1
|
Zakeri Z, Salehi R, Rahbarghazi R, Taghipour YD, Mahkam M, Sokullu E. Electrospun polyhedral oligomeric silsequioxane-poly(carbonate-urea) urethane for fabrication of hemocompatible small-diameter vascular grafts with angiogenesis capacity. Int J Biol Macromol 2024; 277:134064. [PMID: 39048012 DOI: 10.1016/j.ijbiomac.2024.134064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The clinical utility of small-diameter vascular grafts (SDVGs) is limited due to the possibility of thrombosis and intimal hyperplasia. These features can delay the development of a functional endothelial cell (EC) monolayer on the luminal surface of grafts. Therefore, the development and fabrication of vascular grafts (VGs) with comparable extracellular matrix (ECM) functions are mandatory to elicit hemocompatible confluent EC monolayers, and angiogenesis behavior inside the body. To promote the interactions between ECs and the surface of electrospun polyacrylic acid-grafted polyhedral oligomeric silsesquioxane-poly(carbonate-urea)-urethane (PAAc-POSS-PCUU), in this research, the surface of nanofibers was modified by covalently immobilizing extracted soluble proteins from aorta (ESPA) using EDC/NHS chemistry. The ATR-FTIR spectroscopy, WCA, and SEM microscopy confirmed the binding of acrylic acid and soluble vascular proteins on the surface of electrospun fibers. The PAAc-POSS-PCUU nanofibers and engineered biomimetic Pro-PAAc-POSS-PCUU nanofibers exhibited excellent biocompatibility indicated by increased survival rate (p < 0.05). Western blotting revealed the increase of VE-cadherin, Tie-2, vWF, and VEGFR-2 in HUVECs after being plated on PAAc-POSS-PCUU and Pro-PAAc-POSS-PCUU scaffolds, indicating appropriate angiogenesis behavior (p < 0.05). Besides, the antioxidant capacity was induced by the increase of SOD and GPx activity (p < 0.05). Additionally, blood compatibility tests revealed that Pro-PAAc-POSS-PCUU nanofibers accelerate the formation of a single EC layer without hemolysis and platelet adhesion. Taken together, Pro-PAAc-POSS-PCUU nanofibers exhibited excellent blood compatibility, and angiogenesis behavior, making them a promising candidate for clinical applications.
Collapse
Affiliation(s)
- Ziba Zakeri
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unite of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Mahkam
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Emel Sokullu
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey; Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| |
Collapse
|
2
|
Ma S, Hu Y, Xu W, Xiong W, Xu X, Hou Y, Wang Y, Chen P, Yang W, Lu H, Zhao Y. Insulin-like growth factor-2 mRNA-binding protein 2 facilitates post-ischemic angiogenesis by increasing the stability of fibroblast growth factor 2 mRNA and its protein expression. Heliyon 2024; 10:e37364. [PMID: 39296104 PMCID: PMC11409114 DOI: 10.1016/j.heliyon.2024.e37364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Post-ischemic angiogenesis is crucial for reestablishing blood flow in conditions such as peripheral artery disease (PAD). The role of insulin-like growth factor-2 mRNA-binding protein 2 (IGF2BP2) in post-transcriptional RNA metabolism and its involvement in post-ischemic angiogenesis remains unclear. Methods Using a human GEO database and a hind-limb ischemia (HLI) mouse model, the predominant isoform IGF2BP2 in ischemic gastrocnemius tissue was identified. Adeno-associated virus with the Tie1 promoter induced IGF2BP2 overexpression in the HLI model, evaluating the expression of vascular structural proteins (CD31 and α-SMA) and blood flow recovery after HLI. In vitro experiments with human umbilical vein endothelial cells (HUVECs) demonstrated that lentivirus-mediated IGF2BP2 overexpression upregulates cell proliferation, migration, and tube formation. GeneCards, RNAct databases, and subsequent reverse transcription quantitative polymerase chain reaction (RT-qPCR) predicted IGF2BP2 interactions with fibroblast growth factor 2 (FGF2) mRNA, and actinomycin D treatment, binding site predictions and CLIP-seq data further confirmed this interaction. Furthermore, western blotting, enzyme-linked immunosorbent assay, and RNA immunoprecipitation followed by RT-qPCR were performed to validate IGF2BP2's interaction with FGF2 mRNA and to assess its role in stabilizing FGF2 mRNA, as well as its impact on FGF2 protein expression. Results HLI reduced IGF2BP2 expression in the gastrocnemius tissue, which gradually increased during blood flow recovery. IGF2BP2 overexpression in HLI mice accelerated blood flow recovery and increased capillary and small artery densities. The overexpression of IGF2BP2 in HUVECs stimulated proliferation, migration, and tube formation by interacting with FGF2 mRNA to increase its stability. This interaction resulted in increased levels of FGF2 protein and secretion, ultimately promoting angiogenesis. Conclusions IGF2BP2 contributes to blood flow restoration post-ischemia in vivo and promotes angiogenesis in HUVECs by enhancing FGF2 mRNA stability and FGF2 protein expression and secretion. These findings underscore IGF2BP2's therapeutic potential in ischemic conditions, such as PAD.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032, Shanghai, China
| | - Wangguo Xu
- Department of Cardiology, Yongchuan Hospital of Chongqing Medical University, 402160, Chongqing, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Xinyu Xu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Yajie Hou
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Ying Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Panke Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Wenbi Yang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032, Shanghai, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Fornal M, Krawczyńska A, Belcarz A. Comparison of the Impact of NaIO 4-Accelerated, Cu 2+/H 2O 2-Accelerated, and Novel Ion-Accelerated Methods of Poly(l-DOPA) Coating on Collagen-Sealed Vascular Prostheses: Strengths and Weaknesses. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40515-40530. [PMID: 39044622 PMCID: PMC11310904 DOI: 10.1021/acsami.4c05979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Sensitive biomaterials subjected to surface modification require delicate methods to preserve their structures and key properties. These include collagen-sealed polyester vascular prostheses. For their functionalization, coating with polycatecholamines (PCAs) can be used. PCAs change some important biological properties of biomaterials, e.g., hydrophilicity, bioactivity, antibacterial activity, and drug binding. The coating process can be stimulated by oxidants, organic solvents, or process conditions. However, these factors may change the properties of the PCA layer and the matrix itself. In this work, collagen-sealed vascular grafts were functionalized with a poly(l-DOPA) (PLD) layer using novel seawater-inspired ion combination as an accelerator, compared to the sodium periodate, Cu2+/H2O2 mixture, and accelerator-free reference methods. Then, poly(l-DOPA) was used as the interface for antibiotic binding. The coated prostheses were characterized (SEM, FIB-SEM, FTIR, UV/vis), and their important functional parameters (mechanical, antioxidant, hemolytic, and prothrombotic properties, bioactivity, stability in human blood and simulated body fluid (SBF), antibiotic binding, release, and antibacterial activity) were compared. It was found that although sodium periodate increased the strength and drug-binding capacity of the prosthesis, it also increased the blood hemolysis risk. Cu2+/H2O2 destabilized the mechanical properties of the coating and the graft. The seawater-inspired ion-accelerated method was efficient, stable, and matrix- and human blood-friendly, and it stimulated hydroxyapatite formation on the prosthesis surface. The results lead to the conclusion that selection of the PCA formation accelerator should be based on a careful analysis of the biological properties of medical devices. They also suggest that the ion-accelerated method of PLD coating on medical devices may be highly effective and safer than the oxidant-accelerated coating method.
Collapse
Affiliation(s)
- Michał Fornal
- Chair
and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Agnieszka Krawczyńska
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, 141 Wołoska, 02-507 Warsaw, Poland
| | - Anna Belcarz
- Chair
and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Che Z, Sun Q, Zhao Z, Wu Y, Xing H, Song K, Chen A, Wang B, Cai M. Growth factor-functionalized titanium implants for enhanced bone regeneration: A review. Int J Biol Macromol 2024; 274:133153. [PMID: 38897500 DOI: 10.1016/j.ijbiomac.2024.133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Titanium and titanium alloys are widely favored materials for orthopedic implants due to their exceptional mechanical properties and biological inertness. The additional benefit of sustained local release of bioactive substances further promotes bone tissue formation, thereby augmenting the osseointegration capacity of titanium implants and attracting increasing attention in bone tissue engineering. Among these bioactive substances, growth factors have shown remarkable osteogenic and angiogenic induction capabilities. Consequently, researchers have developed various physical, chemical, and biological loading techniques to incorporate growth factors into titanium implants, ensuring controlled release kinetics. In contrast to conventional treatment modalities, the localized release of growth factors from functionalized titanium implants not only enhances osseointegration but also reduces the risk of complications. This review provides a comprehensive examination of the types and mechanisms of growth factors, along with a detailed exploration of the methodologies used to load growth factors onto the surface of titanium implants. Moreover, it highlights recent advancements in the application of growth factors to the surface of titanium implants (Scheme 1). Finally, the review discusses current limitations and future prospects for growth factor-functionalized titanium implants. In summary, this paper presents cutting-edge design strategies aimed at enhancing the bone regenerative capacity of growth factor-functionalized titanium implants-a significant advancement in the field of enhanced bone regeneration.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Hu Xing
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| |
Collapse
|
5
|
Havlickova K, Kuzelova Kostakova E, Lisnenko M, Hauzerova S, Stuchlik M, Vrchovecka S, Vistejnova L, Molacek J, Lukas D, Prochazkova R, Horakova J, Jakubkova S, Heczkova B, Jencova V. The Impacts of the Sterilization Method and the Electrospinning Conditions of Nanofibrous Biodegradable Layers on Their Degradation and Hemocompatibility Behavior. Polymers (Basel) 2024; 16:1029. [PMID: 38674949 PMCID: PMC11053452 DOI: 10.3390/polym16081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The use of electrospun polymeric biodegradable materials for medical applications is becoming increasingly widespread. One of the most important parameters regarding the functionality of nanofiber scaffolds during implantation and the subsequent regeneration of damaged tissues concerns their stability and degradation behavior, both of which are influenced by a wide range of factors (the properties of the polymer and the polymer solution, the technological processing approach, the sterilization method, etc.). This study monitored the degradation of nanofibrous materials fabricated from degradable polyesters as a result of the sterilization method applied (ethylene oxide and gamma irradiation) and the solvent system used to prepare the spun polymer solution. Aliphatic polyesters PCL and PLCL were chosen for this study and selected with respect to the applicability and handling in the surgical setting of these nanofibrous materials for vascular bandaging. The results revealed that the choice of solvent system exerts a significant impact on degradation during sterilization, especially at higher gamma irradiation values. The subsequent enzyme-catalyzed degradation of the materials following sterilization indicated that the choice of the sterilization method influenced the degradation behavior of the materials. Whereas wave-like degradation was evident concerning ethylene oxide sterilization, no such behavior was observed following gamma-irradiation sterilization. With concern for some of the tested materials, the results also indicated the potential for influencing the development of degradation within the bulk versus degradation from the surface of the material. Both the sterilization method and the choice of the spinning solvent system were found to impact degradation, which was observed to be most accelerated in the case of PLCL (L-lactide-co-caprolactone copolymer) electrospun from organic acids and subsequently sterilized using gamma irradiation. Since we planned to use these materials in cardiovascular applications, it was decided that their hemocompatibility would also be tested. The results of these tests revealed that changes in the structures of the materials initiated by sterilization may exert thrombogenic and anticoagulant impacts. Moreover, the microscopic analysis suggested that the solvent system used in the preparation of the materials potentially affects the behavior of erythrocytes; however, no indication of the occurrence of hemolysis was detected.
Collapse
Affiliation(s)
- Kristyna Havlickova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Eva Kuzelova Kostakova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Maxim Lisnenko
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Sarka Hauzerova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Martin Stuchlik
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic; (M.S.); (S.V.)
| | - Stanislava Vrchovecka
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic; (M.S.); (S.V.)
| | - Lucie Vistejnova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; (L.V.); (J.M.)
| | - Jiri Molacek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; (L.V.); (J.M.)
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic
| | - David Lukas
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Renata Prochazkova
- Regional Hospital Liberec, Husova 357/28, 46001 Liberec, Czech Republic; (R.P.); (S.J.); (B.H.)
- Institute of Clinical Disciplines and Biomedicine, Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic
| | - Jana Horakova
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic;
| | - Sarka Jakubkova
- Regional Hospital Liberec, Husova 357/28, 46001 Liberec, Czech Republic; (R.P.); (S.J.); (B.H.)
| | - Bohdana Heczkova
- Regional Hospital Liberec, Husova 357/28, 46001 Liberec, Czech Republic; (R.P.); (S.J.); (B.H.)
| | - Vera Jencova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| |
Collapse
|
6
|
Fu J, Zhu Q, Chen Z, Zhao J, Wu S, Zhao M, Xu S, Lai D, Fu G, Zhang W. Polydopamine (PDA) coatings with endothelial vascular growth factor (VEGF) immobilization inhibiting neointimal formation post zinc (zn) wire implantation in rat aortas. Biomater Res 2023; 27:84. [PMID: 37667399 PMCID: PMC10478185 DOI: 10.1186/s40824-023-00423-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Bioresorbable stents are designed to provide temporary mechanical support to the coronary arteries and then slowly degrade in vivo to avoid chronic inflammation. Zinc (Zn) is a promising material for bioresorbable stents; However, it can cause inflammation and neointimal formation after being implanted into blood vessels. METHODS To improve biocompatibility of Zn, we first coated it with polydopamine (PDA), followed by immobilization of endothelial vascular growth factor (VEGF) onto the PDA coatings. Adhesion, proliferation, and phenotype maintenance of endothelial cells (ECs) on the coated Zn were evaluated in vitro. Then, a wire aortic implantation model in rats mimicking endovascular stent implantation in humans was used to assess vascular responses to the coated Zn wires in vivo. Thrombosis in aortas post Zn wire implantation, degradation of Zn wires in vivo, neointimal formation surrounding Zn wires, and macrophage infiltration and extracellular matrix (ECM) remodeling in the neointimas were examined. RESULTS In vitro data showed that the PDA-coated Zn encouraged EC adhesion, spreading, proliferation, and phenotype maintenance on its surfaces. VEGF functionalization on PDA coatings further enhanced the biocompatibility of Zn to ECs. Implantation of PDA-coated Zn wires into rat aortas didn't cause thrombosis and showed a faster blood flow than pure Zn or the Zn wires coated with VEGF alone. In addition, the PDA coating didn't affect the degradation of Zn wires in vivo. Besides, the PDA-coated Zn wires reduced neointimal formation, increased EC coverage, decreased macrophage infiltration, and declined aggrecan accumulation in ECM. VEGF immobilization onto PDA coatings didn't cause thrombosis and affect Zn degradation in vivo as well, and further increased the endothelization percentage as compared to PDA coating alone, thus resulting in thinner neointimas. CONCLUSION These results indicate that PDA coatings with VEGF immobilization would be a promising approach to functionalize Zn surfaces to increase biocompatibility, reduce inflammation, and inhibit neointimal formation after Zn implantation in vivo.
Collapse
Affiliation(s)
- Jiayin Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Qiongjun Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Zhezhe Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Jing Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Shaofei Wu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Meng Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Shihui Xu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Dongwu Lai
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| | - Wenbin Zhang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
7
|
Liu X, Wang C, Du M, Dou J, Yang J, Shen J, Yuan J. Nitric oxide releasing poly(vinyl alcohol)/S-nitrosated keratin film as a potential vascular graft. J Biomed Mater Res B Appl Biomater 2023; 111:1015-1023. [PMID: 36462186 DOI: 10.1002/jbm.b.35210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Nitric oxide (NO) releasing vascular graft is promising due to its merits of thromboembolism reduction and endothelialization promotion. In this study, keratin-based NO donor of S-nitrosated keratin (KSNO) was blended with poly(vinyl alcohol) (PVA) and further crosslinked with sodium trimetaphosphate (STMP) to afford PVA/KSNO biocomposite films. These films could release NO sustainably for up to 10 days, resulting in the promotion of HUVECs growth and the inhibition of HUASMCs growth. In addition, these films displayed good blood compatibility and antibacterial activity. Taken together, these films have potential applications in vascular grafts.
Collapse
Affiliation(s)
- Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Chenshu Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Mingyu Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jinyu Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Jing X, Hu X, Feng P, Liu Y, Yang J. Modification of nanofibrous scaffolds to mimic extracellular matrix in physical and chemical structuring. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province Hunan University of Technology Zhuzhou Hunan People's Republic of China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou People's Republic of China
| | - Xiangshu Hu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province Hunan University of Technology Zhuzhou Hunan People's Republic of China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou People's Republic of China
| | - Peiyong Feng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province Hunan University of Technology Zhuzhou Hunan People's Republic of China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou People's Republic of China
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province Hunan University of Technology Zhuzhou Hunan People's Republic of China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou People's Republic of China
| | - Jian Yang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province Hunan University of Technology Zhuzhou Hunan People's Republic of China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou People's Republic of China
| |
Collapse
|
9
|
Yang GH, Kang D, An S, Ryu JY, Lee K, Kim JS, Song MY, Kim YS, Kwon SM, Jung WK, Jeong W, Jeon H. Advances in the development of tubular structures using extrusion-based 3D cell-printing technology for vascular tissue regenerative applications. Biomater Res 2022; 26:73. [PMID: 36471437 PMCID: PMC9720982 DOI: 10.1186/s40824-022-00321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/13/2022] [Indexed: 12/11/2022] Open
Abstract
Until recent, there are no ideal small diameter vascular grafts available on the market. Most of the commercialized vascular grafts are used for medium to large-sized blood vessels. As a solution, vascular tissue engineering has been introduced and shown promising outcomes. Despite these optimistic results, there are limitations to commercialization. This review will cover the need for extrusion-based 3D cell-printing technique capable of mimicking the natural structure of the blood vessel. First, we will highlight the physiological structure of the blood vessel as well as the requirements for an ideal vascular graft. Then, the essential factors of 3D cell-printing including bioink, and cell-printing system will be discussed. Afterwards, we will mention their applications in the fabrication of tissue engineered vascular grafts. Finally, conclusions and future perspectives will be discussed.
Collapse
Affiliation(s)
- Gi Hoon Yang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| | - Donggu Kang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| | - SangHyun An
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Jeong Yeop Ryu
- grid.258803.40000 0001 0661 1556Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok‑ro, Jung‑gu, Daegu, 41944 South Korea
| | - KyoungHo Lee
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Jun Sik Kim
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Moon-Yong Song
- Medical Safety Center, Bio Division, Korea Conformity Laboratories 8, Gaetbeol-ro 145beon-gil, Yeonsu-gu, Incheon, 21999 South Korea
| | - Young-Sik Kim
- Medical Safety Center, Bio Division, Korea Conformity Laboratories 8, Gaetbeol-ro 145beon-gil, Yeonsu-gu, Incheon, 21999 South Korea
| | - Sang-Mo Kwon
- grid.262229.f0000 0001 0719 8572Department of Physiology, School of Medicine, Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan National University, Yangsan, 626-870 South Korea
| | - Won-Kyo Jung
- grid.412576.30000 0001 0719 8994Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Daeyeon-dong, Nam-gu, Busan, 48513 South Korea
| | - Woonhyeok Jeong
- grid.412091.f0000 0001 0669 3109Department of Plastic and Reconstructive Surgery, Dongsan Medical Center, Keimyung University College of Medicine, 1035 Dalgubeol-daero, Dalseo-gu, Daegu, 42601 South Korea
| | - Hojun Jeon
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| |
Collapse
|
10
|
Fabrication of a Cell-Friendly Poly(dimethylsiloxane) Culture Surface via Polydopamine Coating. MICROMACHINES 2022; 13:mi13071122. [PMID: 35888939 PMCID: PMC9315764 DOI: 10.3390/mi13071122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
In this study, we fabricated a poly(dimethylsiloxane) (PDMS) surface coated with polydopamine (PDA) to enhance cell adhesion. PDA is well known for improving surface adhesion on various surfaces due to the abundant reactions enabled by the phenyl, amine, and catechol groups contained within it. To confirm the successful surface coating with PDA, the water contact angle and X-ray photoelectron spectroscopy were analyzed. Human umbilical vein endothelial cells (HUVECs) and human-bone-marrow-derived mesenchymal stem cells (MSCs) were cultured on the PDA-coated PDMS surface to evaluate potential improvements in cell adhesion and proliferation. HUVECs were also cultured inside a cylindrical PDMS microchannel, which was constructed to mimic a human blood vessel, and their growth and performance were compared to those of cells grown inside a rectangular microchannel. This study provides a helpful perspective for building a platform that mimics in vivo environments in a more realistic manner.
Collapse
|
11
|
Shah P, Chandra S. Review on emergence of nanomaterial coatings in bio-engineered cardiovascular stents. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Heparin Immobilization of Tissue Engineered Xenogeneic Small Diameter Arterial Scaffold Improve Endothelialization. Tissue Eng Regen Med 2022; 19:505-523. [PMID: 35092597 PMCID: PMC9130405 DOI: 10.1007/s13770-021-00411-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Autologous vessels graft (Inner diameter < 6 mm) harvesting always challenged during bypass grafting surgery and its complication shows poor outcome. Tissue engineered vascular graft allow to generate biological graft without any immunogenic complication. The approach presented in this study is to induce graft remodeling through heparin coating in luminal surface of small diameter (Inner diameter < 1 mm) decellularized arterial graft. METHODS Decellularization of graft was done using SDS, combination of 0.5% sodium dodecyl sulfate and 0.5% sodium deoxycholate and only sodium deoxycholate. Decellularization was confirmed on basis of histology, and DAPI. Characterization of extracellular matrix was analyzed using histology and scanning electron microscopy. Surface modification of decellularized vascular graft was done with heparin coating. Heparin immobilization was evaluated by toluidine blue stain. Heparin-coated graft was transplanted end to end anastomosis in femoral artery in rat. RESULTS Combination of 0.5% sodium dodecyl sulfate and 0.5% Sodium deoxycholate showed complete removal of xenogeneic cells. The heparin coating on luminal surface showed anti-thrombogenicity and endothelialization. Mechanical testing revealed no significant differences in strain characteristics and modulus between native tissues, decellularized scaffolds and transplanted scaffold. Collectively, this study proposed a heparin-immobilized ECM coating to surface modification offering functionalize biomaterials for developing small-diameter vascular grafts. CONCLUSION We conclude that xenogeneic decellularized arterial scaffold with heparin surface modification can be fabricated and successfully transplanted small diameter (inner diameter < 1 mm) decellularized arterial graft.
Collapse
|
13
|
Yuan W, Xia D, Wu S, Zheng Y, Guan Z, Rau JV. A review on current research status of the surface modification of Zn-based biodegradable metals. Bioact Mater 2022; 7:192-216. [PMID: 34466727 PMCID: PMC8379348 DOI: 10.1016/j.bioactmat.2021.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, zinc and its alloys have been proposed as promising candidates for biodegradable metals (BMs), owning to their preferable corrosion behavior and acceptable biocompatibility in cardiovascular, bone and gastrointestinal environments, together with Mg-based and Fe-based BMs. However, there is the desire for surface treatment for Zn-based BMs to better control their biodegradation behavior. Firstly, the implantation of some Zn-based BMs in cardiovascular environment exhibited intimal activation with mild inflammation. Secondly, for orthopedic applications, the biodegradation rates of Zn-based BMs are relatively slow, resulting in a long-term retention after fulfilling their mission. Meanwhile, excessive Zn2+ release during degradation will cause in vitro cytotoxicity and in vivo delayed osseointegration. In this review, we firstly summarized the current surface modification methods of Zn-based alloys for the industrial applications. Then we comprehensively summarized the recent progress of biomedical bulk Zn-based BMs as well as the corresponding surface modification strategies. Last but not least, the future perspectives towards the design of surface bio-functionalized coatings on Zn-based BMs for orthopedic and cardiovascular applications were also briefly proposed.
Collapse
Affiliation(s)
- Wei Yuan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Dandan Xia
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, 100081, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, 100081, China
| | - Zhenpeng Guan
- Orthopedics Department, Peking University Shougang Hospital, No. 9 Jinyuanzhuang Rd, Shijingshan District, Beijing, 100144, China
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133, Rome, Italy
- Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991, Moscow, Russia
| |
Collapse
|
14
|
Zhang M, Shi X, Sun H, Xu D, Gao Y, Wu X, Zhang J, Zhang J. Immobilization of Glycogen Synthase Kinase-3β Inhibitor on 316L Stainless Steel via Polydopamine to Accelerate Endothelialization. Front Bioeng Biotechnol 2021; 9:806151. [PMID: 34881239 PMCID: PMC8646698 DOI: 10.3389/fbioe.2021.806151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
The coverage of stents with healthy endothelium is crucial to the success of cardiovascular stent implantation. Immobilizing bioactive molecules on stents is an effective strategy to generate such stents. Glycogen synthase kinase-3β inhibitor (GSKi) is a bioactive molecule that can effectively accelerate vascular endothelialization. In this work, GSKi was covalently conjugated on 316L stainless steel through polydopamine to develop a stable bioactive surface. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact angle results revealed the successful introduction of GSKi onto 316L stainless steel. The GSKi coating did not obviously affect the hemocompatibility of plates. The adhesion and proliferation of human coronary artery endothelial cells (HCAECs) on stainless steel was significantly promoted by the addition of GSKi. In summary, this work provides a universal and stable strategy of immobilizing GSKi on the stent surface. This method has the potential for widespread application in the modification of vascular stents.
Collapse
Affiliation(s)
- Ming Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Xudong Shi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| | - Donghua Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yang Gao
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Xi Wu
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Jianqi Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Jichang Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
15
|
Li P, Jin D, Dou J, Wang L, Wang Y, Jin X, Han X, Kang IK, Yuan J, Shen J, Yin M. Nitric oxide-releasing poly(ε-caprolactone)/S-nitrosylated keratin biocomposite scaffolds for potential small-diameter vascular grafts. Int J Biol Macromol 2021; 189:516-527. [PMID: 34450147 DOI: 10.1016/j.ijbiomac.2021.08.147] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Rapid endothelialization and regulation of smooth muscle cell proliferation are crucial for small-diameter vascular grafts to address poor compliance, thromboembolism, and intimal hyperplasia, and achieve revascularization. As a gaseous signaling molecule, nitric oxide (NO) regulates cardiovascular homeostasis, inhibits blood clotting and intimal hyperplasia, and promotes the growth of endothelial cells. Due to the instability and burst release of small molecular NO donors, a novel biomacromolecular donor has generated increasing interest. In the study, a low toxic NO donor of S-nitrosated keratin (KSNO) was first synthesized and then coelectrospun with poly(ε-caprolactone) to afford NO-releasing small-diameter vascular graft. PCL/KSNO graft was capable to generate NO under the catalysis of ascorbic acid (Asc), so the graft selectively elevated adhesion and growth of human umbilical vein endothelial cells (HUVECs), while inhibited the proliferation of human aortic smooth muscle cells (HASMCs) in the presence of Asc. In addition, the graft displayed significant antibacterial properties and good blood compatibility. Animal experiments showed that the biocomposite graft could inhibit thrombus formation and preserve normal blood flow via single rabbit carotid artery replacement for 1 month. More importantly, a complete endothelium was observed on the lumen surface. Taken together, PCL/KSNO small-diameter vascular graft has potential applications in vascular tissue engineering with rapid endothelialization and vascular remolding.
Collapse
Affiliation(s)
- Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, PR China
| | - Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yanfang Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xingxing Jin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 702-701, South Korea
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, PR China.
| |
Collapse
|
16
|
Barros NR, Chen Y, Hosseini V, Wang W, Nasiri R, Mahmoodi M, Yalcintas EP, Haghniaz R, Mecwan MM, Karamikamkar S, Dai W, Sarabi SA, Falcone N, Young P, Zhu Y, Sun W, Zhang S, Lee J, Lee K, Ahadian S, Dokmeci MR, Khademhosseini A, Kim HJ. Recent developments in mussel-inspired materials for biomedical applications. Biomater Sci 2021; 9:6653-6672. [PMID: 34550125 DOI: 10.1039/d1bm01126j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the decades, researchers have strived to synthesize and modify nature-inspired biomaterials, with the primary aim to address the challenges of designing functional biomaterials for regenerative medicine and tissue engineering. Among these challenges, biocompatibility and cellular interactions have been extensively investigated. Some of the most desirable characteristics for biomaterials in these applications are the loading of bioactive molecules, strong adhesion to moist areas, improvement of cellular adhesion, and self-healing properties. Mussel-inspired biomaterials have received growing interest mainly due to the changes in mechanical and biological functions of the scaffold due to catechol modification. Here, we summarize the chemical and biological principles and the latest advancements in production, as well as the use of mussel-inspired biomaterials. Our main focus is the polydopamine coating, the conjugation of catechol with other polymers, and the biomedical applications that polydopamine moieties are used for, such as matrices for drug delivery, tissue regeneration, and hemostatic control. We also present a critical conclusion and an inspired view on the prospects for the development and application of mussel-inspired materials.
Collapse
Affiliation(s)
| | - Yi Chen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA. .,School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China.,Guangzhou Redsun Gas Appliance CO., Ltd, Guangzhou 510460, P. R. China
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Weiyue Wang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | | | | | - Wei Dai
- Department of Research and Design, Beijing Biosis Healing Biological Technology Co., Ltd, Daxing District, Biomedical Base, Beijing 102600, P. R. China
| | - Shima A Sarabi
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Wujin Sun
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Shiming Zhang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA. .,Department of Electrical and Electronic Engineering, The University of Hong Kong, China
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Kangju Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA. .,Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, South Korea
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
17
|
Pacelli S, Chakravarti AR, Modaresi S, Subham S, Burkey K, Kurlbaum C, Fang M, Neal CA, Mellott AJ, Chakraborty A, Paul A. Investigation of human adipose-derived stem-cell behavior using a cell-instructive polydopamine-coated gelatin-alginate hydrogel. J Biomed Mater Res A 2021; 109:2597-2610. [PMID: 34189837 DOI: 10.1002/jbm.a.37253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 01/05/2023]
Abstract
Hydrogels can be fabricated and designed to exert direct control over stem cells' adhesion and differentiation. In this study, we have investigated the use of polydopamine (pDA)-treatment as a binding platform for bioactive compounds to create a versatile gelatin-alginate (Gel-Alg) hydrogel for tissue engineering applications. Precisely, pDA was used to modify the surface properties of the hydrogel and better control the adhesion and osteogenic differentiation of human adipose-derived stem cells (hASCs). pDA enabled the adsorption of different types of bioactive molecules, including a model osteoinductive drug (dexamethasone) as well as a model pro-angiogenic peptide (QK). The pDA treatment efficiently retained the drug and the peptide compared to the untreated hydrogel and proved to be effective in controlling the morphology, cell area, and osteogenic differentiation of hASCs. Overall, the findings of this study confirm the efficacy of pDA treatment as a valuable strategy to modulate the biological properties of biocompatible Gel-Alg hydrogels and further extend their value in regenerative medicine.
Collapse
Affiliation(s)
- Settimio Pacelli
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Aparna R Chakravarti
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Saman Modaresi
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Siddharth Subham
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Kyley Burkey
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Cecilia Kurlbaum
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Madeline Fang
- Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Christopher A Neal
- Department of Plastic and Burn Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Adam J Mellott
- Department of Plastic and Burn Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
18
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
19
|
Bucci R, Georgilis E, Bittner AM, Gelmi ML, Clerici F. Peptide-Based Electrospun Fibers: Current Status and Emerging Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1262. [PMID: 34065019 PMCID: PMC8151459 DOI: 10.3390/nano11051262] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Electrospinning is a well-known, straightforward, and versatile technique, widely used for the preparation of fibers by electrifying a polymer solution. However, a high molecular weight is not essential for obtaining uniform electrospun fibers; in fact, the primary criterion to succeed is the presence of sufficient intermolecular interactions, which function similar to chain entanglements. Some small molecules able to self-assemble have been electrospun from solution into fibers and, among them, peptides containing both natural and non-natural amino acids are of particular relevance. Nowadays, the use of peptides for this purpose is at an early stage, but it is gaining more and more interest, and we are now witnessing the transition from basic research towards applications. Considering the novelty in the relevant processing, the aim of this review is to analyze the state of the art from the early 2000s on. Moreover, advantages and drawbacks in using peptides as the main or sole component for generating electrospun nanofibers will be discussed. Characterization techniques that are specifically targeted to the produced peptide fibers are presented.
Collapse
Affiliation(s)
- Raffaella Bucci
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy; (M.L.G.); (F.C.)
| | - Evangelos Georgilis
- CIC nanoGUNE, (BRTA) Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain; (E.G.); (A.M.B.)
| | - Alexander M. Bittner
- CIC nanoGUNE, (BRTA) Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain; (E.G.); (A.M.B.)
- Ikerbasque Basque Foundation for Science, Pl. Euskadi 5, 48009 Bilbao, Spain
| | - Maria L. Gelmi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy; (M.L.G.); (F.C.)
| | - Francesca Clerici
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy; (M.L.G.); (F.C.)
| |
Collapse
|
20
|
Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, Mozafari M. Electrospinning for tissue engineering applications. PROGRESS IN MATERIALS SCIENCE 2021; 117:100721. [DOI: 10.1016/j.pmatsci.2020.100721] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
21
|
Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. Chem Rev 2021; 121:11194-11237. [DOI: 10.1021/acs.chemrev.0c00816] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry and Helmholtz Institute for RNA Based Infection Research, 97074 Würzburg, Germany
| | - Michael Schmitz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
22
|
Sedlář A, Trávníčková M, Matějka R, Pražák Š, Mészáros Z, Bojarová P, Bačáková L, Křen V, Slámová K. Growth Factors VEGF-A 165 and FGF-2 as Multifunctional Biomolecules Governing Cell Adhesion and Proliferation. Int J Mol Sci 2021; 22:1843. [PMID: 33673317 PMCID: PMC7917819 DOI: 10.3390/ijms22041843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor-A165 (VEGF-A165) and fibroblast growth factor-2 (FGF-2) are currently used for the functionalization of biomaterials designed for tissue engineering. We have developed a new simple method for heterologous expression and purification of VEGF-A165 and FGF-2 in the yeast expression system of Pichia pastoris. The biological activity of the growth factors was assessed in cultures of human and porcine adipose tissue-derived stem cells (ADSCs) and human umbilical vein endothelial cells (HUVECs). When added into the culture medium, VEGF-A165 stimulated proliferation only in HUVECs, while FGF-2 stimulated the proliferation of both cell types. A similar effect was achieved when the growth factors were pre-adsorbed to polystyrene wells. The effect of our recombinant growth factors was slightly lower than that of commercially available factors, which was attributed to the presence of some impurities. The stimulatory effect of the VEGF-A165 on cell adhesion was rather weak, especially in ADSCs. FGF-2 was a potent stimulator of the adhesion of ADSCs but had no to negative effect on the adhesion of HUVECs. In sum, FGF-2 and VEGF-A165 have diverse effects on the behavior of different cell types, which maybe utilized in tissue engineering.
Collapse
Affiliation(s)
- Antonín Sedlář
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Department of Physiology, Faculty of Science, Charles University, Viničná 7, CZ 12844 Praha 2, Czech Republic
| | - Martina Trávníčková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
| | - Roman Matějka
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
| | - Šimon Pražák
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
| | - Zuzana Mészáros
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
- Department of Biochemistry, University of Chemistry and Technology Prague, Technická 6, CZ 16628 Praha 6, Czech Republic
| | - Pavla Bojarová
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| | - Lucie Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| | - Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| |
Collapse
|
23
|
Tadyszak K, Mrówczyński R, Carmieli R. Electron Spin Relaxation Studies of Polydopamine Radicals. J Phys Chem B 2021; 125:841-849. [PMID: 33470115 PMCID: PMC8023707 DOI: 10.1021/acs.jpcb.0c10485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/06/2021] [Indexed: 01/13/2023]
Abstract
We present a thoroughgoing electron paramagnetic resonance investigation of polydopamine (PDA) radicals using multiple electron paramagnetic resonance techniques at the W-band (94 GHz), electron nuclear double resonance at the Q-band (34 GHz), spin relaxation, and continuous wave measurements at the X-band (9 GHz). The analysis proves the existence of two distinct paramagnetic species in the PDA structure. One of the two radical species is characterized by a long spin-lattice T1 relaxation time equal to 46.9 ms at 5 K and is assigned to the radical center on oxygen. The obtained data revealed that the paramagnetic species exhibit different electron spin relaxation behaviors due to different couplings to local phonons, which confirm spatial distancing between two radical types. Our results shed new light on the radical structure of PDA, which is of great importance in the application of PDA in materials science and biomedicine and allows us to better understand the properties of these materials and predict their future applications.
Collapse
Affiliation(s)
- Krzysztof Tadyszak
- Institute
of Molecular Physics, Polish Academy of
Sciences, ul. Mariana
Smoluchowskiego 17, 60-179 Poznan, Poland
- Institute
of Chemistry and Biochemistry, Free University
of Berlin, Arnimallee
22, 14195 Berlin, Germany
| | - Radosław Mrówczyński
- NanoBioMedical
Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
- Department
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Raanan Carmieli
- Department
of Chemical Research Support Faculty of Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
24
|
Guo Z, Genlong J, Huang Z, Li H, Ge Y, Wu Z, Yu P, Li Z. Synergetic effect of growth factor and topography on fibroblast proliferation. Biomed Phys Eng Express 2020; 6. [PMID: 34035190 DOI: 10.1088/2057-1976/abc8e2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022]
Abstract
An innovative basic fibroblast growth factor (bFGF)-loaded polycaprolactone (PCL) fibrous membrane with highly aligned structure is developed for guided tissue regeneration (GTR). The aligned membrane is fabricated by electrospinning. In order to make efficient use of bFGF, PCL electrospun fibrous membrane is firstly surface-coated by self-polymerization of dopamine, and followed by immobilization of heparin via covalent conjugation to the polydopamine (PDA) layer. Subsequently, bFGF is loaded by binding to heparin. The loading yield of bFGF on heparin-immobilized PDA-coated PCL membrane significantly increases to around 7 times as compared with that of pure PCL membrane. NIH-3T3 cells show an enhanced proliferation and exhibit a stretched morphology aligned along the direction of the fibers on the aligned membranes. However, aligned bFGF-loaded PCL membrane exhibit a similar morphology but a highest cell density prolonged till 9 days. The synergetic effect of growth factor and topography would effectively regulate cell proliferation.
Collapse
Affiliation(s)
- Zhenzhao Guo
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, People's Republic of China
| | - Jiao Genlong
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, People's Republic of China
| | - Zhiqiang Huang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hong Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yao Ge
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhe Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, People's Republic of China
| | - Pei Yu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, People's Republic of China
| | - Zhizhong Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, People's Republic of China
| |
Collapse
|
25
|
Carmagnola I, Chiono V, Ruocco G, Scalzone A, Gentile P, Taddei P, Ciardelli G. PLGA Membranes Functionalized with Gelatin through Biomimetic Mussel-Inspired Strategy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2184. [PMID: 33147761 PMCID: PMC7692787 DOI: 10.3390/nano10112184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
Electrospun membranes have been widely used as scaffolds for soft tissue engineering due to their extracellular matrix-like structure. A mussel-inspired coating approach based on 3,4-dihydroxy-DL-phenylalanine (DOPA) polymerization was proposed to graft gelatin (G) onto poly(lactic-co-glycolic) acid (PLGA) electrospun membranes. PolyDOPA coating allowed grafting of gelatin to PLGA fibers without affecting their bulk characteristics, such as molecular weight and thermal properties. PLGA electrospun membranes were dipped in a DOPA solution (2 mg/mL, Tris/HCl 10 mM, pH 8.5) for 7 h and then incubated in G solution (2 mg/mL, Tris/HCl 10 mM, pH 8.5) for 16 h. PLGA fibers had an average diameter of 1.37 ± 0.23 µm. Quartz crystal microbalance with dissipation technique (QCM-D) analysis was performed to monitor DOPA polymerization over time: after 7 h the amount of deposited polyDOPA was 71 ng/cm2. After polyDOPA surface functionalization, which was, also revealed by Raman spectroscopy, PLGA membranes maintained their fibrous morphology, however the fiber size and junction number increased. Successful functionalization with G was demonstrated by FTIR-ATR spectra, which showed the presence of G adsorption bands at 1653 cm-1 (Amide I) and 1544 cm-1 (Amide II) after G grafting, and by the Kaiser Test, which revealed a higher amount of amino groups for G functionalized membranes. Finally, the biocompatibility of the developed substrates and their ability to induce cell growth was assessed using Neonatal Normal Human Dermal Fibroblasts.
Collapse
Affiliation(s)
- Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (I.C.); (G.R.); (G.C.)
- POLITO BIOMedLAB, Politecnico di Torino, 10129 Turin, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (I.C.); (G.R.); (G.C.)
- POLITO BIOMedLAB, Politecnico di Torino, 10129 Turin, Italy
- Department for Materials and Devices of the National Research Council, Institute for the Chemical and Physical Processes (CNR-IPCF UOS), 56124 Pisa, Italy
| | - Gerardina Ruocco
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (I.C.); (G.R.); (G.C.)
- POLITO BIOMedLAB, Politecnico di Torino, 10129 Turin, Italy
| | - Annachiara Scalzone
- School of Engineering, Newcastle University, Claremont road, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (P.G.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Claremont road, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (P.G.)
| | - Paola Taddei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (I.C.); (G.R.); (G.C.)
- POLITO BIOMedLAB, Politecnico di Torino, 10129 Turin, Italy
- Department for Materials and Devices of the National Research Council, Institute for the Chemical and Physical Processes (CNR-IPCF UOS), 56124 Pisa, Italy
| |
Collapse
|
26
|
Mao J, Wei P, Yuan Z, Jing W, Cao J, Li G, Guo J, Wang H, Chen D, Cai Q. Osteoconductive and osteoinductive biodegradable microspheres serving as injectable micro-scaffolds for bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:229-247. [PMID: 32966753 DOI: 10.1080/09205063.2020.1827922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There are intensive needs for scaffolds with new designs to meet the diverse requirements of bone repairing. Biodegradable microspheres are highlighted as injectable micro-scaffolds thanks to their advantages in filling irregular defects via a minimally invasive surgery. In this study, microspheres with surface micropores were made via the W1/O/W2 double emulsion method using amphiphilic triblock copolymers (PLLA-PEG-PLLA) composed of poly(L-lactide) (PLLA) and poly(ethylene glycol) (PEG) segments. When the PEG fraction was controlled as 10 wt.%, the microspheres demonstrated higher cell affinity than the smooth-surfaced PLLA microspheres. After being further functionalized with polydopamine coating and apatite deposition, the PLLA-PEG-PLLA microspheres could up-regulate the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) significantly. Before subcutaneous implantation, bone morphogenetic protein-2 (BMP-2) was adsorbed onto the biomineralized microspheres by taking advantages of the strong affinity of apatite to BMP-2. The resulted microspheres induced ectopic osteogenesis efficiently without causing biocompatibility problems. In summary, this study provided a simple strategy to prepare functionalized microspheres with osteoconductivity and osteoinductivity, which showed great potential in promoting bone regeneration as injectable micro-scaffolds.
Collapse
Affiliation(s)
- Jianping Mao
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Pengfei Wei
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing, P.R. China
| | - Zuoying Yuan
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing, P.R. China
| | - Wei Jing
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing, P.R. China
| | - Jingjing Cao
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Guangping Li
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Jianxun Guo
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Honggang Wang
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing, P.R. China
| |
Collapse
|
27
|
Emechebe GA, Obiweluozor FO, Jeong IS, Park JK, Park CH, Kim CS. Merging 3D printing with electrospun biodegradable small-caliber vascular grafts immobilized with VEGF. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102306. [PMID: 32992018 DOI: 10.1016/j.nano.2020.102306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
Abstract
The major challenge of commercially available vascular substitutes comes from their limitations in terms of hydrophobic surface, which is hostile to cell growth. To date, tissue-engineered and synthetic grafts have not translated well to clinical trials when looking at small diameters. We conceptualized a cell-free structurally reinforced biodegradable vascular graft recapitulating the anisotropic feature of a native blood vessel. The nanofibrous scaffold is designed in such a way that it will gradually degrade systematically to yield a neo-vessel, facilitated by an immobilized bioactive molecule-vascular endothelial growth factor (VEGF). The nano-topographic cue of the device is capable of direct host cell infiltration. We evaluated the burst pressure, histology, hemocompatibility, compression test, and mechanical analysis of the new graft. The graft implanted into the carotid artery of a porcine model demonstrated a good patency rate as early as two week post-implantation. This graft reinforced design approach when employed in vascular tissue engineering might strongly influencing regenerative medicine.
Collapse
Affiliation(s)
- Gladys A Emechebe
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Francis O Obiweluozor
- Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju city, Republic of Korea; Department of thoracic and cardiovascular surgery, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea.
| | - In Seok Jeong
- Department of thoracic and cardiovascular surgery, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea
| | | | - Chan Hee Park
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea; Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju city, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea; Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju city, Republic of Korea.
| |
Collapse
|
28
|
Badv M, Bayat F, Weitz JI, Didar TF. Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants. Biomaterials 2020; 258:120291. [PMID: 32798745 DOI: 10.1016/j.biomaterials.2020.120291] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/27/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022]
Abstract
Device-associated clot formation and poor tissue integration are ongoing problems with permanent and temporary implantable medical devices. These complications lead to increased rates of mortality and morbidity and impose a burden on healthcare systems. In this review, we outline the current approaches for developing single and multi-functional surface coating techniques that aim to circumvent the limitations associated with existing blood-contacting medical devices. We focus on surface coatings that possess dual hemocompatibility and biofunctionality features and discuss their advantages and shortcomings to providing a biocompatible and biodynamic interface between the medical implant and blood. Lastly, we outline the newly developed surface modification techniques that use lubricant-infused coatings and discuss their unique potential and limitations in mitigating medical device-associated complications.
Collapse
Affiliation(s)
- Maryam Badv
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Thrombosis & Atherosclerosis Research Institute (TaARI), Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada; Institute for Infectious Disease Research (IIDR), McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
29
|
Rao J, Pan Bei H, Yang Y, Liu Y, Lin H, Zhao X. Nitric Oxide-Producing Cardiovascular Stent Coatings for Prevention of Thrombosis and Restenosis. Front Bioeng Biotechnol 2020; 8:578. [PMID: 32671029 PMCID: PMC7326943 DOI: 10.3389/fbioe.2020.00578] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/12/2020] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular stenting is an effective method for treating cardiovascular diseases (CVDs), yet thrombosis and restenosis are the two major clinical complications that often lead to device failure. Nitric oxide (NO) has been proposed as a promising small molecule in improving the clinical performance of cardiovascular stents thanks to its anti-thrombosis and anti-restenosis ability, but its short half-life limits the full use of NO. To produce NO at lesion site with sufficient amount, NO-producing coatings (including NO-releasing and NO-generating coatings) are fashioned. Its releasing strategy is achieved by introducing exogenous NO storage materials like NO donors, while the generating strategy utilizes the in vivo substances such as S-nitrosothiols (RSNOs) to generate NO flux. NO-producing stents are particularly promising in future clinical use due to their ability to store NO resources or to generate large NO flux in a controlled and efficient manner. In this review, we first introduce NO-releasing and -generating coatings for prevention of thrombosis and restenosis. We then discuss the advantages and drawbacks on releasing and generating aspects, where possible further developments are suggested.
Collapse
Affiliation(s)
- Jingdong Rao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Orthopedic Surgery, Fudan University, Shanghai, China
| | - Ho Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yu Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Haodong Lin
- General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
30
|
RAZAVI MEHDI, PRIMAVERA ROSITA, KEVADIYA BHAVESHD, WANG JING, BUCHWALD PETER, THAKOR AVNESHS. A Collagen Based Cryogel Bioscaffold that Generates Oxygen for Islet Transplantation. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1902463. [PMID: 33071709 PMCID: PMC7567341 DOI: 10.1002/adfm.201902463] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Indexed: 05/24/2023]
Abstract
The aim of this work was to develop, characterize and test a novel 3D bioscaffold matrix which can accommodate pancreatic islets and provide them with a continuous, controlled and steady source of oxygen to prevent hypoxia-induced damage following transplantation. Hence, we made a collagen based cryogel bioscaffold which incorporated calcium peroxide (CPO) into its matrix. The optimal concentration of CPO integrated into bioscaffolds was 0.25wt.% and this generated oxygen at 0.21±0.02mM/day (day 1), 0.19±0.01mM/day (day 6), 0.13±0.03mM/day (day 14), and 0.14±0.02mM/day (day 21). Accordingly, islets seeded into cryogel-CPO bioscaffolds had a significantly higher viability and function compared to islets seeded into cryogel alone bioscaffolds or islets cultured alone on traditional cell culture plates; these findings were supported by data from quantitative computational modelling. When syngeneic islets were transplanted into the epididymal fat pad (EFP) of diabetic mice, our cryogel-0.25wt.%CPO bioscaffold improved islet function with diabetic animals re-establishing glycemic control. Mice transplanted with cryogel-0.25wt.%CPO bioscaffolds showed faster responses to intraperitoneal glucose injections and had a higher level of insulin content in their EFP compared to those transplanted with islets alone (P<0.05). Biodegradability studies predicted that our cryogel-CPO bioscaffolds will have long-lasting biostability for approximately 5 years (biodegradation rate: 16.00±0.65%/year). Long term implantation studies (i.e. 6 months) showed that our cryogel-CPO bioscaffold is biocompatible and integrated into the surrounding fat tissue with minimal adverse tissue reaction; this was further supported by no change in blood parameters (i.e. electrolyte, metabolic, chemistry and liver panels). Our novel oxygen-generating bioscaffold (i.e. cryogel-0.25wt.%CPO) therefore provides a biostable and biocompatible 3D microenvironment for islets which can facilitate islet survival and function at extra-hepatic sites of transplantation.
Collapse
Affiliation(s)
- MEHDI RAZAVI
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA
| | - ROSITA PRIMAVERA
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
| | - BHAVESH D KEVADIYA
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
| | - JING WANG
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
| | - PETER BUCHWALD
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - AVNESH S THAKOR
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California 94304, USA
| |
Collapse
|
31
|
Wang D, Xu Y, Li Q, Turng LS. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J Mater Chem B 2020; 8:1801-1822. [PMID: 32048689 PMCID: PMC7155776 DOI: 10.1039/c9tb01849b] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases, especially ones involving narrowed or blocked blood vessels with diameters smaller than 6 millimeters, are the leading cause of death globally. Vascular grafts have been used in bypass surgery to replace damaged native blood vessels for treating severe cardio- and peripheral vascular diseases. However, autologous replacement grafts are not often available due to prior harvesting or the patient's health. Furthermore, autologous harvesting causes secondary injury to the patient at the harvest site. Therefore, artificial blood vessels have been widely investigated in the last several decades. In this review, the progress and potential outlook of small-diameter blood vessels (SDBVs) engineered in vitro are highlighted and summarized, including material selection and development, fabrication techniques, surface modification, mechanical properties, and bioactive functionalities. Several kinds of natural and synthetic polymers for artificial SDBVs are presented here. Commonly used fabrication techniques, such as extrusion and expansion, electrospinning, thermally induced phase separation (TIPS), braiding, 3D printing, hydrogel tubing, gas foaming, and a combination of these methods, are analyzed and compared. Different surface modification methods, such as physical immobilization, surface adsorption, plasma treatment, and chemical immobilization, are investigated and are compared here as well. Mechanical requirements of SDBVs are also reviewed for long-term service. In vitro biological functions of artificial blood vessels, including oxygen consumption, nitric oxide (NO) production, shear stress response, leukocyte adhesion, and anticoagulation, are also discussed. Finally, we draw conclusions regarding current challenges and attempts to identify future directions for the optimal combination of materials, fabrication methods, surface modifications, and biofunctionalities. We hope that this review can assist with the design, fabrication, and application of SDBVs engineered in vitro and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Dongfang Wang
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA and School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yiyang Xu
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
32
|
Joshi A, Xu Z, Ikegami Y, Yamane S, Tsurashima M, Ijima H. Co-culture of mesenchymal stem cells and human umbilical vein endothelial cells on heparinized polycaprolactone/gelatin co-spun nanofibers for improved endothelium remodeling. Int J Biol Macromol 2020; 151:186-192. [PMID: 32070734 DOI: 10.1016/j.ijbiomac.2020.02.163] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022]
Abstract
Endothelization of a tissue-engineered substrate is important for its application as an artificial vascular graft. Despite recent advancements in artificial graft fabrication, a graft of <5 mm is difficult to fabricate owing to insufficient endothelization that results in thrombosis after transplantation. We aimed to perform a co-culture of adipose-derived mesenchymal stem cells (MSCs) with human umbilical vein endothelial cells (HUVECs) on antithrombogenic polycaprolactone (PCL)/heparin-gelatin co-spun nanofibers to evaluate the role of co-culturing in promoting quick endothelization of vascular substrates without surface modification by growth factors or other ECM proteins that trigger the endothelization process. Using a co-axial electrospinning technique, we attempted to fabricate our scaffold balancing between mechanical properties and biocompatibility. Antithrombogenic characteristics were then imparted to the fabricated nanofiber substrate by grafting of heparin. Finally, we performed a co-culture of MSCs and HUVECs on the fabricated co-spun nanofiber substrate to obtain proper endothelization of our material under the in-vitro culture. Staining for CD-31 at seven days of culture revealed enhanced CD-31 expression under the co-culture condition; actin staining revealed healthy cobblestone HUVEC morphology, suggesting that MSCs can aid in proper endothelization. Hence, we conclude that co-culture is effective for quick endothelization of vascular substrates.
Collapse
Affiliation(s)
- Akshat Joshi
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Zhe Xu
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Yasuhiro Ikegami
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Soichiro Yamane
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Masanori Tsurashima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
33
|
Zhang X, Shi J, Chen S, Dong Y, Zhang L, Midgley AC, Kong D, Wang S. Polycaprolactone/gelatin degradable vascular grafts simulating endothelium functions modified by nitric oxide generation. Regen Med 2019; 14:1089-1105. [PMID: 31829097 DOI: 10.2217/rme-2019-0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Host remolding with scaffolds degradation and rapid formation of a complete endothelium, are prospective solutions for improving performance of small diameter vascular grafts. Materials & methods: For this purpose, microfibrous polycaprolactone (PCL)/gelatin scaffolds were prepared by electrospinning and subsequently functionalized with heparin and organoselenium-immobilized polyethyleneimine for nitric oxide generation through layer-by-layer self-assembly. Results: Our results showed that modified PCL/gelatin grafts had strong catalytic nitric oxide generation capacity and facilitated the enhanced attachment of endothelial cells, compared with control scaffold groups. Meanwhile, the modified grafts exhibited good hemocombatility, rapid endothelialization and smooth muscle cell regeneration. Conclusion: Modification of biodegradable scaffolds, proposed in this work, could enhance biological functions of vascular grafts and provides new strategies for the construction of small diameter vascular grafts.
Collapse
Affiliation(s)
- XiangYun Zhang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - Jie Shi
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - SiYuan Chen
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - YunSheng Dong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - Lin Zhang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - DeLing Kong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| | - ShuFang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China
| |
Collapse
|
34
|
Zhang H, Shen X, Wang J, Huang N, Luo R, Zhang B, Wang Y. Multistep Instead of One-Step: A Versatile and Multifunctional Coating Platform for Biocompatible Corrosion Protection. ACS Biomater Sci Eng 2019; 5:6541-6556. [PMID: 33417806 DOI: 10.1021/acsbiomaterials.9b01459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnesium alloys have potential application in cardiovascular stents and orthopedic implants. However, the rapid corrosion rate of magnesium limits their clinical application. In order to improve the corrosion resistance and biocompatibility of the substrate, a protective coating is constructed by alternate immersing of MgZnMn alloy in epigallocatechin gallate (EGCG) and polyethyleneimine (PEI) solution. The conventional method is immersing magnesium alloy into a conversion solution by simple one-step immersion. In the present work, the EGCG/PEI coating is prepared by a novel alternate immersion method. The number of alternate immersions resulted in a different density of phenolic hydroxyl groups and amino groups on the surface. The corrosion resistance and bonding strength of the coating also varied with alternating immersion times. As the corrosion resistance and density of the functional groups varies, endothelial cells (ECs), smooth muscle cells (SMCs), osteoblasts, and macrophages showed a different growth state on EGCG/PEI coatings. In summary, this EGCG/PEI coating addressed the rapid corrosion rate of the magnesium alloy and can adjust its function by controlling the number of alternate immersions. The EGCG/PEI coating exhibited multifunctions: improved corrosion resistance, good compatibility with ECs and osteoblasts, and inhibition of SMC growth and inflammation, and the effective groups on the coating make it possible for further modification by grafting biomolecules. This is an effective method for preparing a multifunctional platform on biomedical magnesium alloys.
Collapse
Affiliation(s)
- Hao Zhang
- Panzhihua University, Panzhihua 617000, Sichuan, China
| | - Xiaolong Shen
- Panzhihua University, Panzhihua 617000, Sichuan, China
| | - Jin Wang
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Nan Huang
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
35
|
Badv M, Weitz JI, Didar TF. Lubricant-Infused PET Grafts with Built-In Biofunctional Nanoprobes Attenuate Thrombin Generation and Promote Targeted Binding of Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905562. [PMID: 31773877 DOI: 10.1002/smll.201905562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/02/2019] [Indexed: 05/21/2023]
Abstract
New surface coatings that enhance hemocompatibility and biofunctionality of synthetic vascular grafts such as expanded poly(tetrafluoroethylene) (ePTFE) and poly(ethylene terephthalate) (PET) are urgently needed. Lubricant-infused surfaces prevent nontargeted adhesion and enhance the biocompatibility of blood-contacting surfaces. However, limited success has been made in incorporating biofunctionality onto these surfaces and generating biofunctional lubricant-infused coatings that both prevent nonspecific adhesion and enhance targeted binding of biomolecules remains a challenge. Here, a new generation of fluorosilanized lubricant-infused PET surfaces with built-in biofunctional nanoprobes is reported. These surfaces are synthesized by starting with a self-assembled monolayer of fluorosilane that is partially etched using plasma modification technique, thereby creating a hydroxyl-terminated fluorosilanized PET surface. Simultaneously, silanized nanoprobes are produced by amino-silanizing anti-CD34 antibody in solution and directly coupling the anti-CD34-aminosilane nanoprobes onto the hydroxyl terminated, fluorosilanized PET surface. The PET surfaces are then lubricated, creating fluorosilanized biofunctional lubricant-infused PET substrates. Compared with unmodified PET surfaces, the designed biofunctional lubricant-infused PET surfaces significantly attenuate thrombin generation and blood clot formation and promote targeted binding of endothelial cells from human whole blood.
Collapse
Affiliation(s)
- Maryam Badv
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
- Thrombosis & Atherosclerosis Research Institute, 237 Barton Street East, L8L 2X2, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research (IIDR), McMaster University, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Tomášek P, Tonar Z, Grajciarová M, Kural T, Turek D, Horáková J, Pálek R, Eberlová L, Králíčková M, Liška V. Histological mapping of porcine carotid arteries - An animal model for the assessment of artificial conduits suitable for coronary bypass grafting in humans. Ann Anat 2019; 228:151434. [PMID: 31704146 DOI: 10.1016/j.aanat.2019.151434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/12/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Using animal models in experimental medicine requires mapping of their anatomical variability. Porcine common carotid arteries (CCA) are often preferred for the preclinical testing of vascular grafts due to their anatomical and physiological similarity to human small-diameter arteries. Comparing the microscopic structure of animal model organs to their human counterparts reveals the benefits and limitations of translational medicine. METHODS Using quantitative histology and stereology, we performed an extensive mapping of the regional proximodistal differences in the fractions of elastin, collagen, and smooth muscle actin as well as the intima-media and wall thicknesses among 404 segments (every 1 cm) of porcine CCAs collected from male and female pigs (n = 21). We also compared the microscopic structure of porcine CCAs with segments of human coronary arteries and one of the preferred arterial conduits used for the coronary artery bypass grafting (CABG), namely, the internal thoracic artery (ITA) (n = 21 human cadavers). RESULTS The results showed that the histological structure of left and right porcine CCA can be considered equivalent, provided that gross anatomical variations of the regular branching patterns are excluded. The proximal elastic carotid (51.2% elastin, 4.2% collagen, and 37.2% actin) transitioned to more muscular middle segments (23.5% elastin, 4.9% collagen, 54.3% actin) at the range of 2-3 centimeters and then to even more muscular distal segments (17.2% elastin, 4.9% collagen, 64.0% actin). The resulting morphometric data set shows the biological variability of the artery and is made available for biomechanical modeling and for performing a power analysis and calculating the minimum number of samples per group when planning further experiments with this widely used large animal model. CONCLUSIONS Comparison of porcine carotids with human coronary arteries and ITA revealed the benefits and the limitations of using porcine CCAs as a valid model for testing bioengineered small-diameter CABG vascular conduits. Morphometry of human coronary arteries and ITA provided more realistic data for tailoring multilayered artificial vascular prostheses and the ranges of values within which the conduits should be tested in the future. Despite their limitations, porcine CCAs remain a widely used and well-characterized large animal model that is available for a variety of experiments in vascular surgery.
Collapse
Affiliation(s)
- Petr Tomášek
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic; Department of Forensic Medicine, Second Faculty of Medicine, Charles University and Na Bulovce Hospital, Budinova 2, 180 81 Prague, Czech Republic
| | - Zbyněk Tonar
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic.
| | - Martina Grajciarová
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Tomáš Kural
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Daniel Turek
- First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08 Prague 2, Czech Republic; Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic
| | - Jana Horáková
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Richard Pálek
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Husova 3, 306 05 Pilsen, Czech Republic
| | - Lada Eberlová
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Milena Králíčková
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Václav Liška
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Husova 3, 306 05 Pilsen, Czech Republic
| |
Collapse
|
37
|
Badv M, Alonso-Cantu C, Shakeri A, Hosseinidoust Z, Weitz JI, Didar TF. Biofunctional Lubricant-Infused Vascular Grafts Functionalized with Silanized Bio-Inks Suppress Thrombin Generation and Promote Endothelialization. ACS Biomater Sci Eng 2019; 5:6485-6496. [DOI: 10.1021/acsbiomaterials.9b01062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | | | - Jeffrey I. Weitz
- Thrombosis & Atherosclerosis Research Institute (TaARI), 237 Barton Street East, Hamilton, Ontario L8L 2X2, Canada
| | | |
Collapse
|
38
|
Yin A, Lan X, Zhuang W, Tang Z, Li Y, Wang Y. PEGylated chitosan and PEGylated PLCL for blood vessel repair: An in vitro study. J Biomater Appl 2019; 34:778-789. [DOI: 10.1177/0885328219875937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Anlin Yin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, China
| | - Xiaorong Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Weihua Zhuang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Zhonglan Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yan Li
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Yu C, Xing M, Sun S, Guan G, Wang L. In vitro evaluation of vascular endothelial cell behaviors on biomimetic vascular basement membranes. Colloids Surf B Biointerfaces 2019; 182:110381. [PMID: 31351274 DOI: 10.1016/j.colsurfb.2019.110381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Abstract
Vascular basement membrane (VBM) is a thin layer of fibrous extracellular matrix linking endothelium, and collagen type IV (COL IV) is its main composition. VBM plays a crucial role in anchoring down the endothelium to its loose connective tissue underneath. For vascular grafts, constructing biomimetic VBMs on the luminal surface is thus an effective approach to improve endothelialization in situ. In the present work, three types of polycaprolactone (PCL) membranes were produced and characterized through cell counting kit-8 (CCK-8) assay, adhesion force and elastic modulus test to examine the influence of fiber diameter and membrane composition on vascular endothelial cell (EC) behaviors. The PCL membranes with finer fibers of 54.77 nm (PCL-54) could biomimic the nanotopography of VBMs more efficiently than 544.64 nm (PCL-544), and they were more suitable for Pig iliac endothelium cells (PIECs) adhesion and proliferation, meanwhile, inducing higher elastic modulus and adhesion force of PIECs. On this foundation, we further immobilized COL IV onto PCL-54 (PCL-COL IV) to biomimic VBMs compositionally. Results showed that PIECs on PCL-COL IV exhibited the highest viability and proliferation. Besides, quantitative data indicated that the elastic modulus of the PIECs on PCL-COL IV (4441.00 Pa) was as two times higher than that on PCL-54 (2312.26 Pa), and the adhesion force grew to 1120.99 pN from 673.58 pN of PIECs on PCL-54. In summary, the PCL-COL IV membranes show high similarity with the native VBMs in terms of structure and composition, suggesting a promising potential for surface modification to vascular grafts for improved endothelialization.
Collapse
Affiliation(s)
- Chenglong Yu
- Engineering Research Center of Technical Textile, Ministry of Education, Key Laboratory of Textile Science and Technology of Ministry of Education, Key Laboratory of Textile Industry for Biomedical Textile materials and Technology, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Meiyi Xing
- Engineering Research Center of Technical Textile, Ministry of Education, Key Laboratory of Textile Science and Technology of Ministry of Education, Key Laboratory of Textile Industry for Biomedical Textile materials and Technology, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Shibo Sun
- Engineering Research Center of Technical Textile, Ministry of Education, Key Laboratory of Textile Science and Technology of Ministry of Education, Key Laboratory of Textile Industry for Biomedical Textile materials and Technology, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Guoping Guan
- Engineering Research Center of Technical Textile, Ministry of Education, Key Laboratory of Textile Science and Technology of Ministry of Education, Key Laboratory of Textile Industry for Biomedical Textile materials and Technology, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| | - Lu Wang
- Engineering Research Center of Technical Textile, Ministry of Education, Key Laboratory of Textile Science and Technology of Ministry of Education, Key Laboratory of Textile Industry for Biomedical Textile materials and Technology, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| |
Collapse
|
40
|
Zhao J, Bai L, Muhammad K, Ren XK, Guo J, Xia S, Zhang W, Feng Y. Construction of Hemocompatible and Histocompatible Surface by Grafting Antithrombotic Peptide ACH11 and Hydrophilic PEG. ACS Biomater Sci Eng 2019; 5:2846-2857. [DOI: 10.1021/acsbiomaterials.9b00431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Lingchuang Bai
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Khan Muhammad
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Xiang-kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People’s Armed Police Force, 220 Chenglin Road, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People’s Armed Police Force, Tianjin 300309, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
41
|
Guan G, Yu C, Xing M, Wu Y, Hu X, Wang H, Wang L. Hydrogel Small-Diameter Vascular Graft Reinforced with a Braided Fiber Strut with Improved Mechanical Properties. Polymers (Basel) 2019; 11:E810. [PMID: 31064087 PMCID: PMC6571729 DOI: 10.3390/polym11050810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
Acute thrombosis remains the main limitation of small-diameter vascular grafts (inner diameter <6 mm) for bridging and bypassing of small arteries defects and occlusion. The use of hydrogel tubes represents a promising strategy. However, their low mechanical strength and high swelling tendency may limit their further application. In the present study, a hydrogel vascular graft of Ca alginate/polyacrylamide reinforced with a braided fiber strut was designed and fabricated with the assistance of a customized casting mold. Morphology, structure, swellability, mechanical properties, cyto- and hemocompatibility of the reinforced graft were characterized. The results showed that the reinforced graft was transparent and robust, with a smooth surface. Scanning electron microscopic examination confirmed a uniform porous structure throughout the hydrogel. The swelling of the reinforced grafts could be controlled to 100%, obtaining clinically satisfactory mechanical properties. In particular, the dynamic circumferential compliance reached (1.7 ± 0.1)%/100 mmHg for 50-90 mmHg, a value significantly higher than that of expanded polytetrafluoroethylene (ePTFE) vascular grafts. Biological tests revealed that the reinforced graft was non-cytotoxic and had a low hemolysis percentage (HP) corresponding to (0.9 ± 0.2)%. In summary, the braided fiber-reinforced hydrogel vascular grafts demonstrated both physical and biological superiority, suggesting their suitability for vascular grafts.
Collapse
Affiliation(s)
- Guoping Guan
- Engineering Research Center of Technical Textiles, Ministry of Education; Key laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China.
| | - Chenglong Yu
- Engineering Research Center of Technical Textiles, Ministry of Education; Key laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China.
| | - Meiyi Xing
- Engineering Research Center of Technical Textiles, Ministry of Education; Key laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China.
| | - Yufen Wu
- Engineering Research Center of Technical Textiles, Ministry of Education; Key laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China.
| | - Xingyou Hu
- Engineering Research Center of Technical Textiles, Ministry of Education; Key laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China.
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | - Lu Wang
- Engineering Research Center of Technical Textiles, Ministry of Education; Key laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China.
| |
Collapse
|
42
|
Gong X, Liu Y, Wang Y, Xie Z, Dong Q, Dong M, Liu H, Shao Q, Lu N, Murugadoss V, Ding T, Guo Z. Amino graphene oxide/dopamine modified aramid fibers: Preparation, epoxy nanocomposites and property analysis. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Liu H, Qu X, Tan H, Song J, Lei M, Kim E, Payne GF, Liu C. Role of polydopamine's redox-activity on its pro-oxidant, radical-scavenging, and antimicrobial activities. Acta Biomater 2019; 88:181-196. [PMID: 30818052 DOI: 10.1016/j.actbio.2019.02.032] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 11/25/2022]
Abstract
Polydopamine (PDA) is a bioinspired material and coating that offers diverse functional activities (e.g., photothermal, antioxidant, and antimicrobial) for a broad range of applications. Although PDA is reported to be redox active, the association between PDA's redox state and its functional performance has been difficult to discern because of PDA's complex structure and limitations in methods to characterize redox-based functions. Here, we use an electrochemical reverse engineering approach to confirm that PDA is redox-active and can repeatedly accept and donate electrons. We observed that the electron-donating ability of PDA offers the detrimental pro-oxidant effect of donating electrons to O2 to generate reactive oxygen species (ROS) or, alternatively, the beneficial antioxidant effect of quenching oxidative free radicals. Importantly, PDA's electron-donating ability depends on its redox state and is strongly influenced by external factors including metal ion binding as well as near-infrared (NIR) irradiation. Furthermore, we demonstrated that PDA possesses redox state-dependent antimicrobial properties in vitro and in vivo. We envision that clarification of PDA's redox activity will enable better understanding of PDA's context-dependent properties (e.g., antioxidant and pro-oxidant) and provide new insights for further applications of PDA. STATEMENT OF SIGNIFICANCE: We believe this is the first report to characterize the redox activities of polydopamine (PDA) and to relate these redox activities to functional properties important for various proposed applications of PDA. We observed that polydopamine nanoparticles 1) are redox-active; 2) can repeatedly donate and accept electrons; 3) can accept electrons from reducing agents (e.g., ascorbate), donate electrons to O2 to generate ROS, and donate electrons to free radicals to quench them; 4) have redox state-dependent electron-donating abilities that are strongly influenced by metal ion binding as well as NIR irradiation; and 5) have redox state-dependent antimicrobial activities.
Collapse
|
44
|
Wu Y, Yu C, Xing M, Wang L, Guan G. Surface modification of polyvinyl alcohol (PVA)/polyacrylamide (PAAm) hydrogels with polydopamine and REDV for improved applicability. J Biomed Mater Res B Appl Biomater 2019; 108:117-127. [PMID: 30912304 DOI: 10.1002/jbm.b.34371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 02/03/2023]
Abstract
Developing a small-diameter vascular graft with a satisfactory performance in terms of mechanical and biological properties remains a challenging issue because of comprehensive requirements from clinical applications. Polyvinyl alcohol (PVA)/polyacrylamide (PAAm) hydrogels exhibit many desirable characteristics for small-diameter vascular grafts because of their tunable mechanical properties, especially high compliance. However, poor cells adhesion hinders their application for endothelialization in situ. Therefore, in the present work, polydopamine (PDA) and tetrapeptide Arg-Glu-Asp-Val (REDV) were used to functionalize the hydrogels surface and improve cells adhesion. A series of characterizations were systematically conducted to examine the applicability of coated hydrogels to small-diameter vascular grafts. Results showed that bare and coated hydrogels have appropriate structural stability, and no significant differences in tensile properties could be found after being coated with PDA or PDA-REDV. The hydrophilicity of the hydrogels decreased with the coatings of PDA and especially PDA-REDV to improve protein adsorption, porcine iliac artery endothelial cells (PIECs) adhesion, viability, proliferation, and spreading on the hydrogels. Lower hemolysis percentages and higher blood clotting index values were attained for the hydrogels, suggesting their satisfactory hemocompatibility. Overall, the present work provided insights into the development of a novel hydrogel-based small-diameter vascular graft. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:117-127, 2020.
Collapse
Affiliation(s)
- Yufen Wu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Chenglong Yu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Meiyi Xing
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Guoping Guan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
45
|
Lee SJ, Kim ME, Nah H, Seok JM, Jeong MH, Park K, Kwon IK, Lee JS, Park SA. Vascular endothelial growth factor immobilized on mussel-inspired three-dimensional bilayered scaffold for artificial vascular graft application: In vitro and in vivo evaluations. J Colloid Interface Sci 2019; 537:333-344. [DOI: 10.1016/j.jcis.2018.11.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 01/01/2023]
|
46
|
Jiang S, Wu J, Hang Y, Liu Q, Li D, Chen H, Brash JL. Sustained release of a synthetic structurally-tailored glycopolymer modulates endothelial cells for enhanced endothelialization of materials. J Mater Chem B 2019. [DOI: 10.1039/c9tb00714h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
GAG-mimicking polymers were prepared by a novel method allowing close control of structure and can be used as potent synthetic bioactive modifiers to promote endothelialization of materials.
Collapse
Affiliation(s)
- Shuaibing Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Jingxian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yingjie Hang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Qi Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Dan Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - John L. Brash
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
47
|
Controlling the surface structure of electrospun fibers: Effect on endothelial cells and blood coagulation. Biointerphases 2018; 13:051001. [DOI: 10.1116/1.5047668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Horakova J, Mikes P, Lukas D, Saman A, Jencova V, Klapstova A, Svarcova T, Ackermann M, Novotny V, Kalab M, Lonsky V, Bartos M, Rampichova M, Litvinec A, Kubikova T, Tomasek P, Tonar Z. Electrospun vascular grafts fabricated from poly(L-lactide-co-ε-caprolactone) used as a bypass for the rabbit carotid artery. ACTA ACUST UNITED AC 2018; 13:065009. [PMID: 30177582 DOI: 10.1088/1748-605x/aade9d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The study involved the electrospinning of the copolymer poly(L-lactide-co-ε-caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 ± 0.19 μm and fiber diameters of 5.58 ± 0.10 μm. Unlike fibrous polycaprolactone, the electrospun PLCL copolymer promoted fibroblast and endothelial cell adhesion and proliferation in vitro. Moreover, the regeneration of the vessel wall was detected following implantation and, after six months, the endothelialization of the lumen and the infiltration of arranged smooth muscle cells producing collagen was observed. However, the degradation rate was found to be accelerated in the rabbit animal model. The study was conducted under conditions that reflected the clinical requirements-the prostheses were sutured in the end-to-side fashion and the long-term end point of prosthesis healing was assessed. The regeneration of the vessel wall in terms of endothelialization, smooth cell infiltration and the presence of collagen fibers was observed after six months in vivo. A part of the grafts failed due to the rapid degradation rate of the PLCL copolymer.
Collapse
Affiliation(s)
- Jana Horakova
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, 460 01 Liberec, Czechia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Luo R, Zhang J, Zhuang W, Deng L, Li L, Yu H, Wang J, Huang N, Wang Y. Multifunctional coatings that mimic the endothelium: surface bound active heparin nanoparticles with in situ generation of nitric oxide from nitrosothiols. J Mater Chem B 2018; 6:5582-5595. [PMID: 32254968 DOI: 10.1039/c8tb00596f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multifunctional coatings that mimic the endothelial function in terms of nitric oxide generation and membrane-bound active heparin species are prepared via the immobilization of cystamine-modified heparin/polyethyleneimine (Hep-Cys/PEI) nanoparticles. Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS) were conducted to confirm the coating formation. Functions of active heparin release and nitric oxide (NO) generation are obtained on the material surface after the immobilization of Hep-Cys/PEI nanoparticles. Moreover, a nanoparticle-immobilized coating is sufficiently flexible to resist the deformation of a 316L SS stent without any destruction. With the introduction of heparin, the antithrombin III (AT-III) binding ability was significantly enhanced with prolonged APTT time. Besides, a Hep-Cys/PEI nanoparticle immobilized coating surface not only significantly suppressed the platelet adhesion and activation, but also promoted EC proliferation and inhibited SMC proliferation. Besides, a milder tissue response was observed on the NP immobilized surface. With the synergistic effect of heparin and nitric oxide generating moieties, such multifunctional coatings presented potential for the modification of vascular materials.
Collapse
Affiliation(s)
- Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Thatikonda N, Nilebäck L, Kempe A, Widhe M, Hedhammar M. Bioactivation of Spider Silk with Basic Fibroblast Growth Factor for in Vitro Cell Culture: A Step toward Creation of Artificial ECM. ACS Biomater Sci Eng 2018; 4:3384-3396. [DOI: 10.1021/acsbiomaterials.8b00844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Naresh Thatikonda
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - Linnea Nilebäck
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - Adam Kempe
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - Mona Widhe
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - My Hedhammar
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| |
Collapse
|