1
|
Sehra N, Parmar R, Jain R. Peptide-based amyloid-beta aggregation inhibitors. RSC Med Chem 2024:d4md00729h. [PMID: 39882170 PMCID: PMC11773382 DOI: 10.1039/d4md00729h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/28/2024] [Indexed: 01/31/2025] Open
Abstract
Aberrant protein misfolding and accumulation is considered to be a major pathological pillar of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Aggregation of amyloid-β (Aβ) peptide leads to the formation of toxic amyloid fibrils and is associated with cognitive dysfunction and memory loss in Alzheimer's disease (AD). Designing molecules that inhibit amyloid aggregation seems to be a rational approach to AD drug development. Over the years, researchers have utilized a variety of therapeutic strategies targeting different pathways, extensively studying peptide-based approaches to understand AD pathology and demonstrate their efficacy against Aβ aggregation. This review highlights rationally designed peptide/mimetics, including structure-based peptides, metal-peptide chelators, stapled peptides, and peptide-based nanomaterials as potential amyloid inhibitors.
Collapse
Affiliation(s)
- Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India
| |
Collapse
|
2
|
Zhang W, Hu J, Liu R, Dai J, Yuan L, Liu Y, Chen B, Gong M, Xia F, Lou X. A Peptide-Conjugated Probe with Cleavage-Induced Morphological Change for Treatment on Tumor Cell Membrane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207228. [PMID: 36793151 PMCID: PMC10104630 DOI: 10.1002/advs.202207228] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Despite the promising advancements of in situ forming nanoassembly for the inhibition of tumor growth and metastasis, the lack of sufficient triggering sites and hardly controlling the forming position restrict their further developments. Herein, a smart transformable peptide-conjugated probe (DMFA) with enzyme cleavage-induced morphological change is designed for treatment on the tumor cell membrane. Specifically, after self-assembling into nanoparticles and anchoring on the cell membrane with sufficient interaction sites rapidly and stably, DMFA will be efficiently cleaved into α-helix forming part (DP) and β-sheet forming part (LFA) by overexpressed matrix metalloproteinase-2. Thus, the promoted Ca2+ influx by DP-induced cell membrane breakage and decreased Na+ /K+ -ATPase activity by LFA-assembled nanofibers wrapping the cells can inhibit PI3K-Akt signaling pathway, leading to the inhibition of tumor cell growth and metastasis. This peptide-conjugated probe undergoes in situ morphological transformation on the cell membrane, exhibiting great potential in tumor therapy.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Jing‐Jing Hu
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Rui Liu
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Jun Dai
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Lizhen Yuan
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Yiheng Liu
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Bochao Chen
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Mingxing Gong
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| |
Collapse
|
3
|
Ghosh S, Ali R, Verma S. Aβ-oligomers: A potential therapeutic target for Alzheimer's disease. Int J Biol Macromol 2023; 239:124231. [PMID: 36996958 DOI: 10.1016/j.ijbiomac.2023.124231] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
The cascade of amyloid formation relates to multiple complex events at the molecular level. Previous research has established amyloid plaque deposition as the leading cause of Alzheimer's disease (AD) pathogenesis, detected mainly in aged population. The primary components of the plaques are two alloforms of amyloid-beta (Aβ), Aβ1-42 and Aβ1-40 peptides. Recent studies have provided considerable evidence contrary to the previous claim indicating that amyloid-beta oligomers (AβOs) as the main culprit responsible for AD-associated neurotoxicity and pathogenesis. In this review, we have discussed the primary features of AβOs, such as assembly formation, the kinetics of oligomer formation, interactions with various membranes/membrane receptors, the origin of toxicity, and oligomer-specific detection methods. Recently, the discovery of rationally designed antibodies has opened a gateway for using synthesized peptides as a grafting component in the complementarity determining region (CDR) of antibodies. Thus, the Aβ sequence motif or the complementary peptide sequence in the opposite strand of the β-sheet (extracted from the Protein Data Bank: PDB) helps design oligomer-specific inhibitors. The microscopic event responsible for oligomer formation can be targeted, and thus prevention of the overall macroscopic behaviour of the aggregation or the associated toxicity can be achieved. We have carefully reviewed the oligomer formation kinetics and associated parameters. Besides, we have depicted a thorough understanding of how the synthesized peptide inhibitors can impede the early aggregates (oligomers), mature fibrils, monomers, or a mixture of the species. The oligomer-specific inhibitors (peptides or peptide fragments) lack in-depth chemical kinetics and optimization control-based screening. In the present review, we have proposed a hypothesis for effectively screening oligomer-specific inhibitors using the chemical kinetics (determining the kinetic parameters) and optimization control strategy (cost-dependent analysis). Further, it may be possible to implement the structure-kinetic-activity-relationship (SKAR) strategy instead of structure-activity-relationship (SAR) to improve the inhibitor's activity. The controlled optimization of the kinetic parameters and dose usage will be beneficial for narrowing the search window for the inhibitors.
Collapse
|
4
|
Perugini V, Santin M. The Real-Time Validation of the Effectiveness of Third-Generation Hyperbranched Poly(ɛ-lysine) Dendrons-Modified KLVFF Sequences to Bind Amyloid-β 1-42 Peptides Using an Optical Waveguide Light-Mode Spectroscopy System. SENSORS (BASEL, SWITZERLAND) 2022; 22:9561. [PMID: 36502262 PMCID: PMC9736926 DOI: 10.3390/s22239561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The aggregation of cytotoxic amyloid peptides (Aβ1-42) is widely recognised as the cause of brain tissue degeneration in Alzheimer's disease (AD). Indeed, evidence indicates that the deposition of cytotoxic Aβ1-42 plaques formed through the gradual aggregation of Aβ1-42 monomers into fibrils determines the onset of AD. Thus, distinct Aβ1-42 inhibitors have been developed, and only recently, the use of short linear peptides has shown promising results by either preventing or reversing the process of Aβ1-42 aggregation. Among them, the KLVFF peptide sequence, which interacts with the hydrophobic region of Aβ16-20, has received widespread attention due to its ability to inhibit fibril formation of full-length Aβ1-42. In this study, hyperbranched poly-L-lysine dendrons presenting sixteen KLVFF at their uppermost molecular branches were designed with the aim of providing the KLVFF sequence with a molecular scaffold able to increase its stability and of improving Aβ1-42 fibril formation inhibitory effect. These high-purity branched KLVFF were used to functionalise the surface of the metal oxide chip of the optical waveguide lightmode spectroscopy sensor showing the more specific, accurate and rapid measurement of Aβ1-42 than that detected by linear KLVFF peptides.
Collapse
|
5
|
Aβ and Tau Interact with Metal Ions, Lipid Membranes and Peptide-Based Amyloid Inhibitors: Are These Common Features Relevant in Alzheimer’s Disease? Molecules 2022; 27:molecules27165066. [PMID: 36014310 PMCID: PMC9414153 DOI: 10.3390/molecules27165066] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, the amyloid hypothesis, i.e., the abnormal accumulation of toxic Aβ assemblies in the brain, has been considered the mainstream concept sustaining research in Alzheimer’s Disease (AD). However, the course of cognitive decline and AD development better correlates with tau accumulation rather than amyloid peptide deposition. Moreover, all clinical trials of amyloid-targeting drug candidates have been unsuccessful, implicitly suggesting that the amyloid hypothesis needs significant amendments. Accumulating evidence supports the existence of a series of potentially dangerous relationships between Aβ oligomeric species and tau protein in AD. However, the molecular determinants underlying pathogenic Aβ/tau cross interactions are not fully understood. Here, we discuss the common features of Aβ and tau molecules, with special emphasis on: (i) the critical role played by metal dyshomeostasis in promoting both Aβ and tau aggregation and oxidative stress, in AD; (ii) the effects of lipid membranes on Aβ and tau (co)-aggregation at the membrane interface; (iii) the potential of small peptide-based inhibitors of Aβ and tau misfolding as therapeutic tools in AD. Although the molecular mechanism underlying the direct Aβ/tau interaction remains largely unknown, the arguments discussed in this review may help reinforcing the current view of a synergistic Aβ/tau molecular crosstalk in AD and stimulate further research to mechanism elucidation and next-generation AD therapeutics.
Collapse
|
6
|
Vezenkov LT, Danalev DL, Iwanov I, Lozanov V, Atanasov A, Todorova R, Vassilev N, Karadjova V. Synthesis and biological study of new galanthamine-peptide derivatives designed for prevention and treatment of Alzheimer 's disease. Amino Acids 2022; 54:897-910. [PMID: 35562605 DOI: 10.1007/s00726-022-03167-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
Abstract
The Alzheimer's disease leads to neurodegenerative processes and affecting negatively million people worldwide. The treatment of the disease is still difficult and incomplete in practice. Galanthamine is one of the most commonly used drugs against the illness. The main aim of this work is design and synthesis of new derivatives of galanthamine comprising peptide moiety as well as study of their β-secretase inhibitory activity and the anti-aggregating effect. All new derivatives of galanthamine containing analogues of Leu-Val-Phe-Phe (Aβ17-Aβ20) were synthesized in solution using fragment and consecutive condensation approaches. The new derivatives were characterized by melting points, NMR, and HPLC/MS. They were tested in vitro for β-secretase inhibition activity by means of fluorescent method and were investigated in vitro for anti-aggregation activity on sheep platelet-rich plasma. Although the new compounds do not contain a structural element responsible for the β-secretase inhibition, five of them show high or good β-secretase inhibitory activity between 19.98 and 51.19% with IC50 between 1.95 and 5.26 nM. Four of the new molecules were able to inhibit platelet aggregation between 55.0 and 90.0% with IC50 between 0.69 and 1.36 µM. Four of the compounds were able to inhibit platelet aggregation and two of them have high anti-aggregating effects.
Collapse
Affiliation(s)
| | - Dancho L Danalev
- University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria.
| | - Iwan Iwanov
- University of Chemical Technology and Metallurgy, Sofia, 1756, Bulgaria
| | - Valentin Lozanov
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, 1000, Bulgaria
| | - Atanas Atanasov
- Medical Faculty, Trakia University, Stara Zagora, 6000, Bulgaria
| | - Rumyana Todorova
- Medical Faculty, Trakia University, Stara Zagora, 6000, Bulgaria
| | - Nikolay Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | | |
Collapse
|
7
|
Breaker peptides against amyloid-β aggregation: a potential therapeutic strategy for Alzheimer's disease. Future Med Chem 2021; 13:1767-1794. [PMID: 34498978 DOI: 10.4155/fmc-2021-0184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, for which blocking the early steps of extracellular misfolded amyloid-β (Aβ) aggregation is a promising therapeutic approach. However, the pathological features of AD progression include the accumulation of intracellular tau protein, membrane-catalyzed cell death and the abnormal deposition of Aβ. Here, we focus on anti-amyloid breaker peptides derived from the Aβ sequence and non-Aβ-based peptides containing both natural and modified amino acids. Critical aspects of the breaker peptides include N-methylation, conformational restriction through cyclization, incorporation of unnatural amino acid, fluorinated molecules, polymeric nanoparticles and PEGylation. This review confers a general idea of such breaker peptides with in vitro and in vivo studies, which may advance our understanding of AD pathology and develop an effective treatment strategy against AD.
Collapse
|
8
|
Pseudopeptide Amyloid Aggregation Inhibitors: In Silico, Single Molecule and Cell Viability Studies. Int J Mol Sci 2021; 22:ijms22031051. [PMID: 33494369 PMCID: PMC7865305 DOI: 10.3390/ijms22031051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegeneration in Alzheimer's disease (AD) is defined by pathology featuring amyloid-β (Aβ) deposition in the brain. Aβ monomers themselves are generally considered to be nontoxic, but misfold into β-sheets and aggregate to form neurotoxic oligomers. One suggested strategy to treat AD is to prevent the formation of toxic oligomers. The SG inhibitors are a class of pseudopeptides designed and optimized using molecular dynamics (MD) simulations for affinity to Aβ and experimentally validated for their ability to inhibit amyloid-amyloid binding using single molecule force spectroscopy (SMFS). In this work, we provide a review of our previous MD and SMFS studies of these inhibitors and present new cell viability studies that demonstrate their neuroprotective effects against Aβ(1-42) oligomers using mouse hippocampal-derived HT22 cells. Two of the tested SG inhibitors, predicted to bind Aβ in anti-parallel orientation, demonstrated neuroprotection against Aβ(1-42). A third inhibitor, predicted to bind parallel to Aβ, was not neuroprotective. Myristoylation of SG inhibitors, intended to enhance delivery across the blood-brain barrier (BBB), resulted in cytotoxicity. This is the first use of HT22 cells for the study of peptide aggregation inhibitors. Overall, this work will inform the future development of peptide aggregation inhibitors against Aβ toxicity.
Collapse
|
9
|
Kapadia A, Sharma KK, Maurya IK, Singh V, Khullar M, Jain R. Structural and mechanistic insights into the inhibition of amyloid-β aggregation by Aβ 39-42 fragment derived synthetic peptides. Eur J Med Chem 2020; 212:113126. [PMID: 33395622 DOI: 10.1016/j.ejmech.2020.113126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
The inhibition of amyloid-β (Aβ) aggregation is a promising approach towards therapeutic intervention for Alzheimer's disease (AD). Thirty eight tetrapeptides based upon Aβ39-42C-terminus fragment of the parent Aβ peptide were synthesized. The sequential replacement/modification employing unnatural amino acids imparted scaffold diversity, augmented activity, enhanced blood brain barrier permeability and offered proteolytic stability to the synthetic peptides. Several peptides exhibited promising protection against Aβ aggregation-mediated-neurotoxicity in PC-12 cells at doses ranged between 10 μM and 0.1 μM, further confirmed by the thioflavin-T fluorescence assay. CD study illustrate that these peptides restrict the β-sheet formation, and the non-appearance of Aβ42 fibrillar structures in the electron microscopy confirm the inhibition of Aβ42 aggregation. HRMS and ANS fluorescence spectroscopic analysis provided additional mechanistic insights. Two selected lead peptides 5 and 16 depicted enhanced blood-brain penetration and stability against serum and proteolytic enzyme. Structural insights into ligand-Aβ interactions on the monomeric and proto-fibrillar units of Aβ were computationally studied. Promising inhibitory potential and short sequence of the lead peptides offers new avenues for the advancement of peptide-derived therapeutics for AD.
Collapse
Affiliation(s)
- Akshay Kapadia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Punjab, 160 062, India
| | - Indresh Kumar Maurya
- Department of Microbial Biotechnology, Punjab University, Sector 25, Chandigarh, 160 014, India
| | - Varinder Singh
- Post Graduate Institute of Medical Education and Research, Sector 11, Chandigarh, 160 014, India
| | - Madhu Khullar
- Post Graduate Institute of Medical Education and Research, Sector 11, Chandigarh, 160 014, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Punjab, 160 062, India.
| |
Collapse
|
10
|
Behl T, Kaur I, Fratila O, Brata R, Bungau S. Exploring the Potential of Therapeutic Agents Targeted towards Mitigating the Events Associated with Amyloid-β Cascade in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21207443. [PMID: 33050199 PMCID: PMC7589257 DOI: 10.3390/ijms21207443] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
One of the most commonly occurring neurodegenerative disorders, Alzheimer's disease (AD), encompasses the loss of cognitive and memory potential, impaired learning, dementia and behavioral defects, and has been prevalent since the 1900s. The accelerating occurrence of AD is expected to reach 65.7 million by 2030. The disease results in neural atrophy and disrupted inter-neuronal connections. Amongst multiple AD pathogenesis hypotheses, the amyloid beta (Aβ) cascade is the most relevant and accepted form of the hypothesis, which suggests that Aβ monomers are formed as a result of the cleavage of amyloid precursor protein (APP), followed by the conversion of these monomers to toxic oligomers, which in turn develop β-sheets, fibrils and plaques. The review targets the events in the amyloid hypothesis and elaborates suitable therapeutic agents that function by hindering the steps of plaque formation and lowering Aβ levels in the brain. The authors discuss treatment possibilities, including the inhibition of β- and γ-secretase-mediated enzymatic cleavage of APP, the immune response generating active immunotherapy and passive immunotherapeutic approaches targeting monoclonal antibodies towards Aβ aggregates, the removal of amyloid aggregates by the activation of enzymatic pathways or the regulation of Aβ circulation, glucagon-like peptide-1 (GLP-1)-mediated curbed accumulation and the neurotoxic potential of Aβ aggregates, bapineuzumab-mediated vascular permeability alterations, statin-mediated Aβ peptide degradation, the potential role of ibuprofen and the significance of natural drugs and dyes in hindering the amyloid cascade events. Thus, the authors aim to highlight the treatment perspective, targeting the amyloid hypothesis, while simultaneously emphasizing the need to conduct further investigations, in order to provide an opportunity to neurologists to develop novel and reliable treatment therapies for the retardation of AD progression.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410073, Romania; (O.F.); (R.B.)
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410073, Romania; (O.F.); (R.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
11
|
Andrikopoulos N, Li Y, Cecchetto L, Nandakumar A, Da Ros T, Davis TP, Velonia K, Ke PC. Nanomaterial synthesis, an enabler of amyloidosis inhibition against human diseases. NANOSCALE 2020; 12:14422-14440. [PMID: 32638780 DOI: 10.1039/d0nr04273k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amyloid diseases are global epidemics with no cure currently available. In the past decade, the use of engineered nanomaterials as inhibitors or probes against the pathogenic aggregation of amyloid peptides and proteins has emerged as a new frontier in nanomedicine. In this Minireview, we summarize for the first time the pivotal role of chemical synthesis in enabling the development of this multidisciplinary field.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Yuhuan Li
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Luca Cecchetto
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia.
| | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece.
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
12
|
Inhibition of aggregation and toxicity of α-synuclein in the presence of copper by an N-methylated peptide. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Sahoo BR, Cox SJ, Ramamoorthy A. High-resolution probing of early events in amyloid-β aggregation related to Alzheimer's disease. Chem Commun (Camb) 2020; 56:4627-4639. [PMID: 32300761 PMCID: PMC7254607 DOI: 10.1039/d0cc01551b] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Alzheimer's disease (AD), soluble oligomers of amyloid-β (Aβ) are emerging as a crucial entity in driving disease progression as compared to insoluble amyloid deposits. The lacuna in establishing the structure to function relationship for Aβ oligomers prevents the development of an effective treatment for AD. While the transient and heterogeneous properties of Aβ oligomers impose many challenges for structural investigation, an effective use of a combination of NMR techniques has successfully identified and characterized them at atomic-resolution. Here, we review the successful utilization of solution and solid-state NMR techniques to probe the aggregation and structures of small and large oligomers of Aβ. Biophysical studies utilizing the commonly used solution and 19F based NMR experiments to identify the formation of small size early intermediates and to obtain their structures, and dock-lock mechanism of fiber growth at atomic-resolution are discussed. In addition, the use of proton-detected magic angle spinning (MAS) solid-state NMR experiments to obtain high-resolution insights into the aggregation pathways and structures of large oligomers and other aggregates is also presented. We expect these NMR based studies to be valuable for real-time monitoring of the depletion of monomers and the formation of toxic oligomers and high-order aggregates under a variety of conditions, and to solve the high-resolution structures of small and large size oligomers for most amyloid proteins, and therefore to develop inhibitors and drugs.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics Program, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | |
Collapse
|
14
|
Mandal S, Debnath K, Jana NR, Jana NR. Trehalose-Conjugated, Catechin-Loaded Polylactide Nanoparticles for Improved Neuroprotection against Intracellular Polyglutamine Aggregates. Biomacromolecules 2020; 21:1578-1586. [DOI: 10.1021/acs.biomac.0c00143] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suman Mandal
- Centre for Advanced Materials and School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Koushik Debnath
- Centre for Advanced Materials and School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nihar R. Jana
- School of Bioscience, Indian Institute of Technology, Kharagpur 721302, India
| | - Nikhil R. Jana
- Centre for Advanced Materials and School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
15
|
De D, Bhattacharjee P, Das H, Kumar KS, Biswas SC, Bhattacharyya D. Destabilization of β-amyloid aggregates by thrombin derived peptide: plausible role of thrombin in neuroprotection. FEBS J 2020; 287:2386-2413. [PMID: 31747135 DOI: 10.1111/febs.15149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 09/04/2019] [Accepted: 11/19/2019] [Indexed: 01/06/2023]
Abstract
β-amyloid (Aβ) aggregates involved in Alzheimer's disease (AD) are resistant to proteases but could be destabilized by small peptides designed to target specific hydrophobic regions of Aβ that take part in aggregate assembly. Since thrombin and AD are intricately connected, and elastase modulates thrombin activity, elastase-digested thrombin peptides were verified for intervention in the Aβ-aggregation pathway. Intact or elastase-digested thrombin destabilized Aβ fibril, as demonstrated by thioflavin T assay. Peptides were synthesized employing thrombin as a template, of which, a hexapeptide (T3) showed maximum destabilization at 1 µm. ExPASy peptide cutter software coupled with mass spectrometric analysis confirmed the generation of T3 peptide from elastase-digested thrombin. TEM micrographs revealed that 30-day incubation of preformed Aβ fibrils or monomers with T3 resulted in destabilization or inhibition, respectively, leading mostly to particles of 1.74 ± 0.17 nm, which roughly corresponded to Aβ monomer. Surface plasmon resonance employing CM5 chip coupled with Aβ40 mouse monoclonal antibody showed a drop in response when T3 was incubated with Aβ fibrils between 2 and 8 h. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and confocal microscopy demonstrated the ability of T3 to rescue neuroblastoma cells from Aβ oligomer-induced cytotoxic damage. Although no [Aβ-T3] adduct could be detected by mass spectrometry, an initial interaction appeared to facilitate the process of destabilization/inhibition of aggregation. T3 was comparable to standard β-sheet breaker peptides, LPFFD and KLVFF in terms of Aβ aggregate destabilization. High hydrophobicity values coupled with recognition and breaking elements make T3 a potential candidate for future therapeutic applications.
Collapse
Affiliation(s)
- Debashree De
- Division of Structural Biology and Bioinformatics, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Payel Bhattacharjee
- Division of Structural Biology and Bioinformatics, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Hrishita Das
- Division of Cell Biology and Physiology, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Karri Suresh Kumar
- Central Instrument Facility, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Subhas Chandra Biswas
- Division of Cell Biology and Physiology, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR - Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| |
Collapse
|
16
|
Debnath K, Jana NR, Jana NR. Quercetin Encapsulated Polymer Nanoparticle for Inhibiting Intracellular Polyglutamine Aggregation. ACS APPLIED BIO MATERIALS 2019; 2:5298-5305. [DOI: 10.1021/acsabm.9b00518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Koushik Debnath
- Centre for Advanced Materials and School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nihar R. Jana
- School of Bioscience, Indian Institute of Technology, Kharagpur 721302, India
| | - Nikhil R. Jana
- Centre for Advanced Materials and School of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
17
|
Zhao G, Qi F, Dong X, Zheng J, Sun Y. LVFFARK conjugation to poly (carboxybetaine methacrylate) remarkably enhances its inhibitory potency on amyloid β-protein fibrillogenesis. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Lee BI, Chung YJ, Park CB. Photosensitizing materials and platforms for light-triggered modulation of Alzheimer's β-amyloid self-assembly. Biomaterials 2019; 190-191:121-132. [DOI: 10.1016/j.biomaterials.2018.10.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/12/2018] [Accepted: 10/28/2018] [Indexed: 12/12/2022]
|
19
|
Tu LH, Tseng NH, Tsai YR, Lin TW, Lo YW, Charng JL, Hsu HT, Chen YS, Chen RJ, Wu YT, Chan YT, Chen CS, Fang JM, Chen YR. Rationally designed divalent caffeic amides inhibit amyloid-β fibrillization, induce fibril dissociation, and ameliorate cytotoxicity. Eur J Med Chem 2018; 158:393-404. [PMID: 30227353 DOI: 10.1016/j.ejmech.2018.08.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
Abstract
One of the pathologic hallmarks in Alzheimer's disease (AD) is extracellular senile plaques composed of amyloid-β (Aβ) fibrils. Blocking Aβ self-assembly or disassembling Aβ aggregates by small molecules would be potential therapeutic strategies to treat AD. In this study, we synthesized a series of rationally designed divalent compounds and examined their effects on Aβ fibrillization. A divalent amide (2) derived from two molecules of caffeic acid with a propylenediamine linker of ∼5.0 Å in length, which is close to the distance of adjacent β sheets in Aβ fibrils, showed good potency to inhibit Aβ(1-42) fibrillization. Furthermore, compound 2 effectively dissociated the Aβ(1-42) preformed fibrils. The cytotoxicity induced by Aβ(1-42) aggregates in human neuroblastoma was reduced in the presence of 2, and feeding 2 to Aβ transgenic C. elegans rescued the paralysis phenotype. In addition, the binding and stoichiometry of 2 to Aβ(1-40) were demonstrated by using electrospray ionization-traveling wave ion mobility-mass spectrometry, while molecular dynamic simulation was conducted to gain structural insights into the Aβ(1-40)-2 complex.
Collapse
Affiliation(s)
- Ling-Hsien Tu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | | | - Ya-Ru Tsai
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Tien-Wei Lin
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yi-Wei Lo
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jien-Lin Charng
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Hua-Ting Hsu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Sheng Chen
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Rong-Jie Chen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Ying-Ta Wu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Jim-Min Fang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan; Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan.
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
20
|
Ryan P, Patel B, Makwana V, Jadhav HR, Kiefel M, Davey A, Reekie TA, Rudrawar S, Kassiou M. Peptides, Peptidomimetics, and Carbohydrate-Peptide Conjugates as Amyloidogenic Aggregation Inhibitors for Alzheimer's Disease. ACS Chem Neurosci 2018; 9:1530-1551. [PMID: 29782794 DOI: 10.1021/acschemneuro.8b00185] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder accounting for 60-80% of dementia cases. For many years, AD causality was attributed to amyloid-β (Aβ) aggregated species. Recently, multiple therapies that target Aβ aggregation have failed in clinical trials, since Aβ aggregation is found in AD and healthy patients. Attention has therefore shifted toward the aggregation of the tau protein as a major driver of AD. Numerous inhibitors of tau-based pathology have recently been developed. Diagnosis of AD has shifted from measuring late stage senile plaques to early stage biomarkers, amyloid-β and tau monomers and oligomeric assemblies. Synthetic peptides and some derivative structures are being explored for use as theranostic tools as they possess the capacity both to bind the biomarkers and to inhibit their pathological self-assembly. Several studies have demonstrated that O-linked glycoside addition can significantly alter amyloid aggregation kinetics. Furthermore, natural O-glycosylation of amyloid-forming proteins, including amyloid precursor protein (APP), tau, and α-synuclein, promotes alternative nonamyloidogenic processing pathways. As such, glycopeptides and related peptidomimetics are being investigated within the AD field. Here we review advancements made in the last 5 years, as well as the arrival of sugar-based derivatives.
Collapse
Affiliation(s)
- Philip Ryan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Bhautikkumar Patel
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Hemant R. Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani-333031, Rajasthan, India
| | - Milton Kiefel
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Andrew Davey
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Nguyen PH, del Castillo-Frias MP, Berthoumieux O, Faller P, Doig AJ, Derreumaux P. Amyloid-β/Drug Interactions from Computer Simulations and Cell-Based Assays. J Alzheimers Dis 2018; 64:S659-S672. [DOI: 10.3233/jad-179902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| | - Maria P. del Castillo-Frias
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Olivia Berthoumieux
- CNRS, LCC (Laboratoire de Chimie de Coordination), Toulouse Cedex 4, France et Université de Toulouse, UPS, INPT, Toulouse Cedex 4, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, Strasbourg, France
| | - Andrew J. Doig
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| |
Collapse
|
22
|
Bose P, Takei T, Li X, Minowa T, Rajmohan R, Vairaprakash P, Tashiro K. A Glutathione-Responsive Short Sequence of Metal-Organic Complex Array. Chembiochem 2018; 19:1706-1710. [PMID: 29806721 DOI: 10.1002/cbic.201800252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 11/07/2022]
Abstract
A short metal-organic complex array (MOCA) containing a sequence of RPtRRu (1Cl ) was found to exhibit unique responses to a major biothiol, glutathione (GSH). Upon binding of GSH to 1Cl , the resultant 1:1 complex (1GS ) formed nanofibrous assemblies that suggested supramolecular polymerization through the double-salt-bridge structure formation. The binding behavior of this MOCA sequence to calf thymus DNA was also dependent on GSH; a larger conformational change of DNA was observed upon binding with 1GS , relative to that with 1Cl .
Collapse
Affiliation(s)
- Purnandhu Bose
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Toshiaki Takei
- Nanotechnology Innovation Station, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Xianglan Li
- Nanotechnology Innovation Station, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takashi Minowa
- Nanotechnology Innovation Station, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Rajamani Rajmohan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thirumalaisamudram 613 401, Thanjavur, India
| | - Pothiappan Vairaprakash
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thirumalaisamudram 613 401, Thanjavur, India
| | - Kentaro Tashiro
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
23
|
Pradhan N, Debnath K, Mandal S, Jana NR, Jana NR. Antiamyloidogenic Chemical/Biochemical-Based Designed Nanoparticle as Artificial Chaperone for Efficient Inhibition of Protein Aggregation. Biomacromolecules 2018; 19:1721-1731. [DOI: 10.1021/acs.biomac.8b00671] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nibedita Pradhan
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Koushik Debnath
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Suman Mandal
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nihar R. Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon 122051, India
| | - Nikhil R. Jana
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
24
|
Pate KM, Kim BJ, Shusta EV, Murphy RM. Transthyretin Mimetics as Anti-β-Amyloid Agents: A Comparison of Peptide and Protein Approaches. ChemMedChem 2018; 13:968-979. [PMID: 29512286 PMCID: PMC5991081 DOI: 10.1002/cmdc.201800031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/05/2018] [Indexed: 12/19/2022]
Abstract
β-Amyloid (Aβ) aggregation is causally linked to neuronal pathology in Alzheimer's disease; therefore, several small molecules, antibodies, and peptides have been tested as anti-Aβ agents. We developed two compounds based on the Aβ-binding domain of transthyretin (TTR): a cyclic peptide cG8 and an engineered protein mTTR, and compared them for therapeutically relevant properties. Both mTTR and cG8 inhibit fibrillogenesis of Aβ, with mTTR inhibiting at a lower concentration than cG8. Both inhibit aggregation of amylin but not of α-synuclein. They both bind more Aβ aggregates than monomer, and neither disaggregates preformed fibrils. cG8 retained more of its activity in the presence of biological materials and was more resistant to proteolysis than mTTR. We examined the effect of mTTR or cG8 on Aβ binding to human neurons. When mTTR was co-incubated with Aβ under oligomer-forming conditions, Aβ morphology was drastically changed and Aβ-cell deposition significantly decreased. In contrast, cG8 did not affect morphology but decreased the amount of Aβ deposited. These results provide guidance for further evolution of TTR-mimetic anti-amyloid agents.
Collapse
Affiliation(s)
- Kayla M Pate
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Brandon J Kim
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Regina M Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| |
Collapse
|
25
|
Luo Q, Lin YX, Yang PP, Wang Y, Qi GB, Qiao ZY, Li BN, Zhang K, Zhang JP, Wang L, Wang H. A self-destructive nanosweeper that captures and clears amyloid β-peptides. Nat Commun 2018; 9:1802. [PMID: 29728565 PMCID: PMC5935695 DOI: 10.1038/s41467-018-04255-z] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 04/18/2018] [Indexed: 01/31/2023] Open
Abstract
Cerebral amyloid β-peptide (Aβ) accumulation resulting from an imbalance between Aβ production and clearance is one of the most important causes in the formation of Alzheimer's disease (AD). In order to preserve the maintenance of Aβ homeostasis and have a notable AD therapy, achieving a method to clear up Aβ plaques becomes an emerging task. Herein, we describe a self-destructive nanosweeper based on multifunctional peptide-polymers that is capable of capturing and clearing Aβ for the effective treatment of AD. The nanosweeper recognize and bind Aβ via co-assembly through hydrogen bonding interactions. The Aβ-loaded nanosweeper enters cells and upregulates autophagy thus promoting the degradation of Aβ. As a result, the nanosweeper decreases the cytotoxicity of Aβ and rescues memory deficits of AD transgenic mice. We believe that this resourceful and synergistic approach has valuable potential as an AD treatment strategy.
Collapse
Affiliation(s)
- Qiang Luo
- Faculty of Chemistry, Northeast Normal University, 130024, Changchun, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China
| | - Yao-Xin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510006, China
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China
| | - Yi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China
| | - Bing-Nan Li
- Faculty of Chemistry, Northeast Normal University, 130024, Changchun, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China
| | - Kuo Zhang
- Faculty of Chemistry, Northeast Normal University, 130024, Changchun, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China
| | - Jing-Ping Zhang
- Faculty of Chemistry, Northeast Normal University, 130024, Changchun, China.
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
26
|
Zhao W, Ai H. Effect of pH on Aβ 42 Monomer and Fibril-like Oligomers-Decoding in Silico of the Roles of pK Values of Charged Residues. Chemphyschem 2018; 19:1103-1116. [PMID: 29380494 DOI: 10.1002/cphc.201701384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Indexed: 01/10/2023]
Abstract
Amyloid beta-peptide (Aβ) is the key to developing Alzheimer's disease. Experiments have confirmed that different acidity influences directly not only the structural morphology and population of Aβ oligomers, but also the toxicity. The atomic-level association between the pH, charged residues, and Aβ properties remains obscure. Herein, conformational changes of Aβ42 monomer, fibril-like trimer, and pentamer in the medium pH range of 4.0-7.5 are studied. The results reveal that, as the pH changes from 7.5 to the isoelectric pH, His6, His13, and His14 are protonated in turn, successively approach the center of mass of folded Aβ monomer, trigger ionic interactions and changes of neighboring turns (Asp7-Ser8, His14-Lys16) and even a distant one (Leu34-Met35), as well as concomitant changes of secondary structure, and promote the conformation transition from unfolded to folded. This observation discloses that protonation can convert these charged residues from originally hydrophilic to "hydrophobic-like". For fibril-like oligomers, the pH susceptibility essentially stems from the pK values of charged residues in the context of the Aβ fibril, and in turn one can predict the dynamic behavior of these residues in the processes of dissociation or stabilization of a fibril by comparing the pK values of residues involved in salt bridges in the normal state with those in the current context. This idea is justified by two fibril models and appears to be applicable to other peptides and their fibril systems.
Collapse
Affiliation(s)
- Wei Zhao
- Shandong Provincial Key Laboratory, of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hongqi Ai
- Shandong Provincial Key Laboratory, of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
27
|
Lin CY, Cheng YS, Liao TY, Lin C, Chen ZT, Twu WI, Chang CW, Tan DTW, Liu RS, Tu PH, Chen RPY. Intranasal Administration of a Polyethylenimine-Conjugated Scavenger Peptide Reduces Amyloid-β Accumulation in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2018; 53:1053-67. [PMID: 27340844 DOI: 10.3233/jad-151024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyloid-β (Aβ) aggregation in the brain plays a central and initiatory role in pathogenesis and/or progression of Alzheimer's disease (AD). Inhibiting Aβ aggregation is a potential strategy in the prevention of AD. A scavenger peptide, V24P(10-40), designed to decrease Aβ accumulation in the brain, was conjugated to polyethylenimine (PEI) and tested as a preventive/therapeutic strategy for AD in this study. This PEI-conjugated V24P(10-40) peptide was delivered intranasally, as nasal drops, to four-month-old APP/PS1 double transgenic mice for four or eight months. Compared with control values, peptide treatment for four months significantly reduced the amount of GdnHCl-extracted Aβ40 and Aβ42 in the mice's hippocampus and cortex. After treatment for eight months, amyloid load, as quantified by Pittsburgh compound B microPET imaging, was significantly decreased in the mice's hippocampus, cortex, amygdala, and olfactory bulb. Our data suggest that this intranasally delivered scavenger peptide is effective in decreasing Aβ accumulation in the brain of AD transgenic mice. Nasal application of peptide drops is easy to use and could be further developed to prevent and treat AD.
Collapse
Affiliation(s)
- Chih-Yun Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yu-Sung Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tai-Yan Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chen Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Zih-Ten Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Woan-Ing Twu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Wei Chang
- Biomedical Imaging Research Center, Department of Nuclear Medicine, National Yang Ming University and Taipei Veterans General Hospital, Taipei, Taiwan
| | - David Tat-Wei Tan
- Biomedical Imaging Research Center, Department of Nuclear Medicine, National Yang Ming University and Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ren-Shyan Liu
- Biomedical Imaging Research Center, Department of Nuclear Medicine, National Yang Ming University and Taipei Veterans General Hospital, Taipei, Taiwan.,Molecular and Genetic Imaging Core, Taiwan Mouse Clinic, Academia Sinica, Taipei, Taiwan
| | - Pang-Hsien Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Rita P-Y Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Longhena F, Spano P, Bellucci A. Targeting of Disordered Proteins by Small Molecules in Neurodegenerative Diseases. Handb Exp Pharmacol 2018; 245:85-110. [PMID: 28965171 DOI: 10.1007/164_2017_60] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The formation of protein aggregates and inclusions in the brain and spinal cord is a common neuropathological feature of a number of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and many others. These are commonly referred as neurodegenerative proteinopathies or protein-misfolding diseases. The main characteristic of protein aggregates in these disorders is the fact that they are enriched in amyloid fibrils. Since protein aggregation is considered to play a central role for the onset of neurodegenerative proteinopathies, research is ongoing to develop strategies aimed at preventing or removing protein aggregation in the brain of affected patients. Numerous studies have shown that small molecule-based approaches may be potentially the most promising for halting protein aggregation in neurodegenerative diseases. Indeed, several of these compounds have been found to interact with intrinsically disordered proteins and promote their clearing in experimental models. This notwithstanding, at present small molecule inhibitors still awaits achievements for clinical translation. Hopefully, if we determine whether the formation of insoluble inclusions is effectively neurotoxic and find a valid biomarker to assess their protein aggregation-inhibitory activity in the human central nervous system, the use of small molecule inhibitors will be considered as a cure for neurodegenerative protein-misfolding diseases.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy
| | - PierFranco Spano
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy.
- Laboratory of Personalized and Preventive Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
29
|
Methods to Characterize the Nanostructure and Molecular Organization of Amphiphilic Peptide Assemblies. Methods Mol Biol 2018; 1777:3-21. [PMID: 29744826 DOI: 10.1007/978-1-4939-7811-3_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methods to characterize the nanostructure and molecular organization of aggregates of peptides such as amyloid or amphiphilic peptide assemblies are reviewed. We discuss techniques to characterize conformation and secondary structure including circular and linear dichroism and FTIR and Raman spectroscopies, as well as fluorescence methods to detect aggregation. NMR spectroscopy methods, especially solid-state NMR measurements to probe beta-sheet packing motifs, are also briefly outlined. Also discussed are scattering methods including X-ray diffraction and small-angle scattering techniques including SAXS (small-angle X-ray scattering) and SANS (small-angle neutron scattering) and dynamic light scattering. Imaging methods are direct methods to uncover features of peptide nanostructures, and we provide a summary of electron microscopy and atomic force microscopy techniques. Selected examples are highlighted showing data obtained using these techniques, which provide a powerful suite of methods to probe ordering from the molecular scale to the aggregate superstructure.
Collapse
|
30
|
Ponikova S, Kubackova J, Bednarikova Z, Marek J, Demjen E, Antosova A, Musatov A, Gazova Z. Inhibition of lysozyme amyloidogenesis by phospholipids. Focus on long-chain dimyristoylphosphocholine. Biochim Biophys Acta Gen Subj 2017; 1861:2934-2943. [DOI: 10.1016/j.bbagen.2017.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/15/2017] [Accepted: 08/28/2017] [Indexed: 11/16/2022]
|
31
|
Fan Y, Wu D, Yi X, Tang H, Wu L, Xia Y, Wang Z, Liu Q, Zhou Z, Wang J. TMPyP Inhibits Amyloid-β Aggregation and Alleviates Amyloid-Induced Cytotoxicity. ACS OMEGA 2017; 2:4188-4195. [PMID: 30023716 PMCID: PMC6044923 DOI: 10.1021/acsomega.7b00877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 05/27/2023]
Abstract
The aggregation or misfolding of amyloid-β (Aβ) is a major pathological hallmark of Alzheimer's disease (AD). The regulation of Aβ aggregation is thought to be an effective strategy for AD treatment. The capability of a water-soluble porphyrin, 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP), to inhibit Aβ aggregation and to lower Aβ-induced toxicity was demonstrated. As evidenced by surface plasmon resonance and circular dichroism, TMPyP can not only disrupt Aβ aggregation but also disassemble the preformed Aβ aggregates. The atomic force microscopy imaging proves that TMPyP inhibits the formation of both oligomers and fibrils. Molecular dynamic simulations provide an insight into the interaction between TMPyP and Aβ at the molecular level. The half-maximal inhibitory concentrations of TMPyP acting on the oligomers and fibrils were determined to be 0.6 and 0.43 μM, respectively. As a member of porphyrin family, TMPyP is of rather low cytotoxicity, and the cytotoxicity of the Aβ aggregates was also relieved upon coincubation with TMPyP. The excellent performance of TMPyP thus makes it a potential drug candidate for AD therapy.
Collapse
Affiliation(s)
- Yujuan Fan
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Daohong Wu
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Xinyao Yi
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Hailin Tang
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-Sen
University Cancer Center, Guangzhou 510060, Guangdong, P. R. China
| | - Ling Wu
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Yonghong Xia
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Zixiao Wang
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Qiuhua Liu
- School
of Chemistry and Chemical Engineering and Key Laboratory of Theoretical
Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Zaichun Zhou
- School
of Chemistry and Chemical Engineering and Key Laboratory of Theoretical
Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Jianxiu Wang
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
32
|
Yang A, Wang C, Song B, Zhang W, Guo Y, Yang R, Nie G, Yang Y, Wang C. Attenuation of β-Amyloid Toxicity In Vitro and In Vivo by Accelerated Aggregation. Neurosci Bull 2017; 33:405-412. [PMID: 28555357 PMCID: PMC5567563 DOI: 10.1007/s12264-017-0144-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/08/2017] [Indexed: 01/08/2023] Open
Abstract
Accumulation and aggregation of β-amyloid (Aβ) peptides result in neuronal death, leading to cognitive dysfunction in Alzheimer's disease. The self-assembled Aβ molecules form various intermediate aggregates including oligomers that are more toxic to neurons than the mature aggregates, including fibrils. Thus, one strategy to alleviate Aβ toxicity is to facilitate the conversion of Aβ intermediates to larger aggregates such as fibrils. In this study, we designed a peptide named A3 that significantly enhanced the formation of amorphous aggregates of Aβ by accelerating the aggregation kinetics. Thioflavin T fluorescence experiments revealed an accelerated aggregation of Aβ monomers, accompanying reduced Aβ cytotoxicity. Transgenic Caenorhabditis elegans over-expressing amyloid precursor protein exhibited paralysis due to the accumulation of Aβ oligomers, and this phenotype was attenuated by feeding the animals with A3 peptide. These findings suggest that the Aβ aggregation-promotion effect can potentially be useful for developing strategies to reduce Aβ toxicity.
Collapse
Affiliation(s)
- Aihua Yang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chenxuan Wang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Baomin Song
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wendi Zhang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuanyuan Guo
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Rong Yang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guangjun Nie
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yanlian Yang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chen Wang
- National Center for Nanoscience and Technology, Beijing, 100190, China.
| |
Collapse
|
33
|
Xie H, Peng J, Liu C, Fang X, Duan H, Zou Y, Yang Y, Wang C. Aromatic-interaction-mediated inhibition of β-amyloid assembly structures and cytotoxicity. J Pept Sci 2017; 23:679-684. [DOI: 10.1002/psc.3011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Hanyi Xie
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology; Beijing 100190 PR China
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing 100871 PR China
| | - Jiaxi Peng
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology; Beijing 100190 PR China
| | - Changliang Liu
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology; Beijing 100190 PR China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology; Beijing 100190 PR China
| | - Hongyang Duan
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology; Beijing 100190 PR China
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing 100871 PR China
| | - Yimin Zou
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology; Beijing 100190 PR China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology; Beijing 100190 PR China
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience, CAS Center for Excellence in Brain Science, National Center for Nanoscience and Technology; Beijing 100190 PR China
| |
Collapse
|
34
|
Goyal D, Shuaib S, Mann S, Goyal B. Rationally Designed Peptides and Peptidomimetics as Inhibitors of Amyloid-β (Aβ) Aggregation: Potential Therapeutics of Alzheimer's Disease. ACS COMBINATORIAL SCIENCE 2017; 19:55-80. [PMID: 28045249 DOI: 10.1021/acscombsci.6b00116] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no clinically accepted treatment to cure or halt its progression. The worldwide effort to develop peptide-based inhibitors of amyloid-β (Aβ) aggregation can be considered an unplanned combinatorial experiment. An understanding of what has been done and achieved may advance our understanding of AD pathology and the discovery of effective therapeutic agents. We review here the history of such peptide-based inhibitors, including those based on the Aβ sequence and those not derived from that sequence, containing both natural and unnatural amino acid building blocks. Peptide-based aggregation inhibitors hold significant promise for future AD therapy owing to their high selectivity, effectiveness, low toxicity, good tolerance, low accumulation in tissues, high chemical and biological diversity, possibility of rational design, and highly developed methods for analyzing their mode of action, proteolytic stability (modified peptides), and blood-brain barrier (BBB) permeability.
Collapse
Affiliation(s)
- Deepti Goyal
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Suniba Shuaib
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Sukhmani Mann
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| |
Collapse
|
35
|
Profit AA, Vedad J, Desamero RZB. Peptide Conjugates of Benzene Carboxylic Acids as Agonists and Antagonists of Amylin Aggregation. Bioconjug Chem 2017; 28:666-677. [PMID: 28071890 DOI: 10.1021/acs.bioconjchem.6b00732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37 residue peptide hormone that is stored and co-secreted with insulin. hIAPP plays a pivotal role in type 2 diabetes and is the major component of amyloid deposits found in the pancreas of patients afflicted with the disease. The self-assembly of hIAPP and the formation of amyloid is linked to the death of insulin producing β-cells. Recent findings suggest that soluble hIAPP oligomers are the cytotoxic species responsible for β-cell loss whereas amyloid fibrils themselves may indeed be innocuous. Potential avenues of therapeutic intervention include the development of compounds that prevent hIAPP self-assembly as well as those that reduce or eliminate lag time and rapidly accelerate the formation of amyloid fibrils. Both of these approaches minimize temporal exposure to soluble cytotoxic hIAPP oligomers. Toward this end our laboratory has pursued an electrostatic repulsion approach to the development of potential inhibitors and modulators of hIAPP self-assembly. Peptide conjugates were constructed in which benzene carboxylic acids of varying charge were employed as electrostatic disrupting elements and appended to the N-terminal of the hIAPP22-29 (NFGAILSS) self-recognition sequence. The self-assembly kinetics of conjugates were characterized by turbidity measurements and the structure of aggregates probed by Raman and CD spectroscopy while the morphology was assessed using transmission electron microscopy. Several benzene carboxylic acid peptide conjugates failed to self-assemble and some were found to inhibit the aggregation of full-length amylin while others served to enhance the rate of amyloid formation and/or increase the yield of amyloid produced. Studies reveal that the geometric display of free carboxylates on the benzene ring of the conjugates plays an important role in the activity of conjugates. In addition, a number of free benzene carboxylic acids were found to modulate amylin self-assembly on their own. The results of these investigations confirm the viability of the electrostatic repulsion approach to the modulation of amyloid formation and may aid the design and development of potential therapeutic agents.
Collapse
Affiliation(s)
- Adam A Profit
- Department of Chemistry, York College and The Institute for Macromolecular Assemblies , Jamaica, New York 11451, United States.,Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York , New York, New York 10016, United States
| | - Jayson Vedad
- Department of Chemistry, York College and The Institute for Macromolecular Assemblies , Jamaica, New York 11451, United States.,Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York , New York, New York 10016, United States
| | - Ruel Z B Desamero
- Department of Chemistry, York College and The Institute for Macromolecular Assemblies , Jamaica, New York 11451, United States.,Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York , New York, New York 10016, United States
| |
Collapse
|
36
|
Qu A, Huang F, Li A, Yang H, Zhou H, Long J, Shi L. The synergistic effect between KLVFF and self-assembly chaperones on both disaggregation of beta-amyloid fibrils and reducing consequent toxicity. Chem Commun (Camb) 2017; 53:1289-1292. [DOI: 10.1039/c6cc07803f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A new synergistic system combining KLVFF peptide and self-assembly chaperone can synchronize disaggregating amyloid fibrils and reducing consequent toxicity.
Collapse
Affiliation(s)
- Aoting Qu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
| | - Fan Huang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
| | - Ang Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
| | - Huiru Yang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin
- P. R. China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology
- College of Life Sciences
- Nankai University
- Tianjin
- P. R. China
| | - Linqi Shi
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
| |
Collapse
|
37
|
Jayamani J, Shanmugam G. Gelatin as a Potential Inhibitor of Insulin Amyloid Fibril Formation. ChemistrySelect 2016. [DOI: 10.1002/slct.201600692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jayaraman Jayamani
- Bioorganic Chemistry Laboratory; CSIR-Central Leather Research Institute, Adyar; Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus; Sardar Patel Road Chennai 600020 India
| | - Ganesh Shanmugam
- Bioorganic Chemistry Laboratory; CSIR-Central Leather Research Institute, Adyar; Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus; Sardar Patel Road Chennai 600020 India
| |
Collapse
|
38
|
Villmow M, Baumann M, Malesevic M, Sachs R, Hause G, Fändrich M, Balbach J, Schiene-Fischer C. Inhibition of Aβ(1-40) fibril formation by cyclophilins. Biochem J 2016; 473:1355-68. [PMID: 26994210 DOI: 10.1042/bcj20160098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/16/2016] [Indexed: 12/16/2023]
Abstract
Cyclophilins interact directly with the Alzheimer's disease peptide Aβ (amyloid β-peptide) and are therefore involved in the early stages of Alzheimer's disease. Aβ binding to CypD (cyclophilin D) induces dysfunction of human mitochondria. We found that both CypD and CypA suppress in vitro fibril formation of Aβ(1-40) at substoichiometric concentrations when present early in the aggregation process. The prototypic inhibitor CsA (cyclosporin A) of both cyclophilins as well as the new water-soluble MM258 derivative prevented this suppression. A SPOT peptide array approach and NMR titration experiments confirmed binding of Aβ(1-40) to the catalytic site of CypD mainly via residues Lys(16)-Glu(22) The peptide Aβ(16-20) representing this section showed submicromolar IC50 values for the peptidyl prolyl cis-trans isomerase activity of CypD and CypA and low-micromolar KD values in ITC experiments. Chemical cross-linking and NMR-detected hydrogen-deuterium exchange experiments revealed a shift in the populations of small Aβ(1-40) oligomers towards the monomeric species, which we investigated in the present study as being the main process of prevention of Aβ fibril formation by cyclophilins.
Collapse
Affiliation(s)
- Marten Villmow
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Monika Baumann
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Miroslav Malesevic
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Rolf Sachs
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Gerd Hause
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Marcus Fändrich
- Institute for Pharmaceutical Biotechnology, Ulm University, Helmholtzstraße 8/1, D-89081 Ulm, Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Cordelia Schiene-Fischer
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany
| |
Collapse
|
39
|
Niu L, Liu L, Xi W, Han Q, Li Q, Yu Y, Huang Q, Qu F, Xu M, Li Y, Du H, Yang R, Cramer J, Gothelf KV, Dong M, Besenbacher F, Zeng Q, Wang C, Wei G, Yang Y. Synergistic Inhibitory Effect of Peptide-Organic Coassemblies on Amyloid Aggregation. ACS NANO 2016; 10:4143-4153. [PMID: 26982522 DOI: 10.1021/acsnano.5b07396] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Inhibition of amyloid aggregation is important for developing potential therapeutic strategies of amyloid-related diseases. Herein, we report that the inhibition effect of a pristine peptide motif (KLVFF) can be significantly improved by introducing a terminal regulatory moiety (terpyridine). The molecular-level observations by using scanning tunneling microscopy reveal stoichiometry-dependent polymorphism of the coassembly structures, which originates from the terminal interactions of peptide with organic modulator moieties and can be attributed to the secondary structures of peptides and conformations of the organic molecules. Furthermore, the polymorphism of the peptide-organic coassemblies is shown to be correlated to distinctively different inhibition effects on amyloid-β 42 (Aβ42) aggregations and cytotoxicity.
Collapse
Affiliation(s)
- Lin Niu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Lei Liu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- Institute for Advanced Materials, Jiangsu University , Jiangsu 212013, China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University , Shanghai 200433, China
| | - Qiusen Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Qiang Li
- Interdisciplinary Nanoscience Center (iNANO), Center for DNA Nanotechnology (CDNA), Aarhus University , DK-8000 Aarhus C, Denmark
| | - Yue Yu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Qunxing Huang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Fuyang Qu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Meng Xu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Yibao Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Huiwen Du
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Rong Yang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Jacob Cramer
- Interdisciplinary Nanoscience Center (iNANO), Center for DNA Nanotechnology (CDNA), Aarhus University , DK-8000 Aarhus C, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO), Center for DNA Nanotechnology (CDNA), Aarhus University , DK-8000 Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Center for DNA Nanotechnology (CDNA), Aarhus University , DK-8000 Aarhus C, Denmark
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO), Center for DNA Nanotechnology (CDNA), Aarhus University , DK-8000 Aarhus C, Denmark
| | - Qingdao Zeng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Chen Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University , Shanghai 200433, China
| | - Yanlian Yang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| |
Collapse
|
40
|
Kwon MJ, Park J, Jang S, Eom CY, Oh ES. The Conserved Phenylalanine in the Transmembrane Domain Enhances Heteromeric Interactions of Syndecans. J Biol Chem 2015; 291:872-81. [PMID: 26601939 DOI: 10.1074/jbc.m115.685040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/06/2022] Open
Abstract
The transmembrane domain (TMD) of the syndecans, a family of transmembrane heparin sulfate proteoglycans, is involved in forming homo- and heterodimers and oligomers that transmit signaling events. Recently, we reported that the unique phenylalanine in TMD positively regulates intramolecular interactions of syndecan-2. Besides the unique phenylalanine, syndecan-2 contains a conserved phenylalanine (SDC2-Phe-169) that is present in all syndecan TMDs, but its function has not been determined. We therefore investigated the structural role of SDC2-Phe-169 in syndecan TMDs. Replacement of SDC2-Phe-169 by tyrosine (S2F169Y) did not affect SDS-resistant homodimer formation but significantly reduced SDS-resistant heterodimer formation between syndecan-2 and -4, suggesting that SDC2-Phe-169 is involved in the heterodimerization/oligomerization of syndecans. Similarly, in an in vitro binding assay, a syndecan-2 mutant (S2(F169Y)) showed a significantly reduced interaction with syndecan-4. FRET assays showed that heteromolecular interactions between syndecan-2 and -4 were reduced in HEK293T cells transfected with S2(F169Y) compared with syndecan-2. Moreover, S2(F169Y) reduced downstream reactions mediated by the heterodimerization of syndecan-2 and -4, including Rac activity, cell migration, membrane localization of PKCα, and focal adhesion formation. The conserved phenylalanine in syndecan-1 and -3 also showed heterodimeric interaction with syndecan-2 and -4. Taken together, these findings suggest that the conserved phenylalanine in the TMD of syndecans is crucial in regulating heteromeric interactions of syndecans.
Collapse
Affiliation(s)
- Mi-Jung Kwon
- From the Department of Life Sciences, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea and
| | - Jisu Park
- From the Department of Life Sciences, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea and
| | - Sinae Jang
- the Seoul Center, Korea Basic Science Institute, Seoul 136-075, Korea
| | - Chi-Yong Eom
- the Seoul Center, Korea Basic Science Institute, Seoul 136-075, Korea
| | - Eok-Soo Oh
- From the Department of Life Sciences, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea and
| |
Collapse
|
41
|
Liu Y, Wang T, Calabrese AN, Carver JA, Cummins SF, Bowie JH. The membrane-active amphibian peptide caerin 1.8 inhibits fibril formation of amyloid β1-42. Peptides 2015; 73:1-6. [PMID: 26275335 DOI: 10.1016/j.peptides.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022]
Abstract
The amphibian host-defense peptide caerin 1.8 [(1)GLFKVLGSV(10)AKHLLPHVVP(20)VIAEKL(NH2)] inhibits fibril formation of amyloid β 1-42 [(1)DAEFRHDSG(10)YEVHHQKLVF(20)FAEDVGSNKG(30)AIIGLMVGGV(40)VIA] [Aβ42] (the major precursor of the extracellular fibrillar deposits of Alzheimer's disease). Some truncated forms of caerin 1.8 also inhibit fibril formation of Aβ42. For example, caerin 1.8 (1-13) [(1)GLFKVLGSV(10)AKHL(NH2) and caerin 1.8 (22-25) [KVLGSV(10)AKHLLPHVVP(20)VIAEKL(NH2)] show 85% and 75% respectively of the inhibition activity of the parent caerin 1.8. The synthetic peptide KLVFFKKKKKK is a known inhibitor of Aβ42 fibril formation, and was used as a standard in this study. Caerin 1.8 is the more effective fibril inhibitor. IC50 values (± 15%) are caerin 1.8 (75 μM) and KLVFFKKKKKK (370 μM). MALDI mass spectrometry shows the presence of a small peak corresponding to a protonated 1:1 adduct [caerin 1.8/Aβ42]H(+). Molecular dynamics simulation suggests that both hydrogen bonding and hydrophobic interactions between Aβ42 and caerin 1.8 facilitate the formation of a 1:1 complex in water. Fibril formation from Aβ42 has been proposed to be based around the (16)KLVF(20)F region of Aβ42; this region in the 1:1 complex is partially blocked from attachment of a further molecule of Aβ42.
Collapse
Affiliation(s)
- Yanqin Liu
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Antonio N Calabrese
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Chemistry, 2601, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - John H Bowie
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
42
|
Biflavonoids as Potential Small Molecule Therapeutics for Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:55-77. [PMID: 26092626 DOI: 10.1007/978-3-319-18365-7_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flavonoids are naturally occurring phytochemicals found in a variety of fruits and vegetables and offer color, flavor, aroma, nutritional and health benefits. Flavonoids have been found to play a neuroprotective role by inhibiting and/or modifying the self-assembly of the amyloid-β (Aβ) peptide into oligomers and fibrils, which are linked to the pathogenesis of Alzheimer's disease. The neuroprotective efficacy of flavonoids has been found to strongly depend on their structure and functional groups. Flavonoids may exist in monomeric, as well as di-, tri-, tetra- or polymeric form through C-C or C-O-C linkages. It has been shown that flavonoids containing two or more units, e.g., biflavonoids, exert greater biological activity than their respective monoflavonoids. For instance, biflavonoids have the ability to distinctly alter Aβ aggregation and more effectively reduce the toxicity of Aβ oligomers compared to the monoflavonoid moieties. Although the molecular mechanisms remain to be elucidated, flavonoids have been shown to alter the Aβ aggregation pathway to yield non-toxic, unstructured Aβ aggregates, as well as directly exerting a neuroprotective effect to cells. In this chapter, we review biflavonoid-mediated Aβ aggregation and toxicity, and highlight the beneficial roles biflavonoids can potentially play in the prevention and treatment of Alzheimer's disease.
Collapse
|
43
|
Barage SH, Sonawane KD. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease. Neuropeptides 2015; 52:1-18. [PMID: 26149638 DOI: 10.1016/j.npep.2015.06.008] [Citation(s) in RCA: 388] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease is an irreversible, progressive neurodegenerative disorder. Various therapeutic approaches are being used to improve the cholinergic neurotransmission, but their role in AD pathogenesis is still unknown. Although, an increase in tau protein concentration in CSF has been described in AD, but several issues remains unclear. Extensive and accurate analysis of CSF could be helpful to define presence of tau proteins in physiological conditions, or released during the progression of neurodegenerative disease. The amyloid cascade hypothesis postulates that the neurodegeneration in AD caused by abnormal accumulation of amyloid beta (Aβ) plaques in various areas of the brain. The amyloid hypothesis has continued to gain support over the last two decades, particularly from genetic studies. Therefore, current research progress in several areas of therapies shall provide an effective treatment to cure this devastating disease. This review critically evaluates general biochemical and physiological functions of Aβ directed therapeutics and their relevance.
Collapse
Affiliation(s)
- Sagar H Barage
- Department of Biotechnology, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India
| | - Kailas D Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India; Department of Microbiology, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India.
| |
Collapse
|
44
|
Kai T, Zhang L, Wang X, Jing A, Zhao B, Yu X, Zheng J, Zhou F. Tabersonine inhibits amyloid fibril formation and cytotoxicity of Aβ(1-42). ACS Chem Neurosci 2015; 6:879-88. [PMID: 25874995 DOI: 10.1021/acschemneuro.5b00015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The misfolding and aggregation of amyloid beta (Aβ) peptides into amyloid fibrils are key events in the amyloid cascade hypothesis for the etiology of Alzheimer's disease (AD). Using thioflavin-T (ThT) fluorescence assay, atomic force microscopy, circular dichroism, size exclusion chromatography, surface plasmon resonance (SPR), and cytotoxicity tests, we demonstrate that tabersonine, an ingredient extracted from the bean of Voacanga africana, disrupts Aβ(1-42) aggregation and ameliorates Aβ aggregate-induced cytotoxicity. A small amount of tabersonine (e.g., 10 μM) can effectively inhibit the formation of Aβ(1-42) (e.g., 80 μM) fibrils or convert mature fibrils into largely innocuous amorphous aggregates. SPR results indicate that tabersonine binds to Aβ(1-42) oligomers in a dose-dependent way. Molecular dynamics (MD) simulations further confirm that tabersonine can bind to oligomers such as the pentamer of Aβ(1-42). Tabersonine preferentially interact with the β-sheet grooves of Aβ(1-42) containing aromatic and hydrophobic residues. The various binding sites and modes explain the diverse inhibitory effects of tabersonine on Aβ aggregation. Given that tabersonine is a natural product and a precursor for vincristine used in cancer chemotherapy, the biocompatibility and small size essential for permeating the blood-brain barrier make it a potential therapeutic drug candidate for treating AD.
Collapse
Affiliation(s)
- Tianhan Kai
- College
of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Lin Zhang
- College
of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xiaoying Wang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| | - Aihua Jing
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. China
| | - Bingqing Zhao
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| | - Xiang Yu
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Feimeng Zhou
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| |
Collapse
|
45
|
Sonzini S, Jones ST, Walsh Z, Scherman OA. Simple fluorinated moiety insertion on Aβ 16-23 peptide for stain-free TEM imaging. Analyst 2015; 140:2735-40. [PMID: 25705744 DOI: 10.1039/c4an02278e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Peptide aggregation and fibre formation are one of the major underlying causes of several neurodegenerative disorders such as Alzheimer's disease. During the past decades the characterisation of these fibres has been widely studied in an attempt to further understand the nature of the related diseases and in an effort to develop treatments. Transmission electron microscopy (TEM) is one of the most commonly used techniques to identify these fibres, but requires the use of a radioactive staining agent. The procedure we report overcomes this drawback through simple addition of a fluorinated moiety to a short Amyloid β sequence via solid phase peptide synthesis (SPPS). This method is synthetically straightforward, widely applicable to different aggregation-prone sequences and, above all, allows for stain-free TEM imaging with improved quality compared to standard imaging procedures. The presence of the fluorinated moiety does not cause major changes in the fibre structure or aggregation, but rather serves to dissipate the microscope's electron beam, thus allowing for high contrast and straightforward imaging by TEM.
Collapse
Affiliation(s)
- Silvia Sonzini
- Melville Laboratory for Polymer Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | | | | | | |
Collapse
|
46
|
SPRi determination of inter-peptide interaction by using 3D supramolecular co-assembly polyrotaxane film. Biosens Bioelectron 2015; 66:338-44. [DOI: 10.1016/j.bios.2014.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 12/28/2022]
|
47
|
Rajasekhar K, Suresh SN, Manjithaya R, Govindaraju T. Rationally designed peptidomimetic modulators of aβ toxicity in Alzheimer's disease. Sci Rep 2015; 5:8139. [PMID: 25633824 PMCID: PMC4311240 DOI: 10.1038/srep08139] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease is one of the devastating illnesses mankind is facing in the 21st century. The main pathogenic event in Alzheimer's disease is believed to be the aggregation of the β-amyloid (Aβ) peptides into toxic aggregates. Molecules that interfere with this process may act as therapeutic agents for the treatment of the disease. Use of recognition unit based peptidomimetics as inhibitors are a promising approach, as they exhibit greater protease stability compared to natural peptides. Here, we present peptidomimetic inhibitors of Aβ aggregation designed based on the KLVFF (P1) sequence that is known to bind Aβ aggregates. We improved inhibition efficiency of P1 by introducing multiple hydrogen bond donor-acceptor moieties (thymine/barbiturate) at the N-terminal (P2 and P3), and blood serum stability by modifying the backbone by incorporating sarcosine (N-methylglycine) units at alternate positions (P4 and P5). The peptidomimetics showed moderate to good activity in both inhibition and dissolution of Aβ aggregates as depicted by thioflavin assay, circular dichroism (CD) measurements and microscopy (TEM). The activity of P4 and P5 were studied in a yeast cell model showing Aβ toxicity. P4 and P5 could rescue yeast cells from Aβ toxicity and Aβ aggregates were cleared by the process of autophagy.
Collapse
Affiliation(s)
- K. Rajasekhar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - S. N. Suresh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
48
|
Robinson M, Yasie Lee B, Leonenko Z. Drugs and drug delivery systems targeting amyloid-β in Alzheimer's disease. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.3.332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
49
|
Choi YJ, Chae S, Kim JH, Barald KF, Park JY, Lee SH. Neurotoxic amyloid beta oligomeric assemblies recreated in microfluidic platform with interstitial level of slow flow. Sci Rep 2014; 3:1921. [PMID: 23719665 PMCID: PMC3667571 DOI: 10.1038/srep01921] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/07/2013] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease is accompanied by progressive, time-dependent changes of three moieties of amyloid beta. In vitro models therefore should provide same conditions for more physiologic studies. Here we observed changes in the number of fibrils over time and studied the correlation between amyloid beta moieties and neurotoxicity. Although the number of fibrils increased dramatically, the change in neurotoxicity with time was small, suggesting that fibrils make little contribution to neurotoxicity. To study the neurotoxicity of diffusible moieties by regulating microenvironments, we created a bio-mimetic microfluidic system generating spatial gradients of diffusible oligomeric assemblies and assessed their effects on cultured neurons. We found amyloid beta exposure produced an atrophy effect and observed neurite extension during the differentiation of neural progenitor cells increased when cells were cultured with continuous flow. The results demonstrate the potential neurotoxicity of oligomeric assemblies and establish a prospective microfluidic platform for studying the neurotoxicity of amyloid beta.
Collapse
Affiliation(s)
- Yoon Jung Choi
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
50
|
Johnson RD, Steel DG, Gafni A. Structural evolution and membrane interactions of Alzheimer's amyloid-beta peptide oligomers: new knowledge from single-molecule fluorescence studies. Protein Sci 2014; 23:869-83. [PMID: 24753305 DOI: 10.1002/pro.2479] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 02/05/2023]
Abstract
Amyloid-β peptide (Aβ) oligomers may represent the proximal neurotoxin in Alzheimer's disease. Single-molecule microscopy (SMM) techniques have recently emerged as a method for overcoming the innate difficulties of working with amyloid-β, including the peptide's low endogenous concentrations, the dynamic nature of its oligomeric states, and its heterogeneous and complex membrane interactions. SMM techniques have revealed that small oligomers of the peptide bind to model membranes and cells at low nanomolar-to-picomolar concentrations and diffuse at rates dependent on the membrane characteristics. These methods have also shown that oligomers grow or dissociate based on the presence of specific inhibitors or promoters and on the ratio of Aβ40 to Aβ42. Here, we discuss several types of single-molecule imaging that have been applied to the study of Aβ oligomers and their membrane interactions. We also summarize some of the recent insights SMM has provided into oligomer behavior in solution, on planar lipid membranes, and on living cell membranes. A brief overview of the current limitations of the technique, including the lack of sensitive assays for Aβ-induced toxicity, is included in hopes of inspiring future development in this area of research.
Collapse
Affiliation(s)
- Robin D Johnson
- Department of Biophysics, The University of Michigan, Ann Arbor, Michigan, 48109; University of Michigan Medical School, The University of Michigan, Ann Arbor, Michigan, 48105
| | | | | |
Collapse
|