1
|
McGregor BA, Razmjou E, Hooshyar H, Seeger DR, Golovko SA, Golovko MY, Singer SM, Hur J, Solaymani-Mohammadi S. A shotgun metagenomic analysis of the fecal microbiome in humans infected with Giardia duodenalis. Parasit Vectors 2023; 16:239. [PMID: 37464386 PMCID: PMC10354925 DOI: 10.1186/s13071-023-05821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/28/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND The mechanisms underlying the clinical outcome disparity during human infection with Giardia duodenalis are still unclear. In recent years, evidence has pointed to the roles of host factors as well as parasite's genetic heterogeneity as major contributing factors in the development of symptomatic human giardiasis. However, it remains contested as to how only a small fraction of individuals infected with G. duodenalis develop clinical gastrointestinal manifestations, whereas the majority of infected individuals remain asymptomatic. Here, we demonstrate that diversity in the fecal microbiome correlates with the clinical outcome of human giardiasis. METHODS The genetic heterogeneity of G. duodenalis clinical isolates from human subjects with asymptomatic and symptomatic giardiasis was determined using a multilocus analysis approach. We also assessed the genetic proximity of G. duodenalis isolates by constructing phylogenetic trees using the maximum likelihood. Total genomic DNA (gDNA) from fecal specimens was utilized to construct DNA libraries, followed by performing paired-end sequencing using the HiSeq X platform. The Kraken2-generated, filtered FASTQ files were assigned to microbial metabolic pathways and functions using HUMAnN 3.04 and the UniRef90 diamond annotated full reference database (version 201901b). Results from HUMAnN for each sample were evaluated for differences among the biological groups using the Kruskal-Wallis non-parametric test with a post hoc Dunn test. RESULTS We found that a total of 8/11 (72.73%) human subjects were infected with assemblage A (sub-assemblage AII) of G. duodenalis, whereas 3/11 (27.27%) human subjects in the current study were infected with assemblage B of the parasite. We also found that the parasite's genetic diversity was not associated with the clinical outcome of the infection. Further phylogenetic analysis based on the tpi and gdh loci indicated that those clinical isolates belonging to assemblage A of G. duodenalis subjects clustered compactly together in a monophyletic clade despite being isolated from human subjects with asymptomatic and symptomatic human giardiasis. Using a metagenomic shotgun sequencing approach, we observed that infected individuals with asymptomatic and symptomatic giardiasis represented distinctive microbial diversity profiles, and that both were distinguishable from the profiles of healthy volunteers. CONCLUSIONS These findings identify a potential association between host microbiome disparity with the development of clinical disease during human giardiasis, and may provide insights into the mechanisms by which the parasite induces pathological changes in the gut. These observations may also lead to the development of novel selective therapeutic targets for preventing human enteric microbial infections.
Collapse
Affiliation(s)
- Brett A. McGregor
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND USA
| | - Elham Razmjou
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Hooshyar
- Department of Medical Parasitology and Mycology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Drew R. Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND USA
| | - Svetlana A. Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND USA
| | - Mikhail Y. Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND USA
| | - Steven M. Singer
- Department of Biology, Georgetown University, Washington, DC USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND USA
| | - Shahram Solaymani-Mohammadi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND USA
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND USA
| |
Collapse
|
2
|
High-Throughput Screening and Directed Evolution of Methionine Adenosyltransferase from Escherichia coli. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04314-2. [PMID: 36652094 DOI: 10.1007/s12010-023-04314-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
S-adenosyl-L-methionine (SAM) is the active form of methionine, which participates in various metabolic reactions and plays a vital role. It is mainly used as a precursor by three key metabolic pathways: trans-methylation, trans-sulfuration, and trans-aminopropylation. Methionine adenosyltransferase (MAT) is the only enzyme to produce SAM from methionine and ATP. However, there is no efficient and accurate method for high-throughput detection of SAM, which is the major obstacles of directed evolution campaigns for MAT. Herein, we established a colorimetric method for directed evolution of MAT based on detecting SAM by using glycine oxidase and glycine/sarcosine N-methyltransferase enzyme. Screening of MAT libraries revealed variant I303V/Q22R with 2.13-fold improved activity towards SAM in comparison to the wild type. Molecular dynamic simulation indicates that the loops more flexible and more conducive to SAM release.
Collapse
|
3
|
Zano SP, Bhansali P, Luniwal A, Viola RE. Alternative substrates selective for S-adenosylmethionine synthetases from pathogenic bacteria. Arch Biochem Biophys 2013; 536:64-71. [PMID: 23711747 DOI: 10.1016/j.abb.2013.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 01/29/2023]
Abstract
S-adenosyl-l-methionine (AdoMet) synthetase catalyzes the production of AdoMet, the major biological methyl donor and source of methylene, amino, ribosyl, and aminopropyl groups in the metabolism of all known organism. In addition to these essential functions, AdoMet can also serve as the precursor for two different families of quorum sensing molecules that trigger virulence in Gram-negative human pathogenic bacteria. The enzyme responsible for AdoMet biosynthesis has been cloned, expressed and purified from several of these infectious bacteria. AdoMet synthetase (MAT) from Neisseria meningitidis shows similar kinetic parameters to the previously characterized Escherichia coli enzyme, while the Pseudomonas aeruginosa enzyme has a decreased catalytic efficiency for its MgATP substrate. In contrast, the more distantly related MAT from Campylobacter jejuni has an altered quaternary structure and possesses a higher catalytic turnover than the more closely related family members. Methionine analogs have been examined to delineate the substrate specificity of these enzyme forms, and several alternative substrates have been identified with the potential to block quorum sensing while still serving as precursors for essential methyl donation and radical generation reactions.
Collapse
Affiliation(s)
- Stephen P Zano
- Department of Chemistry, The University of Toledo, Toledo, OH 43606, United States
| | | | | | | |
Collapse
|
4
|
Horowitz S, Yesselman JD, Al-Hashimi HM, Trievel RC. Direct evidence for methyl group coordination by carbon-oxygen hydrogen bonds in the lysine methyltransferase SET7/9. J Biol Chem 2011; 286:18658-63. [PMID: 21454678 PMCID: PMC3099682 DOI: 10.1074/jbc.m111.232876] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/17/2011] [Indexed: 12/27/2022] Open
Abstract
SET domain lysine methyltransferases (KMTs) are S-adenosylmethionine (AdoMet)-dependent enzymes that catalyze the site-specific methylation of lysyl residues in histone and non-histone proteins. Based on crystallographic and cofactor binding studies, carbon-oxygen (CH · · · O) hydrogen bonds have been proposed to coordinate the methyl groups of AdoMet and methyllysine within the SET domain active site. However, the presence of these hydrogen bonds has only been inferred due to the uncertainty of hydrogen atom positions in x-ray crystal structures. To experimentally resolve the positions of the methyl hydrogen atoms, we used NMR (1)H chemical shift coupled with quantum mechanics calculations to examine the interactions of the AdoMet methyl group in the active site of the human KMT SET7/9. Our results indicated that at least two of the three hydrogens in the AdoMet methyl group engage in CH · · · O hydrogen bonding. These findings represent direct, quantitative evidence of CH · · · O hydrogen bond formation in the SET domain active site and suggest a role for these interactions in catalysis. Furthermore, thermodynamic analysis of AdoMet binding indicated that these interactions are important for cofactor binding across SET domain enzymes.
Collapse
Affiliation(s)
- Scott Horowitz
- Chemistry, and Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Joseph D. Yesselman
- Chemistry, and Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
5
|
Markham GD, Takusagawa F, Dijulio AM, Bock CW. An investigation of the catalytic mechanism of S-adenosylmethionine synthetase by QM/MM calculations. Arch Biochem Biophys 2009; 492:82-92. [PMID: 19699176 PMCID: PMC2788016 DOI: 10.1016/j.abb.2009.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 08/14/2009] [Indexed: 12/12/2022]
Abstract
Catalysis by S-adenosylmethionine synthetase has been investigated by quantum mechanical/molecular mechanical calculations, exploiting structures of the active crystalline enzyme. The transition state energy of +19.1 kcal/mol computed for a nucleophilic attack of the methionyl sulfur on carbon-5' of the nucleotide was indistinguishable from the experimental (solution) value when the QM residues were an uncharged histidine that hydrogen bonds to the leaving oxygen-5' and an aspartate that chelates a Mg2+ ion, and was similar (+18.8 kcal/mol) when the QM region also included the active site arginine and lysines. The computed energy difference between reactant and product was also consistent with their equimolar abundance in co-crystals. The calculated geometrical changes support catalysis of a S(N)2 reaction through hydrogen bonding of the liberated oxygen-5' to the histidine, charge neutralization by the two Mg2+ ions, and stabilization of the product sulfonium cation through a close, non-bonded, contact between the sulfur and the ribose oxygen-4'.
Collapse
Affiliation(s)
- George D Markham
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|
6
|
Methionine Biosynthesis in Escherichia coli and Corynebacterium glutamicum. AMINO ACID BIOSYNTHESIS ~ PATHWAYS, REGULATION AND METABOLIC ENGINEERING 2006. [DOI: 10.1007/7171_2006_059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Pérez-Pertejo Y, Reguera RM, García-Estrada C, Balaña-Fouce R, Ordóñez D. Mutational analysis of methionine adenosyltransferase from Leishmania donovani. ACTA ACUST UNITED AC 2004; 271:2791-8. [PMID: 15206944 DOI: 10.1111/j.1432-1033.2004.04211.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The methionine adenosyltransferase (MAT; EC 2.5.1.6) mediated synthesis of S-adenosylmethionine (AdoMet) is a two-step process, consisting of the formation of AdoMet and the subsequent cleavage of the tripolyphosphate (PPPi) molecule, a reaction induced, in turn, by AdoMet. The fact that the two activities--AdoMet synthesis and tripolyphosphate hydrolysis--can be measured separately is particularly useful when the site-directed mutagenesis approach is used to determine the functional role of the amino acid residues involved in each. This report describes the mutational analysis of the amino acids involved in both the ATP and L-methionine binding sites of Leishmania donovani MAT (GenBank accession number AF179714) the aetiological agent of visceral leishmaniasis. Site-directed mutagenesis was used to substitute neutral residues for the basic amino acid (Lys168, Lys256, Lys276, Lys280 and His17), acidic residues (Asp19, Asp121, Asp166, Asp249, Asp277 and Asp288) and Phe241 involved in AdoMet synthesis and PPPi hydrolysis. With the exception of D116N, none of these mutants was able to synthesize AdoMet at a significant rate, although H17A, H17N, K256A, K280A, D19N, D121N, D166N, D249N and D282N showed measurable tripolyphosphatase activity. Finally, the C-terminus domain of L. donovani MAT was truncated at three points (F382Stop, D375Stop, F368Stop), deleting a 3(10) one-turn helix motif in all three cases. Whilst none of the truncated proteins conserved MAT activity, they were able to hydrolyse PPPi, albeit at a lower rate than the wild-type enzyme. A fourth protein with an internal deletion (E376DeltaF382) in the C-terminal domain conserved high tripolyphosphatase activity, which was not, however, induced by 50 microM AdoMet.
Collapse
|
8
|
Piantadosi CA, Tatro LG, Whorton AR. Nitric oxide and differential effects of ATP on mitochondrial permeability transition. Nitric Oxide 2002; 6:45-60. [PMID: 11829534 DOI: 10.1006/niox.2001.0368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitochondrial permeability transition pore (PTP) undergoes a calcium-dependent transition (MPT) that disrupts membrane potential and releases apoptogenic proteins. Because PTP opening is enhanced by oxidation of thiols at the so-called "S-site," we hypothesized that nitrogen monoxide (NO*) could enhance the open probability of the PTP, e.g., by S-nitrosylation or S-thiolation. At low NO donor concentrations (1 to 20 microM), PTP opening in succinate-energized liver mitochondria at nonlimiting calcium was delayed or unaffected, while it was accelerated by NO donors at 20 to 100 microM. At low donor concentrations, PTP opening was facilitated twofold by adenosine triphosphate (ATP), which normally delays PTP opening. Among NO donors, the oxatriazole GEA 3162, with an activation constant (Ka) of 1.9 microM at 500 microM ATP was more effective at enhancing pore transition than SIN-1 or SNAP. NO donor effects were superseded by diamide, which induces disulfide formation, but independent of SH-adduct formation by alkylation. NO-related changes in PTP function were accompanied by protein mixed disulfide formation, inhibited by dithiothreitol (DTT), and reversed by DTT after donor addition. PTP opening was stimulated in the presence of ATP by L-arginine-dependent NO production, i.e., mitochondrial NOS activity. ATP-facilitated pore opening was sensitive to atractyloside and depended on nucleotide interactions but not on hydrolysis, because specific nonhydrolyzable ATP analogs accelerated pore opening. These data indicate NO can influence pore transition by oxidation of thiols that produce conformational changes governing the ATP interaction at the adenine nucleotide transporter.
Collapse
Affiliation(s)
- Claude A Piantadosi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
9
|
González B, Pajares MA, Hermoso JA, Alvarez L, Garrido F, Sufrin JR, Sanz-Aparicio J. The crystal structure of tetrameric methionine adenosyltransferase from rat liver reveals the methionine-binding site. J Mol Biol 2000; 300:363-75. [PMID: 10873471 DOI: 10.1006/jmbi.2000.3858] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most of the transmethylation reactions use the same methyl donor, S-adenosylmethionine (SAM), that is synthesised from methionine and ATP by methionine adenosyltransferase (MAT). In mammals, two MAT enzymes have been detected, one ubiquitous and another liver specific. The liver enzyme exists in two oligomeric forms, a tetramer (MAT I) and a dimer (MAT III), MAT I being the one that shows a higher level of affinity for methionine but a lower SAM synthesis capacity. We have solved the crystal structure of rat liver MAT I at 2.7 A resolution, complexed with a methionine analogue: l-2-amino-4-methoxy-cis-but-3-enoic acid (l-cisAMB). The enzyme consists of four identical subunits arranged in two tight dimers that are related by crystallographic 2-fold symmetry. The crystal structure shows the positions of the relevant cysteine residues in the chain, and that Cys35 and Cys61 are perfectly oriented for forming a disulphide link. This result leads us to propose a hypothesis to explain the control of MAT I/III exchange and hence, the effects observed on activity. We have identified the methionine-binding site into the active-site cavity, for the first time. The l-cisAMB inhibitor is stacked against Phe251 aromatic ring in a rather planar conformation, and its carboxylate group coordinates a Mg(2+), which, in turn, is linked to Asp180. The essential role of the involved residues in MAT activity has been confirmed by site-directed mutagenesis. Phe251 is exposed to solvent and is located in the beginning of the flexible loop Phe251-Ala260 that is connecting the N-terminal domain to the central domain. We postulate that a conformational change may take place during the enzymatic reaction and this is possibly the reason of the unusual two-step mechanism involving tripolyphosphate hydrolysis. Other important mechanistic implications are discussed on the light of the results. Moreover, the critical role that certain residues identified in this study may have in methionine recognition opens further possibilities for rational drug design.
Collapse
Affiliation(s)
- B González
- Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física Rocasolano CSIC, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Taylor JC, Markham GD. The bifunctional active site of S-adenosylmethionine synthetase. Roles of the basic residues. J Biol Chem 2000; 275:4060-5. [PMID: 10660564 DOI: 10.1074/jbc.275.6.4060] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-adenosylmethionine (AdoMet) synthetase catalyzes a unique two-step enzymatic reaction leading to formation of the primary biological alkylating agent. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site, which lies between two subunits, contains four lysines and one histidine as basic residues. In order to test the proposed charge and hydrogen bonding roles in catalytic function, each lysine has been changed to an uncharged methionine or alanine, and the histidine has been altered to asparagine. The resultant enzyme variants are all tetramers like the wild type enzyme; however, circular dichroism spectra show reductions in helix content for the K245*M and K269M mutants. (The asterisk denotes that the residue is in the second subunit.) Four mutants have k(cat) reductions of approximately 10(3)-10(4)-fold in AdoMet synthesis; however, the k(cat) of K165*M variant is only reduced 2-fold. In each mutant, there is a smaller catalytic impairment in the partial reaction of tripolyphosphate hydrolysis. The K165*A enzyme has a 100-fold greater k(cat) for tripolyphosphate hydrolysis than the wild type enzyme, but this mutant is not activated by AdoMet in contrast to the wild type enzyme. The properties of these mutants require reassessment of the catalytic roles of these residues.
Collapse
Affiliation(s)
- J C Taylor
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
11
|
Taylor JC, Markham GD. The bifunctional active site of s-adenosylmethionine synthetase. Roles of the active site aspartates. J Biol Chem 1999; 274:32909-14. [PMID: 10551856 DOI: 10.1074/jbc.274.46.32909] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the smaller Mg(2+).
Collapse
Affiliation(s)
- J C Taylor
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|