1
|
Mojžíšek M. Triplex Forming Oligonucleotides – Tool for Gene Targeting. ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2018.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This review deals with the antigene strategy whereby an oligonucleotide binds to the major or minor groove of double helical DNA where it forms a local triple helix. Preoccupation of this article is triplex-forming oligonucleotides (TFO). These are short, synthetic single-stranded DNAs that recognize polypurine:polypyrimidine regions in double stranded DNA in a sequence-specific manner and form triplex. Therefore, the mechanisms for DNA recognition by triple helix formation are discussed, together with main characteristics of TFO and also major obstacles that remain to be overcome are highlighted. TFOs can selectively inhibit gene expression at the transcriptional level or repair genetic defect by direct genome modification in human cells. These qualities makes TFO potentially powerful therapeutic tool for gene repair and/or expression regulation.
Collapse
|
2
|
Walsh S, El-Sagheer AH, Brown T. Fluorogenic thiazole orange TOTFO probes stabilise parallel DNA triplexes at pH 7 and above. Chem Sci 2018; 9:7681-7687. [PMID: 30393529 PMCID: PMC6182420 DOI: 10.1039/c8sc02418a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
The instability of DNA triplexes particularly at neutral pH and above severely limits their applications. Here, we demonstrate that the introduction of a thiazole orange (TO) intercalator onto a thymine nucleobase in triplex forming oligonucleotides (TFOs) resolves this problem. The stabilising effects are additive; multiple TO units produce nanomolar duplex binding and triplex stability can surpass that of the underlying duplex. In one example, a TFO containing three TO units increased the triplex melting temperature at pH 7 by a remarkable 50 °C relative to the unmodified triplex. Notably, TO intercalation promotes TFO binding to target sequences other than pure polypurine tracts by the use of 5-(1-propynyl)cytosine (pC) against C:G inversions. By overcoming the instability of triplexes across a broad range of pH and sequence contexts, these very simple 'TOTFO' probes could expand triplex applications into many areas including diagnostics and cell imaging.
Collapse
Affiliation(s)
- Sarah Walsh
- Department of Chemistry , University of Oxford , Oxford , OX1 3TA , UK .
- ATDBio Ltd. , Oxford Science Park , Oxford , UK
| | - Afaf Helmy El-Sagheer
- Department of Chemistry , University of Oxford , Oxford , OX1 3TA , UK .
- Chemistry Branch , Department of Science and Mathematics , Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Tom Brown
- Department of Chemistry , University of Oxford , Oxford , OX1 3TA , UK .
| |
Collapse
|
3
|
Abstract
Triplex-forming oligonucleotides (TFOs) are capable of coordinating genome modification in a targeted, site-specific manner, causing mutagenesis or even coordinating homologous recombination events. Here, we describe the use of TFOs such as peptide nucleic acids for targeted genome modification. We discuss this method and its applications and describe protocols for TFO design, delivery, and evaluation of activity in vitro and in vivo.
Collapse
|
4
|
Reza F, Glazer PM. Therapeutic genome mutagenesis using synthetic donor DNA and triplex-forming molecules. Methods Mol Biol 2015; 1239:39-73. [PMID: 25408401 PMCID: PMC6608751 DOI: 10.1007/978-1-4939-1862-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genome mutagenesis can be achieved in a variety of ways, though a select few are suitable for therapeutic settings. Among them, the harnessing of intracellular homologous recombination affords the safety and efficacy profile suitable for such settings. Recombinagenic donor DNA and mutagenic triplex-forming molecules co-opt this natural recombination phenomenon to enable the specific, heritable editing and targeting of the genome. Editing the genome is achieved by designing the sequence-specific recombinagenic donor DNA to have base mismatches, insertions, and deletions that will be incorporated into the genome when it is used as a template for recombination. Targeting the genome is similarly achieved by designing the sequence-specific mutagenic triplex-forming molecules to further recruit the recombination machinery thereby upregulating its activity with the recombinagenic donor DNA. This combination of extracellularly introduced, designed synthetic molecules and intercellularly ubiquitous, evolved natural machinery enables the mutagenesis of chromosomes and engineering of whole genomes with great fidelity while limiting nonspecific interactions. Herein, we demonstrate the harnessing of recombinagenic donor DNA and mutagenic triplex-forming molecular technology for potential therapeutic applications. These demonstrations involve, among others, utilizing this technology to correct genes so that they become physiologically functional, to induce dormant yet functional genes in place of non-functional counterparts, to place induced genes under regulatory elements, and to disrupt genes to abrogate a cellular vulnerability. Ancillary demonstrations of the design and synthesis of this recombinagenic and mutagenic molecular technology as well as their delivery and assayed interaction with duplex DNA reveal a potent technological platform for engineering specific changes into the living genome.
Collapse
Affiliation(s)
- Faisal Reza
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06520-8040, USA
| | | |
Collapse
|
5
|
Abstract
Genome targeting and editing in vitro and in vivo can be achieved through an interplay of exogenously introduced molecules and the induction of endogenous recombination machinery. The former includes a repertoire of sequence-specific binding molecules for targeted induction and appropriation of this machinery, such as by triplex-forming oligonucleotides (TFOs) or triplex-forming peptide nucleic acids (PNAs) and recombinagenic donor DNA, respectively. This versatile targeting and editing via recombination approach facilitates high-fidelity and low-off-target genome mutagenesis, repair, expression, and regulation. Herein, we describe the current state-of-the-art in triplex-mediated genome targeting and editing with a perspective towards potential translational and therapeutic applications. We detail several materials and methods for the design, delivery, and use of triplex-forming and recombinagenic molecules for mediating and introducing specific, heritable, and safe genomic modifications. Furthermore we denote some guidelines for endogenous genome targeting and editing site identification and techniques to test targeting and editing efficiency.
Collapse
Affiliation(s)
- Faisal Reza
- Departments of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
6
|
Mukherjee A, Vasquez KM. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis. Biochimie 2011; 93:1197-208. [PMID: 21501652 PMCID: PMC3545518 DOI: 10.1016/j.biochi.2011.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/01/2011] [Indexed: 12/18/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1C, Smithville, TX 78957
| | - Karen M. Vasquez
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1C, Smithville, TX 78957
| |
Collapse
|
7
|
Malnuit V, Duca M, Benhida R. Targeting DNA base pair mismatch with artificial nucleobases. Advances and perspectives in triple helix strategy. Org Biomol Chem 2010; 9:326-36. [PMID: 21046036 DOI: 10.1039/c0ob00418a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review, divided into three sections, describes the contribution of the chemists' community to the development and application of triple helix strategy by using artificial nucleic acids, particularly for the recognition of DNA sequences incorporating base pair inversions. Firstly, the development of nucleobases that recognise CG inversion is surveyed followed secondly by specific recognition of TA inverted base pair. Finally, we point out in the last section recent perspectives and applications, driven from knowledge in nucleic acids interactions, in the growing field of nanotechnology and supramolecular chemistry at the border area of physics, chemistry and molecular biology.
Collapse
Affiliation(s)
- Vincent Malnuit
- Laboratoire de Chimie des Molécules Bioactives et des Arômes, LCMBA, UMR 6001, Institut de Chimie de Nice, Université de Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
8
|
Biton A, Ezra A, Kasparkova J, Brabec V, Yavin E. DNA photocleavage by DNA and DNA-LNA amino acid-dye conjugates. Bioconjug Chem 2010; 21:616-21. [PMID: 20345124 DOI: 10.1021/bc900372h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA photocleavage by triplex forming oligonucleotides (TFO) has potential implications in both biotechnology and medicine. We have synthesized a series of homopurine DNA and DNA/LNA 14-mers to which an amino acid (glycine or l-tryptophan) and a cyanine dye are covalently linked. Two cyanine dyes were examined that include a quinolinium ring linked to a benzothiazolium ring through a monomethine (TO1) or trimethine (TO2) linker. The 14-mer sequence was chosen to target mdm2, a ubiquitin ligase (E3) that regulates p53 by promoting its ubiquitylation and proteosomal degradation. Such inhibition has been previously proposed as a therapeutic approach to target wild-type p53-expressing cancers. To examine whether our TFO conjugates photocleave the mdm2 target, we incubated the various conjugates with the mdm2 plasmid and irradiated the samples with visible light. We show that only the TFO with the complementary sequence and with an intervening l-tryptophan leads to the linearization of the plasmid after a short irradiation time (10 min) exciting the dye (lambda(max)(TO1) = 500 nm and lambda(max)(TO2) = 630 nm) with visible light. Furthermore, the photoreactivity is more pronounced for the LNA/DNA conjugate, an observation that is consistent with improved hybridization to the DNA target. Sequence specificity of the photoreaction is further corroborated on a synthetic 44-mer duplex containing the TFO site. Evidence for a ROS-dependent mechanism is also given and discussed.
Collapse
Affiliation(s)
- Adva Biton
- Department of Medicinal Chemistry, The Institute for Drug Research, The School of Pharmacy, The Hebrew University of Jerusalem, Hadassah Ein-Karem, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
9
|
Vasquez KM. Targeting and processing of site-specific DNA interstrand crosslinks. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:527-39. [PMID: 20196133 PMCID: PMC2895014 DOI: 10.1002/em.20557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA interstrand crosslinks (ICLs) are among the most cytotoxic types of DNA damage, and thus ICL-inducing agents such as cyclophosphamide, melphalan, cisplatin, psoralen, and mitomycin C have been used clinically as anticancer drugs for decades. ICLs can also be formed endogenously as a consequence of cellular metabolic processes. ICL-inducing agents continue to be among the most effective chemotherapeutic treatments for many cancers; however, treatment with these agents can lead to secondary malignancies, in part due to mutagenic processing of the DNA lesions. The mechanisms of ICL repair have been characterized more thoroughly in bacteria and yeast than in mammalian cells. Thus, a better understanding of the molecular mechanisms of ICL processing offers the potential to improve the efficacy of these drugs in cancer therapy. In mammalian cells, it is thought that ICLs are repaired by the coordination of proteins from several pathways, including nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), homologous recombination (HR), translesion synthesis (TLS), and proteins involved in Fanconi anemia (FA). In this review, we focus on the potential functions of NER, MMR, and HR proteins in the repair of and response to ICLs in human cells and in mice. We will also discuss a unique approach, using psoralen covalently linked to triplex-forming oligonucleotides to direct ICLs to specific sites in the mammalian genome.
Collapse
Affiliation(s)
- Karen M Vasquez
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA.
| |
Collapse
|
10
|
Christensen LA, Wang H, Van Houten B, Vasquez KM. Efficient processing of TFO-directed psoralen DNA interstrand crosslinks by the UvrABC nuclease. Nucleic Acids Res 2008; 36:7136-45. [PMID: 18996898 PMCID: PMC2602775 DOI: 10.1093/nar/gkn880] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Photoreactive psoralens can form interstrand crosslinks (ICLs) in double-stranded DNA. In eubacteria, the endonuclease UvrABC plays a key role in processing psoralen ICLs. Psoralen-modified triplex-forming oligonucleotides (TFOs) can be used to direct ICLs to specific genomic sites. Previous studies of pyrimidine-rich methoxypsoralen–modified TFOs indicated that the TFO inhibits cleavage by UvrABC. Because different chemistries may alter the processing of TFO-directed ICLs, we investigated the effect of another type of triplex formed by purine-rich TFOs on the processing of 4′-(hydroxymethyl)-4,5′,8-trimethylpsoralen (HMT) ICLs by the UvrABC nuclease. Using an HMT-modified TFO to direct ICLs to a specific site, we found that UvrABC made incisions on the purine-rich strand of the duplex ∼3 bases from the 3′-side and ∼9 bases from the 5′-side of the ICL, within the TFO-binding region. In contrast to previous reports, the UvrABC nuclease cleaved the TFO-directed psoralen ICL with a greater efficiency than that of the psoralen ICL alone. Furthermore, the TFO was dissociated from its duplex binding site by UvrA and UvrB. As mutagenesis by TFO-directed ICLs requires nucleotide excision repair, the efficient processing of these lesions supports the use of triplex technology to direct DNA damage for genome modification.
Collapse
Affiliation(s)
- Laura A Christensen
- Department of Carcinogenesis, Science Park-Research Division, University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | | | | | | |
Collapse
|
11
|
Wu Q, Vasquez KM. Human MLH1 protein participates in genomic damage checkpoint signaling in response to DNA interstrand crosslinks, while MSH2 functions in DNA repair. PLoS Genet 2008; 4:e1000189. [PMID: 18787700 PMCID: PMC2526179 DOI: 10.1371/journal.pgen.1000189] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 08/05/2008] [Indexed: 11/21/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) are among the most toxic types of damage to a cell. For this reason, many ICL-inducing agents are effective therapeutic agents. For example, cisplatin and nitrogen mustards are used for treating cancer and psoralen plus UVA (PUVA) is useful for treating psoriasis. However, repair mechanisms for ICLs in the human genome are not clearly defined. Previously, we have shown that MSH2, the common subunit of the human MutSα and MutSβ mismatch recognition complexes, plays a role in the error-free repair of psoralen ICLs. We hypothesized that MLH1, the common subunit of human MutL complexes, is also involved in the cellular response to psoralen ICLs. Surprisingly, we instead found that MLH1-deficient human cells are more resistant to psoralen ICLs, in contrast to the sensitivity to these lesions displayed by MSH2-deficient cells. Apoptosis was not as efficiently induced by psoralen ICLs in MLH1-deficient cells as in MLH1-proficient cells as determined by caspase-3/7 activity and binding of annexin V. Strikingly, CHK2 phosphorylation was undetectable in MLH1-deficient cells, and phosphorylation of CHK1 was reduced after PUVA treatment, indicating that MLH1 is involved in signaling psoralen ICL-induced checkpoint activation. Psoralen ICLs can result in mutations near the crosslinked sites; however, MLH1 function was not required for the mutagenic repair of these lesions, and so its signaling function appears to have a role in maintaining genomic stability following exposure to ICL-induced DNA damage. Distinguishing the genetic status of MMR-deficient tumors as MSH2-deficient or MLH1-deficient is thus potentially important in predicting the efficacy of treatment with psoralen and perhaps with other ICL-inducing agents. Crosslinks, linking the complementary stands of the DNA double helix, can lead to cell death, because they are so effective at interfering with normal genomic transactions such as DNA replication. This property of crosslinking agents has long been utilized in cancer therapy. The purpose of our research is to understand the function of DNA repair proteins in cellular responses to DNA interstrand crosslinking agents. MSH2 is a central protein in the recognition of DNA mismatches, and we previously found that it plays an important role in protecting cells against the toxicity of crosslinks. The MLH1 protein functions in DNA mismatch repair in a later step, and we hypothesized that MLH1 may also be involved in repair of crosslinks. We were surprised to find that MLH1 function is important for DNA crosslink-induced signaling, rather than DNA repair. MLH1-deficient cells are more resistant to crosslinks and have defective signaling to processes that signal cell death. This work may have clinical consequences, as mutations in MSH2 and MLH1 are common in tumors. MSH2-deficient cells may be more vulnerable to DNA crosslink-inducing agents than normal, while MLH1-deficient cells have a greater potential to survive crosslinking treatment, which could instead potentiate further tumor initiation.
Collapse
Affiliation(s)
- Qi Wu
- Department of Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, United States of America
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB. The triple helix: 50 years later, the outcome. Nucleic Acids Res 2008; 36:5123-38. [PMID: 18676453 PMCID: PMC2532714 DOI: 10.1093/nar/gkn493] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triplex-forming oligonucleotides constitute an interesting DNA sequence-specific tool that can be used to target cleaving or cross-linking agents, transcription factors or nucleases to a chosen site on the DNA. They are not only used as biotechnological tools but also to induce modifications on DNA with the aim to control gene expression, such as by site-directed mutagenesis or DNA recombination. Here, we report the state of art of the triplex-based anti-gene strategy 50 years after the discovery of such a structure, and we show the importance of the actual applications and the main challenges that we still have ahead of us.
Collapse
Affiliation(s)
- Maria Duca
- LCMBA CNRS UMR6001, University of Nice-Sophia Antipolis, Parc Valrose, 06108 NICE Cedex 2, France
| | | | | | | | | |
Collapse
|
13
|
Jain A, Wang G, Vasquez KM. DNA triple helices: biological consequences and therapeutic potential. Biochimie 2008; 90:1117-30. [PMID: 18331847 PMCID: PMC2586808 DOI: 10.1016/j.biochi.2008.02.011] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/08/2008] [Indexed: 01/25/2023]
Abstract
DNA structure is a critical element in determining its function. The DNA molecule is capable of adopting a variety of non-canonical structures, including three-stranded (i.e. triplex) structures, which will be the focus of this review. The ability to selectively modulate the activity of genes is a long-standing goal in molecular medicine. DNA triplex structures, either intermolecular triplexes formed by binding of an exogenously applied oligonucleotide to a target duplex sequence, or naturally occurring intramolecular triplexes (H-DNA) formed at endogenous mirror repeat sequences, present exploitable features that permit site-specific alteration of the genome. These structures can induce transcriptional repression and site-specific mutagenesis or recombination. Triplex-forming oligonucleotides (TFOs) can bind to duplex DNA in a sequence-specific fashion with high affinity, and can be used to direct DNA-modifying agents to selected sequences. H-DNA plays important roles in vivo and is inherently mutagenic and recombinogenic, such that elements of the H-DNA structure may be pharmacologically exploitable. In this review we discuss the biological consequences and therapeutic potential of triple helical DNA structures. We anticipate that the information provided will stimulate further investigations aimed toward improving DNA triplex-related gene targeting strategies for biotechnological and potential clinical applications.
Collapse
Affiliation(s)
- Aklank Jain
- Department of Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park--Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957, USA
| | | | | |
Collapse
|
14
|
Benfield AP, Macleod MC, Liu Y, Wu Q, Wensel TG, Vasquez KM. Targeted generation of DNA strand breaks using pyrene-conjugated triplex-forming oligonucleotides. Biochemistry 2008; 47:6279-88. [PMID: 18473480 PMCID: PMC2662494 DOI: 10.1021/bi7024029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene targeting by triplex-forming oligonucleotides (TFOs) has proven useful for gene modulation in vivo. Photoreactive molecules have been conjugated to TFOs to direct sequence-specific damage in double-stranded DNA. However, the photoproducts are often repaired efficiently in cells. This limitation has led to the search for sequence-specific photoreactive reagents that can produce more genotoxic lesions. Here we demonstrate that photoactivated pyrene-conjugated TFOs (pyr-TFOs) induce DNA strand breaks near the pyrene moiety with remarkably high efficiency and also produce covalent pyrene-DNA adducts. Free radical scavenging experiments demonstrated a role for singlet oxygen activated by the singlet excited state of pyrene in the mechanism of pyr-TFO-induced DNA damage. In cultured mammalian cells, the effect of photoactivated pyr-TFO-directed DNA damage was to induce mutations, in the form of deletions, approximately 7-fold over background levels, at the targeted site. Thus, pyr-TFOs represent a potentially powerful new tool for directing DNA strand breaks to specific chromosomal locations for biotechnological and potential clinical applications.
Collapse
Affiliation(s)
- Aaron P. Benfield
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Michael C. Macleod
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Yaobin Liu
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Qi Wu
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Theodore G. Wensel
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77380, USA
| | - Karen M. Vasquez
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| |
Collapse
|
15
|
Abstract
Gene targeting with DNA-binding molecules such as triplex-forming oligonucleotides or peptide nucleic acids can be utilized to direct mutagenesis or induce recombination site-specifically. In this chapter, several detailed protocols are described for the design and use of triplex-forming molecules to bind and mediate gene modification at specific chromosomal targets. Target site identification, binding molecule design, as well as various methods to test binding and assess gene modification are described.
Collapse
|
16
|
Wu Q, Gaddis SS, MacLeod MC, Walborg EF, Thames HD, DiGiovanni J, Vasquez KM. High-affinity triplex-forming oligonucleotide target sequences in mammalian genomes. Mol Carcinog 2007; 46:15-23. [PMID: 17013831 DOI: 10.1002/mc.20261] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Site-specific recognition of duplex DNA by triplex-forming oligonucleotides (TFOs) provides a promising approach to manipulate mammalian genomes. A prerequisite for successful gene targeting using this approach is that the targeted gene must contain specific, high-affinity TFO target sequences (TTS). To date, TTS have been identified and characterized in only approximately 37 human or rodent genes, limiting the application of triplex-directed gene targeting. We searched the complete human and mouse genomes using an algorithm designed to identify high-affinity TTS. The resulting data set contains 1.9 million potential TTS for each species. We found that 97.8% of known human and 95.2% of known mouse genes have at least one potential high-affinity TTS in the promoter and/or transcribed gene regions. Importantly, 86.5% of known human and 83% of the known mouse genes have at least one TTS that is unique to that gene. Thus, it is possible to target the majority of human and mouse genes with specific TFOs. We found substantially more potential TTS in the promoter sequences than in the transcribed gene sequences or intergenic sequences in both genomes. We selected 12 mouse genes and 2 human genes critical for cell signaling, proliferation, and/or carcinogenesis, identified potential TTS in each, and determined TFO binding affinities to these sites in vitro. We identified at least one high-affinity, specific TFO binding site within each of these genes. Using this information, many genes involved in mammalian cell proliferation and carcinogenesis can now be targeted.
Collapse
Affiliation(s)
- Qi Wu
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Gaddis SS, Wu Q, Thames HD, DiGiovanni J, Walborg EF, MacLeod MC, Vasquez KM. A web-based search engine for triplex-forming oligonucleotide target sequences. Oligonucleotides 2006; 16:196-201. [PMID: 16764543 DOI: 10.1089/oli.2006.16.196] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Triplex technology offers a useful approach for site-specific modification of gene structure and function both in vitro and in vivo. Triplex-forming oligonucleotides (TFOs) bind to their target sites in duplex DNA, thereby forming triple-helical DNA structures via Hoogsteen hydrogen bonding. TFO binding has been demonstrated to site-specifically inhibit gene expression, enhance homologous recombination, induce mutation, inhibit protein binding, and direct DNA damage, thus providing a tool for gene-specific manipulation of DNA. We have developed a flexible web-based search engine to find and annotate TFO target sequences within the human and mouse genomes. Descriptive information about each site, including sequence context and gene region (intron, exon, or promoter), is provided. The engine assists the user in finding highly specific TFO target sequences by eliminating or flagging known repeat sequences and flagging overlapping genes. A convenient way to check for the uniqueness of a potential TFO binding site is provided via NCBI BLAST. The search engine may be accessed at spi.mdanderson.org/tfo.
Collapse
Affiliation(s)
- Sara S Gaddis
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Living organisms are constantly exposed to detrimental agents both from the environment (e.g. ionizing radiation, ultraviolet light, natural and synthetic chemicals) and from endogenous metabolic processes (e.g. oxidative and hydrolytic reactions), resulting in modifications of proteins, lipids and DNA. Proteins and lipids are degraded and resynthesized, but the DNA is replicated only during cell division, when DNA damage may result in mutation fixation. Thus the DNA damage generated has the potential to lead to carcinogenesis, cell death, or other genetic disorders in the absence of efficient error-free repair. Because modifications in DNA sequence or structure may be incompatible with its essential role in preservation and transmission of genetic information from generation to generation, exquisitely sensitive DNA repair pathways have evolved to maintain genomic stability and cell viability. This review focuses on the repair and processing of genome destabilizing lesions and helical distortions that differ significantly from the canonical B-form DNA in mammalian cells. In particular, we discuss the introduction and processing of site-specific lesions in mammalian cells with an emphasis on psoralen interstrand crosslinks.
Collapse
Affiliation(s)
- Madhava C Reddy
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | |
Collapse
|
19
|
Wu Q, Christensen LA, Legerski RJ, Vasquez KM. Mismatch repair participates in error-free processing of DNA interstrand crosslinks in human cells. EMBO Rep 2005; 6:551-7. [PMID: 15891767 PMCID: PMC1369090 DOI: 10.1038/sj.embor.7400418] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 03/16/2005] [Accepted: 04/06/2005] [Indexed: 11/09/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) present formidable blocks to DNA metabolic processes and must be repaired for cell survival. ICLs are induced in DNA by intercalating compounds such as the widely used therapeutic agent psoralen. In bacteria, both nucleotide excision repair (NER) and homologous recombination are required for the repair of ICLs. The processing of ICLs in mammalian cells is not clearly understood. However, it is known that processing can occur by NER, which for psoralen ICLs can be an error-generating process conducive to mutagenesis. We show here that another repair pathway, mismatch repair (MMR), is also involved in eliminating psoralen ICLs in human cells. MMR deficiency renders cells hypersensitive to psoralen ICLs without diminishing their mutagenic potential, suggesting that MMR does not contribute to error-generating repair, and that MMR may represent a relatively error-free mechanism for processing these lesions in human cells. Thus, enhancement of MMR relative to NER may reduce the mutagenesis caused by DNA ICLs in humans.
Collapse
Affiliation(s)
- Qi Wu
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, Texas 78957, USA
| | - Laura A. Christensen
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, Texas 78957, USA
| | - Randy J. Legerski
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, Texas 78957, USA
| |
Collapse
|
20
|
Thoma BS, Wakasugi M, Christensen J, Reddy MC, Vasquez KM. Human XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks. Nucleic Acids Res 2005; 33:2993-3001. [PMID: 15914671 PMCID: PMC1140082 DOI: 10.1093/nar/gki610] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) represent a severe form of damage that blocks DNA metabolic processes and can lead to cell death or carcinogenesis. The repair of DNA ICLs in mammals is not well characterized. We have reported previously that a key protein complex of nucleotide excision repair (NER), XPA-RPA, recognizes DNA ICLs. We now report the use of triplex technology to direct a site-specific psoralen ICL to a target DNA substrate to determine whether the human global genome NER damage recognition complex, XPC-hHR23B, recognizes this lesion. Our results demonstrate that XPC-hHR23B recognizes psoralen ICLs, which have a structure fundamentally different from other lesions that XPC-hHR23B is known to bind, with high affinity and specificity. XPC-hHR23B and XPA-RPA protein complexes were also observed to bind psoralen ICLs simultaneously, demonstrating not only that psoralen ICLs are recognized by XPC-hHR23B alone, but also that XPA-RPA may interact cooperatively with XPC-hHR23B on damaged DNA, forming a multimeric complex. Since XPC-hHR23B and XPA-RPA participate in the recognition and verification of DNA damage, these results support the hypothesis that interplay between components of the global genome repair sub-pathway of NER is critical for the recognition of psoralen DNA ICLs in the mammalian genome.
Collapse
Affiliation(s)
| | - Mitsuo Wakasugi
- Faculty of Pharmaceutical Sciences, Kanazawa UniversityTakara-machi, Kanazawa 920-0934, Japan
| | - Jesper Christensen
- Biotech Research and Innovation CentreFruebjergvej 3, 2100 Copenhagen, Denmark
| | | | - Karen M. Vasquez
- To whom correspondence should be addressed. Tel: +512 237 9324; Fax: +512 237 2475;
| |
Collapse
|
21
|
Rogers FA, Manoharan M, Rabinovitch P, Ward DC, Glazer PM. Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides. Nucleic Acids Res 2004; 32:6595-604. [PMID: 15602001 PMCID: PMC545466 DOI: 10.1093/nar/gkh998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) are DNA-binding molecules, which offer the potential to selectively modulate gene expression. However, the biological activity of TFOs as potential antigene compounds has been limited by cellular uptake. Here, we investigate the effect of cell-penetrating peptides on the biological activity of TFOs as measured in an assay for gene-targeted mutagenesis. Using the transport peptide derived from the third helix of the homeodomain of antennapedia (Antp), we tested TFO-peptide conjugates compared with unmodified TFOs. TFOs covalently linked to Antp resulted in a 20-fold increase in mutation frequency when compared with 'naked' oligonucleotides. There was no increase above background in mutation frequency when Antp by itself was added to the cells or when Antp was linked to mixed or scrambled sequence control oligonucleotides. In addition, the TFO-peptide conjugates increased the mutation frequency of the target gene, and not the control gene, in a dose-responsive manner. Confocal microscopy using labeled oligonucleotides indicated increased cellular uptake of TFOs when linked to Antp, consistent with the gene-targeting data. These results suggest that peptide conjugation may enhance intranuclear delivery of reagents designed to bind to chromosomal DNA.
Collapse
Affiliation(s)
- Faye A Rogers
- Department of Therapeutic Radiology, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 068520, USA
| | | | | | | | | |
Collapse
|
22
|
Christensen LA, Conti CJ, Fischer SM, Vasquez KM. Mutation frequencies in murine keratinocytes as a function of carcinogenic status. Mol Carcinog 2004; 40:122-33. [PMID: 15170817 DOI: 10.1002/mc.20026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A link between genetic abnormalities and carcinogenesis is well established. It follows that a correlation exists between mutation frequency and malignant progression. We have determined the spontaneous and DNA damage-induced mutation frequencies for a series of cell lines derived from SENCAR mouse keratinocytes at various stages of malignant progression. Nontumorigenic mouse keratinocytes (3PC), papillomas (MT1/2), squamous-cell carcinomas (CH72), and spindle-cell carcinomas (CH72T4) were transfected with damaged or undamaged shuttle vectors containing a supF mutation reporter gene. The plasmid mutation frequencies were determined by blue/white screening. The spontaneous plasmid mutation frequency of the squamous-cell carcinoma line was slightly higher than the mutation frequencies of the other cell lines tested. The DNA damage induced by triplex-directed psoralen crosslinks increased the mutation frequencies sixfold to eighteenfold in all cell lines tested, with no significant differences among the cell lines. Sequence analyses revealed that the spindle-cell carcinoma line had a different spontaneous mutation spectrum from the other cell lines. DNA damage-induced mutations were predominantly point mutations at the triplex-duplex junction in all of the cell lines tested, as expected. These data suggested that a strong mutator phenotype was not required for progression to an advanced malignant phenotype in our model system.
Collapse
Affiliation(s)
- Laura A Christensen
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
| | | | | | | |
Collapse
|
23
|
Abstract
A technique that can direct the repair of a genetic mutation in a human chromosome using the DNA repair machinery of the cell is under development. Although this approach is not as mature as other forms of gene therapy and fundamental problems continue to arise, it promises to be the ultimate therapy for many inherited disorders. There is a continuing effort to understand the potential and the limitations of this controversial approach.
Collapse
Affiliation(s)
- Li Liu
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
24
|
Rogers FA, Vasquez KM, Egholm M, Glazer PM. Site-directed recombination via bifunctional PNA-DNA conjugates. Proc Natl Acad Sci U S A 2002; 99:16695-700. [PMID: 12461167 PMCID: PMC139206 DOI: 10.1073/pnas.262556899] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-specific DNA binding molecules offer the potential for genetic manipulation of mammalian cells. Peptide nucleic acids (PNAs) are a DNA mimic in which the purine and pyrimidine bases are attached to a polyamide backbone. PNAs bind with high affinity to single-stranded DNA via Watson-Crick base pairing and can form triple helices via Hoogsteen binding to DNAPNA duplexes. Dimeric bis-PNAs capable of both strand invasion and triplex formation can form clamp structures on target DNAs. As a strategy to promote site-directed recombination, a bis-PNA was coupled to a 40-nt donor DNA fragment homologous to an adjacent region in the target gene. The PNA-DNA conjugate was found to mediate site-directed recombination with a plasmid substrate in human cell-free extracts, resulting in correction of a mutation in a reporter gene at a frequency at least 60-fold above background. Induced site-specific recombination was also seen when the bis-PNA and the donor DNA were co-mixed without covalent linkage. In addition, the bis-PNA and the bis-PNA-DNA conjugate were found to induce DNA repair specifically in the target plasmid. Both the PNA-induced recombination and the PNA-induced repair were found to be dependent on the nucleotide excision repair factor, XPA (xeroderma pigmentosum complementation group A protein). These results suggest that the formation of a PNA clamp on duplex DNA creates a helical distortion that strongly provokes DNA repair and thereby sensitizes the target site to recombination. The ability to promote recombination in a site-directed manner using PNA-DNA conjugates may provide a useful strategy to achieve targeted correction of defective genes.
Collapse
Affiliation(s)
- Faye A Rogers
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
25
|
Vasquez KM, Christensen J, Li L, Finch RA, Glazer PM. Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions. Proc Natl Acad Sci U S A 2002; 99:5848-53. [PMID: 11972036 PMCID: PMC122865 DOI: 10.1073/pnas.082193799] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide excision repair (NER) plays a central role in maintaining genomic integrity by detecting and repairing a wide variety of DNA lesions. Xeroderma pigmentosum complementation group A protein (XPA) is an essential component of the repair machinery, and it is thought to be involved in the initial step as a DNA damage recognition and/or confirmation factor. Human replication protein A (RPA) and XPA have been reported to interact to form a DNA damage recognition complex with greater specificity for damaged DNA than XPA alone. The mechanism by which these two proteins recognize such a wide array of structures resulting from different types of DNA damage is not known. One possibility is that they recognize a common feature of the lesions, such as distortions of the helical backbone. We have tested this idea by determining whether human XPA and RPA proteins can recognize the helical distortions induced by a DNA triple helix, a noncanonical DNA structure that has been shown to induce DNA repair, mutagenesis, and recombination. We measured binding of XPA and RPA, together or separately, to substrates containing triplexes with three, two, or no strands covalently linked by psoralen conjugation and photoaddition. We found that RPA alone recognizes all covalent triplex structures, but also forms multivalent nonspecific DNA aggregates at higher concentrations. XPA by itself does not recognize the substrates, but it binds them in the presence of RPA. Addition of XPA decreases the nonspecific DNA aggregate formation. These results support the hypothesis that the NER machinery is targeted to helical distortions and demonstrate that RPA can recognize damaged DNA even without XPA.
Collapse
Affiliation(s)
- Karen M Vasquez
- Department of Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Park Road 1-C, Smithville, TX 78957, USA.
| | | | | | | | | |
Collapse
|
26
|
Vasquez KM, Dagle JM, Weeks DL, Glazer PM. Chromosome targeting at short polypurine sites by cationic triplex-forming oligonucleotides. J Biol Chem 2001; 276:38536-41. [PMID: 11504712 DOI: 10.1074/jbc.m101797200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) bind specifically to duplex DNA and provide a strategy for site-directed modification of genomic DNA. Recently we demonstrated TFO-mediated targeted gene knockout following systemic administration in animals. However, a limitation to this approach is the requirement for a polypurine tract (typically 15-30 base pairs (bp)) in the target DNA to afford high affinity third strand binding, thus restricting the number of sites available for effective targeting. To overcome this limitation, we have investigated the ability of chemically modified TFOs to target a short (10 bp) site in a chromosomal locus in mouse cells and induce site-specific mutations. We report that replacement of the phosphodiester backbone with cationic phosphoramidate linkages, either N,N-diethylethylenediamine or N,N-dimethylaminopropylamine, in a 10-nucleotide, psoralen-conjugated TFO confers substantial increases in binding affinity in vitro and is required to achieve targeted modification of a chromosomal reporter gene in mammalian cells. The triplex-directed, site-specific induction of mutagenesis in the chromosomal target was charge- and modification-dependent, with the activity of N,N-diethylethylenediamine > N,N-dimethylaminopropylamine phosphodiester, resulting in 10-, 6-, and <2-fold induction of target gene mutagenesis, respectively. Similarly, N,N-diethylethylenediamine and N,N-dimethylaminopropylamine TFOs were found to enhance targeting at a 16-bp G:C bp-rich target site in a chromatinized episomal target in monkey COS cells, although this longer site was also targetable by a phosphodiester TFO. These results indicate that replacement of phosphodiester bonds with positively charged N,N-diethylethylenediamine linkages enhances intracellular activity and allows targeting of relatively short polypurine sites, thereby substantially expanding the number of potential triplex target sites in the genome.
Collapse
Affiliation(s)
- K M Vasquez
- Department of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | |
Collapse
|
27
|
Casey BP, Glazer PM. Gene targeting via triple-helix formation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:163-92. [PMID: 11525382 DOI: 10.1016/s0079-6603(01)67028-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A report on a recent workshop entitled "Gene-Targeted Drugs: Function and Delivery" conveys a justified optimism for the eventual feasibility and therapeutic benefit of gene-targeting strategies. Although multiple approaches are being explored, this chapter focuses primarily on the uses of triplex-forming oligonucleotides (TFOs). TFOs are molecules that bind in the major groove of duplex DNA and by so doing can produce triplex structures. They bind to the purine-rich strand of the duplex through Hoogsteen or reverse Hoogsteen hydrogen bonding. They exist in two sequence motifs, either pyrimidine or purine. Improvements in delivery of these TFOs are reducing the quantities required for an effective intracellular concentration. New TFO chemistries are increasing the half-life of these oligos and expanding the range of sequences that can be targeted. Alone or conjugated to active molecules, TFOs have proven to be versatile agents both in vitro and in vivo. Foremost, TFOs have been employed in antigene strategies as an alternative to antisense technology. Conversely, they are also being investigated as possible upregulators of transcription. TFOs have also been shown to produce mutagenic events, even in the absence of tethered mutagens. TFOs can increase rates of recombination between homologous sequences in close proximity. Directed sequence changes leading to gene correction have been achieved through the use of TFOs. Because it is theorized that these modifications are due to the instigation of DNA repair mechanisms, an important area of TFO research is the study of triple-helix recognition and repair.
Collapse
Affiliation(s)
- B P Casey
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
28
|
Puri N, Majumdar A, Cuenoud B, Natt F, Martin P, Boyd A, Miller PS, Seidman MM. Targeted gene knockout by 2'-O-aminoethyl modified triplex forming oligonucleotides. J Biol Chem 2001; 276:28991-8. [PMID: 11389147 DOI: 10.1074/jbc.m103409200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triplex forming oligonucleotides (TFOs) are of interest because of their potential for facile gene targeting. However, the failure of TFOs to bind target sequences at physiological pH and Mg(2+) concentration has limited their biological applications. Recently, pyrimidine TFOs with 2'-O-aminoethyl (AE) substitutions were shown to have enhanced kinetics and stability of triplex formation (Cuenoud, B., Casset, F., Husken, D., Natt, F., Wolf, R. M., Altmann, K. H., Martin, P., and Moser H. E. (1998) Angew. Chem. Int. Ed. 37, 1288--1291). We have prepared psoralen-linked TFOs with varying amounts of the AE-modified residues, and have characterized them in biochemical assays in vitro, and in stability and HPRT gene knockout assays in vivo. The AE TFOs showed higher affinity for the target in vitro than a TFO with uniform 2'-OMe substitution, with relatively little loss of affinity when the assay was performed in reduced Mg(2+). Once formed they were also more stable in "physiological" buffer, with the greatest affinity and stability displayed by the TFO with all but one residue in the AE format. However, TFOs with lesser amounts of the AE modification formed the most stable triplexes in vivo, and showed the highest HPRT gene knockout activity. We conclude that the AE modification can enhance the biological activity of pyrimidine TFOs, but that extensive substitution is deleterious.
Collapse
Affiliation(s)
- N Puri
- NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Vasquez KM, Marburger K, Intody Z, Wilson JH. Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8403-10. [PMID: 11459982 PMCID: PMC37450 DOI: 10.1073/pnas.111009698] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene targeting in mammalian cells has proven invaluable in biotechnology, in studies of gene structure and function, and in understanding chromosome dynamics. It also offers a potential tool for gene-therapeutic applications. Two limitations constrain the current technology: the low rate of homologous recombination in mammalian cells and the high rate of random (nontargeted) integration of the vector DNA. Here we consider possible ways to overcome these limitations within the framework of our present understanding of recombination mechanisms and machinery. Several studies suggest that transient alteration of the levels of recombination proteins, by overexpression or interference with expression, may be able to increase homologous recombination or decrease random integration, and we present a list of candidate genes. We consider potentially beneficial modifications to the vector DNA and discuss the effects of methods of DNA delivery on targeting efficiency. Finally, we present work showing that gene-specific DNA damage can stimulate local homologous recombination, and we discuss recent results with two general methodologies--chimeric nucleases and triplex-forming oligonucleotides--for stimulating recombination in cells.
Collapse
Affiliation(s)
- K M Vasquez
- Science Park Research Division, M. D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
30
|
Praseuth D, Guieysse AL, Hélène C. Triple helix formation and the antigene strategy for sequence-specific control of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1489:181-206. [PMID: 10807007 DOI: 10.1016/s0167-4781(99)00149-9] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Specific gene expression involves the binding of natural ligands to the DNA base pairs. Among the compounds rationally designed for artificial regulation of gene expression, oligonucleotides can bind with a high specificity of recognition to the major groove of double helical DNA by forming Hoogsteen type bonds with purine bases of the Watson-Crick base pairs, resulting in triple helix formation. Although the potential target sequences were originally restricted to polypurine-polypyrimidine sequences, considerable efforts were devoted to the extension of the repertoire by rational conception of appropriate derivatives. Efficient tools based on triple helices were developed for various biochemical applications such as the development of highly specific artificial nucleases. The antigene strategy remains one of the most fascinating fields of triplex application to selectively control gene expression. Targeting of genomic sequences is now proved to be a valuable concept on a still limited number of studies; local mutagenesis is in this respect an interesting application of triplex-forming oligonucleotides on cell cultures. Oligonucleotide penetration and compartmentalization in cells, stability to intracellular nucleases, accessibility of the target sequences in the chromatin context, the residence time on the specific target are all limiting steps that require further optimization. The existence and the role of three-stranded DNA in vivo, its interaction with intracellular proteins is worth investigating, especially relative to the regulation of gene transcription, recombination and repair processes.
Collapse
Affiliation(s)
- D Praseuth
- Laboratoire de Biophysique, INSERM U201, CNRS UMR 8646, Muséum National d'Histoire Naturelle, Paris, France
| | | | | |
Collapse
|
31
|
Mezhevaya K, Winters TA, Neumann RD. Gene targeted DNA double-strand break induction by (125)I-labeled triplex-forming oligonucleotides is highly mutagenic following repair in human cells. Nucleic Acids Res 1999; 27:4282-90. [PMID: 10518622 PMCID: PMC148705 DOI: 10.1093/nar/27.21.4282] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A parallel binding motif 16mer triplex-forming oligonucleotide (TFO) complementary to a polypurine-polypyrimidine target region near the 3'-end of the SupF gene of plasmid pSP189 was labeled with [5-(125)I]dCMP at position 15. Following triplex formation and decay accumulation, radiation-induced site-specific double-strand breaks (DSBs) were produced in the pSP189 SupF gene. Bulk damaged DNA and the isolated site-specific DSB-containing DNA were separately transfected into human WI38VA13 cells and allowed to repair prior to recovery and analysis of mutants. Bulk damaged DNA had a relatively low mutation frequency of 2.7 x 10(-3). In contrast, the isolated linear DNA containing site-specific DSBs had an unusually high mutation frequency of 7.9 x 10(-1). This was nearly 300-fold greater than that observed for the bulk damaged DNA mixture, and >1.5 x 10(4)-fold greater than background. The mutation spectra displayed a high proportion of deletion mutants targeted to the(125)I binding position within the SupF gene for both bulk damaged DNA and isolated linear DNA. Both spectra were characterized by complex mutations with mixtures of changes. However, mutations recovered from the linear site-specific DSB-containing DNA presented a much higher proportion of complex deletion mutations.
Collapse
Affiliation(s)
- K Mezhevaya
- Department of Nuclear Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
32
|
|
33
|
Abstract
Oligonucleotides offer enormous potential for manipulating gene function in cells and, as such, constitute a promising new class of pharmaceutical agents. Oligonucleotides that form triple helices (triplexes) at specific DNA sequences in defined genes can be used to reduce transcription selectively, to introduce site-specific mutations or to stimulate gene-specific targeted recombination.
Collapse
Affiliation(s)
- K M Vasquez
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
34
|
Wang Z, Rana TM. DNA damage-dependent transcriptional arrest and termination of RNA polymerase II elongation complexes in DNA template containing HIV-1 promoter. Proc Natl Acad Sci U S A 1997; 94:6688-93. [PMID: 9192626 PMCID: PMC21219 DOI: 10.1073/pnas.94.13.6688] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have developed a new biochemical method to isolate a homogeneous population of RNA polymerase II (RNA pol II) elongation complexes arrested at a DNA damage site. The method involves triple-helix formation at a predetermined site in DNA template with a third strand labeled with psoralen at its 5'-end and a biotin at the 3'-end. After triplex formation and near-ultraviolet irradiation (360 nm), DNA templates modified with psoralen were immobilized on streptavidin-coated magnetic beads and used for in vitro transcription reactions with HeLa nuclear extracts. Separation of magnetic beads from solution results in isolation of arrested elongation complexes on the immobilized DNA templates. We have applied the method to arrest RNA pol II elongation complexes on a DNA template containing HIV-1 promoter. Our results indicate that psoralen crosslink in the template strand efficiently arrests elongation complexes, and psoralen monoadducts terminate transcription. Our results also demonstrate that a triple-helical structure stabilized by an intercalator, acridine, attached to the third strand of the helix inhibits transcription by a termination pathway. Isolation of stable RNA pol II elongation complexes arrested at DNA damage sites is a remarkable finding. This result demonstrates that arrested elongation complexes are impervious to DNA damage repair machinery and other regulatory proteins present in HeLa nuclear extracts. The method of delivering site-specific psoralen damage by a triplex structure and isolation of arrested RNA pol II elongation complexes should be generalizable to any promoter and DNA template sequences. This strategy provides a new approach to study the mechanism of transcription elongation and transcription-coupled DNA damage repair.
Collapse
Affiliation(s)
- Z Wang
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|