1
|
Ma X, Ma Y, Lin Z, Ji M. The role of the TGF-β1 signaling pathway in the process of amelogenesis. Front Physiol 2025; 16:1586769. [PMID: 40271211 PMCID: PMC12014465 DOI: 10.3389/fphys.2025.1586769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Amelogenesis is a highly regulated process involving multiple signaling pathways, among which the transforming growth factor-β1 (TGF-β1) signaling pathway plays a pivotal role in enamel formation. This review firstly elucidates the critical functions of TGF-β1 in regulating ameloblast behavior and enamel development, encompassing ameloblast proliferation, differentiation, apoptosis, enamel matrix protein synthesis, and mineralization. Secondly, based on emerging evidence, we further discuss potential interactions between TGF-β signaling and circadian regulation in enamel formation, although this relationship requires further experimental validation. Finally, future research directions are proposed to further investigate the relationship between TGF-β1 and the circadian clock in the context of amelogenesis.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Yunjing Ma
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Zhiyong Lin
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mei Ji
- Department of Stomatology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Mergelsberg ST, Kim H, Buchko GW, Ginovska B. SAXS of murine amelogenin identifies a persistent dimeric species from pH 5.0 to 8.0. J Struct Biol 2024; 216:108131. [PMID: 39368677 DOI: 10.1016/j.jsb.2024.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Amelogenin is an intrinsically disordered protein essential to tooth enamel formation in mammals. Using advanced small angle X-ray scattering (SAXS) capabilities at synchrotrons and computational models, we revisited measuring the quaternary structure of murine amelogenin as a function of pH and phosphorylation at serine-16. The SAXS data shows that at the pH extremes, amelogenin exists as an extended monomer at pH 3.0 (Rg = 38.4 Å) and nanospheres at pH 8.0 (Rg = 84.0 Å), consistent with multiple previous observations. At pH 5.0 and above there was no evidence for a significant population of monomeric species. Instead, at pH 5.0, ∼80 % of the population is a heterogenous dimeric species that increases to ∼100 % at pH 5.5. The dimer population was observed at all pH > 5 conditions in dynamic equilibrium with a species in the pentamer range at pH < 6.5 and nanospheres at pH 8.0. At pH 8.0, ∼40 % of the amelogenin remained in the dimeric state. In general, serine-16 phosphorylation of amelogenin appears to modestly stabilize the population of the dimeric species.
Collapse
Affiliation(s)
| | - Hoshin Kim
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Garry W Buchko
- Pacific Northwest National Laboratory, Richland, WA 99354, USA; School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Bojana Ginovska
- Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
3
|
Halablab M, Wallman L, Bonde J. Recombinant human enamelin produced in Escherichia coli promotes mineralization in vitro. BMC Biotechnol 2024; 24:48. [PMID: 38982413 PMCID: PMC11234762 DOI: 10.1186/s12896-024-00875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Enamelin is an enamel matrix protein that plays an essential role in the formation of enamel, the most mineralized tissue in the human body. Previous studies using animal models and proteins from natural sources point to a key role of enamelin in promoting mineralization events during enamel formation. However, natural sources of enamelin are scarce and with the current study we therefore aimed to establish a simple microbial production method for recombinant human enamelin to support its use as a mineralization agent. RESULTS In the study the 32 kDa fragment of human enamelin was successfully expressed in Escherichia coli and could be obtained using immobilized metal ion affinity chromatography purification (IMAC), dialysis, and lyophilization. This workflow resulted in a yield of approximately 10 mg enamelin per liter culture. Optimal conditions for IMAC purification were obtained using Ni2+ as the metal ion, and when including 30 mM imidazole during binding and washing steps. Furthermore, in vitro mineralization assays demonstrated that the recombinant enamelin could promote calcium phosphate mineralization at a concentration of 0.5 mg/ml. CONCLUSIONS These findings address the scarcity of enamelin by facilitating its accessibility for further investigations into the mechanism of enamel formation and open new avenues for developing enamel-inspired mineralized biomaterials.
Collapse
Affiliation(s)
- Monalissa Halablab
- Division of Pure and Applied Biochemistry, Lund University, Lund, SE-221 00, Sweden
| | - Lovisa Wallman
- Division of Pure and Applied Biochemistry, Lund University, Lund, SE-221 00, Sweden
| | - Johan Bonde
- Division of Pure and Applied Biochemistry, Lund University, Lund, SE-221 00, Sweden.
| |
Collapse
|
4
|
Zhang J, Bai Y, Wang J, Li B, Habelitz S, Lu JX. Calcium interactions in amelogenin-derived peptide assembly. Front Physiol 2022; 13:1063970. [PMID: 36589425 PMCID: PMC9795176 DOI: 10.3389/fphys.2022.1063970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Phosphorylation of serine residues has been recognized as a pivotal event in the evolution of mineralized tissues in many biological systems. During enamel development, the extracellular matrix protein amelogenin is most abundant and appears to be critical to the extreme high aspect ratios (length:width) of apatite mineral fibers reaching several millimeters in larger mammalian teeth. A 14-residue peptide (14P2, residues Gly8 to Thr21) was previously identified as a key sequence mediating amelogenin assembly formation, the domain also contains the native single phosphoserine residue (Ser16) of the full-length amelogenin. In this research, 14P2 and its phosphorylated form (p14P2) were investigated at pH 6.0 with various calcium and phosphate ion concentrations, indicating that both peptides could self-assemble into amyloid-like conformation but with differences in structural details. With calcium, the distance between 31P within the p14P2 self-assemblies is averaged to be 4.4 ± 0.2Å, determined by solid-state NMR 31P PITHIRDS-CT experiments. Combining with other experimental results, solid-state Nuclear Magnetic Resonance (SSNMR) suggests that the p14P2 self-assemblies are in parallel in-register β-sheet conformation and divalent calcium ions most likely connect two adjacent peptide chains by binding to the phosphate group of Ser16 and the carboxylate of Glu18 side-chain. This study on the interactions between calcium ions and amelogenin-derived peptides provides insights on how amelogenin may self-assemble in the presence of calcium ions in early enamel development.
Collapse
Affiliation(s)
- Jing Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yushi Bai
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Jian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bing Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Stefan Habelitz
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States,*Correspondence: Jun-xia Lu, ; Stefan Habelitz,
| | - Jun-xia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China,*Correspondence: Jun-xia Lu, ; Stefan Habelitz,
| |
Collapse
|
5
|
Buchko GW, Mergelsberg ST, Tarasevich BJ, Shaw WJ. Residue-Specific Insights into the Intermolecular Protein–Protein Interfaces Driving Amelogenin Self-Assembly in Solution. Biochemistry 2022; 61:2909-2921. [DOI: 10.1021/acs.biochem.2c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Garry W. Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, United States
| | - Sebastian T. Mergelsberg
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Barbara J. Tarasevich
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Wendy J. Shaw
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
6
|
Bahraminejad E, Paliwal D, Sunde M, Holt C, Carver JA, Thorn DC. Amyloid fibril formation by α S1- and β-casein implies that fibril formation is a general property of casein proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140854. [PMID: 36087849 DOI: 10.1016/j.bbapap.2022.140854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Caseins are a diverse family of intrinsically disordered proteins present in the milks of all mammals. A property common to two cow paralogues, αS2- and κ-casein, is their propensity in vitro to form amyloid fibrils, the highly ordered protein aggregates associated with many age-related, including neurological, diseases. In this study, we explored whether amyloid fibril-forming propensity is a general feature of casein proteins by examining the other cow caseins (αS1 and β) as well as β-caseins from camel and goat. Small-angle X-ray scattering measurements indicated that cow αS1- and β-casein formed large spherical aggregates at neutral pH and 20°C. Upon incubation at 65°C, αS1- and β-casein underwent conversion to amyloid fibrils over the course of ten days, as shown by thioflavin T binding, transmission electron microscopy, and X-ray fibre diffraction. At the lower temperature of 37°C where fibril formation was more limited, camel β-casein exhibited a greater fibril-forming propensity than its cow or goat orthologues. Limited proteolysis of cow and camel β-casein fibrils and analysis by mass spectrometry indicated a common amyloidogenic sequence in the proline, glutamine-rich, C-terminal region of β-casein. These findings highlight the persistence of amyloidogenic sequences within caseins, which likely contribute to their functional, heterotypic self-assembly; in all mammalian milks, at least two caseins coalesce to form casein micelles, implying that caseins diversified partly to avoid dysfunctional amyloid fibril formation.
Collapse
Affiliation(s)
- Elmira Bahraminejad
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Devashi Paliwal
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Margaret Sunde
- School of Medical Sciences, Faculty of Medicine and Health, and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - David C Thorn
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|
7
|
Akkineni S, Zhu C, Chen J, Song M, Hoff SE, Bonde J, Tao J, Heinz H, Habelitz S, De Yoreo JJ. Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites. Proc Natl Acad Sci U S A 2022; 119:e2106965119. [PMID: 35522709 PMCID: PMC9172371 DOI: 10.1073/pnas.2106965119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Protein scaffolds direct the organization of amorphous precursors that transform into mineralized tissues, but the templating mechanism remains elusive. Motivated by models for the biomineralization of tooth enamel, wherein amyloid-like amelogenin nanoribbons guide the mineralization of apatite filaments, we investigated the impact of nanoribbon structure, sequence, and chemistry on amorphous calcium phosphate (ACP) nucleation. Using full-length human amelogenin and peptide analogs with an amyloid-like domain, films of β-sheet nanoribbons were self-assembled on graphite and characterized by in situ atomic force microscopy and molecular dynamics simulations. All sequences substantially reduce nucleation barriers for ACP by creating low-energy interfaces, while phosphoserines along the length of the nanoribbons dramatically enhance kinetic factors associated with ion binding. Furthermore, the distribution of negatively charged residues along the nanoribbons presents a potential match to the Ca–Ca distances of the multi-ion complexes that constitute ACP. These findings show that amyloid-like amelogenin nanoribbons provide potent scaffolds for ACP mineralization by presenting energetically and stereochemically favorable templates of calcium phosphate ion binding and suggest enhanced surface wetting toward calcium phosphates in general.
Collapse
Affiliation(s)
- Susrut Akkineni
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Cheng Zhu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Jiajun Chen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Miao Song
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Samuel E. Hoff
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Johan Bonde
- Division of Pure and Applied Biochemistry, Center for Applied Life Sciences, Lund University, Lund, SE-221 00, Sweden
| | - Jinhui Tao
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309
| | - Stefan Habelitz
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA 94143
| | - James J. De Yoreo
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
8
|
Tang S, Dong Z, Ke X, Luo J, Li J. Advances in biomineralization-inspired materials for hard tissue repair. Int J Oral Sci 2021; 13:42. [PMID: 34876550 PMCID: PMC8651686 DOI: 10.1038/s41368-021-00147-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Biomineralization is the process by which organisms form mineralized tissues with hierarchical structures and excellent properties, including the bones and teeth in vertebrates. The underlying mechanisms and pathways of biomineralization provide inspiration for designing and constructing materials to repair hard tissues. In particular, the formation processes of minerals can be partly replicated by utilizing bioinspired artificial materials to mimic the functions of biomolecules or stabilize intermediate mineral phases involved in biomineralization. Here, we review recent advances in biomineralization-inspired materials developed for hard tissue repair. Biomineralization-inspired materials are categorized into different types based on their specific applications, which include bone repair, dentin remineralization, and enamel remineralization. Finally, the advantages and limitations of these materials are summarized, and several perspectives on future directions are discussed.
Collapse
Affiliation(s)
- Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
- Med-X Center for Materials, Sichuan University, Chengdu, PR China.
| |
Collapse
|
9
|
Zhou ZX, Zhang HX, Zheng QC. Predicting a Kind of Unusual Multiple-States Dimerization-Modes Transformation in Protein PD-L1 System by Computational Investigation and a Generalized Rate Theory. Front Chem 2021; 9:783444. [PMID: 34858950 PMCID: PMC8631179 DOI: 10.3389/fchem.2021.783444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
The new cancer immunotherapy has been carried out with an almost messianic zeal, but its molecular basis remains unclear due to the complexity of programmed death ligand 1 (PD-L1) dimerization. In this study, a new and integral multiple dimerization-modes transformation process of PD-L1s (with a new PD-L1 dimerization mode and a new transformation path discovered) and the corresponding mechanism are predicted using theoretical and computational methods. The results of the state analysis show that 5 stable binding states exist in system. A generalized inter-state transformation rate (GITR) theory is also proposed in such multiple-states self-assembly system to explore the kinetic characteristics of inter-state transformation. A “drug insertion” path was identified as the dominant path of the PD-L1 dimerization-modes transformation. Above results can provide supports for both the relative drug design and other multiple-states self-assembly system from the theoretical chemistry perspective.
Collapse
Affiliation(s)
- Zhong-Xing Zhou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Hong-Xing Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Qing-Chuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| |
Collapse
|
10
|
Danesi AL, Athanasiadou D, Mansouri A, Phen A, Neshatian M, Holcroft J, Bonde J, Ganss B, Carneiro KMM. Uniaxial Hydroxyapatite Growth on a Self-Assembled Protein Scaffold. Int J Mol Sci 2021; 22:12343. [PMID: 34830225 PMCID: PMC8620880 DOI: 10.3390/ijms222212343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Biomineralization is a crucial process whereby organisms produce mineralized tissues such as teeth for mastication, bones for support, and shells for protection. Mineralized tissues are composed of hierarchically organized hydroxyapatite crystals, with a limited capacity to regenerate when demineralized or damaged past a critical size. Thus, the development of protein-based materials that act as artificial scaffolds to guide hydroxyapatite growth is an attractive goal both for the design of ordered nanomaterials and for tissue regeneration. In particular, amelogenin, which is the main protein that scaffolds the hierarchical organization of hydroxyapatite crystals in enamel, amelogenin recombinamers, and amelogenin-derived peptide scaffolds have all been investigated for in vitro mineral growth. Here, we describe uniaxial hydroxyapatite growth on a nanoengineered amelogenin scaffold in combination with amelotin, a mineral promoting protein present during enamel formation. This bio-inspired approach for hydroxyapatite growth may inform the molecular mechanism of hydroxyapatite formation in vitro as well as possible mechanisms at play during mineralized tissue formation.
Collapse
Affiliation(s)
- Alexander L. Danesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
| | - Dimitra Athanasiadou
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
| | - Ahmad Mansouri
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
| | - Alina Phen
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
| | - Mehrnoosh Neshatian
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
| | - James Holcroft
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
| | - Johan Bonde
- Division of Pure and Applied Biochemistry, Center of Applied Life Sciences, Lund University, 223 62 Lund, Sweden;
| | - Bernhard Ganss
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Karina M. M. Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
11
|
Bai Y, Bonde J, Carneiro KMM, Zhang Y, Li W, Habelitz S. A Brief History of the Discovery of Amelogenin Nanoribbons In Vitro and In Vivo. J Dent Res 2021; 100:1429-1433. [PMID: 34612757 DOI: 10.1177/00220345211043463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Without evidence for an organic framework, biological and biochemical processes observed during amelogenesis provided limited information on how extracellular matrix proteins control the development of the complex fibrous architecture of human enamel. Over a decade ago, amelogenin nanoribbons were first observed from recombinant proteins during in vitro mineralization experiments in our laboratory. In enamel from mice lacking the enzyme kallikrein 4 (KLK4), we later uncovered ribbon-like protein structures that matched the morphology, width, and thickness of the nanoribbons assembled by recombinant proteins. Interestingly, similar structures had already been described since the 1960s, when enamel sections from various mammals were demineralized and stained for transmission electron microscopy analysis. However, at that time, researchers were not aware of the ability of amelogenin to form nanoribbons and instead associated the filamentous nanostructures with possible imprints of mineral ribbons in the gel-like matrix of developing enamel. Further evidence for the significance of amelogenin nanoribbons for enamel development was stipulated when recent mineralization experiments succeeded in templating and orienting the growth of apatite ribbons along the protein nanoribbon framework. This article provides a brief historical review of the discovery of amelogenin nanoribbons in our laboratory in the context of reports by others on similar structures in the developing enamel matrix.
Collapse
Affiliation(s)
- Y Bai
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - J Bonde
- Division of Pure and Applied Biochemistry, Center of Applied Life Science, Lund University, Lund, Sweden
| | - K M M Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Y Zhang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - W Li
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - S Habelitz
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Habelitz S, Bai Y. Mechanisms of Enamel Mineralization Guided by Amelogenin Nanoribbons. J Dent Res 2021; 100:1434-1443. [PMID: 34009057 DOI: 10.1177/00220345211012925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The nanofibrous nature and its intricate structural organization are the basis for the extraordinary ability of sound enamel to outlive masticatory forces at minimal failure rates. Apatite nanofibers of several hundreds of micrometers to possibly millimeters in length originate during the secretory stage of amelogenesis as 2-nm-thin and 15-nm-wide ribbons that develop and grow in length under the guidance of a dynamic mixture of specialized proteins, the developing enamel matrix (DEM). A critical role in the unidirectional and oriented growth of enamel mineral ribbons has been attributed to amelogenin, the major constituent of the DEM. This review elaborates on recent studies on the ability of ribbon-like assemblies of amelogenin to template the formation of an amorphous calcium phosphate precursor that transforms into apatite mineral ribbons similar to the ones observed in developing enamel. A mechanistic model of the biological processes that drive biomineralization in enamel is presented in the context of a comparative analysis of enamel mouse models and earlier structural data of the DEM emphasizing a regulatory role of the matrix metalloproteinase 20 in mineral deposition and the involvement of a process-directing agent for the templated mineral growth directed by amelogenin nanoribbons.
Collapse
Affiliation(s)
- S Habelitz
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Y Bai
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
|
14
|
Abstract
As the hardest tissue formed by vertebrates, enamel represents nature's engineering masterpiece with complex organizations of fibrous apatite crystals at the nanometer scale. Supramolecular assemblies of enamel matrix proteins (EMPs) play a key role as the structural scaffolds for regulating mineral morphology during enamel development. However, to achieve maximum tissue hardness, most organic content in enamel is digested and removed at the maturation stage, and thus knowledge of a structural protein template that could guide enamel mineralization is limited at this date. Herein, by examining a gene-modified mouse that lacked enzymatic degradation of EMPs, we demonstrate the presence of protein nanoribbons as the structural scaffolds in developing enamel matrix. Using in vitro mineralization assays we showed that both recombinant and enamel-tissue-based amelogenin nanoribbons are capable of guiding fibrous apatite nanocrystal formation. In accordance with our understanding of the natural process of enamel formation, templated crystal growth was achieved by interaction of amelogenin scaffolds with acidic macromolecules that facilitate the formation of an amorphous calcium phosphate precursor which gradually transforms into oriented apatite fibers along the protein nanoribbons. Furthermore, this study elucidated that matrix metalloproteinase-20 is a critical regulator of the enamel mineralization as only a recombinant analog of a MMP20-cleavage product of amelogenin was capable of guiding apatite mineralization. This study highlights that supramolecular assembly of the scaffold protein, its enzymatic processing, and its ability to interact with acidic carrier proteins are critical steps for proper enamel development.
Collapse
|
15
|
Šupová M. The Significance and Utilisation of Biomimetic and Bioinspired Strategies in the Field of Biomedical Material Engineering: The Case of Calcium Phosphat-Protein Template Constructs. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E327. [PMID: 31936830 PMCID: PMC7013803 DOI: 10.3390/ma13020327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
This review provides a summary of recent research on biomimetic and bioinspired strategies applied in the field of biomedical material engineering and focusing particularly on calcium phosphate-protein template constructs inspired by biomineralisation. A description of and discussion on the biomineralisation process is followed by a general summary of the application of the biomimetic and bioinspired strategies in the fields of biomedical material engineering and regenerative medicine. Particular attention is devoted to the description of individual peptides and proteins that serve as templates for the biomimetic mineralisation of calcium phosphate. Moreover, the review also presents a description of smart devices including delivery systems and constructs with specific functions. The paper concludes with a summary of and discussion on potential future developments in this field.
Collapse
Affiliation(s)
- Monika Šupová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, The Czech Academy of Sciences, V Holešovičkách 41, 182 09 Prague, Czech Republic
| |
Collapse
|
16
|
Jokisaari JR, Wang C, Qiao Q, Hu X, Reed DA, Bleher R, Luan X, Klie RF, Diekwisch TG. Particle-Attachment-Mediated and Matrix/Lattice-Guided Enamel Apatite Crystal Growth. ACS NANO 2019; 13:3151-3161. [PMID: 30763075 PMCID: PMC7067265 DOI: 10.1021/acsnano.8b08668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tooth enamel is a hard yet resilient biomaterial that derives its unique mechanical properties from decussating bundles of apatite crystals. To understand enamel crystal nucleation and growth at a nanoscale level and to minimize preparation artifacts, the developing mouse enamel matrix was imaged in situ using graphene liquid cells and atomic resolution scanning transmission electron and cryo-fracture electron microscopy. We report that 1-2 nm diameter mineral precipitates aggregated to form larger 5 nm particle assemblies within ameloblast secretory vesicles or annular organic matrix subunits. Further evidence for the fusion of 1-2 nm mineral precipitates into 5 nm mineral aggregates via particle attachment was provided by matrix-mediated calcium phosphate crystal growth studies. As a next step, aggregated particles organized into rows of 3-10 subunits and developed lattice suprastructures with 0.34 nm gridline spacings corresponding to the (002) planes of apatite crystals. Mineral lattice suprastructures superseded closely matched organic matrix patterns, suggestive of a combination of organic/inorganic templates guiding apatite crystal growth. Upon assembly of 2-5 nm subunits into crystal ribbons, lattice fringes indicative of the presence of larger ordered crystallites were observed surrounding elongating crystal ribbons, presumably guiding the c-axis growth of composite apatite crystals. Cryo-fracture micrographs revealed reticular networks of an organic matrix on the surface of elongating enamel crystal ribbons, suggesting that protein coats facilitate c-axis apatite crystal growth. Together, these data demonstrate (i) the involvement of particle attachment in enamel crystal nucleation, (ii) a combination of matrix- and lattice-guided crystal growth, and (iii) fusion of individual crystals via a mechanism similar to Ostwald ripening.
Collapse
Affiliation(s)
- Jacob R. Jokisaari
- UIC Department of Physics. 845 West Taylor Street, Chicago IL 60607, USA
| | - Canhui Wang
- UIC Department of Physics. 845 West Taylor Street, Chicago IL 60607, USA
| | - Qiao Qiao
- UIC Department of Physics. 845 West Taylor Street, Chicago IL 60607, USA
- Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Department, 98 Rochester Street, Building 480, Upton NY 11973 USA
| | - Xuan Hu
- UIC Department of Physics. 845 West Taylor Street, Chicago IL 60607, USA
| | - David A. Reed
- UIC Department of Oral Biology, 801 South Paulina, Chicago IL 60612, USA
| | - Reiner Bleher
- Northwestern University, Department of Materials Science and Engineering, NUANCE/BioCryo, 2145 Sheridan Road, Evanston IL 60208, USA
| | - Xianghong Luan
- UIC Department of Oral Biology, 801 South Paulina, Chicago IL 60612, USA
| | - Robert F. Klie
- UIC Department of Physics. 845 West Taylor Street, Chicago IL 60607, USA
| | - Thomas G.H. Diekwisch
- UIC Department of Oral Biology, 801 South Paulina, Chicago IL 60612, USA
- TAMU Center for Craniofacial Research and Diagnosis, 3302 Gaston Avenue, Dallas TX 75246, USA
| |
Collapse
|
17
|
Tao J, Fijneman A, Wan J, Prajapati S, Mukherjee K, Fernandez-Martinez A, Moradian-Oldak J, De Yoreo JJ. Control of Calcium Phosphate Nucleation and Transformation through Interactions of Enamelin and Amelogenin Exhibits the "Goldilocks Effect". CRYSTAL GROWTH & DESIGN 2018; 18:7391-7400. [PMID: 32280310 PMCID: PMC7152501 DOI: 10.1021/acs.cgd.8b01066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Although amelogenin comprises the vast majority of the matrix that templates calcium phosphate nucleation during enamel formation, other proteins, particularly enamelin, are also known to play an important role in the formation of enamel's intricate architecture. However, there is little understanding of the interplay between amelogenin and enamelin in controlling processes of mineral nucleation and growth. Here, we used an in vitro model to investigate the impact of enamelin interaction with amelogenin on calcium phosphate nucleation for a range of enamelin-to-amelogenin ratios. We found that amelogenin alone is a weak promoter of nucleation, but addition of enamelin enhanced nucleation rates in a highly nonlinear, nonmonotonic manner reaching a sharp maximum at a ratio of 1:50 enamelin/amelogenin. We provide a phenomenological model to explain this effect that assumes only isolated enamelin proteins can act as sites of enhanced nucleation, while enamelin oligomers cannot. Even when interaction is random, the model reproduces the observed behavior, suggesting a simple means to tightly control the timing and extent of nucleation and phase transformation by amelogenin and enamelin.
Collapse
Affiliation(s)
- Jinhui Tao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Andreas Fijneman
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Laboratory of Materials and Interface Chemistry and Center of Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jiaqi Wan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Saumya Prajapati
- Univeristy of Southern California, Center for Craniofacial Molecular Biology, Los Angeles, California 90033, United States
| | - Kaushik Mukherjee
- Univeristy of Southern California, Center for Craniofacial Molecular Biology, Los Angeles, California 90033, United States
| | | | - Janet Moradian-Oldak
- Univeristy of Southern California, Center for Craniofacial Molecular Biology, Los Angeles, California 90033, United States
- Corresponding Authors .,
| | - James J. De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Corresponding Authors .,
| |
Collapse
|
18
|
Engelberth SA, Bacino MS, Sandhu S, Li W, Bonde J, Habelitz S. Progression of Self-Assembly of Amelogenin Protein Supramolecular Structures in Simulated Enamel Fluid. Biomacromolecules 2018; 19:3917-3924. [PMID: 30114917 DOI: 10.1021/acs.biomac.8b00808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanisms of protein-guided mineralization in enamel, leading to organized fibrillar apatite nanocrystals, remain elusive. In vitro studies reveal recombinant human amelogenin (rH174), a matrix protein templating this process, self-assembles into a variety of structures. This study endeavors to clarify the self-assembly of rH174 in physiologically relevant conditions. Self-assembly in simulated enamel fluid was monitored up to 2 months. At alkali (7.3-8.7) and acidic (5.5-6.1) pH ranges, a distinct progression in formation was observed from nanospheres (17-23 nm) to intermediate-length nanorods, concluding with the formation of long 17-18 nm wide nanoribbons decorated with nanospheres. Assembly in acidic condition progressed quicker to nanoribbons with fewer persistent nanospheres. X-ray diffraction exhibited reflections characteristic of antiparallel β-sheets (4.7 and 9.65 Å), supporting the model of amyloid-like nanoribbon formation. This is the first observation of rH174 nanoribbons at alkaline pH as well as concurrent nanosphere formation, indicating both supramolecular structures are stable together under physiological conditions.
Collapse
Affiliation(s)
- Sarah A Engelberth
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco , 707 Parnassus Avenue , San Francisco , California 94143 , United States
| | - Margot S Bacino
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco , 707 Parnassus Avenue , San Francisco , California 94143 , United States
| | - Shaiba Sandhu
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco , 707 Parnassus Avenue , San Francisco , California 94143 , United States
| | - Wu Li
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco , 707 Parnassus Avenue , San Francisco , California 94143 , United States
| | - Johan Bonde
- Division of Pure and Applied Biochemistry, Center for Applied Life Sciences , Lund University , P.O. Box 124, SE-221 00 , Lund , Sweden
| | - Stefan Habelitz
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco , 707 Parnassus Avenue , San Francisco , California 94143 , United States
| |
Collapse
|
19
|
Ma CW, Zhang J, Dong XQ, Lu JX. Amyloid structure of high-order assembly of Leucine-rich amelogenin revealed by solid-state NMR. J Struct Biol 2018; 206:29-35. [PMID: 29604451 DOI: 10.1016/j.jsb.2018.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/18/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
High-order assemblies of amelogenin, the major protein in enamel protein matrix, are believed to act as the template for enamel mineral formation. The Leucine-rich amelogenin (LRAP) is a natural splice-variant of amelogenin, a functional protein in vivo, containing conserved domains of amelogenin. In this work, we showed LRAP aggregates hierarchically into assemblies with various sizes including scattered beads, beads-on-a-string and gel-like precipitations in the presence of both calcium and phosphate ions. Solid-state NMR combined with X-ray diffraction and microscopic techniques, was applied to give a picture of LRAP self-assemblies at the atomic level. Our results, for the first time, confirmed LRAP assemblies with different sizes all contained a consistent rigid segment with β-sheet secondary structure (residues 12-27) and the β-sheet segment would further assemble into amyloid-like structures.
Collapse
Affiliation(s)
- Cheng-Wei Ma
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Univeristy of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Univeristy of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Qi Dong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Univeristy of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Xia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
20
|
Pandya M, Lin T, Li L, Allen MJ, Jin T, Luan X, Diekwisch TGH. Posttranslational Amelogenin Processing and Changes in Matrix Assembly during Enamel Development. Front Physiol 2017; 8:790. [PMID: 29089900 PMCID: PMC5651044 DOI: 10.3389/fphys.2017.00790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/26/2017] [Indexed: 01/20/2023] Open
Abstract
The extracellular tooth enamel matrix is a unique, protein-rich environment that provides the structural basis for the growth of long and parallel oriented enamel crystals. Here we have conducted a series of in vivo and in vitro studies to characterize the changes in matrix shape and organization that take place during the transition from ameloblast intravesicular matrices to extracellular subunit compartments and pericrystalline sheath proteins, and correlated these changes with stages of amelogenin matrix protein posttranslational processing. Our transmission electron microscopic studies revealed a 2.5-fold difference in matrix subunit compartment dimensions between secretory vesicle and extracellular enamel protein matrix as well as conformational changes in matrix structure between vesicles, stippled materials, and pericrystalline matrix. Enamel crystal growth in organ culture demonstrated granular mineral deposits associated with the enamel matrix framework, dot-like mineral deposits along elongating initial enamel crystallites, and dramatic changes in enamel matrix configuration following the onset of enamel crystal formation. Atomic force micrographs provided evidence for the presence of both linear and hexagonal/ring-shaped full-length recombinant amelogenin protein assemblies on mica surfaces, while nickel-staining of the N-terminal amelogenin N92 His-tag revealed 20 nm diameter oval and globular amelogenin assemblies in N92 amelogenin matrices. Western blot analysis comparing loosely bound and mineral-associated protein fractions of developing porcine enamel organs, superficial and deep enamel layers demonstrated (i) a single, full-length amelogenin band in the enamel organ followed by 3 kDa cleavage upon entry into the enamel layer, (ii) a close association of 8–16 kDa C-terminal amelogenin cleavage products with the growing enamel apatite crystal surface, and (iii) a remaining pool of N-terminal amelogenin fragments loosely retained between the crystalline phases of the deep enamel layer. Together, our data establish a temporo-spatial correlation between amelogenin protein processing and the changes in enamel matrix configuration that take place during the transition from intracellular vesicle compartments to extracellular matrix assemblies and the formation of protein coats along elongating apatite crystal surfaces. In conclusion, our study suggests that enzymatic cleavage of the amelogenin enamel matrix protein plays a key role in the patterning of the organic matrix framework as it affects enamel apatite crystal growth and habit.
Collapse
Affiliation(s)
- Mirali Pandya
- Texas A&M Center for Craniofacial Research and Diagnosis, Dallas, TX, United States
| | - Tiffani Lin
- UCLA School of Dentistry, Los Angeles, CA, United States.,Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Leo Li
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States.,University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Tianquan Jin
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States.,Biocytogen, Worcester, MA, United States
| | - Xianghong Luan
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Thomas G H Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis, Dallas, TX, United States.,Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
21
|
Pegoraro M, Matić S, Pergolizzi B, Iannarelli L, Rossi AM, Morra M, Noris E. Cloning and Expression Analysis of Human Amelogenin in Nicotiana benthamiana Plants by Means of a Transient Expression System. Mol Biotechnol 2017; 59:425-434. [PMID: 28801830 DOI: 10.1007/s12033-017-0030-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Enamel is the covering tissue of teeth, made of regularly arranged hydroxyapatite crystals deposited on an organic matrix composed of 90% amelogenin that is completely degraded at the end of the enamel formation process. Amelogenin has a biomineralizing activity, forming nanoparticles or nanoribbons that guide hydroxyapatite deposit, and regenerative functions in bone and vascular tissue and in wound healing. Biotechnological products containing amelogenin seem to facilitate these processes. Here, we describe the production of human amelogenin in plants by transient transformation of Nicotiana benthamiana with constructs carrying synthetic genes with optimized human or plant codons. Both genes yielded approximately 500 µg of total amelogenin per gram of fresh leaf tissue. Two purification procedures based on affinity chromatography or on intrinsic solubility properties of the protein were followed, yielding from 12 to 150 µg of amelogenin per gram of fresh leaf tissue, respectively, at different purity. The identity of the plant-made human amelogenin was confirmed by MALDI-TOF-MS analysis of peptides generated following chymotrypsin digestion. Using dynamic light scattering, we showed that plant extracts made in acetic acid containing human amelogenin have a bimodal distribution of agglomerates, with hydrodynamic diameters of 22.8 ± 3.8 and 389.5 ± 86.6 nm. To the best of our knowledge, this is the first report of expression of human amelogenin in plants, offering the possibility to use this plant-made protein for nanotechnological applications.
Collapse
Affiliation(s)
- Mattia Pegoraro
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada delle Cacce 73, 10135, Turin, Italy
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Entomologia, University of Torino, Grugliasco (TO), Italy
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada delle Cacce 73, 10135, Turin, Italy
- AGROINNOVA, University of Torino, Grugliasco (TO), Italy
| | - Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Torino, AOU San Luigi, 10043, Orbassano (TO), Italy
| | - Luca Iannarelli
- Istituto Nazionale di Ricerca Metrologica, INRiM, Strada delle Cacce 91, 10135, Turin, Italy
| | - Andrea M Rossi
- Istituto Nazionale di Ricerca Metrologica, INRiM, Strada delle Cacce 91, 10135, Turin, Italy
| | - Marco Morra
- NobilBio Ricerche s.r.l, Via Valcastellana, 28, 14037, Portacomaro (AT), Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada delle Cacce 73, 10135, Turin, Italy.
| |
Collapse
|
22
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
23
|
Nurbaeva MK, Eckstein M, Feske S, Lacruz RS. Ca 2+ transport and signalling in enamel cells. J Physiol 2017; 595:3015-3039. [PMID: 27510811 PMCID: PMC5430215 DOI: 10.1113/jp272775] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/21/2016] [Indexed: 01/02/2023] Open
Abstract
Dental enamel is one of the most remarkable examples of matrix-mediated biomineralization. Enamel crystals form de novo in a rich extracellular environment in a stage-dependent manner producing complex microstructural patterns that are visually stunning. This process is orchestrated by specialized epithelial cells known as ameloblasts which themselves undergo striking morphological changes, switching function from a secretory role to a cell primarily engaged in ionic transport. Ameloblasts are supported by a host of cell types which combined represent the enamel organ. Fully mineralized enamel is the hardest tissue found in vertebrates owing its properties partly to the unique mixture of ionic species represented and their highly organized assembly in the crystal lattice. Among the main elements found in enamel, Ca2+ is the most abundant ion, yet how ameloblasts modulate Ca2+ dynamics remains poorly known. This review describes previously proposed models for passive and active Ca2+ transport, the intracellular Ca2+ buffering systems expressed in ameloblasts and provides an up-dated view of current models concerning Ca2+ influx and extrusion mechanisms, where most of the recent advances have been made. We also advance a new model for Ca2+ transport by the enamel organ.
Collapse
Affiliation(s)
- Meerim K. Nurbaeva
- Department of Basic Science and Craniofacial BiologyNew York University College of DentistryNew YorkUSA
| | - Miriam Eckstein
- Department of Basic Science and Craniofacial BiologyNew York University College of DentistryNew YorkUSA
| | - Stefan Feske
- Department of PathologyNew York University School of MedicineNew YorkNY10016USA
| | - Rodrigo S. Lacruz
- Department of Basic Science and Craniofacial BiologyNew York University College of DentistryNew YorkUSA
| |
Collapse
|
24
|
Butler SJ, Bülow L, Bonde J. Functionalization of Recombinant Amelogenin Nanospheres Allows Their Binding to Cellulose Materials. Biotechnol J 2016; 11:1343-1351. [DOI: 10.1002/biot.201600381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Samuel J. Butler
- Division of Pure and Applied Biochemistry, Center for Applied Life Sciences; Lund University; Lund Sweden
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Center for Applied Life Sciences; Lund University; Lund Sweden
| | - Johan Bonde
- Division of Pure and Applied Biochemistry, Center for Applied Life Sciences; Lund University; Lund Sweden
| |
Collapse
|
25
|
Amyloid-like ribbons of amelogenins in enamel mineralization. Sci Rep 2016; 6:23105. [PMID: 27009419 PMCID: PMC4806362 DOI: 10.1038/srep23105] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/29/2016] [Indexed: 12/27/2022] Open
Abstract
Enamel, the outermost layer of teeth, is an acellular mineralized tissue that cannot regenerate; the mature tissue is composed of high aspect ratio apatite nanocrystals organized into rods and inter-rod regions. Amelogenin constitutes 90% of the protein matrix in developing enamel and plays a central role in guiding the hierarchical organization of apatite crystals observed in mature enamel. To date, a convincing link between amelogenin supramolecular structures and mature enamel has yet to be described, in part because the protein matrix is degraded during tissue maturation. Here we show compelling evidence that amelogenin self-assembles into an amyloid-like structure in vitro and in vivo. We show that enamel matrices stain positive for amyloids and we identify a specific region within amelogenin that self-assembles into β-sheets. We propose that amelogenin nanoribbons template the growth of apatite mineral in human enamel. This is a paradigm shift from the current model of enamel development.
Collapse
|
26
|
Tao J, Buchko GW, Shaw WJ, De Yoreo JJ, Tarasevich BJ. Sequence-Defined Energetic Shifts Control the Disassembly Kinetics and Microstructure of Amelogenin Adsorbed onto Hydroxyapatite (100). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10451-10460. [PMID: 26381243 PMCID: PMC4917396 DOI: 10.1021/acs.langmuir.5b02549] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The interactions between proteins and surfaces are critical to a number of important processes including biomineralization, the biocompatibility of biomaterials, and the function of biosensors. Although many proteins exist as monomers or small oligomers, amelogenin is a unique protein that self-assembles into supramolecular structures called "nanospheres," aggregates of hundreds of monomers that are 20-60 nm in diameter. The nanosphere quaternary structure is observed in solution; however, the quaternary structure of amelogenin adsorbed onto hydroxyapatite (HAP) surfaces is not known even though it may be important to amelogenin's function in forming highly elongated and intricately assembled HAP crystallites during enamel formation. We report studies of the interactions of the enamel protein, amelogenin (rpM179), with a well-defined (100) face prepared by the synthesis of large crystals of HAP. High-resolution in situ atomic force microscopy (AFM) was used to directly observe protein adsorption onto HAP at the molecular level within an aqueous solution environment. Our study shows that the amelogenin nanospheres disassemble onto the HAP surface, breaking down into oligomeric (25-mer) subunits of the larger nanosphere. In some cases, the disassembly event is directly observed by in situ imaging for the first time. Quantification of the adsorbate amounts by size analysis led to the determination of a protein binding energy (17.1k(b)T) to a specific face of HAP (100). The kinetics of disassembly are greatly slowed in aged solutions, indicating that there are time-dependent increases in oligomer-oligomer binding interactions within the nanosphere. A small change in the sequence of amelogenin by the attachment of a histidine tag to the N-terminus of rpM179 to form rp(H)M180 results in the adsorption of a complete second layer on top of the underlying first layer. Our research elucidates how supramolecular protein structures interact and break down at surfaces and how small changes in the primary sequence of amelogenin can affect the disassembly process.
Collapse
|
27
|
Abstract
Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel.
Collapse
Affiliation(s)
- Qichao Ruan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
28
|
Lignon G, de la Dure-Molla M, Dessombz A, Berdal A, Babajko S. [Enamel: a unique self-assembling in mineral world]. Med Sci (Paris) 2015; 31:515-21. [PMID: 26059302 DOI: 10.1051/medsci/20153105013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Enamel is a unique tissue in vertebrates, acellular, formed on a labile scaffolding matrix and hypermineralized. The ameloblasts are epithelial cells in charge of amelogenesis. They secrete a number of matrix proteins degraded by enzymes during enamel mineralization. This ordered cellular and extracellular events imply that any genetic or environmental perturbation will produce indelible and recognizable defects. The specificity of defects will indicate the affected cellular process. Thus, depending on the specificity of alterations, the teratogenic event can be retrospectively established. Advances in the field allow to use enamel defects as diagnostic tools for molecular disorders. The multifunctionality of enamel peptides is presently identified from their chemical roles in mineralization to cell signaling, constituting a source of concrete innovations in regenerative medicine.
Collapse
Affiliation(s)
- Guilhem Lignon
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France
| | - Muriel de la Dure-Molla
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France - Centre de référence des malformations rares de la face et de la cavité buccale, CRMR-MAFACE, hôpital Rothschild, APHP, Paris, France
| | - Arnaud Dessombz
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France
| | - Ariane Berdal
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France - Centre de référence des malformations rares de la face et de la cavité buccale, CRMR-MAFACE, hôpital Rothschild, APHP, Paris, France
| | - Sylvie Babajko
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France
| |
Collapse
|
29
|
Abstract
Enamel is unique. It is the only epithelial-derived mineralized tissue in mammals and has a distinct micro- and nanostructure with nanofibrous apatite crystals as building blocks. It is synthesized by a highly specialized cell, the ameloblast, which secretes matrix proteins with little homology to any other known amino acid sequence, but which is composed of a primary structure that makes it competent to self-assemble and control apatite crystal growth at the nanometer scale. The end-product of ameloblast activity is a marvel of structural engineering: a material optimized to provide the tooth with maximum biting force, withstanding millions of cycles of loads without catastrophic failure, while also protecting the dental pulp from bacterial attack. This review attempts to bring into context the mechanical behavior of enamel with the developmental process of amelogenesis and structural development, since they are linked to tissue function, and the importance of controlling calcium phosphate mineralization at the nanometer scale. The origins of apatite nanofibers, the development of a stiffness gradient, and the biological processes responsible for the synthesis of a hard and fracture-resistant dental tissue are discussed with reference to the evolution of enamel from a fibrous composite to a complex, tough, and damage-tolerant coating on dentin.
Collapse
Affiliation(s)
- S Habelitz
- Preventive and Restorative Dental Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
30
|
Abstract
In this chapter the basic premises, the recent findings and the future challenges in the use of amelogenin for enamel tissue engineering are being discoursed on. Results emerging from the experiments performed to assess the fundamental physicochemical mechanisms of the interaction of amelogenin, the main protein of the enamel matrix, and the growing crystals of apatite, are mentioned, alongside a moderately comprehensive literature review of the subject at hand. The clinical importance of understanding this protein/mineral interaction at the nanoscale are highlighted as well as the potential for tooth enamel to act as an excellent model system for studying some of the essential aspects of biomineralization processes in general. The dominant paradigm stating that amelogenin directs the uniaxial growth of apatite crystals in enamel by slowing down the growth of (hk0) faces on which it adheres is being questioned based on the results demonstrating the ability of amelogenin to promote the nucleation and crystal growth of apatite under constant titration conditions designed to mimic those present in the developing enamel matrix. The role of numerous minor components of the enamel matrix is being highlighted as essential and impossible to compensate for by utilizing its more abundant ingredients only. It is concluded that the three major aspects of amelogenesis outlined hereby--(1) the assembly of amelogenin and other enamel matrix proteins, (2) the proteolytic activity, and (3) crystallization--need to be in precise synergy with each other in order for the grounds for the proper imitation of amelogenesis in the lab to be created.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
31
|
Ruan Q, Moradian-Oldak J. Amelogenin and enamel biomimetics. J Mater Chem B 2015. [DOI: 10.1039/c5tb00163c and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mature tooth enamel is acellular and does not regenerate itself.
Collapse
Affiliation(s)
- Qichao Ruan
- Center for Craniofacial Molecular Biology
- Herman Ostrow School of Dentistry
- University of Southern California
- Los Angeles
- USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology
- Herman Ostrow School of Dentistry
- University of Southern California
- Los Angeles
- USA
| |
Collapse
|
32
|
Bidlack FB, Huynh C, Marshman J, Goetze B. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix. Front Physiol 2014; 5:395. [PMID: 25346697 PMCID: PMC4193210 DOI: 10.3389/fphys.2014.00395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/23/2014] [Indexed: 01/21/2023] Open
Abstract
An unresolved problem in tooth enamel studies has been to analyze simultaneously and with sufficient spatial resolution both mineral and organic phases in their three dimensional (3D) organization in a given specimen. This study aims to address this need using high-resolution imaging to analyze the 3D structural organization of the enamel matrix, especially amelogenin, in relation to forming enamel crystals. Chemically fixed hemi-mandibles from wild type mice were embedded in LR White acrylic resin, polished and briefly etched to expose the organic matrix in developing tooth enamel. Full-length amelogenin was labeled with specific antibodies and 10 nm immuno-gold. This allowed us to use and compare two different high-resolution imaging techniques for the analysis of uncoated samples. Helium ion microscopy (HIM) was applied to study the spatial organization of organic and mineral structures, while field emission scanning electron microscopy (FE-SEM) in various modes, including backscattered electron detection, allowed us to discern the gold-labeled proteins. Wild type enamel in late secretory to early maturation stage reveals adjacent to ameloblasts a lengthwise parallel alignment of the enamel matrix proteins, including full-length amelogenin proteins, which then transitions into a more heterogeneous appearance with increasing distance from the mineralization front. The matrix adjacent to crystal bundles forms a smooth and lacey sheath, whereas between enamel prisms it is organized into spherical components that are interspersed with rod-shaped protein. These findings highlight first, that the heterogeneous organization of the enamel matrix can be visualized in mineralized en bloc samples. Second, our results illustrate that the combination of these techniques is a powerful approach to elucidate the 3D structural organization of organic matrix molecules in mineralizing tissue in nanometer resolution.
Collapse
Affiliation(s)
- Felicitas B Bidlack
- Department of Mineralized Tissue Biology, Forsyth Institute Cambridge, MA, USA ; Department of Developmental Biology, Harvard School of Dental Medicine Boston, MA, USA
| | - Chuong Huynh
- Carl Zeiss Microscopy LLC, One Corporation Way Peabody, MA, USA
| | | | - Bernhard Goetze
- Carl Zeiss Microscopy LLC, One Corporation Way Peabody, MA, USA
| |
Collapse
|
33
|
Sanii B, Martinez-Avila O, Simpliciano C, Zuckermann RN, Habelitz S. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix. J Dent Res 2014; 93:918-22. [PMID: 25048248 PMCID: PMC4213250 DOI: 10.1177/0022034514544216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/21/2014] [Accepted: 06/29/2014] [Indexed: 11/15/2022] Open
Abstract
The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel.
Collapse
Affiliation(s)
- B Sanii
- Lawrence Berkeley National Laboratory, Molecular Foundry, Berkeley, CA 94720, USA Keck Science Department, Claremont McKenna, Scripps and Pitzer Colleges, Claremont, CA 91711, USA
| | - O Martinez-Avila
- University of California, Department of Preventive and Restorative Dental Sciences, San Francisco, CA 94143, USA
| | - C Simpliciano
- University of California, Department of Preventive and Restorative Dental Sciences, San Francisco, CA 94143, USA
| | - R N Zuckermann
- Lawrence Berkeley National Laboratory, Molecular Foundry, Berkeley, CA 94720, USA
| | - S Habelitz
- University of California, Department of Preventive and Restorative Dental Sciences, San Francisco, CA 94143, USA
| |
Collapse
|
34
|
Biomimetic self-assembly of apatite hybrid materials: From a single molecular template to bi-/multi-molecular templates. Biotechnol Adv 2014; 32:744-60. [DOI: 10.1016/j.biotechadv.2013.10.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 10/17/2013] [Accepted: 10/29/2013] [Indexed: 12/25/2022]
|
35
|
Hu J, Wang P, Lin Y, Yang S, Song B, Wang Q. Dual responsive supramolecular amphiphiles: guest molecules dictate the architecture of pyridinium-tailored anthracene assemblies. Org Biomol Chem 2014; 12:4820-3. [DOI: 10.1039/c4ob00936c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By introducing an electron-deficient guest molecule and a counter anion, the assembly morphology of 1-[11-(2-anthracenylmethoxy)-11-oxoundecyl]pyridinium bromide (2-AP) was transformed to microsheets and nanofibers from microtubes, respectively.
Collapse
Affiliation(s)
- Jun Hu
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia, USA
| | - Peiyi Wang
- State Key Lab Breeding Base of Green Pesticide & Agricultural Bioengineering Centre for R&D of Fine Chemicals
- Guizhou University
- Guiyang, China
| | - Yuan Lin
- State Key Lab of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, China
| | - Song Yang
- State Key Lab Breeding Base of Green Pesticide & Agricultural Bioengineering Centre for R&D of Fine Chemicals
- Guizhou University
- Guiyang, China
| | - Baoan Song
- State Key Lab Breeding Base of Green Pesticide & Agricultural Bioengineering Centre for R&D of Fine Chemicals
- Guizhou University
- Guiyang, China
| | - Qian Wang
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia, USA
| |
Collapse
|
36
|
Khan F, Liu H, Reyes A, Witkowska HE, Martinez-Avila O, Zhu L, Li W, Habelitz S. The proteolytic processing of amelogenin by enamel matrix metalloproteinase (MMP-20) is controlled by mineral ions. Biochim Biophys Acta Gen Subj 2013. [PMID: 23201201 DOI: 10.1016/j.bbagen.2012.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Enamel synthesis is a highly dynamic process characterized by simultaneity of matrix secretion, assembly and processing during apatite mineralization. MMP-20 is the first protease to hydrolyze amelogenin, resulting in specific cleavage products that self-assemble into nanostructures at specific mineral compositions and pH. In this investigation, enzyme kinetics of MMP-20 proteolysis of recombinant full-length human amelogenin (rH174) under different mineral compositions is elucidated. METHODS Recombinant amelogenin was cleaved by MMP-20 under various physicochemical conditions and the products were analyzed by SDS-PAGE and MALDI-TOF MS. RESULTS It was observed that mineral ions largely affect cleavage pattern, and enzyme kinetics of rH174 hydrolysis. Out of the five selected mineral ion compositions, MMP-20 was most efficient at high calcium concentration, whereas it was slowest at high phosphate, and at high calcium and phosphate concentrations. In most of the compositions, N- and C-termini were cleaved rapidly at several places but the central region of amelogenin was protected up to some extent in solutions with high calcium and phosphate contents. CONCLUSION These in vitro studies showed that the chemistry of the protein solutions can significantly alter the processing of amelogenin by MMP-20, which may have significant effects in vivo matrix assembly and subsequent calcium phosphate mineralization. GENERAL SIGNIFICANCE This study elaborates the possibilities of the processing of the organic matrix into mineralized tissue during enamel development.
Collapse
Affiliation(s)
- Feroz Khan
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California, 707 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|