Keck Biotechnology Resource Laboratory, Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Zheng Y, Dubois W, Benham C, Batchelor E, Levens D. FUBP1 and FUBP2 enforce distinct epigenetic setpoints for MYC expression in primary single murine cells. Commun Biol 2020; 3:545. [PMID: 33005010 PMCID: PMC7530719 DOI: 10.1038/s42003-020-01264-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022] Open
Abstract
Physiologically, MYC levels must be precisely set to faithfully amplify the transcriptome, but in cancer MYC is quantitatively misregulated. Here, we study the variation of MYC amongst single primary cells (B-cells and murine embryonic fibroblasts, MEFs) for the repercussions of variable cellular MYC-levels and setpoints. Because FUBPs have been proposed to be molecular “cruise controls” that constrain MYC expression, their role in determining basal or activated MYC-levels was also examined. Growing cells remember low and high-MYC setpoints through multiple cell divisions and are limited by the same expression ceiling even after modest MYC-activation. High MYC MEFs are enriched for mRNAs regulating inflammation and immunity. After strong stimulation, many cells break through the ceiling and intensify MYC expression. Lacking FUBPs, unstimulated MEFs express levels otherwise attained only with stimulation and sponsor MYC chromatin changes, revealed by chromatin marks. Thus, the FUBPs enforce epigenetic setpoints that restrict MYC expression. Ying Zheng et al. characterize MYC gene and protein expression in single mammalian cells in response to various external signals. They find that individual cells show either high or low basal MYC expression setpoints, and that adherence to these setpoints as well as the magnitude of the response of MYC to stimulation, is controlled by FUBP1 and FUBP2.
Collapse
Affiliation(s)
- Ying Zheng
- Lab of Pathology, National Cancer Institutes, Bethesda, MD, USA
| | - Wendy Dubois
- Lab of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, Bethesda, MD, USA
| | - Craig Benham
- Biomedical Engineering, University of California, Davis, CA, USA
| | - Eric Batchelor
- Masonic Cancer Center and Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - David Levens
- Lab of Pathology, National Cancer Institutes, Bethesda, MD, USA.
| |
Collapse
|
11
|
Comparative structural analyses and nucleotide-binding characterization of the four KH domains of FUBP1. Sci Rep 2020; 10:13459. [PMID: 32778776 PMCID: PMC7417555 DOI: 10.1038/s41598-020-69832-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
The FUBP1-FUSE complex is an essential component of a transcription molecular machinery that is necessary for tight regulation of expression of many key genes including c-Myc and p21. FUBP1 utilizes its four articulated KH modules, which function cooperatively, for FUSE nucleotide binding. To understand molecular mechanisms fundamental to the intermolecular interaction, we present a set of crystal structures, as well ssDNA-binding characterization of FUBP1 KH domains. All KH1-4 motifs were highly topologically conserved, and were able to interact with FUSE individually and independently. Nevertheless, differences in nucleotide binding properties among the four KH domains were evident, including higher nucleotide-binding potency for KH3 as well as diverse nucleotide sequence preferences. Variations in amino acid compositions at one side of the binding cleft responsible for nucleobase resulted in diverse shapes and electrostatic charge interaction, which might feasibly be a contributing factor for different nucleotide-binding propensities among KH1-4. Nonetheless, conservation of structure and nucleotide-binding property in all four KH motifs is essential for the cooperativity of multi KH modules present in FUBP1 towards nanomolar affinity for FUSE interaction. Comprehensive structural comparison and ssDNA binding characteristics of all four KH domains presented here provide molecular insights at a fundamental level that might be beneficial for elucidating the mechanisms of the FUBP1-FUSE interaction.
Collapse
|
12
|
Elman JS, Ni TK, Mengwasser KE, Jin D, Wronski A, Elledge SJ, Kuperwasser C. Identification of FUBP1 as a Long Tail Cancer Driver and Widespread Regulator of Tumor Suppressor and Oncogene Alternative Splicing. Cell Rep 2019; 28:3435-3449.e5. [PMID: 31553912 PMCID: PMC7297508 DOI: 10.1016/j.celrep.2019.08.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/10/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Comprehensive sequencing approaches have allowed for the identification of the most frequent contributors to cancer, known as drivers. They have also revealed a class of mutations in understudied, infrequently altered genes, referred to as "long tail" (LT) drivers. A key challenge has been to find clinically relevant LT drivers and to understand how they cooperate to drive disease. Here, we identified far upstream binding protein 1 (FUBP1) as an LT driver using an in vivo CRISPR screen. FUBP1 cooperates with other tumor suppressor genes to transform mammary epithelial cells by disrupting cellular differentiation and tissue architecture. Mechanistically, FUBP1 participates in regulating N6-methyladenosine (m6A) RNA methylation, and its loss leads to global changes in RNA splicing and widespread expression of aberrant driver isoforms. These findings suggest that somatic alteration of a single gene involved in RNA splicing and m6A methylation can produce the necessary panoply of contributors for neoplastic transformation.
Collapse
Affiliation(s)
- Jessica S Elman
- Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA; Raymond & Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Thomas K Ni
- Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA; Raymond & Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Kristen E Mengwasser
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Dexter Jin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ania Wronski
- Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA; Raymond & Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA, USA; Department of Genetics, Program in Virology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA; Raymond & Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA.
| |
Collapse
|
13
|
Debaize L, Troadec MB. The master regulator FUBP1: its emerging role in normal cell function and malignant development. Cell Mol Life Sci 2019; 76:259-281. [PMID: 30343319 PMCID: PMC11105487 DOI: 10.1007/s00018-018-2933-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/06/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
The human Far Upstream Element (FUSE) Binding Protein 1 (FUBP1) is a multifunctional DNA- and RNA-binding protein involved in diverse cellular processes. FUBP1 is a master regulator of transcription, translation, and RNA splicing. FUBP1 has been identified as a potent pro-proliferative and anti-apoptotic factor by modulation of complex networks. FUBP1 is also described either as an oncoprotein or a tumor suppressor. Especially, FUBP1 overexpression is observed in a growing number of cancer and leads to a deregulation of targets that includes the fine-tuned MYC oncogene. Moreover, recent loss-of-function analyses of FUBP1 establish its essential functions in hematopoietic stem cell maintenance and survival. Therefore, FUBP1 appears as an emerging suspect in hematologic disorders in addition to solid tumors. The scope of the present review is to describe the advances in our understanding of the molecular basis of FUBP1 functions in normal cells and carcinogenesis. We also delineate the recent progresses in the understanding of the master role of FUBP1 in normal and pathological hematopoiesis. We conclude that FUBP1 is not only worth studying biologically but is also of clinical relevance through its pivotal role in regulating multiple cellular processes and its involvement in oncogenesis.
Collapse
Affiliation(s)
- Lydie Debaize
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, F-35000, Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, F-35000, Rennes, France.
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France.
- CHRU de Brest, laboratoire de cytogénétique, F-29200, Brest, France.
| |
Collapse
|
14
|
Romanidou O, Kotoula V, Fountzilas G. Bridging Cancer Biology with the Clinic: Comprehending and Exploiting IDH Gene Mutations in Gliomas. Cancer Genomics Proteomics 2018; 15:421-436. [PMID: 30194083 DOI: 10.21873/cgp.20101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Isocitrate dehydrogenases 1 and 2 (IDH1/2) are enzymes that play a major role in the Krebs cycle. Mutations in these enzymes are found in the majority of lower gliomas and secondary glioblastomas, but also in myeloid malignancies and other cancers. IDH1 and IDH2 mutations are restricted to specific arginine residues in the active site of the enzymes and are gain-of-function, i.e. they confer a neomorphic enzyme activity resulting in the accumulation of D-2-hydroxyglutarate (2-HG). 2-HG is an oncometabolite causing profound metabolic dysregulation which, among others, results in methylator phenotypes and in defects in homologous recombination repair. In this review, we summarize current knowledge regarding the function of normal and mutated IDH, explain the possible mechanisms through which these mutations might drive malignant transformation of progenitor cells in the central nervous system, and provide a comprehensive review of potential treatment strategies for IDH-mutated malignancies, focusing on gliomas.
Collapse
Affiliation(s)
- Ourania Romanidou
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.,Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
Li G, Martínez-Bonet M, Wu D, Yang Y, Cui J, Nguyen HN, Cunin P, Levescot A, Bai M, Westra HJ, Okada Y, Brenner MB, Raychaudhuri S, Hendrickson EA, Maas RL, Nigrovic PA. High-throughput identification of noncoding functional SNPs via type IIS enzyme restriction. Nat Genet 2018; 50:1180-1188. [PMID: 30013183 PMCID: PMC6072570 DOI: 10.1038/s41588-018-0159-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies (GWAS) have identified many disease-associated noncoding variants, but cannot distinguish functional single-nucleotide polymorphisms (fSNPs) from others that reside incidentally within risk loci. To address this challenge, we developed an unbiased high-throughput screen that employs type IIS enzymatic restriction to identify fSNPs that allelically modulate the binding of regulatory proteins. We coupled this approach, termed SNP-seq, with flanking restriction enhanced pulldown (FREP) to identify regulation of CD40 by three disease-associated fSNPs via four regulatory proteins, RBPJ, RSRC2 and FUBP-1/TRAP150. Applying this approach across 27 loci associated with juvenile idiopathic arthritis, we identified 148 candidate fSNPs, including two that regulate STAT4 via the regulatory proteins SATB2 and H1.2. Together, these findings establish the utility of tandem SNP-seq/FREP to bridge the gap between GWAS and disease mechanism.
Collapse
Affiliation(s)
- Gang Li
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Cardiology and The Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Marta Martínez-Bonet
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Di Wu
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yu Yang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Cardiology and The Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jing Cui
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hung N Nguyen
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pierre Cunin
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anaïs Levescot
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ming Bai
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harm-Jan Westra
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Michael B Brenner
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Eric A Hendrickson
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Richard L Maas
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
Le VQ, Iacob RE, Tian Y, McConaughy W, Jackson J, Su Y, Zhao B, Engen JR, Pirruccello-Straub M, Springer TA. Tolloid cleavage activates latent GDF8 by priming the pro-complex for dissociation. EMBO J 2018; 37:384-397. [PMID: 29343545 DOI: 10.15252/embj.201797931] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/17/2022] Open
Abstract
Growth differentiation factor 8 (GDF8)/myostatin is a latent TGF-β family member that potently inhibits skeletal muscle growth. Here, we compared the conformation and dynamics of precursor, latent, and Tolloid-cleaved GDF8 pro-complexes to understand structural mechanisms underlying latency and activation of GDF8. Negative stain electron microscopy (EM) of precursor and latent pro-complexes reveals a V-shaped conformation that is unaltered by furin cleavage and sharply contrasts with the ring-like, cross-armed conformation of latent TGF-β1. Surprisingly, Tolloid-cleaved GDF8 does not immediately dissociate, but in EM exhibits structural heterogeneity consistent with partial dissociation. Hydrogen-deuterium exchange was not affected by furin cleavage. In contrast, Tolloid cleavage, in the absence of prodomain-growth factor dissociation, increased exchange in regions that correspond in pro-TGF-β1 to the α1-helix, latency lasso, and β1-strand in the prodomain and to the β6'- and β7'-strands in the growth factor. Thus, these regions are important in maintaining GDF8 latency. Our results show that Tolloid cleavage activates latent GDF8 by destabilizing specific prodomain-growth factor interfaces and primes the growth factor for release from the prodomain.
Collapse
Affiliation(s)
- Viet Q Le
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Roxana E Iacob
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA
| | - Yuan Tian
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | - Yang Su
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bo Zhao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA
| | | | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Brägelmann J, Böhm S, Guthrie MR, Mollaoglu G, Oliver TG, Sos ML. Family matters: How MYC family oncogenes impact small cell lung cancer. Cell Cycle 2017; 16:1489-1498. [PMID: 28737478 DOI: 10.1080/15384101.2017.1339849] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Small cell lung cancer (SCLC) is one of the most deadly cancers and currently lacks effective targeted treatment options. Recent advances in the molecular characterization of SCLC has provided novel insight into the biology of this disease and raises hope for a paradigm shift in the treatment of SCLC. We and others have identified activation of MYC as a driver of susceptibility to Aurora kinase inhibition in SCLC cells and tumors that translates into a therapeutic option for the targeted treatment of MYC-driven SCLC. While MYC shares major features with its paralogs MYCN and MYCL, the sensitivity to Aurora kinase inhibitors is unique for MYC-driven SCLC. In this review, we will compare the distinct molecular features of the 3 MYC family members and address the potential implications for targeted therapy of SCLC.
Collapse
Affiliation(s)
- Johannes Brägelmann
- a Molecular Pathology, Institute of Pathology, University of Cologne , Cologne , Germany.,b Department of Translational Genomics , Medical Faculty, University of Cologne , Cologne , Germany
| | - Stefanie Böhm
- a Molecular Pathology, Institute of Pathology, University of Cologne , Cologne , Germany.,b Department of Translational Genomics , Medical Faculty, University of Cologne , Cologne , Germany
| | - Matthew R Guthrie
- c Department of Oncological Sciences , University of Utah, Huntsman Cancer Institute , Salt Lake City , UT , USA
| | - Gurkan Mollaoglu
- c Department of Oncological Sciences , University of Utah, Huntsman Cancer Institute , Salt Lake City , UT , USA
| | - Trudy G Oliver
- c Department of Oncological Sciences , University of Utah, Huntsman Cancer Institute , Salt Lake City , UT , USA
| | - Martin L Sos
- a Molecular Pathology, Institute of Pathology, University of Cologne , Cologne , Germany.,b Department of Translational Genomics , Medical Faculty, University of Cologne , Cologne , Germany.,d Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany
| |
Collapse
|
18
|
Aihara K, Mukasa A, Nagae G, Nomura M, Yamamoto S, Ueda H, Tatsuno K, Shibahara J, Takahashi M, Momose T, Tanaka S, Takayanagi S, Yanagisawa S, Nejo T, Takahashi S, Omata M, Otani R, Saito K, Narita Y, Nagane M, Nishikawa R, Ueki K, Aburatani H, Saito N. Genetic and epigenetic stability of oligodendrogliomas at recurrence. Acta Neuropathol Commun 2017; 5:18. [PMID: 28270234 PMCID: PMC5339990 DOI: 10.1186/s40478-017-0422-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 01/08/2023] Open
Abstract
Among diffuse gliomas, oligodendrogliomas show relatively better prognosis, respond well to radiotherapy and chemotherapy, and seldom progress to very aggressive tumors. To elucidate the genetic and epigenetic background for such behavior and tumor evolution during tumor relapse, we comparatively analyzed 12 pairs of primary and recurrent oligodendrogliomas with 1p/19q-codeletion. Initial treatment for these patients was mostly chemotherapy alone. Temozolomide was used for 3, and procarbazine, nimustine and vincristine (PAV chemotherapy) were used for 7 patients. World Health Organization histological grade at recurrence was mostly stable; it was increased in 2, the same in 9, and decreased in 1 cases. Whole-exome sequencing demonstrated that the rate of shared mutation between the primary and recurrent tumors was relatively low, ranging from 3.2-57.9% (average, 33.3%), indicating a branched evolutionary pattern. The trunk alterations that existed throughout the course were restricted to IDH1 mutation, 1p/19q-codeletion, and TERT promoter mutation, and mutation of the known candidate tumor suppressor genes CIC and FUBP1 were not consistently observed between primary and recurrent tumors. Multiple sampling from different regions within a tumor showed marked intratumoral heterogeneity. Notably, in general, the number of mutations was not significantly different after recurrence, remaining under 100, and no hypermutator phenotype was observed. FUBP1 mutation, loss of chr. 9p21, and TCF12 mutation were among a few recurrent de novo alterations that were found at recurrence, indicating that these events were clonally selected at recurrence but were not enough to enhance malignancy. Genome-wide methylation status, measured by Illumina 450 K arrays, was stable between recurrence and the primary tumor. In summary, although oligodendroglioma displays marked mutational heterogeneity, histological malignant transformation accompanying events such as considerable increase in mutation number and epigenetic profile change were not observed at recurrence, indicating that noticeable temporal and spatial genetic heterogeneity in oligodendrogliomas does not result in rapid tumor progression.
Collapse
|
19
|
Pyrazolo[1,5 a ]pyrimidines as a new class of FUSE binding protein 1 (FUBP1) inhibitors. Bioorg Med Chem 2016; 24:5717-5729. [DOI: 10.1016/j.bmc.2016.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/13/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
|
20
|
Sutherland C, Cui Y, Mao H, Hurley LH. A Mechanosensor Mechanism Controls the G-Quadruplex/i-Motif Molecular Switch in the MYC Promoter NHE III1. J Am Chem Soc 2016; 138:14138-14151. [DOI: 10.1021/jacs.6b09196] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Caleb Sutherland
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Yunxi Cui
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department
of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Laurence H. Hurley
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
- University of Arizona, College of Pharmacy, 1703 East Mabel Street, Tucson, Arizona 85721, United States
- BIO5 Institute, 1657 East
Helen Street, Tucson, Arizona 85721, United States
| |
Collapse
|
21
|
Kamoun A, Idbaih A, Dehais C, Elarouci N, Carpentier C, Letouzé E, Colin C, Mokhtari K, Jouvet A, Uro-Coste E, Martin-Duverneuil N, Sanson M, Delattre JY, Figarella-Branger D, de Reyniès A, Ducray F. Integrated multi-omics analysis of oligodendroglial tumours identifies three subgroups of 1p/19q co-deleted gliomas. Nat Commun 2016; 7:11263. [PMID: 27090007 DOI: 10.1038/ncomms11263] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/07/2016] [Indexed: 12/26/2022] Open
Abstract
Oligodendroglial tumours (OT) are a heterogeneous group of gliomas. Three molecular subgroups are currently distinguished on the basis of the IDH mutation and 1p/19q co-deletion. Here we present an integrated analysis of the transcriptome, genome and methylome of 156 OT. Not only does our multi-omics classification match the current classification but also reveals three subgroups within 1p/19q co-deleted tumours, associated with specific expression patterns of nervous system cell types: oligodendrocyte, oligodendrocyte precursor cell (OPC) and neuronal lineage. We confirm the validity of these three subgroups using public datasets. Importantly, the OPC-like group is associated with more aggressive clinical and molecular patterns, including MYC activation. We show that the MYC activation occurs through various alterations, including MYC genomic gain, MAX genomic loss, MYC hypomethylation and microRNA-34b/c down-regulation. In the lower grade glioma TCGA dataset, the OPC-like group is associated with a poorer outcome independently of histological grade. Our study reveals previously unrecognized heterogeneity among 1p/19q co-deleted tumours.
Collapse
Affiliation(s)
- Aurélie Kamoun
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France
| | - Ahmed Idbaih
- Université Pierre et Marie Curie Paris 6, Centre de Recherche de l'Institut de Cerveau et de la Moelle Epinière (CRICM), UMR 975, 75013 Paris, France.,INSERM U975, 75013 Paris, France.,CNRS, UMR 7225, 75013 Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Caroline Dehais
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Nabila Elarouci
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France
| | - Catherine Carpentier
- Université Pierre et Marie Curie Paris 6, Centre de Recherche de l'Institut de Cerveau et de la Moelle Epinière (CRICM), UMR 975, 75013 Paris, France.,INSERM U975, 75013 Paris, France.,CNRS, UMR 7225, 75013 Paris, France
| | - Eric Letouzé
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France
| | - Carole Colin
- Université de la Méditerranée, Aix-Marseille, Faculté de Médecine La Timone, CRO2, UMR 911, 13885 Marseille, France
| | - Karima Mokhtari
- Université Pierre et Marie Curie Paris 6, Centre de Recherche de l'Institut de Cerveau et de la Moelle Epinière (CRICM), UMR 975, 75013 Paris, France.,INSERM U975, 75013 Paris, France.,CNRS, UMR 7225, 75013 Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Laboratoire de Neuropathologie R. Escourolle, 75013 Paris, France
| | - Anne Jouvet
- Département de Pathologie et Neuropathologie, Hôpital Neurologique, Hospices Civils de Lyon, 69374 Lyon, France
| | - Emmanuelle Uro-Coste
- CHU Toulouse, Hôpital de Rangueil, Service d'Anatomie et Cytologie Pathologique, 31400 Toulouse, France
| | | | - Marc Sanson
- Université Pierre et Marie Curie Paris 6, Centre de Recherche de l'Institut de Cerveau et de la Moelle Epinière (CRICM), UMR 975, 75013 Paris, France.,INSERM U975, 75013 Paris, France.,CNRS, UMR 7225, 75013 Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Jean-Yves Delattre
- Université Pierre et Marie Curie Paris 6, Centre de Recherche de l'Institut de Cerveau et de la Moelle Epinière (CRICM), UMR 975, 75013 Paris, France.,INSERM U975, 75013 Paris, France.,CNRS, UMR 7225, 75013 Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 75013 Paris, France.,Onconeurotek, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| | - Dominique Figarella-Branger
- Université de la Méditerranée, Aix-Marseille, Faculté de Médecine La Timone, CRO2, UMR 911, 13885 Marseille, France.,AP-HM, Hôpital de la Timone, Service d'Anatomie Pathologique et de Neuropathologie, 13885 Marseille, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France
| | - François Ducray
- Hospices Civils de Lyon, Hôpital Neurologique, Service de Neuro-Oncologie, 69374 Lyon, France.,Department of Cancer Cell Plasticity, Cancer Research Centre of Lyon, INSERM U1052, CNRS UMR5286, 69008 Lyon, France.,Université Claude Bernard Lyon 1, 69000 Lyon, France
| | | |
Collapse
|
22
|
Zhou W, Chung YJ, Parrilla Castellar ER, Zheng Y, Chung HJ, Bandle R, Liu J, Tessarollo L, Batchelor E, Aplan PD, Levens D. Far Upstream Element Binding Protein Plays a Crucial Role in Embryonic Development, Hematopoiesis, and Stabilizing Myc Expression Levels. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:701-15. [PMID: 26774856 DOI: 10.1016/j.ajpath.2015.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/29/2015] [Accepted: 10/27/2015] [Indexed: 11/27/2022]
Abstract
The transcription factor far upstream element binding protein (FBP) binds and activates the MYC promoter when far upstream element is via TFIIH helicase activity early in the transcription cycle. The fundamental biology and pathology of FBP are complex. In some tumors FBP seems pro-oncogenic, whereas in others it is a tumor suppressor. We generated an FBP knockout (Fubp1(-/-)) mouse to study FBP deficiency. FBP is embryo lethal from embryonic day 10.5 to birth. A spectrum of pathology is associated with FBP loss; besides cerebral hyperplasia and pulmonary hypoplasia, pale livers, hypoplastic spleen, thymus, and bone marrow, cardiac hypertrophy, placental distress, and small size were all indicative of anemia. Immunophenotyping of hematopoietic cells in wild-type versus knockout livers revealed irregular trilineage anemia, with deficits in colony formation. Despite normal numbers of hematopoietic stem cells, transplantation of Fubp1(-/-) hematopoietic stem cells into irradiated mice entirely failed to reconstitute hematopoiesis. In competitive transplantation assays against wild-type donor bone marrow, Fubp1(-/-) hematopoietic stem cells functioned only sporadically at a low level. Although cultures of wild-type mouse embryo fibroblasts set Myc levels precisely, Myc levels of mouse varied wildly between fibroblasts harvested from different Fubp1(-/-) embryos, suggesting that FBP contributes to Myc set point fixation. FBP helps to hold multiple physiologic processes to close tolerances, at least in part by constraining Myc expression.
Collapse
Affiliation(s)
- Weixin Zhou
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yang Jo Chung
- Laboratory of Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - Ying Zheng
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hye-Jung Chung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Russell Bandle
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Juhong Liu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lino Tessarollo
- Mouse Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Eric Batchelor
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Peter D Aplan
- Laboratory of Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
23
|
Papandonatos GD, Pan Q, Pajewski NM, Delahanty LM, Peter I, Erar B, Ahmad S, Harden M, Chen L, Fontanillas P, Wagenknecht LE, Kahn SE, Wing RR, Jablonski KA, Huggins GS, Knowler WC, Florez JC, McCaffery JM, Franks PW. Genetic Predisposition to Weight Loss and Regain With Lifestyle Intervention: Analyses From the Diabetes Prevention Program and the Look AHEAD Randomized Controlled Trials. Diabetes 2015; 64:4312-21. [PMID: 26253612 PMCID: PMC4657576 DOI: 10.2337/db15-0441] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/04/2015] [Indexed: 12/22/2022]
Abstract
Clinically relevant weight loss is achievable through lifestyle modification, but unintentional weight regain is common. We investigated whether recently discovered genetic variants affect weight loss and/or weight regain during behavioral intervention. Participants at high-risk of type 2 diabetes (Diabetes Prevention Program [DPP]; N = 917/907 intervention/comparison) or with type 2 diabetes (Look AHEAD [Action for Health in Diabetes]; N = 2,014/1,892 intervention/comparison) were from two parallel arm (lifestyle vs. comparison) randomized controlled trials. The associations of 91 established obesity-predisposing loci with weight loss across 4 years and with weight regain across years 2-4 after a minimum of 3% weight loss were tested. Each copy of the minor G allele of MTIF3 rs1885988 was consistently associated with greater weight loss following lifestyle intervention over 4 years across the DPP and Look AHEAD. No such effect was observed across comparison arms, leading to a nominally significant single nucleotide polymorphism×treatment interaction (P = 4.3 × 10(-3)). However, this effect was not significant at a study-wise significance level (Bonferroni threshold P < 5.8 × 10(-4)). Most obesity-predisposing gene variants were not associated with weight loss or regain within the DPP and Look AHEAD trials, directly or via interactions with lifestyle.
Collapse
Affiliation(s)
| | - Qing Pan
- The Biostatistics Center, George Washington University, Rockville, MD
| | - Nicholas M Pajewski
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Linda M Delahanty
- Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA Department of Medicine, Harvard Medical School, Boston, MA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Bahar Erar
- Center for Statistical Sciences, Brown University, Providence, RI
| | - Shafqat Ahmad
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | | | - Ling Chen
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Pierre Fontanillas
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | | | - Lynne E Wagenknecht
- Look AHEAD Coordinating Center, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Steven E Kahn
- Division of Metabolism, Endocrinology & Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA
| | - Rena R Wing
- Weight Control and Diabetes Research Center, The Miriam Hospital and The Warren Alpert Medical School of Brown University, Providence, RI
| | | | - Gordon S Huggins
- Center for Translational Genomics, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - William C Knowler
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
| | - Jose C Florez
- Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA Department of Medicine, Harvard Medical School, Boston, MA Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Jeanne M McCaffery
- Weight Control and Diabetes Research Center, The Miriam Hospital and The Warren Alpert Medical School of Brown University, Providence, RI
| | - Paul W Franks
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University, Skåne University Hospital Malmö, Malmö, Sweden Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | | |
Collapse
|
24
|
Müller B, Bovet M, Yin Y, Stichel D, Malz M, González-Vallinas M, Middleton A, Ehemann V, Schmitt J, Muley T, Meister M, Herpel E, Singer S, Warth A, Schirmacher P, Drasdo D, Matthäus F, Breuhahn K. Concomitant expression of far upstream element (FUSE) binding protein (FBP) interacting repressor (FIR) and its splice variants induce migration and invasion of non-small cell lung cancer (NSCLC) cells. J Pathol 2015; 237:390-401. [PMID: 26177862 DOI: 10.1002/path.4588] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/26/2022]
Abstract
Transcription factors integrate a variety of oncogenic input information, facilitate tumour growth and cell dissemination, and therefore represent promising therapeutic target structures. Because over-expression of DNA-interacting far upstream element binding protein (FBP) supports non-small cell lung cancer (NSCLC) migration, we asked whether its repressor, FBP-interacting repressor (FIR) is functionally inactivated and how FIR might affect NSCLC cell biology. Different FIR splice variants were highly expressed in the majority of NSCLCs, with the highest levels in tumours carrying genomic gains of chromosome 8q24.3, which contained the FIR gene locus. Nuclear FIR expression was significantly enriched at the invasion front of primary NSCLCs, but this did not correlate with tumour cell proliferation. FIR accumulation was associated with worse patient survival and tumour recurrence; in addition, FIR over-expression significantly correlated with lymph node metastasis in squamous cell carcinomas (SCCs). In vitro, we applied newly developed methods and modelling approaches for the quantitative and time-resolved description of the pro-migratory and pro-invasive capacities of SCC cells. siRNA-mediated silencing of all FIR variants significantly reduced the speed and directional movement of tumour cells in all phases of migration. Furthermore, sprouting efficiency and single cell invasiveness were diminished following FIR inhibition. Interestingly, the silencing of FIR isoforms lacking exon 2 (FIR(Δexon2)) alone was sufficient to reduce lateral migration and invasion. In summary, by using scale-spanning data derived from primary human tissues, quantitative cellular analyses and mathematical modelling, we have demonstrated that concomitant over-expression of FIR and its splice variants drives NSCLC migration and dissemination.
Collapse
Affiliation(s)
- Benedikt Müller
- Institute of Pathology, University Hospital Heidelberg, Germany
| | - Michael Bovet
- Institute of Pathology, University Hospital Heidelberg, Germany
| | - Yi Yin
- INRIA, Rocquencourt, Paris, France.,Sorbonne Universités, UPMC University Paris 6, Labortoire Jacques-Louis, Paris, France
| | - Damian Stichel
- Centre for Modelling and Simulation in the Biosciences (BIOMS), University of Heidelberg, Germany
| | - Mona Malz
- Institute of Pathology, University Hospital Heidelberg, Germany
| | | | - Alistair Middleton
- Centre for Modelling and Simulation in the Biosciences (BIOMS), University of Heidelberg, Germany
| | - Volker Ehemann
- Institute of Pathology, University Hospital Heidelberg, Germany
| | | | - Thomas Muley
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC-H) [Member, German Centre for Lung Research (DZL)], Heidelberg, Germany
| | - Michael Meister
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC-H) [Member, German Centre for Lung Research (DZL)], Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, Germany.,Tissue Bank, National Centre for Tumour Diseases (NCT), Heidelberg, Germany
| | - Stephan Singer
- Institute of Pathology, University Hospital Heidelberg, Germany.,European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Arne Warth
- Institute of Pathology, University Hospital Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC-H) [Member, German Centre for Lung Research (DZL)], Heidelberg, Germany
| | | | - Dirk Drasdo
- INRIA, Rocquencourt, Paris, France.,Sorbonne Universités, UPMC University Paris 6, Labortoire Jacques-Louis, Paris, France.,IZBI, University of Leipzig, Germany
| | - Franziska Matthäus
- Centre for Modelling and Simulation in the Biosciences (BIOMS), University of Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Germany
| |
Collapse
|
25
|
Brandner S, von Deimling A. Diagnostic, prognostic and predictive relevance of molecular markers in gliomas. Neuropathol Appl Neurobiol 2015; 41:694-720. [PMID: 25944653 DOI: 10.1111/nan.12246] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 04/15/2015] [Indexed: 12/18/2022]
Abstract
The advances of genome-wide 'discovery platforms' and the increasing affordability of the analysis of significant sample sizes have led to the identification of novel mutations in brain tumours that became diagnostically and prognostically relevant. The development of mutation-specific antibodies has facilitated the introduction of these convenient biomarkers into most neuropathology laboratories and has changed our approach to brain tumour diagnostics. However, tissue diagnosis will remain an essential first step for the correct stratification for subsequent molecular tests, and the combined interpretation of the molecular and tissue diagnosis ideally remains with the neuropathologist. This overview will help our understanding of the pathobiology of common intrinsic brain tumours in adults and help guiding which molecular tests can supplement and refine the tissue diagnosis of the most common adult intrinsic brain tumours. This article will discuss the relevance of 1p/19q codeletions, IDH1/2 mutations, BRAF V600E and BRAF fusion mutations, more recently discovered mutations in ATRX, H3F3A, TERT, CIC and FUBP1, for diagnosis, prognostication and predictive testing. In a tumour-specific topic, the role of mitogen-activated protein kinase pathway mutations in the pathogenesis of pilocytic astrocytomas will be covered.
Collapse
Affiliation(s)
- Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK.,Department of Neurodegeneration, UCL Institute of Neurology, London, UK
| | - Andreas von Deimling
- Department of Neuropathology, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center, DKFZ and DKTK, Heidelberg, Germany
| |
Collapse
|
26
|
Sahebjam S, McNamara MG, Mason WP. Emerging biomarkers in anaplastic oligodendroglioma: implications for clinical investigation and patient management. CNS Oncol 2015; 2:351-8. [PMID: 25054579 DOI: 10.2217/cns.13.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oligodendrogliomas are heterogeneous tumors with a variable response to treatment. This clinical variability underlines the urgent need for markers that can reliably aid diagnosis and guide clinical decision-making. Long-term follow-up data from the EORTC 26951 and RTOG 9402 clinical trials in newly diagnosed anaplastic oligodendroglioma have established chromosome 1p19q codeletion as a predictive marker of response to procarbazine, lomustine and vincristine chemotherapy in anaplastic oligodendrogliomas. In addition, MGMT promoter hypermethylation has been strongly associated with glioma CpG island hypermethylation phenotype (G-CIMP+) status, this has been suggested as an epiphenomenon of genome-wide methylation, conferring a more favorable prognosis. Molecular profiling of these tumors has identified several other markers with potential clinical significance: mutations of IDH, CIC, FUBP1 and CDKN2A require further validation before they can be implemented as clinical decision-making tools. Additionally, recent data on the clinical significance of intrinsic glioma subtyping appears promising. Indeed, existing evidence suggests that comprehensive analyses such as intrinsic glioma subtyping or G-CIMP status are superior to single molecular markers. Clearly, with evolving treatment strategies and in the era of individualized therapy, broader omics-based molecular evaluations are required to improve outcome prediction and to identify patients who will benefit from specific treatment strategies.
Collapse
Affiliation(s)
- Solmaz Sahebjam
- Pencer Brain Tumor Centre, Princess Margaret Cancer Center, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | | | | |
Collapse
|
27
|
Matsushita K, Kitamura K, Rahmutulla B, Tanaka N, Ishige T, Satoh M, Hoshino T, Miyagi S, Mori T, Itoga S, Shimada H, Tomonaga T, Kito M, Nakajima-Takagi Y, Kubo S, Nakaseko C, Hatano M, Miki T, Matsuo M, Fukuyo M, Kaneda A, Iwama A, Nomura F. Haploinsufficiency of the c-myc transcriptional repressor FIR, as a dominant negative-alternative splicing model, promoted p53-dependent T-cell acute lymphoblastic leukemia progression by activating Notch1. Oncotarget 2015; 6:5102-17. [PMID: 25671302 PMCID: PMC4467136 DOI: 10.18632/oncotarget.3244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/27/2014] [Indexed: 12/22/2022] Open
Abstract
FUSE-binding protein (FBP)-interacting repressor (FIR) is a c-myc transcriptional suppressor. A splice variant of FIR that lacks exon 2 in the transcriptional repressor domain (FIRΔexon2) upregulates c-myc transcription by inactivating wild-type FIR. The ratio of FIRΔexon2/FIR mRNA was increased in human colorectal cancer and hepatocellular carcinoma tissues. Because FIRΔexon2 is considered to be a dominant negative regulator of FIR, FIR heterozygous knockout (FIR⁺/⁻) C57BL6 mice were generated. FIR complete knockout (FIR⁻/⁻) was embryonic lethal before E9.5; therefore, it is essential for embryogenesis. This strongly suggests that insufficiency of FIR is crucial for carcinogenesis. FIR⁺/⁻ mice exhibited prominent c-myc mRNA upregulation, particularly in the peripheral blood (PB), without any significant pathogenic phenotype. Furthermore, elevated FIRΔexon2/FIR mRNA expression was detected in human leukemia samples and cell lines. Because the single knockout of TP53 generates thymic lymphoma, FIR⁺/⁻TP53⁻/⁻ generated T-cell type acute lymphocytic/lymphoblastic leukemia (T-ALL) with increased organ or bone marrow invasion with poor prognosis. RNA-sequencing analysis of sorted thymic lymphoma cells revealed that the Notch signaling pathway was activated significantly in FIR⁺/⁻TP53⁻/⁻ compared with that in FIR⁺/⁺TP53⁻/⁻ mice. Notch1 mRNA expression in sorted thymic lymphoma cells was confirmed using qRT-PCR. In addition, flow cytometry revealed that c-myc mRNA was negatively correlated with FIR but positively correlated with Notch1 in sorted T-ALL/thymic lymphoma cells. Moreover, the knockdown of TP53 or c-myc using siRNA decreased Notch1 expression in cancer cells. In addition, an adenovirus vector encoding FIRΔexon2 cDNA increased bleomycin-induced DNA damage. Taken together, these data suggest that the altered expression of FIRΔexon2 increased Notch1 at least partially by activating c-Myc via a TP53-independent pathway. In conclusion, the alternative splicing of FIR, which generates FIRΔexon2, may contribute to both colorectal carcinogenesis and leukemogenesis.
Collapse
Affiliation(s)
- Kazuyuki Matsushita
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Kouichi Kitamura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Nobuko Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Takayuki Ishige
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Mamoru Satoh
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana, Chiba, Japan
| | - Satoru Miyagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Takeshi Mori
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Kusunoki-cho, Kobe, Japan
| | - Sakae Itoga
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Omori-nishi, Ota-ku, Tokyo, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Saito-Asagi, Ibaraki, Osaka, Japan
| | - Minoru Kito
- Oriental Yeast Co., Ltd. Azusawa, Itabashi-ku, Tokyo, Japan
| | - Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Shuji Kubo
- Department of Genetics, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo Prefecture, Japan
| | - Chiaki Nakaseko
- Department of Haematology, Chiba University Hospital, Inohana, Chiba, Japan
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Takashi Miki
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Masafumi Matsuo
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Kusunoki-cho, Kobe, Japan
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobegakuin University, Arise, Ikawadani, Nishi, Kobe, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Fumio Nomura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| |
Collapse
|
28
|
Yang Y, Keeler C, Kuo IY, Lolis EJ, Ehrlich BE, Hodsdon ME. Oligomerization of the polycystin-2 C-terminal tail and effects on its Ca2+-binding properties. J Biol Chem 2015; 290:10544-54. [PMID: 25716316 PMCID: PMC4400361 DOI: 10.1074/jbc.m115.641803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 02/05/2023] Open
Abstract
Polycystin-2 (PC2) belongs to the transient receptor potential (TRP) family and forms a Ca2+-regulated channel. The C-terminal cytoplasmic tail of human PC2 (HPC2 Cterm) is important for PC2 channel assembly and regulation. In this study, we characterized the oligomeric states and Ca2+-binding profiles in the C-terminal tail using biophysical approaches. Specifically, we determined that HPC2 Cterm forms a trimer in solution with and without Ca2+ bound, although TRP channels are believed to be tetramers. We found that there is only one Ca2+-binding site in the HPC2 Cterm, located within its EF-hand domain. However, the Ca2+ binding affinity of the HPC2 Cterm trimer is greatly enhanced relative to the intrinsic binding affinity of the isolated EF-hand domain. We also employed the sea urchin PC2 (SUPC2) as a model for biophysical and structural characterization. The sea urchin C-terminal construct (SUPC2 Ccore) also forms trimers in solution, independent of Ca2+ binding. In contrast to the human PC2, the SUPC2 Ccore contains two cooperative Ca2+-binding sites within its EF-hand domain. Consequently, trimerization does not further improve the affinity of Ca2+ binding in the SUPC2 Ccore relative to the isolated EF-hand domain. Using NMR, we localized the Ca2+-binding sites in the SUPC2 Ccore and characterized the conformational changes in its EF-hand domain due to trimer formation. Our study provides a structural basis for understanding the Ca2+-dependent regulation of the PC2 channel by its cytosolic C-terminal domain. The improved methodology also serves as a good strategy to characterize other Ca2+-binding proteins.
Collapse
Affiliation(s)
- Yifei Yang
- From the Departments of Laboratory Medicine, Pharmacology, and
| | | | | | | | - Barbara E Ehrlich
- Pharmacology, and Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut 06520
| | | |
Collapse
|
29
|
Tanaka N, Araki K, Mizokami D, Miyagawa Y, Yamashita T, Tomifuji M, Ueda Y, Inoue M, Matsushita K, Nomura F, Shimada H, Shiotani A. Sendai virus-mediated gene transfer of the c-myc suppressor far-upstream element-binding protein-interacting repressor suppresses head and neck cancer. Gene Ther 2015; 22:297-304. [PMID: 25588744 DOI: 10.1038/gt.2014.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/03/2014] [Accepted: 11/20/2014] [Indexed: 01/25/2023]
Abstract
Far-upstream element-binding protein-interacting repressor (FIR) is a transcription factor that inhibits c-Myc expression and has been shown to have antitumor effects in some malignancies. Here, we evaluated the antitumor effects of FIR using fusion gene-deleted Sendai virus (SeV/ΔF) as a nontransmissible vector against head and neck squamous cell carcinoma (HNSCC). Using in vitro and in vivo xenograft mouse models, we observed efficient expression of green fluorescent protein (GFP) following transduction with the SeV/ΔF vector encoding GFP (GFP-SeV/ΔF) into HNSCC cells. In vitro and in vivo studies revealed that administration of the FIR-encoded SeV/ΔF (FIR-SeV/ΔF) vector exerted significant antitumor effects, suppressed c-Myc expression and induced apoptosis in HNSCC. Additionally, the antitumor effects of FIR or the expression of GFP following administration of the FIR- or GFP-SeV/ΔF vector, respectively, were dependent on the multiplicity of infection or titer. Furthermore, the SeV/ΔF vector itself had no cytotoxic effects. Therefore, the SeV/ΔF vector may be safe and useful for the treatment of HNSCC, allowing for high-titer SeV/ΔF vector administration for anticancer gene therapy. In addition, SeV/ΔF vector-mediated FIR gene therapy demonstrated effective tumor suppression in HNSCC, suggesting that this therapy may have the potential for clinical use as a novel strategy for HNSCC treatment.
Collapse
Affiliation(s)
- N Tanaka
- Department of Otorhinolaryngology - Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - K Araki
- Department of Otorhinolaryngology - Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - D Mizokami
- Department of Otorhinolaryngology - Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - Y Miyagawa
- Department of Otorhinolaryngology - Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - T Yamashita
- Department of Otorhinolaryngology - Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - M Tomifuji
- Department of Otorhinolaryngology - Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - Y Ueda
- Department of Gene Medicine, DNAVEC Corporation, Ibaraki, Japan
| | - M Inoue
- Department of Gene Medicine, DNAVEC Corporation, Ibaraki, Japan
| | - K Matsushita
- Department of Molecular Diagnosis and Division of Clinical Genetics and Proteomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - F Nomura
- Department of Molecular Diagnosis and Division of Clinical Genetics and Proteomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - H Shimada
- Department of Surgery, Toho University School of Medicine, Tokyo, Japan
| | - A Shiotani
- Department of Otorhinolaryngology - Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| |
Collapse
|
30
|
Malz M, Bovet M, Samarin J, Rabenhorst U, Sticht C, Bissinger M, Roessler S, Bermejo JL, Renner M, Calvisi DF, Singer S, Ganzinger M, Weber A, Gretz N, Zörnig M, Schirmacher P, Breuhahn K. Overexpression of far upstream element (FUSE) binding protein (FBP)-interacting repressor (FIR) supports growth of hepatocellular carcinoma. Hepatology 2014; 60:1241-50. [PMID: 24824848 DOI: 10.1002/hep.27218] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/09/2014] [Indexed: 12/24/2022]
Abstract
UNLABELLED The far upstream element binding protein (FBP) and the FBP-interacting repressor (FIR) represent molecular tools for transcriptional fine tuning of target genes. Strong overexpression of FBP in human hepatocellular carcinoma (HCC) supports tumor growth and correlates with poor patient prognosis. However, the role of the transcriptional repressor FIR in hepatocarcinogenesis remains poorly delineated. We show that overexpression of FIR correlates with tumor dedifferentiation and tumor cell proliferation in about 60% of primary HCCs. Elevated FIR levels are associated with genomic gains of the FIR gene locus at chromosome 8q24.3 in human HCC specimens. In vitro, nuclear enrichment of FIR supports HCC cell proliferation and migration. Expression profiling of HCC cells after small interfering RNA (siRNA)-mediated silencing of FIR identified the transcription factor DP-1 (TFDP1) as a transcriptional target of FIR. Surprisingly, FIR stimulates the expression of FBP in a TFDP1/E2F1-dependent manner. FIR splice variants lacking or containing exon 2 and/or exon 5 are expressed in the majority of HCCs but not in normal hepatocytes. Specific inhibition of FIR isoforms with and without exon 2 revealed that both groups of FIR splice variants facilitate tumor-supporting effects. This finding was confirmed in xenograft transplantation experiments with lentiviral-infected short hairpin RNA (shRNA) targeting all FIR variants as well as FIR with and without exon 2. CONCLUSION High-level nuclear FIR does not facilitate repressor properties but supports tumor growth in HCC cells. Thus, the pharmacological inhibition of FIR might represent a promising therapeutic strategy for HCC patients with elevated FIR expression.
Collapse
Affiliation(s)
- Mona Malz
- Institute of Pathology, University Hospital Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Haynes HR, Camelo-Piragua S, Kurian KM. Prognostic and predictive biomarkers in adult and pediatric gliomas: toward personalized treatment. Front Oncol 2014; 4:47. [PMID: 24716189 PMCID: PMC3970023 DOI: 10.3389/fonc.2014.00047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022] Open
Abstract
It is increasingly clear that both adult and pediatric glial tumor entities represent collections of neoplastic lesions, each with individual pathological molecular events and treatment responses. In this review, we discuss the current prognostic biomarkers validated for clinical use or with future clinical validity for gliomas. Accurate prognostication is crucial for managing patients as treatments may be associated with high morbidity and the benefits of high risk interventions must be judged by the treating clinicians. We also review biomarkers with predictive validity, which may become clinically relevant with the development of targeted therapies for adult and pediatric gliomas.
Collapse
Affiliation(s)
- Harry R Haynes
- Department of Neuropathology, Frenchay Hospital , Bristol , UK
| | | | | |
Collapse
|
32
|
Loss of CIC and FUBP1 expressions are potential markers of shorter time to recurrence in oligodendroglial tumors. Mod Pathol 2014; 27:332-42. [PMID: 24030748 DOI: 10.1038/modpathol.2013.165] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/29/2013] [Indexed: 11/08/2022]
Abstract
Combined deletion of chromosomes 1p and 19q is a prognostic marker in oligodendroglial tumors. Recent studies in oligodendroglial tumors have unveiled recurrent mutations of CIC (homolog of Drosophila capicua) and FUBP1 (far upstream element binding protein 1) that are located on 19q13 and 1p31, respectively. However, the impact of CIC and FUBP1 mutations on their protein expressions has not been examined. The aims of this study were to correlate the expression patterns of CIC and FUBP1 with their mutation profiles and to evaluate the clinical relevance of these molecular markers in 55 oligodendroglial tumors diagnosed in 47 adult patients. Using direct sequencing, somatic mutations of CIC and FUBP1 were identified in 47% (22/47) and 16% (7/45) of oligodendroglial tumors, respectively. Immunohistochemical analysis revealed loss of CIC or FUBP1 protein expression in 36% (20/55) and 16% (9/55) of oligodendroglial tumors examined. Somatic mutation was significantly associated with absent protein expression for both genes (CIC, P=0.01; FUBP1, P=0.00001). Four tumors with undetectable CIC mutations exhibited absent CIC expression, suggesting that CIC inactivation could be mediated by mechanisms other than mutations and genomic loss. Univariate survival analysis revealed that 1p/19q codeletion was significantly associated with overall survival (P=0.05). Loss of CIC expression was significantly correlated with shorter progression-free survival (P=0.03), whereas CIC alteration (mutation or null expression) with worse overall survival (P=0.05). Absent FUBP1 expression was linked with unfavorable progression-free survival (P=0.02) and overall survival (P=0.01). In 16 tumors with 1p/19q codeletion, CIC mutation was associated with unfavorable survival (P=0.01). There was a correlation between lack of CIC or FUBP1 expression and poor progression-free survival (P=0.004; P=0.0003). No molecular markers showed association with survival in oligodendroglial tumors lacking 1p/19q codeletion. We conclude that absent CIC and FUBP1 expressions are potential markers of shorter time to recurrence and CIC mutation a potential marker of worse prognosis, especially in tumors carrying 1p/19q codeletion.
Collapse
|
33
|
Eisenreich S, Abou-El-Ardat K, Szafranski K, Campos Valenzuela JA, Rump A, Nigro JM, Bjerkvig R, Gerlach EM, Hackmann K, Schröck E, Krex D, Kaderali L, Schackert G, Platzer M, Klink B. Novel CIC point mutations and an exon-spanning, homozygous deletion identified in oligodendroglial tumors by a comprehensive genomic approach including transcriptome sequencing. PLoS One 2013; 8:e76623. [PMID: 24086756 PMCID: PMC3785522 DOI: 10.1371/journal.pone.0076623] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/26/2013] [Indexed: 12/26/2022] Open
Abstract
Oligodendroglial tumors form a distinct subgroup of gliomas, characterized by a better response to treatment and prolonged overall survival. Most oligodendrogliomas and also some oligoastrocytomas are characterized by a unique and typical unbalanced translocation, der(1,19), resulting in a 1p/19q co-deletion. Candidate tumor suppressor genes targeted by these losses, CIC on 19q13.2 and FUBP1 on 1p31.1, were only recently discovered. We analyzed 17 oligodendrogliomas and oligoastrocytomas by applying a comprehensive approach consisting of RNA expression analysis, DNA sequencing of CIC, FUBP1, IDH1/2, and array CGH. We confirmed three different genetic subtypes in our samples: i) the “oligodendroglial” subtype with 1p/19q co-deletion in twelve out of 17 tumors; ii) the “astrocytic” subtype in three tumors; iii) the “other” subtype in two tumors. All twelve tumors with the 1p/19q co-deletion carried the most common IDH1 R132H mutation. In seven of these tumors, we found protein-disrupting point mutations in the remaining allele of CIC, four of which are novel. One of these tumors also had a deleterious mutation in FUBP1. Only by integrating RNA expression and array CGH data, were we able to discover an exon-spanning homozygous microdeletion within the remaining allele of CIC in an additional tumor with 1p/19q co-deletion. Therefore we propose that the mutation rate might be underestimated when looking at sequence variants alone. In conclusion, the high frequency and the spectrum of CIC mutations in our 1p/19q-codeleted tumor cohort support the hypothesis that CIC acts as a tumor suppressor in these tumors, whereas FUBP1 might play only a minor role.
Collapse
Affiliation(s)
- Sophie Eisenreich
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Khalil Abou-El-Ardat
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karol Szafranski
- Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jaime A. Campos Valenzuela
- Institut für Medizinische Informatik und Biometrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Rump
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Janice M. Nigro
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Eva-Maria Gerlach
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karl Hackmann
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Evelin Schröck
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dietmar Krex
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lars Kaderali
- Institut für Medizinische Informatik und Biometrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gabriele Schackert
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Matthias Platzer
- Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Barbara Klink
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
34
|
Maleszewska M, Kaminska B. Is glioblastoma an epigenetic malignancy? Cancers (Basel) 2013; 5:1120-39. [PMID: 24202337 PMCID: PMC3795382 DOI: 10.3390/cancers5031120] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 01/01/2023] Open
Abstract
Epigenetic modifications control gene expression by regulating the access of nuclear proteins to their target DNA and have been implicated in both normal cell differentiation and oncogenic transformation. Epigenetic abnormalities can occur both as a cause and as a consequence of cancer. Oncogenic transformation can deeply alter the epigenetic information enclosed in the pattern of DNA methylation or histone modifications. In addition, in some cancers epigenetic dysfunctions can drive oncogenic transformation. Growing evidence emphasizes the interplay between metabolic disturbances, epigenomic changes and cancer, i.e., mutations in the metabolic enzymes SDH, FH, and IDH may contribute to cancer development. Epigenetic-based mechanisms are reversible and the possibility of “resetting” the abnormal cancer epigenome by applying pharmacological or genetic strategies is an attractive, novel approach. Gliomas are incurable with all current therapeutic approaches and new strategies are urgently needed. Increasing evidence suggests the role of epigenetic events in development and/or progression of gliomas. In this review, we summarize current data on the occurrence and significance of mutations in the epigenetic and metabolic enzymes in pathobiology of gliomas. We discuss emerging therapies targeting specific epigenetic modifications or chromatin modifying enzymes either alone or in combination with other treatment regimens.
Collapse
Affiliation(s)
- Marta Maleszewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, The Nencki Institute of Experimental Biology, 3 Pasteur Str., Warsaw 02-093, Poland.
| | | |
Collapse
|
35
|
cMYC expression in infiltrating gliomas: associations with IDH1 mutations, clinicopathologic features and outcome. J Neurooncol 2013; 115:249-59. [PMID: 23934175 DOI: 10.1007/s11060-013-1221-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/04/2013] [Indexed: 12/28/2022]
Abstract
Gliomas are among the most frequent adult primary brain tumors. Mutations in IDH1, a metabolic enzyme, strongly correlate with secondary glioblastomas and increased survival. cMYC is an oncogene also implicated in aberrant metabolism, but its prognostic impact remains unclear. Recent genotyping studies also showed SNP variants near the cMYC gene locus, associate with an increased risk for development of IDH1/2 mutant gliomas suggesting a possible interaction between cMYC and IDH1. We evaluated nuclear cMYC protein levels and IDH1 (R132H) by immunohistochemistry in patients with oligodendroglioma/oligoastrocytomas (n = 20), astrocytomas (grade II) (n = 19), anaplastic astrocytomas (n = 21) or glioblastomas (n = 111). Of 158 tumors with sufficient tissue, 110 (70 %) showed nuclear cMYC immunopositivity--most frequent (95 %, χ(2) p = 0.0248) and intense (mean 1.33, ANOVA p = 0.0179) in anaplastic astrocytomas versus glioblastomas (63 %) or low grade gliomas (74 %). cMYC expression associated with younger age as well as p53 immunopositivity (OR = 3.6, p = 0.0332) and mutant IDH1 (R132H) (OR = 7.4, p = 0.06) among malignant gliomas in our cohort. Independent analysis of the publically available TCGA glioblastoma dataset confirmed our strong association between cMYC and mutant IDH1 expression. Both IDH1 (R132H) and cMYC protein expression were associated with improved overall survival by univariate analysis. However, cMYC co-expression associated with shortened time to malignant transformation and overall survival among IDH1 (R132H) mutants in both univariate and multivariate analyses. In summary, our findings suggest that cMYC may be associated with a unique clinicopathologic and biologic group of infiltrating gliomas and help mediate the malignant transformation of IDH1 mutant gliomas.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Since the discovery, in 1994, of recurrent codeletion of chromosome regions 1p36/19q13 in oligodendrogliomas, genetics has accomplished significant advances improving our knowledge in biology of this tumor type and our clinical management of oligodendroglioma patients. Indeed, 1p36/19q13 has been shown successively to predict increased chemosensitivity and better prognosis, to be associated with frontal location in brain and classic oligodendroglioma morphology, to be mutually exclusive with high-level gene amplification, to be actually whole chromosome arms 1p/19q codeletion, to mediate a t(1;19)(q10;p10) and to be associated with IDH mutations. More recently, pivotal studies, using high-throughput approaches, have provided significant novel insights in the molecular oncogenesis of oligodendrogliomas. RECENT FINDINGS Capicua homolog (Drosophila) (CIC) and Far Upstream element Binding Protein 1 (FUBP1) have been shown to be frequently mutated in 70 and 40% of 1p/19q codeleted oligodendrogliomas, respectively. The biological and clinical significance of these mutations remains unsettled. Additional recent studies have also demonstrated that 1p/19q codeleted oligodendrogliomas exhibit a proneural transcriptomic profile including overexpression of internexin alpha, a neuronal intermediate filament. Finally, 1p/19q codeleted and IDH-mutated tumors have been shown to be hypermethylated, suggesting a strong link between these both molecular alterations detected in the subgroup of oligodendrogliomas with better prognosis. SUMMARY Next-generation molecular biology technologies have recently identified recurrent CIC and FUBP1 point mutations in 1p/19q codeleted and IDH-mutated oligodendrogliomas. Their clinical and biological values are under investigation.
Collapse
|
37
|
Ma J, Chen M, Xia SK, Shu W, Guo Y, Wang YH, Xu Y, Bai XM, Zhang L, Zhang H, Zhang M, Wang YP, Leng J. Prostaglandin E2 promotes liver cancer cell growth by the upregulation of FUSE-binding protein 1 expression. Int J Oncol 2013; 42:1093-104. [PMID: 23338277 DOI: 10.3892/ijo.2013.1782] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/29/2012] [Indexed: 11/05/2022] Open
Abstract
Liver cancer is a common human cancer with a high mortality rate and currently there is no effective chemoprevention or systematic treatment. Recent evidence suggests that prostaglandin E(2) (PGE(2)) plays an important role in the occurrence and development of liver cancer. However, the mechanisms through which PGE(2) promotes liver cancer cell growth are not yet fully understood. It has been reported that the increased expression of FUSE-binding protein 1 (FBP1) significantly induces the proliferation of liver cancer cells. In this study, we report that PGE(2) promotes liver cancer cell growth by the upregulation of FBP1 protein expression. Treatment with PGE2 and the E prostanoid 3 (EP3) receptor agonist, sulprostone, resulted in the time-dependent increase in FBP1 protein expression; sulprostone increased the viability of the liver cancer cells. The protein kinase A (PKA) inhibitor, H89, and the adenylate cyclase (AC) inhibitor, SQ22536, inhibited the cell viability accelerated by sulprostone. By contrast, the Gi subunit inhibitor, pertussis toxin (PTX), exhibited no significant effect. Treatment with PGE(2) and sulprostone caused a decrease in JTV1 protein expression, blocked the binding of JTV1 with FBP1, which served as a mechanism for FBP1 degradation, leading to the decreased ubiquitination of FBP1 and the increase in FBP1 protein expression. Furthermore, H89 and SQ22536 prevented the above effects of JTV1 and FBP1 induced by PGE(2) and sulprostone. These findings indicate that the EP3 receptor activated by PGE(2) may couple to Gs protein and activate cyclic AMP (cAMP)-PKA, downregulating the levels of JTV1 protein, consequently inhibiting the ubiquitination of FBP1 and increasing FBP1 protein expression, thus promoting liver cancer cell growth. These observations provide new insights into the mechanisms through which PGE(2) promotes cancer cell growth.
Collapse
Affiliation(s)
- Juan Ma
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang J, Chen QM. Far upstream element binding protein 1: a commander of transcription, translation and beyond. Oncogene 2012; 32:2907-16. [PMID: 22926519 DOI: 10.1038/onc.2012.350] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The far upstream binding protein 1 (FBP1) was first identified as a DNA-binding protein that regulates c-Myc gene transcription through binding to the far upstream element (FUSE) in the promoter region 1.5 kb upstream of the transcription start site. FBP1 collaborates with TFIIH and additional transcription factors for optimal transcription of the c-Myc gene. In recent years, mounting evidence suggests that FBP1 acts as an RNA-binding protein and regulates mRNA translation or stability of genes, such as GAP43, p27(Kip) and nucleophosmin. During retroviral infection, FBP1 binds to and mediates replication of RNA from Hepatitis C and Enterovirus 71. As a nuclear protein, FBP1 may translocate to the cytoplasm in apoptotic cells. The interaction of FBP1 with p38/JTV-1 results in FBP1 ubiquitination and degradation by the proteasomes. Transcriptional and post-transcriptional regulations by FBP1 contribute to cell proliferation, migration or cell death. FBP1 association with carcinogenesis has been reported in c-Myc dependent or independent manner. This review summarizes biochemical features of FBP1, its mechanism of action, FBP family members and the involvement of FBP1 in carcinogenesis.
Collapse
Affiliation(s)
- J Zhang
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|
39
|
Bettegowda C, Papadopoulos N, Agrawal N. Mapping genes for oligodendroglioma. Per Med 2012; 9:311-313. [PMID: 29758792 DOI: 10.2217/pme.12.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Nicholas Papadopoulos
- Department of Otolaryngology & Head and Neck Surgery, Johns Hopkins Univeristy School of Medicine, Baltimore, MD, USA
| | - Nishant Agrawal
- Ludwig Center for Cancer Genetics & Therapeutics, Johns Hopkins University Kimmel Cancer Center, Baltimore, MD, USA
| |
Collapse
|
40
|
Bettegowda C, Agrawal N, Jiao Y, Sausen M, Wood LD, Hruban RH, Rodriguez FJ, Cahill DP, McLendon R, Riggins G, Velculescu VE, Oba-Shinjo SM, Nagahashi Marie SK, Vogelstein B, Bigner D, Yan H, Papadopoulos N, Kinzler KW. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 2011; 333:1453-5. [PMID: 21817013 PMCID: PMC3170506 DOI: 10.1126/science.1210557] [Citation(s) in RCA: 397] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oligodendrogliomas are the second most common malignant brain tumor in adults and exhibit characteristic losses of chromosomes 1p and 19q. To identify the molecular genetic basis for this alteration, we performed exomic sequencing of seven tumors. Among other changes, we found that the CIC gene (homolog of the Drosophila gene capicua) on chromosome 19q was somatically mutated in six cases and that the FUBP1 gene [encoding far-upstream element (FUSE) binding protein] on chromosome 1p was somatically mutated in two tumors. Examination of 27 additional oligodendrogliomas revealed 12 and 3 more tumors with mutations of CIC and FUBP1, respectively, 58% of which were predicted to result in truncations of the encoded proteins. These results suggest a critical role for these genes in the biology and pathology of oligodendrocytes.
Collapse
Affiliation(s)
- Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
- Department of Neurosurgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Nishant Agrawal
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Yuchen Jiao
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Mark Sausen
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Laura D. Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Ralph H. Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Fausto J. Rodriguez
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Daniel P. Cahill
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center and Baylor College of Medicine, Houston, TX 77030, USA
| | - Roger McLendon
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute and the Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gregory Riggins
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
- Department of Neurosurgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Victor E. Velculescu
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | | | | | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Darell Bigner
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute and the Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hai Yan
- The Preston Robert Tisch Brain Tumor Center at Duke, The Pediatric Brain Tumor Foundation Institute and the Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Kenneth W. Kinzler
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| |
Collapse
|
41
|
Cukier CD, Hollingworth D, Martin SR, Kelly G, Díaz-Moreno I, Ramos A. Molecular basis of FIR-mediated c-myc transcriptional control. Nat Struct Mol Biol 2010; 17:1058-64. [PMID: 20711187 PMCID: PMC2964917 DOI: 10.1038/nsmb.1883] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 06/28/2010] [Indexed: 01/12/2023]
Abstract
The far upstream element (FUSE) regulatory system promotes a peak in the concentration of c-Myc during cell cycle. First, the FBP transcriptional activator binds to the FUSE DNA element upstream of the c-myc promoter. Then, FBP recruits its specific repressor (FIR), which acts as an on/off transcriptional switch. Here we describe the molecular basis of FIR recruitment, showing that the tandem RNA recognition motifs of FIR provide a platform for independent FUSE DNA and FBP protein binding and explaining the structural basis of the reversibility of the FBP-FIR interaction. We also show that the physical coupling between FBP and FIR is modulated by a flexible linker positioned sequentially to the recruiting element. Our data explain how the FUSE system precisely regulates c-myc transcription and suggest that a small change in FBP-FIR affinity leads to a substantial effect on c-Myc concentration.
Collapse
Affiliation(s)
- Cyprian D Cukier
- Molecular Structure Division, Medical Research Council National Institute for Medical Research, London, UK
| | | | | | | | | | | |
Collapse
|