1
|
Ray KA, Lin SN, Keatinge-Clay AT. Distinct Acyl Carrier Protein Docking Sites Help Mediate the Opposite Stereoselectivities of A- and B-type Modular Polyketide Synthase Ketoreductases. Biochemistry 2025; 64:1136-1145. [PMID: 39933508 PMCID: PMC11920649 DOI: 10.1021/acs.biochem.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The domains of modular polyketide synthases (PKSs) collaborate to extend and process polyketide intermediates; however, most of their interactions with one another remain mysterious. We used AlphaFold 2 to investigate how acyl carrier proteins (ACPs) present intermediates to ketoreductases (KRs), processing domains capable of not only setting the stereochemical orientations of β-hydroxyl substituents but also of α-substituents. In modules that do not contain a dehydratase (DH), the A- and B-type KRs that, respectively, generate l- and d-oriented β-hydroxy groups are predicted to possess distinct ACP docking sites. In modules containing DHs, where A-type KRs are much less common, both KR types are predicted to possess an ACP-docking site equivalent to that of B-type KRs from modules without DHs. To investigate this most common ACP docking site, mutagenesis was performed on 20 residues of the KR from the second pikromycin module within the model triketide synthase P1-P2-P7. The least active variants are those with mutations to a conserved hydrophobe, 2 residues downstream of the LDD motif of B-type KRs, predicted to insert into a hole adjacent to the phosphopantetheinylated serine of ACP.
Collapse
Affiliation(s)
- Katherine A Ray
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sally N Lin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Nguyen LNKT, Derra S, Hahn F. The Relationship between Substrate Structure and Selectivity of Ketoreduction in Multimodular Polyketide Synthases: A Comparative Study of A-Type Ketoreductases from Late Modules Using Complex Precursor Analogues. ACS Chem Biol 2025; 20:186-196. [PMID: 39772407 DOI: 10.1021/acschembio.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Ketoreductases (KRs) are domains in the reductive loops of type I polyketide synthases (PKSs) and are responsible for the majority of stereocenters in reduced polyketides. Although the highly stereoselective reduction of ACP-bound β-ketothioester intermediates by KRs is crucial for the overall functioning of PKSs, the substrate-dependent stereoselectivity of KRs is a factor that is not yet fully understood, especially for KR domains in late PKS modules that act on biosynthetic precursors with complex polyketidic moieties. We present studies on the three KR domains FosKR7, PlmKR6, and EryKR6 from the biosynthetic pathways of fostriecin, phoslactomycin, and erythromycin by in vitro assays using close surrogates of the octaketidic FosKR7 biosynthetic precursor, complex derivatives and a diketide in the form of their biomimetic N-acetylcysteamine thioesters. Supported by molecular modeling, specific interactions of the studied KR domains with the extended polyketide moieties of their natural precursors were identified and correlated to the differences in stereoselectivity observed in the in vitro assays. These results reinforce the importance of the substrate-dependent stereoselectivity of KR domains in PKSs and suggest more detailed experimental and structural studies with isolated KRs and full PKS modules that could ultimately lead to improved results in PKS engineering.
Collapse
Affiliation(s)
- Lisa N K T Nguyen
- Professur Organische Chemie IV, Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Sebastian Derra
- Professur Organische Chemie IV, Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Frank Hahn
- Professur Organische Chemie IV, Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
3
|
Bagde SR, Kim CY. Architecture of full-length type I modular polyketide synthases revealed by X-ray crystallography, cryo-electron microscopy, and AlphaFold2. Nat Prod Rep 2024; 41:1219-1234. [PMID: 38501175 PMCID: PMC11324418 DOI: 10.1039/d3np00060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Covering: up to the end of 2023Type I modular polyketide synthases construct polyketide natural products in an assembly line-like fashion, where the growing polyketide chain attached to an acyl carrier protein is passed from catalytic domain to catalytic domain. These enzymes have immense potential in drug development since they can be engineered to produce non-natural polyketides by strategically adding, exchanging, and deleting individual catalytic domains. In practice, however, this approach frequently results in complete failures or dramatically reduced product yields. A comprehensive understanding of modular polyketide synthase architecture is expected to resolve these issues. We summarize the three-dimensional structures and the proposed mechanisms of three full-length modular polyketide synthases, Lsd14, DEBS module 1, and PikAIII. We also describe the advantages and limitations of using X-ray crystallography, cryo-electron microscopy, and AlphaFold2 to study intact type I polyketide synthases.
Collapse
Affiliation(s)
- Saket R Bagde
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Chu-Young Kim
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Xiang C, Yao S, Wang R, Zhang L. Bioinformatic prediction of the stereoselectivity of modular polyketide synthase: an update of the sequence motifs in ketoreductase domain. Beilstein J Org Chem 2024; 20:1476-1485. [PMID: 38978744 PMCID: PMC11228615 DOI: 10.3762/bjoc.20.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024] Open
Abstract
Polyketides are a major class of natural products, including bioactive medicines such as erythromycin and rapamycin. They are often rich in stereocenters biosynthesized by the ketoreductase (KR) domain within the polyketide synthase (PKS) assembly line. Previous studies have identified conserved motifs in KR sequences that enable the bioinformatic prediction of product stereochemistry. However, the reliability and applicability of these prediction methods have not been thoroughly assessed. In this study, we conducted a comprehensive bioinformatic analysis of 1,762 KR sequences from cis-AT PKSs to reevaluate the residues involved in conferring stereoselectivity. Our findings indicate that the previously identified fingerprint motifs remain valid for KRs in β-modules from actinobacteria, but their reliability diminishes for KRs from other module types or taxonomic origins. Additionally, we have identified several new motifs that exhibit a strong correlation with the stereochemical outcomes of KRs. These updated fingerprint motifs for stereochemical prediction not only enhance our understanding of the enzymatic mechanisms governing stereocontrol but also facilitate accurate stereochemical prediction and genome mining of polyketides derived from modular cis-AT PKSs.
Collapse
Affiliation(s)
- Changjun Xiang
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Shunyu Yao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Ruoyu Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Lihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, China
| |
Collapse
|
5
|
McCullough TM, Dhar A, Akey DL, Konwerski JR, Sherman DH, Smith JL. Structure of a modular polyketide synthase reducing region. Structure 2023; 31:1109-1120.e3. [PMID: 37348494 PMCID: PMC10527585 DOI: 10.1016/j.str.2023.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
The chemical scaffolds of numerous therapeutics are polyketide natural products, many formed by bacterial modular polyketide synthases (PKS). The large and flexible dimeric PKS modules have distinct extension and reducing regions. Structures are known for all individual enzyme domains and several extension regions. Here, we report the structure of the full reducing region from a modular PKS, the ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) domains of module 5 of the juvenimicin PKS. The modular PKS-reducing region has a different architecture than the homologous fatty acid synthase (FAS) and iterative PKS systems in its arrangement of domains and dimer interface. The structure reveals a critical role for linker peptides in the domain interfaces, leading to discovery of key differences in KR domains dependent on module composition. Finally, our studies provide insight into the mechanism underlying modular PKS intermediate shuttling by carrier protein (ACP) domains.
Collapse
Affiliation(s)
- Tyler M McCullough
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anya Dhar
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA
| | - David L Akey
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie R Konwerski
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
7
|
Wang J, Wang X, Li X, Kong L, Du Z, Li D, Gou L, Wu H, Cao W, Wang X, Lin S, Shi T, Deng Z, Wang Z, Liang J. C-N bond formation by a polyketide synthase. Nat Commun 2023; 14:1319. [PMID: 36899013 PMCID: PMC10006239 DOI: 10.1038/s41467-023-36989-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Assembly-line polyketide synthases (PKSs) are molecular factories that produce diverse metabolites with wide-ranging biological activities. PKSs usually work by constructing and modifying the polyketide backbone successively. Here, we present the cryo-EM structure of CalA3, a chain release PKS module without an ACP domain, and its structures with amidation or hydrolysis products. The domain organization reveals a unique "∞"-shaped dimeric architecture with five connected domains. The catalytic region tightly contacts the structural region, resulting in two stabilized chambers with nearly perfect symmetry while the N-terminal docking domain is flexible. The structures of the ketosynthase (KS) domain illustrate how the conserved key residues that canonically catalyze C-C bond formation can be tweaked to mediate C-N bond formation, revealing the engineering adaptability of assembly-line polyketide synthases for the production of novel pharmaceutical agents.
Collapse
Affiliation(s)
- Jialiang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojie Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Molecular Biology, Shanghai Jikaixing Biotech Inc., Shanghai, 200131, China
| | - Xixi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - LiangLiang Kong
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zeqian Du
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lixia Gou
- School of Life Science, North China University of Science and Technology, Tangshan, Hebei, China
| | - Hao Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Schröder M, Roß T, Hemmerling F, Hahn F. Studying a Bottleneck of Multimodular Polyketide Synthase Processing: the Polyketide Structure-Dependent Performance of Ketoreductase Domains. ACS Chem Biol 2022; 17:1030-1037. [PMID: 35412301 DOI: 10.1021/acschembio.2c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ketoreductases (KRs) are canonical domains of type I polyketide synthases (PKSs). They stereoselectively reduce ACP-bound β-ketothioester intermediates and are responsible for a large part of the stereocenters in reduced polyketides. Albeit essential for the understanding and engineering of PKS, the specific effects of altering the polyketide part of KR precursors on their performance has rarely been studied. We present investigations on the substrate-dependent performance of six isolated KR domains using a library of structurally diverse surrogates for PKS thioester intermediates. A pronounced correlation between the polyketide structure and the KR performance was observed with activity and stereoselectivity diminishing with growing deviation from the natural KR precursor structure. The extent of this decrease and the profile of arising side products was characteristic for the individual KRs. Our results reinforce the importance of structure-KR performance relationships and suggest extended studies with isolated domains and whole PKS modules.
Collapse
Affiliation(s)
- Marius Schröder
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
- Biomolekulares Wirkstoffzentrum, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Theresa Roß
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Franziska Hemmerling
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
- Biomolekulares Wirkstoffzentrum, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany
- Biomolekulares Wirkstoffzentrum, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
9
|
Klaus M, Rossini E, Linden A, Paithankar KS, Zeug M, Ignatova Z, Urlaub H, Khosla C, Köfinger J, Hummer G, Grininger M. Solution Structure and Conformational Flexibility of a Polyketide Synthase Module. JACS AU 2021; 1:2162-2171. [PMID: 34977887 PMCID: PMC8717363 DOI: 10.1021/jacsau.1c00043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 05/28/2023]
Abstract
Polyketide synthases (PKSs) are versatile C-C bond-forming enzymes that are broadly distributed in bacteria and fungi. The polyketide compound family includes many clinically useful drugs such as the antibiotic erythromycin, the antineoplastic epothilone, and the cholesterol-lowering lovastatin. Harnessing PKSs for custom compound synthesis remains an open challenge, largely because of the lack of knowledge about key structural properties. Particularly, the domains-well characterized on their own-are poorly understood in their arrangement, conformational dynamics, and interplay in the intricate quaternary structure of modular PKSs. Here, we characterize module 2 from the 6-deoxyerythronolide B synthase by small-angle X-ray scattering and cross-linking mass spectrometry with coarse-grained structural modeling. The results of this hybrid approach shed light on the solution structure of a cis-AT type PKS module as well as its inherent conformational dynamics. Supported by a directed evolution approach, we also find that acyl carrier protein (ACP)-mediated substrate shuttling appears to be steered by a nonspecific electrostatic interaction network.
Collapse
Affiliation(s)
- Maja Klaus
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Strasse 15, Frankfurt am Main 60438, Germany
| | - Emanuele Rossini
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, Frankfurt am Main 60438, Germany
| | - Andreas Linden
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, Robert Koch Strasse 40, Goettingen 37075, Germany
| | - Karthik S Paithankar
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Strasse 15, Frankfurt am Main 60438, Germany
| | - Matthias Zeug
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Strasse 15, Frankfurt am Main 60438, Germany
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Notkestrasse 85, Hamburg 22607, Germany
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, Robert Koch Strasse 40, Goettingen 37075, Germany
| | - Chaitan Khosla
- Department of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford University, Stanford, California 94305, United States
| | - Jürgen Köfinger
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, Frankfurt am Main 60438, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, Frankfurt am Main 60438, Germany
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Strasse 1, Frankfurt am Main 60438, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Strasse 15, Frankfurt am Main 60438, Germany
| |
Collapse
|
10
|
Bagde SR, Mathews II, Fromme JC, Kim CY. Modular polyketide synthase contains two reaction chambers that operate asynchronously. Science 2021; 374:723-729. [PMID: 34735234 DOI: 10.1126/science.abi8532] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Saket R Bagde
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.,Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.,Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
11
|
Drufva EE, Spengler NR, Hix EG, Bailey CB. Site-Directed Mutagenesis of Modular Polyketide Synthase Ketoreductase Domains for Altered Stereochemical Control. Chembiochem 2020; 22:1122-1150. [PMID: 33185924 DOI: 10.1002/cbic.202000613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Indexed: 12/18/2022]
Abstract
Bacterial modular type I polyketide synthases (PKSs) are complex multidomain assembly line proteins that produce a range of pharmaceutically relevant molecules with a high degree of stereochemical control. Due to their colinear properties, they have been considerable targets for rational biosynthetic pathway engineering. Among the domains harbored within these complex assembly lines, ketoreductase (KR) domains have been extensively studied with the goal of altering their stereoselectivity by site-directed mutagenesis, as they confer much of the stereochemical complexity present in pharmaceutically active reduced polyketide scaffolds. Here we review all efforts to date to perform site-directed mutagenesis on PKS KRs, most of which have been done in the context of excised KR domains on model diffusible substrates such as β-keto N-acetyl cysteamine thioesters. We also discuss the challenges around translating the findings of these studies to alter stereocontrol in the context of a complex multidomain enzymatic assembly line.
Collapse
Affiliation(s)
- Erin E Drufva
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN 37996, USA
| | - Nolan R Spengler
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN 37996, USA
| | - Elijah G Hix
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN 37996, USA
| | - Constance B Bailey
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
12
|
Drufva EE, Hix EG, Bailey CB. Site directed mutagenesis as a precision tool to enable synthetic biology with engineered modular polyketide synthases. Synth Syst Biotechnol 2020; 5:62-80. [PMID: 32637664 PMCID: PMC7327777 DOI: 10.1016/j.synbio.2020.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/04/2022] Open
Abstract
Modular polyketide synthases (PKSs) are a multidomain megasynthase class of biosynthetic enzymes that have great promise for the development of new compounds, from new pharmaceuticals to high value commodity and specialty chemicals. Their colinear biosynthetic logic has been viewed as a promising platform for synthetic biology for decades. Due to this colinearity, domain swapping has long been used as a strategy to introduce molecular diversity. However, domain swapping often fails because it perturbs critical protein-protein interactions within the PKS. With our increased level of structural elucidation of PKSs, using judicious targeted mutations of individual residues is a more precise way to introduce molecular diversity with less potential for global disruption of the protein architecture. Here we review examples of targeted point mutagenesis to one or a few residues harbored within the PKS that alter domain specificity or selectivity, affect protein stability and interdomain communication, and promote more complex catalytic reactivity.
Collapse
Key Words
- ACP, acyl carrier protein
- AT, acyltransferase
- DEBS, 6-deoxyerthronolide B synthase
- DH, dehydratase
- EI, enoylisomerase
- ER, enoylreductase
- KR, ketoreductase
- KS, ketosynthase
- LM, loading module
- MT, methyltransferase
- Mod, module
- PKS, polyketide synthase
- PS, pyran synthase
- Polyketide synthase
- Protein engineering
- Rational design
- SNAC, N-acetyl cysteamine
- Saturation mutagenesis
- Site directed mutagenesis
- Synthetic biology
Collapse
Affiliation(s)
- Erin E. Drufva
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Elijah G. Hix
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Constance B. Bailey
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| |
Collapse
|
13
|
Hwang S, Lee N, Cho S, Palsson B, Cho BK. Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis. Front Mol Biosci 2020; 7:87. [PMID: 32500080 PMCID: PMC7242659 DOI: 10.3389/fmolb.2020.00087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
In nature, various enzymes govern diverse biochemical reactions through their specific three-dimensional structures, which have been harnessed to produce many useful bioactive compounds including clinical agents and commodity chemicals. Polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are particularly unique multifunctional enzymes that display modular organization. Individual modules incorporate their own specific substrates and collaborate to assemble complex polyketides or non-ribosomal polypeptides in a linear fashion. Due to the modular properties of PKSs and NRPSs, they have been attractive rational engineering targets for novel chemical production through the predictable modification of each moiety of the complex chemical through engineering of the cognate module. Thus, individual reactions of each module could be separated as a retro-biosynthetic biopart and repurposed to new biosynthetic pathways for the production of biofuels or commodity chemicals. Despite these potentials, repurposing attempts have often failed owing to impaired catalytic activity or the production of unintended products due to incompatible protein–protein interactions between the modules and structural perturbation of the enzyme. Recent advances in the structural, computational, and synthetic tools provide more opportunities for successful repurposing. In this review, we focused on the representative strategies and examples for the repurposing of modular PKSs and NRPSs, along with their advantages and current limitations. Thereafter, synthetic biology tools and perspectives were suggested for potential further advancement, including the rational and large-scale high-throughput approaches. Ultimately, the potential diverse reactions from modular PKSs and NRPSs would be leveraged to expand the reservoir of useful chemicals.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Namil Lee
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| |
Collapse
|
14
|
Structural basis of keto acid utilization in nonribosomal depsipeptide synthesis. Nat Chem Biol 2020; 16:493-496. [PMID: 32066969 DOI: 10.1038/s41589-020-0481-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
Nonribosomal depsipeptides are natural products composed of amino and hydroxy acid residues. The hydroxy acid residues often derive from α-keto acids, reduced by ketoreductase domains in the depsipeptide synthetases. Biochemistry and structures reveal the mechanism of discrimination for α-keto acids and a remarkable architecture: flanking intact adenylation and ketoreductase domains are sequences separated by >1,100 residues that form a split 'pseudoAsub' domain, structurally important for the depsipeptide module's synthetic cycle.
Collapse
|
15
|
Engineering enzymatic assembly lines to produce new antibiotics. Curr Opin Microbiol 2019; 51:88-96. [PMID: 31743841 PMCID: PMC6908967 DOI: 10.1016/j.mib.2019.10.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Many clinical antibiotics are natural products produced by thiotemplate-based assembly line biosynthetic pathways. Assembly line pathways provide an opportunity for rational bioengineering to modify complex natural product structures. New, rule-based mix and match strategies facilitate the engineering of non-ribosomal peptide assembly line synthetases. Evolutionary guided approaches highlight new avenues for polyketide synthase assembly line reprogramming.
Numerous important therapeutic agents, including widely-used antibiotics, anti-cancer drugs, immunosuppressants, agrochemicals and other valuable compounds, are produced by microorganisms. Many of these are biosynthesised by modular enzymatic assembly line polyketide synthases, non-ribosomal peptide synthetases, and hybrids thereof. To alter the backbone structure of these valuable but difficult to modify compounds, the respective enzymatic machineries can be engineered to create even more valuable molecules with improved properties and/or to bypass resistance mechanisms. In the past, many attempts to achieve assembly line pathway engineering failed or led to enzymes with compromised activity. Recently our understanding of assembly line structural biology, including an appreciation of the conformational changes that occur during the catalytic cycle, have improved hugely. This has proven to be a driving force for new approaches and several recent examples have demonstrated the production of new-to-nature molecules, including anti-infectives. We discuss the developments of the last few years and highlight selected, illuminating examples of assembly line engineering.
Collapse
|
16
|
An J, Nie Y, Xu Y. Structural insights into alcohol dehydrogenases catalyzing asymmetric reductions. Crit Rev Biotechnol 2019; 39:366-379. [DOI: 10.1080/07388551.2019.1566205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jianhong An
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- School of Ophthalmology and Optometry, and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Brewing Microbiology, Applied Enzymology at Jiangnan University, Wuxi, China
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Brewing Microbiology, Applied Enzymology at Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Abstract
Covering: up to mid of 2018 Type I fatty acid synthases (FASs) are giant multienzymes catalyzing all steps of the biosynthesis of fatty acids from acetyl- and malonyl-CoA by iterative precursor extension. Two strikingly different architectures of FAS evolved in yeast (as well as in other fungi and some bacteria) and metazoans. Yeast-type FAS (yFAS) assembles into a barrel-shaped structure of more than 2 MDa molecular weight. Catalytic domains of yFAS are embedded in an extensive scaffolding matrix and arranged around two enclosed reaction chambers. Metazoan FAS (mFAS) is a 540 kDa X-shaped dimer, with lateral reaction clefts, minimal scaffolding and pronounced conformational variability. All naturally occurring yFAS are strictly specialized for the production of saturated fatty acids. The yFAS architecture is not used for the biosynthesis of any other secondary metabolite. On the contrary, mFAS is related at the domain organization level to major classes of polyketide synthases (PKSs). PKSs produce a variety of complex and potent secondary metabolites; they either act iteratively (iPKS), or are linked via directed substrate transfer into modular assembly lines (modPKSs). Here, we review the architectures of yFAS, mFAS, and iPKSs. We rationalize the evolution of the yFAS assembly, and provide examples for re-engineering of yFAS. Recent studies have provided novel insights into the organization of iPKS. A hybrid crystallographic model of a mycocerosic acid synthase-like Pks5 yielded a comprehensive visualization of the organization and dynamics of fully-reducing iPKS. Deconstruction experiments, structural and functional studies of specialized enzymatic domains, such as the product template (PT) and the starter-unit acyltransferase (SAT) domain have revealed functional principles of non-reducing iterative PKS (NR-PKSs). Most recently, a six-domain loading region of an NR-PKS has been visualized at high-resolution together with cryo-EM studies of a trapped loading intermediate. Altogether, these data reveal the related, yet divergent architectures of mFAS, iPKS and also modPKSs. The new insights highlight extensive dynamics, and conformational coupling as key features of mFAS and iPKS and are an important step towards collection of a comprehensive series of snapshots of PKS action.
Collapse
Affiliation(s)
- Dominik A Herbst
- Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
18
|
Kalkreuter E, Williams GJ. Engineering enzymatic assembly lines for the production of new antimicrobials. Curr Opin Microbiol 2018; 45:140-148. [PMID: 29733997 DOI: 10.1016/j.mib.2018.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/22/2018] [Indexed: 01/06/2023]
Abstract
A large portion of natural products are biosynthesized by the polyketide synthase and non-ribosomal peptide synthetase enzymatic assembly lines. Recent advancements in the study of these megasynthases has led to many new examples that demonstrate the production of non-natural natural products. The field is likely nearing the ability to design and build new biosynthetic pathways de novo. We discuss the various recent approaches taken towards this goal, focusing on the installation of new substrates, the swapping of enzymatic domains and modules, and the impact of metabolic engineering and synthetic biology. We also address the challenges remaining alongside the many successes in this area.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry, NC State University, Raleigh, NC 27695, United States; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, United States
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC 27695, United States; Comparative Medicine Institute, NC State University, Raleigh, NC 27695, United States.
| |
Collapse
|
19
|
Liu C, Yuan M, Xu X, Wang L, Keatinge-Clay AT, Deng Z, Lin S, Zheng J. Substrate-bound structures of a ketoreductase from amphotericin modular polyketide synthase. J Struct Biol 2018; 203:135-141. [PMID: 29626512 DOI: 10.1016/j.jsb.2018.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 11/29/2022]
Abstract
Ketoreductase (KR) domains of modular polyketide synthases (PKSs) control the stereochemistry of C2 methyl and C3 hydroxyl substituents of polyketide intermediates. To understand the molecular basis of stereocontrol exerted by KRs, the crystal structure of a KR from the second module of the amphotericin PKS (AmpKR2) complexed with NADP+ and 2-methyl-3-oxopentanoyl-pantetheine was solved. This first ternary structure provides direct evidence to the hypothesis that a substrate enters into the active site of an A-type KR from the side opposite the coenzyme to generate an L-hydroxyl substituent. A comparison with the ternary complex of a G355T/Q364H mutant sheds light on the structural basis for stereospecificity toward the substrate C2 methyl substituent. Functional assays suggest the pantetheine handle shows obvious influence on the catalytic efficiency and the stereochemical outcome. Together, these findings extend our current understanding of the stereochemical control of PKS KR domains.
Collapse
Affiliation(s)
- Chenguang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meijuan Yuan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
20
|
Klaus M, Grininger M. Engineering strategies for rational polyketide synthase design. Nat Prod Rep 2018; 35:1070-1081. [DOI: 10.1039/c8np00030a] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this review, we highlight strategies in engineering polyketide synthases (PKSs). We focus on important protein–protein interactions that constitute an intact PKS assembly line.
Collapse
Affiliation(s)
- Maja Klaus
- Institute of Organic Chemistry and Chemical Biology
- Buchmann Institute for Molecular Life Sciences
- Cluster of Excellence for Macromolecular Complexes
- Goethe University Frankfurt
- 60438 Frankfurt am Main
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology
- Buchmann Institute for Molecular Life Sciences
- Cluster of Excellence for Macromolecular Complexes
- Goethe University Frankfurt
- 60438 Frankfurt am Main
| |
Collapse
|
21
|
A Link between Linearmycin Biosynthesis and Extracellular Vesicle Genesis Connects Specialized Metabolism and Bacterial Membrane Physiology. Cell Chem Biol 2017; 24:1238-1249.e7. [DOI: 10.1016/j.chembiol.2017.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/23/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022]
|
22
|
Barajas JF, Blake-Hedges JM, Bailey CB, Curran S, Keasling JD. Engineered polyketides: Synergy between protein and host level engineering. Synth Syst Biotechnol 2017; 2:147-166. [PMID: 29318196 PMCID: PMC5655351 DOI: 10.1016/j.synbio.2017.08.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/26/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolic engineering efforts toward rewiring metabolism of cells to produce new compounds often require the utilization of non-native enzymatic machinery that is capable of producing a broad range of chemical functionalities. Polyketides encompass one of the largest classes of chemically diverse natural products. With thousands of known polyketides, modular polyketide synthases (PKSs) share a particularly attractive biosynthetic logic for generating chemical diversity. The engineering of modular PKSs could open access to the deliberate production of both existing and novel compounds. In this review, we discuss PKS engineering efforts applied at both the protein and cellular level for the generation of a diverse range of chemical structures, and we examine future applications of PKSs in the production of medicines, fuels and other industrially relevant chemicals.
Collapse
Key Words
- ACP, Acyl carrier protein
- AT, Acyltransferase
- CoL, CoA-Ligase
- Commodity chemical
- DE, Dimerization element
- DEBS, 6-deoxyerythronolide B synthase
- DH, Dehydratase
- ER, Enoylreductase
- FAS, Fatty acid synthases
- KR, Ketoreductase
- KS, Ketosynthase
- LM, Loading module
- LTTR, LysR-type transcriptional regulator
- Metabolic engineering
- Natural products
- PCC, Propionyl-CoA carboxylase
- PDB, Precursor directed biosynthesis
- PK, Polyketide
- PKS, Polyketide synthase
- Polyketide
- Polyketide synthase
- R, Reductase domain
- SARP, Streptomyces antibiotic regulatory protein
- SNAC, N-acetylcysteamine
- Synthetic biology
- TE, Thioesterase
- TKL, Triketide lactone
Collapse
Affiliation(s)
| | | | - Constance B. Bailey
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Samuel Curran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jay. D. Keasling
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- QB3 Institute, University of California, Berkeley, Emeryville, CA 94608, USA
- Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, DK2970 Horsholm, Denmark
| |
Collapse
|
23
|
Structural and Functional Trends in Dehydrating Bimodules from trans-Acyltransferase Polyketide Synthases. Structure 2017; 25:1045-1055.e2. [PMID: 28625788 PMCID: PMC5553570 DOI: 10.1016/j.str.2017.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/04/2017] [Accepted: 05/15/2017] [Indexed: 01/07/2023]
Abstract
In an effort to uncover the structural motifs and biosynthetic logic of the relatively uncharacterized trans-acyltransferase polyketide synthases, we have begun the dissection of the enigmatic dehydrating bimodules common in these enzymatic assembly lines. We report the 1.98 Å resolution structure of a ketoreductase (KR) from the first half of a type A dehydrating bimodule and the 2.22 Å resolution structure of a dehydratase (DH) from the second half of a type B dehydrating bimodule. The KR, from the third module of the bacillaene synthase, and the DH, from the tenth module of the difficidin synthase, possess features not observed in structurally characterized homologs. The DH architecture provides clues for how it catalyzes a unique double dehydration. Correlations between the chemistries proposed for dehydrating bimodules and bioinformatic analysis indicate that type A dehydrating bimodules generally produce an α/β-cis alkene moiety, while type B dehydrating bimodules generally produce an α/β-trans, γ/δ-cis diene moiety.
Collapse
|
24
|
Xie X, Khosla C, Cane DE. Elucidation of the Stereospecificity of C-Methyltransferases from trans-AT Polyketide Synthases. J Am Chem Soc 2017; 139:6102-6105. [PMID: 28430424 DOI: 10.1021/jacs.7b02911] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S-Adenosyl methionine (SAM)-dependent C-methyltransferases are responsible for the C2-methylation of 3-ketoacyl-acyl carrier protein (ACP) intermediates to give the corresponding 2-methy-3-ketoacyl-ACP products during bacterial polyketide biosynthesis mediated by trans-AT polyketide synthases that lack integrated acyl transferase (AT) domains. A coupled ketoreductase (KR) assay was used to assign the stereochemistry of the C-methyltransferase-catalyzed reaction. Samples of chemoenzymatically generated 3-ketopentanoyl-ACP (9) were incubated with SAM and BonMT2 from module 2 of the bongkrekic acid polyketide synthase. The resulting 2-methyl-3-ketopentanoyl-ACP (10) was incubated separately with five (2R)- or (2S)-methyl specific KR domains. Analysis of the derived 2-methyl-3-hydroxypentanoate methyl esters (8) by chiral GC-MS established that the BonMT2-catalyzed methylation generated exclusively (2R)-2-methyl-3-ketopentanoyl-ACP ((2R)-10). Identical results were also obtained with three additional C-methyltransferases-BaeMT9, DifMT1, and MupMT1-from the bacillaene, difficidin, and mupirocin trans-AT polyketide synthases.
Collapse
Affiliation(s)
- Xinqiang Xie
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - Chaitan Khosla
- Departments of Chemical Engineering, Chemistry, and Biochemistry, Stanford University , Stanford, California 94305, United States
| | - David E Cane
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| |
Collapse
|
25
|
Weissman KJ. Polyketide stereocontrol: a study in chemical biology. Beilstein J Org Chem 2017; 13:348-371. [PMID: 28326145 PMCID: PMC5331325 DOI: 10.3762/bjoc.13.39] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/01/2017] [Indexed: 11/23/2022] Open
Abstract
The biosynthesis of reduced polyketides in bacteria by modular polyketide synthases (PKSs) proceeds with exquisite stereocontrol. As the stereochemistry is intimately linked to the strong bioactivity of these molecules, the origins of stereochemical control are of significant interest in attempts to create derivatives of these compounds by genetic engineering. In this review, we discuss the current state of knowledge regarding this key aspect of the biosynthetic pathways. Given that much of this information has been obtained using chemical biology tools, work in this area serves as a showcase for the power of this approach to provide answers to fundamental biological questions.
Collapse
Affiliation(s)
- Kira J Weissman
- UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Biopôle de l’Université de Lorraine, Campus Biologie Santé, Avenue de la Forêt de Haye, BP 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| |
Collapse
|
26
|
Xie X, Garg A, Khosla C, Cane DE. Mechanism and Stereochemistry of Polyketide Chain Elongation and Methyl Group Epimerization in Polyether Biosynthesis. J Am Chem Soc 2017; 139:3283-3292. [PMID: 28157306 DOI: 10.1021/jacs.7b00278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The polyketide synthases responsible for the biosynthesis of the polyether antibiotics nanchangmycin (1) and salinomycin (4) harbor a number of redox-inactive ketoreductase (KR0) domains that are implicated in the generation of C2-epimerized (2S)-2-methyl-3-ketoacyl-ACP intermediates. Evidence that the natural substrate for the polyether KR0 domains is, as predicted, a (2R)-2-methyl-3-ketoacyl-ACP intermediate, came from a newly developed coupled ketosynthase (KS)-ketoreductase (KR) assay that established that the decarboxylative condensation of methylmalonyl-CoA with S-propionyl-N-acetylcysteamine catalyzed by the Nan[KS1][AT1] didomain from module 1 of the nanchangmycin synthase generates exclusively the corresponding (2R)-2-methyl-3-ketopentanoyl-ACP (7a) product. In tandem equilibrium isotope exchange experiments, incubation of [2-2H]-(2R,3S)-2-methyl-3-hydroxypentanoyl-ACP (6a) with redox-active, epimerase-inactive EryKR6 from module 6 of the 6-deoxyerythronolide B synthase and catalytic quantities of NADP+ in the presence of redox-inactive, recombinant NanKR10 or NanKR50, from modules 1 and 5 of the nanchangmycin synthase, or recombinant SalKR70 from module 7 of the salinomycin synthase, resulted in first-order, time-dependent washout of deuterium from 6a. Control experiments confirmed that this washout was due to KR0-catalyzed isotope exchange of the reversibly generated, transiently formed oxidation product [2-2H]-(2R)-2-methyl-3-ketopentanoyl-ACP (7a), consistent with the proposed epimerase activity of each of the KR0 domains. Although they belong to the superfamily of short chain dehydrogenase-reductases, the epimerase-active KR0 domains from polyether synthases lack one or both residues of the conserved Tyr-Ser dyad that has previously been implicated in KR-catalyzed epimerizations.
Collapse
Affiliation(s)
- Xinqiang Xie
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - Ashish Garg
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - Chaitan Khosla
- Departments of Chemical Engineering, Chemistry, and Biochemistry, Stanford University , Stanford, California 94305, United States
| | - David E Cane
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| |
Collapse
|
27
|
Bayly CL, Yadav VG. Towards Precision Engineering of Canonical Polyketide Synthase Domains: Recent Advances and Future Prospects. Molecules 2017; 22:molecules22020235. [PMID: 28165430 PMCID: PMC6155766 DOI: 10.3390/molecules22020235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 01/09/2023] Open
Abstract
Modular polyketide synthases (mPKSs) build functionalized polymeric chains, some of which have become blockbuster therapeutics. Organized into repeating clusters (modules) of independently-folding domains, these assembly-line-like megasynthases can be engineered by introducing non-native components. However, poor introduction points and incompatible domain combinations can cause both unintended products and dramatically reduced activity. This limits the engineering and combinatorial potential of mPKSs, precluding access to further potential therapeutics. Different regions on a given mPKS domain determine how it interacts both with its substrate and with other domains. Within the assembly line, these interactions are crucial to the proper ordering of reactions and efficient polyketide construction. Achieving control over these domain functions, through precision engineering at key regions, would greatly expand our catalogue of accessible polyketide products. Canonical mPKS domains, given that they are among the most well-characterized, are excellent candidates for such fine-tuning. The current minireview summarizes recent advances in the mechanistic understanding and subsequent precision engineering of canonical mPKS domains, focusing largely on developments in the past year.
Collapse
Affiliation(s)
- Carmen L Bayly
- Department of Genome Sciences & Technology, The University of British Columbia, Vancouver, BC V5Z 4S6, Canada.
- Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Vikramaditya G Yadav
- Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
28
|
Skiba MA, Sikkema AP, Fiers WD, Gerwick WH, Sherman DH, Aldrich CC, Smith JL. Domain Organization and Active Site Architecture of a Polyketide Synthase C-methyltransferase. ACS Chem Biol 2016; 11:3319-3327. [PMID: 27723289 PMCID: PMC5224524 DOI: 10.1021/acschembio.6b00759] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyketide metabolites produced by modular type I polyketide synthases (PKS) acquire their chemical diversity through the variety of catalytic domains within modules of the pathway. Methyltransferases are among the least characterized of the catalytic domains common to PKS systems. We determined the domain boundaries and characterized the activity of a PKS C-methyltransferase (C-MT) from the curacin A biosynthetic pathway. The C-MT catalyzes S-adenosylmethionine-dependent methyl transfer to the α-position of β-ketoacyl substrates linked to acyl carrier protein (ACP) or a small-molecule analog but does not act on β-hydroxyacyl substrates or malonyl-ACP. Key catalytic residues conserved in both bacterial and fungal PKS C-MTs were identified in a 2 Å crystal structure and validated biochemically. Analysis of the structure and the sequences bordering the C-MT provides insight into the positioning of this domain within complete PKS modules.
Collapse
Affiliation(s)
- Meredith A. Skiba
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
| | - Andrew P. Sikkema
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
| | - William D. Fiers
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA
- School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | | | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
29
|
Abstract
Most of the stereocenters of polyketide natural products are established during assembly line biosynthesis. The body of knowledge for how stereocenters are set is now large enough to begin constructing physical models of key reactions. Interactions between stereocenter-forming enzymes and polyketide intermediates are examined here at atomic resolution, drawing from the most current structural and functional information of ketosynthases (KSs), ketoreductases (KRs), dehydratases (DHs), enoylreductases (ERs), and related enzymes. While many details remain to be experimentally determined, our understanding of the chemical and physical mechanisms utilized by the chirality-molding enzymes of modular PKSs is rapidly advancing.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA. and Department of Chemistry, The University of Texas at Austin, 105 E 24th St. Stop A5300, Austin, TX 78712, USA
| |
Collapse
|
30
|
Caffrey P, De Poire E, Sheehan J, Sweeney P. Polyene macrolide biosynthesis in streptomycetes and related bacteria: recent advances from genome sequencing and experimental studies. Appl Microbiol Biotechnol 2016; 100:3893-908. [PMID: 27023916 DOI: 10.1007/s00253-016-7474-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023]
Abstract
The polyene macrolide group includes important antifungal drugs, to which resistance does not arise readily. Chemical and biological methods have been used in attempts to make polyene antibiotics with fewer toxic side effects. Genome sequencing of producer organisms is contributing to this endeavour, by providing access to new compounds and by enabling yield improvement for polyene analogues obtained by engineered biosynthesis. This recent work is also enhancing bioinformatic methods for deducing the structures of cryptic natural products from their biosynthetic enzymes. The stereostructure of candicidin D has recently been determined by NMR spectroscopy. Genes for the corresponding polyketide synthase have been uncovered in several different genomes. Analysis of this new information strengthens the view that protein sequence motifs can be used to predict double bond geometry in many polyketides.Chemical studies have shown that improved polyenes can be obtained by modifying the mycosamine sugar that is common to most of these compounds. Glycoengineered analogues might be produced by biosynthetic methods, but polyene glycosyltransferases show little tolerance for donors other than GDP-α-D-mycosamine. Genome sequencing has revealed extending glycosyltransferases that add a second sugar to the mycosamine of some polyenes. NppY of Pseudonocardia autotrophica uses UDP-N-acetyl-α-D-glucosamine as donor whereas PegA from Actinoplanes caeruleus uses GDP-α-D-mannose. These two enzymes show 51 % sequence identity and are also closely related to mycosaminyltransferases. These findings will assist attempts to construct glycosyltransferases that transfer alternative UDP- or (d)TDP-linked sugars to polyene macrolactones.
Collapse
Affiliation(s)
- Patrick Caffrey
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eimear De Poire
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - James Sheehan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul Sweeney
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
31
|
Eng CH, Yuzawa S, Wang G, Baidoo EEK, Katz L, Keasling JD. Alteration of Polyketide Stereochemistry from anti to syn by a Ketoreductase Domain Exchange in a Type I Modular Polyketide Synthase Subunit. Biochemistry 2016; 55:1677-80. [DOI: 10.1021/acs.biochem.6b00129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clara H. Eng
- Synthetic Biology Engineering Research Center, 5885 Hollis Street, Emeryville, California 94608, United States
| | | | - George Wang
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
| | - Edward E. K. Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
| | - Leonard Katz
- Synthetic Biology Engineering Research Center, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Jay D. Keasling
- Synthetic Biology Engineering Research Center, 5885 Hollis Street, Emeryville, California 94608, United States
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
| |
Collapse
|
32
|
Xie X, Garg A, Keatinge-Clay AT, Khosla C, Cane DE. Epimerase and Reductase Activities of Polyketide Synthase Ketoreductase Domains Utilize the Same Conserved Tyrosine and Serine Residues. Biochemistry 2016; 55:1179-86. [PMID: 26863427 DOI: 10.1021/acs.biochem.6b00024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of the conserved active site tyrosine and serine residues in epimerization catalyzed by polyketide synthase ketoreductase (PKS KR) domains has been investigated. Both mutant and wild-type forms of epimerase-active KR domains, including the intrinsically redox-inactive EryKR3° and PicKR3° as well as redox-inactive mutants of EryKR1, were incubated with [2-(2)H]-(2R,3S)-2-methyl-3-hydroxypentanoyl-SACP ([2-(2)H]-2) and 0.05 equiv of NADP(+) in the presence of the redox-active, epimerase-inactive EryKR6 domain. The residual epimerase activity of each mutant was determined by tandem equilibrium isotope exchange, in which the first-order, time-dependent washout of isotope from 2 was monitored by liquid chromatography-tandem mass spectrometry with quantitation of the deuterium content of the diagnostic pantetheinate ejection fragment (4). Replacement of the active site Tyr or Ser residues, alone or together, significantly reduced the observed epimerase activity of each KR domain with minimal effect on substrate binding. Our results demonstrate that the epimerase and reductase activities of PKS KR domains share a common active site, with both reactions utilizing the same pair of Tyr and Ser residues.
Collapse
Affiliation(s)
- Xinqiang Xie
- Department of Chemistry, Box H, Brown University , Providence, Rhode Island 02912-9108, United States
| | - Ashish Garg
- Department of Chemistry, Box H, Brown University , Providence, Rhode Island 02912-9108, United States
| | - Adrian T Keatinge-Clay
- Departments of Molecular Biosciences and Chemistry, The University of Texas at Austin , 1 University Station A5300, Austin, Texas 78712-0165, United States
| | - Chaitan Khosla
- Departments of Chemical Engineering, Chemistry, and Biochemistry, Stanford University , Stanford, California 94305, United States
| | - David E Cane
- Department of Chemistry, Box H, Brown University , Providence, Rhode Island 02912-9108, United States
| |
Collapse
|
33
|
Hagen A, Poust S, Rond TD, Fortman JL, Katz L, Petzold CJ, Keasling JD. Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid. ACS Synth Biol 2016; 5:21-7. [PMID: 26501439 DOI: 10.1021/acssynbio.5b00153] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design-build-test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS' first extension module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to "debug" PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | - Christopher J. Petzold
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
| | - Jay D. Keasling
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
| |
Collapse
|
34
|
The structural biology of biosynthetic megaenzymes. Nat Chem Biol 2015; 11:660-70. [PMID: 26284673 DOI: 10.1038/nchembio.1883] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/02/2015] [Indexed: 01/27/2023]
Abstract
The modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) are among the largest and most complicated enzymes in nature. In these biosynthetic systems, independently folding protein domains, which are organized into units called 'modules', operate in assembly-line fashion to construct polymeric chains and tailor their functionalities. Products of PKSs and NRPSs include a number of blockbuster medicines, and this has motivated researchers to understand how they operate so that they can be modified by genetic engineering. Beginning in the 1990s, structural biology has provided a number of key insights. The emerging picture is one of remarkable dynamics and conformational programming in which the chemical states of individual catalytic domains are communicated to the others, configuring the modules for the next stage in the biosynthesis. This unexpected level of complexity most likely accounts for the low success rate of empirical genetic engineering experiments and suggests ways forward for productive megaenzyme synthetic biology.
Collapse
|
35
|
Harnessing natural product assembly lines: structure, promiscuity, and engineering. J Ind Microbiol Biotechnol 2015; 43:371-87. [PMID: 26527577 DOI: 10.1007/s10295-015-1704-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/18/2015] [Indexed: 10/22/2022]
Abstract
Many therapeutically relevant natural products are biosynthesized by the action of giant mega-enzyme assembly lines. By leveraging the specificity, promiscuity, and modularity of assembly lines, a variety of strategies has been developed that enables the biosynthesis of modified natural products. This review briefly summarizes recent structural advances related to natural product assembly lines, discusses chemical approaches to probing assembly line structures in the absence of traditional biophysical data, and surveys efforts that harness the inherent or engineered promiscuity of assembly lines for the synthesis of non-natural polyketides and non-ribosomal peptide analogues.
Collapse
|
36
|
Lamb AL. Breaking a pathogen's iron will: Inhibiting siderophore production as an antimicrobial strategy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1054-70. [PMID: 25970810 DOI: 10.1016/j.bbapap.2015.05.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/29/2015] [Accepted: 05/06/2015] [Indexed: 12/24/2022]
Abstract
The rise of antibiotic resistance is a growing public health crisis. Novel antimicrobials are sought, preferably developing nontraditional chemical scaffolds that do not inhibit standard targets such as cell wall synthesis or the ribosome. Iron scavenging has been proposed as a viable target, because bacterial and fungal pathogens must overcome the nutritional immunity of the host to be virulent. This review highlights the recent work toward exploiting the biosynthetic enzymes of siderophore production for the design of next generation antimicrobials.
Collapse
Affiliation(s)
- Audrey L Lamb
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
37
|
The use of ene adducts to study and engineer enoyl-thioester reductases. Nat Chem Biol 2015; 11:398-400. [DOI: 10.1038/nchembio.1794] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/09/2015] [Indexed: 11/08/2022]
|
38
|
Mugnai ML, Shi Y, Keatinge-Clay AT, Elber R. Molecular dynamics studies of modular polyketide synthase ketoreductase stereospecificity. Biochemistry 2015; 54:2346-59. [PMID: 25835227 DOI: 10.1021/bi501401g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ketoreductases (KRs) from modular polyketide synthases (PKSs) can perform stereospecific catalysis, selecting a polyketide with a D- or L-α-methyl substituent for NADPH-mediated reduction. In this report, molecular dynamics (MD) simulations were performed to investigate the interactions that control stereospecificity. We studied the A1-type KR from the second module of the amphotericin PKS (A1), which is known to be stereospecific for a D-α-methyl-substituted diketide substrate (dkD). MD simulations of two ternary complexes comprised of the enzyme, NADPH, and either the correct substrate, dkD, or its enantiomer (dkL) were performed. The coordinates for the A1/NADPH binary complex were obtained from a crystal structure (PDB entry 3MJS), and substrates were modeled in the binding pocket in conformations appropriate for reduction. Simulations were intended to reproduce the initial weak binding of the polyketide substrate to the enzyme. Long (tens of nanoseconds) MD simulations show that the correct substrate is retained in a conformation closer to the reactive configuration. Many short (up to a nanosecond) MD runs starting from the initial structures display evidence that Q364, three residues N-terminal to the catalytic tyrosine, forms a hydrogen bond to the incorrect dkL substrate to yield an unreactive conformation that is more favorable than the reactive configuration. This interaction is not as strong for dkD, as the D-α-methyl substituent is positioned between the glutamine and the reactive site. This result correlates with experimental findings [Zheng, J., et al. (2010) Structure 18, 913-922] in which a Q364H mutant was observed to lose stereospecificity.
Collapse
Affiliation(s)
- Mauro L Mugnai
- †Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yue Shi
- ‡Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrian T Keatinge-Clay
- †Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.,§Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ron Elber
- †Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.,∥Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
39
|
Li Y, Fiers WD, Bernard S, Smith JL, Aldrich CC, Fecik RA. Polyketide intermediate mimics as probes for revealing cryptic stereochemistry of ketoreductase domains. ACS Chem Biol 2014; 9:2914-22. [PMID: 25299319 PMCID: PMC4273979 DOI: 10.1021/cb5006883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/09/2014] [Indexed: 12/27/2022]
Abstract
Among natural product families, polyketides have shown the most promise for combinatorial biosynthesis of natural product-like libraries. Though recent research in the area has provided many mechanistic revelations, a basic-level understanding of kinetic and substrate tolerability is still needed before the full potential of combinatorial biosynthesis can be realized. We have developed a novel set of chemical probes for the study of ketoreductase domains of polyketide synthases. This chemical tool-based approach was validated using the ketoreductase of pikromycin module 2 (PikKR2) as a model system. Triketide substrate mimics 12 and 13 were designed to increase stability (incorporating a nonhydrolyzable thioether linkage) and minimize nonessential functionality (truncating the phosphopantetheinyl arm). PikKR2 reduction product identities as well as steady-state kinetic parameters were determined by a combination of LC-MS/MS analysis of synthetic standards and a NADPH consumption assay. The d-hydroxyl product is consistent with bioinformatic analysis and results from a complementary biochemical and molecular biological approach. When compared to widely employed substrates in previous studies, diketide 63 and trans-decalone 64, substrates 12 and 13 showed 2-10 fold lower K(M) values (2.4 ± 0.8 and 7.8 ± 2.7 mM, respectively), indicating molecular recognition of intermediate-like substrates. Due to an abundance of the nonreducable enol-tautomer, the k(cat) values were attenuated by as much as 15-336 fold relative to known substrates. This study reveals the high stereoselectivity of PikKR2 in the face of gross substrate permutation, highlighting the utility of a chemical probe-based approach in the study of polyketide ketoreductases.
Collapse
Affiliation(s)
- Yang Li
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William D. Fiers
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steffen
M. Bernard
- Chemical Biology Program, Department of Biological
Chemistry,
and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Janet L. Smith
- Chemical Biology Program, Department of Biological
Chemistry,
and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Courtney C. Aldrich
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert A. Fecik
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
40
|
Piasecki SK, Zheng J, Axelrod AJ, Detelich M, Keatinge-Clay AT. Structural and functional studies of a trans-acyltransferase polyketide assembly line enzyme that catalyzes stereoselective α- and β-ketoreduction. Proteins 2014; 82:2067-77. [PMID: 24634061 PMCID: PMC4142079 DOI: 10.1002/prot.24561] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/19/2014] [Accepted: 03/06/2014] [Indexed: 11/06/2022]
Abstract
While the cis-acyltransferase modular polyketide synthase assembly lines have largely been structurally dissected, enzymes from within the recently discovered trans-acyltransferase polyketide synthase assembly lines are just starting to be observed crystallographically. Here we examine the ketoreductase (KR) from the first polyketide synthase module of the bacillaene nonribosomal peptide synthetase/polyketide synthase at 2.35-Å resolution. This KR naturally reduces both α- and β-keto groups and is the only KR known to do so during the biosynthesis of a polyketide. The isolated KR not only reduced an N-acetylcysteamine-bound β-keto substrate to a D-β-hydroxy product, but also an N-acetylcysteamine-bound α-keto substrate to an L-α-hydroxy product. That the substrates must enter the active site from opposite directions to generate these stereochemistries suggests that the acyl-phosphopantetheine moiety is capable of accessing very different conformations despite being anchored to a serine residue of a docked acyl carrier protein. The features enabling stereocontrolled α-ketoreduction may not be extensive since a KR that naturally reduces a β-keto group within a cis-acyltransferase polyketide synthase was identified that performs a completely stereoselective reduction of the same α-keto substrate to generate the D-α-hydroxy product. A sequence analysis of trans-acyltransferase KRs reveals that a single residue, rather than a three-residue motif found in cis-acyltransferase KRs, is predictive of the orientation of the resulting β-hydroxyl group.
Collapse
Affiliation(s)
- Shawn K. Piasecki
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | - Jianting Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | - Abram J. Axelrod
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | - Madeline Detelich
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | - Adrian T. Keatinge-Clay
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| |
Collapse
|
41
|
Garg A, Xie X, Keatinge-Clay A, Khosla C, Cane DE. Elucidation of the cryptic epimerase activity of redox-inactive ketoreductase domains from modular polyketide synthases by tandem equilibrium isotope exchange. J Am Chem Soc 2014; 136:10190-3. [PMID: 25004372 PMCID: PMC4111212 DOI: 10.1021/ja5056998] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Many modular polyketide synthases
harbor one or more redox-inactive
domains of unknown function that are highly homologous to ketoreductase
(KR) domains. A newly developed tandem equilibrium isotope exchange
(EIX) assay has now established that such “KR0”
domains catalyze the biosynthetically essential epimerization of transient
(2R)-2-methyl-3-ketoacyl-ACP intermediates to the
corresponding (2S)-2-methyl-3-ketoacyl-ACP diastereomers.
Incubation of [2-2H]-(2R,3S)-2-methyl-3-hydroxypentanoyl-SACP ([2-2H]-3b) with the EryKR30 domain from module 3 of the
6-deoxyerythronolide B synthase, and the redox-active,
nonepimerizing EryKR6 domain and NADP+ resulted in time-
and cofactor-dependent washout of deuterium from 3b,
as a result of EryKR30-catalyzed epimerization of transiently
generated [2-2H]-2-methyl-3-ketopentanoyl-ACP (4). Similar results were obtained with redox-inactive PicKR30 from module 3 of the picromycin synthase. Four redox-inactive mutants
of epimerase-active EryKR1 were engineered by mutagenesis of the NADPH
binding site of this enzyme. Tandem EIX established that these EryKR10 mutants retained the intrinsic epimerase activity of the
parent EryKR1 domain. These results establish the intrinsic epimerase
activity of redox-inactive KR0 domains, rule out any role
for the NADPH cofactor in epimerization, and provide a general experimental
basis for decoupling the epimerase and reductase activities of a large
class of PKS domains.
Collapse
Affiliation(s)
- Ashish Garg
- Department of Chemistry, Box H, Brown University , Providence, Rhode Island 02912-9108, United States
| | | | | | | | | |
Collapse
|
42
|
Khosla C, Herschlag D, Cane DE, Walsh CT. Assembly line polyketide synthases: mechanistic insights and unsolved problems. Biochemistry 2014; 53:2875-83. [PMID: 24779441 PMCID: PMC4020578 DOI: 10.1021/bi500290t] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two hallmarks of assembly line polyketide synthases have motivated an interest in these unusual multienzyme systems, their stereospecificity and their capacity for directional biosynthesis. In this review, we summarize the state of knowledge regarding the mechanistic origins of these two remarkable features, using the 6-deoxyerythronolide B synthase as a prototype. Of the 10 stereocenters in 6-deoxyerythronolide B, the stereochemistry of nine carbon atoms is directly set by ketoreductase domains, which catalyze epimerization and/or diastereospecific reduction reactions. The 10th stereocenter is established by the sequential action of three enzymatic domains. Thus, the problem has been reduced to a challenge in mainstream enzymology, where fundamental gaps remain in our understanding of the structural basis for this exquisite stereochemical control by relatively well-defined active sites. In contrast, testable mechanistic hypotheses for the phenomenon of vectorial biosynthesis are only just beginning to emerge. Starting from an elegant theoretical framework for understanding coupled vectorial processes in biology [Jencks, W. P. (1980) Adv. Enzymol. Relat. Areas Mol. Biol. 51, 75-106], we present a simple model that can explain assembly line polyketide biosynthesis as a coupled vectorial process. Our model, which highlights the important role of domain-domain interactions, not only is consistent with recent observations but also is amenable to further experimental verification and refinement. Ultimately, a definitive view of the coordinated motions within and between polyketide synthase modules will require a combination of structural, kinetic, spectroscopic, and computational tools and could be one of the most exciting frontiers in 21st Century enzymology.
Collapse
Affiliation(s)
- Chaitan Khosla
- Departments of Chemical Engineering, Chemistry, and Biochemistry, Stanford University , Stanford, California 94305, United States
| | | | | | | |
Collapse
|
43
|
Soehano I, Yang L, Ding F, Sun H, Low ZJ, Liu X, Liang ZX. Insights into the programmed ketoreduction of partially reducing polyketide synthases: stereo- and substrate-specificity of the ketoreductase domain. Org Biomol Chem 2014; 12:8542-9. [DOI: 10.1039/c4ob01777c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evidence are provided to support that partially reducing polyketide synthases achieve programmed ketoreduction by differential recognition of polyketide intermediates.
Collapse
Affiliation(s)
- Ishin Soehano
- School of Biological Sciences Nanyang Technological University
- , Singapore
| | - Lifeng Yang
- School of Biological Sciences Nanyang Technological University
- , Singapore
| | - Feiqing Ding
- School of Mathematics and Physics
- Nanyang Technological University
- , Singapore
| | - Huihua Sun
- School of Biological Sciences Nanyang Technological University
- , Singapore
| | - Zhen Jie Low
- School of Biological Sciences Nanyang Technological University
- , Singapore
| | - Xuewei Liu
- School of Mathematics and Physics
- Nanyang Technological University
- , Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences Nanyang Technological University
- , Singapore
| |
Collapse
|
44
|
Garg A, Khosla C, Cane DE. Coupled methyl group epimerization and reduction by polyketide synthase ketoreductase domains. Ketoreductase-catalyzed equilibrium isotope exchange. J Am Chem Soc 2013; 135:16324-7. [PMID: 24161343 DOI: 10.1021/ja408944s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Incubation of [2-(2)H]-(2S,3R)-2-methyl-3-hydroxypentanoyl-SACP ([2-(2)H]-1a) with the epimerizing ketoreductase domain EryKR1 in the presence of a catalytic amount NADP(+) (0.05 equiv) resulted in time- and cofactor-dependent washout of deuterium from 1a, as a result of equilibrium isotope exchange of transiently generated [2-(2)H]-2-methyl-3-ketopentanoyl-ACP. Incubations of [2-(2)H]-(2S,3S)-2-methyl-3-hydroxy-pentanoyl-SACP with RifKR7 and with NysKR1 also resulted in time-dependent loss of deuterium. By contrast, incubations of [2-(2)H]-(2R,3S)-2-methyl-3-hydroxypentanoyl-SACP and [2-(2)H]-(2R,3R)-2-methyl-3-hydroxypentanoyl-SACP with the non-epimerizing ketoreductase domains EryKR6 and TylKR1, respectively, did not result in any significant washout of deuterium. The isotope exchange assay directly establishes that specific polyketide synthase ketoreductase domains also have an intrinsic epimerase activity, thus enabling mechanistic analysis of a key determinant of polyketide stereocomplexity.
Collapse
Affiliation(s)
- Ashish Garg
- Department of Chemistry, Brown University , Providence, Rhode Island 02912-9108, United States
| | | | | |
Collapse
|