1
|
Wilhelm T, Toledo MAS, Simons I, Stuth C, Mohta V, Mülfarth R, Nitsche M, Maschke-Neuß K, Schmitz S, Kaiser A, Panse J, Christen D, Arock M, Zenke M, Huber M. Capitalizing on paradoxical activation of the mitogen-activated protein kinase pathway for treatment of Imatinib-resistant mast cell leukemia. Hematol Oncol 2023; 41:520-534. [PMID: 36383121 DOI: 10.1002/hon.3100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Prevention of fatal side effects during cancer therapy of cancer patients with high-dosed pharmacological inhibitors is to date a major challenge. Moreover, the development of drug resistance poses severe problems for the treatment of patients with leukemia or solid tumors. Particularly drug-mediated dimerization of RAF kinases can be the cause of acquired resistance, also called "paradoxical activation." In the present work we re-analyzed the effects of different tyrosine kinase inhibitors (TKIs) on the proliferation, metabolic activity, and survival of the Imatinib-resistant, KIT V560G, D816V-expressing human mast cell (MC) leukemia (MCL) cell line HMC-1.2. We observed that low concentrations of the TKIs Nilotinib and Ponatinib resulted in enhanced proliferation, suggesting paradoxical activation of the MAPK pathway. Indeed, these TKIs caused BRAF-CRAF dimerization, resulting in ERK1/2 activation. The combination of Ponatinib with the MEK inhibitor Trametinib, at nanomolar concentrations, effectively suppressed HMC-1.2 proliferation, metabolic activity, and induced apoptotic cell death. Effectiveness of this drug combination was recapitulated in the human KIT D816V MC line ROSAKIT D816V and in KIT D816V hematopoietic progenitors obtained from patient-derived induced pluripotent stem cells (iPS cells) and systemic mastocytosis patient samples. In conclusion, mutated KIT-driven Imatinib resistance and possible TKI-induced paradoxical activation can be efficiently overcome by a low concentration Ponatinib and Trametinib co-treatment, potentially reducing the negative side effects associated with MCL therapy.
Collapse
Affiliation(s)
- Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Marcelo A S Toledo
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Ilka Simons
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christian Stuth
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Vrinda Mohta
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ronja Mülfarth
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Marcus Nitsche
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karin Maschke-Neuß
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Susanne Schmitz
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Anne Kaiser
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Deborah Christen
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), Paris, France
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Rodríguez-Agustín A, Casanova V, Grau-Expósito J, Sánchez-Palomino S, Alcamí J, Climent N. Immunomodulatory Activity of the Tyrosine Kinase Inhibitor Dasatinib to Elicit NK Cytotoxicity against Cancer, HIV Infection and Aging. Pharmaceutics 2023; 15:pharmaceutics15030917. [PMID: 36986778 PMCID: PMC10055786 DOI: 10.3390/pharmaceutics15030917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have been extensively used as a treatment for chronic myeloid leukemia (CML). Dasatinib is a broad-spectrum TKI with off-target effects that give it an immunomodulatory capacity resulting in increased innate immune responses against cancerous cells and viral infected cells. Several studies reported that dasatinib expanded memory-like natural killer (NK) cells and γδ T cells that have been related with increased control of CML after treatment withdrawal. In the HIV infection setting, these innate cells are associated with virus control and protection, suggesting that dasatinib could have a potential role in improving both the CML and HIV outcomes. Moreover, dasatinib could also directly induce apoptosis of senescence cells, being a new potential senolytic drug. Here, we review in depth the current knowledge of virological and immunogenetic factors associated with the development of powerful cytotoxic responses associated with this drug. Besides, we will discuss the potential therapeutic role against CML, HIV infection and aging.
Collapse
Affiliation(s)
| | - Víctor Casanova
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Judith Grau-Expósito
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Sonsoles Sánchez-Palomino
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
- CIBER of Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
| | - José Alcamí
- CIBER of Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Núria Climent
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
- CIBER of Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-2275400 (ext. 3144); Fax: +34-93-2271775
| |
Collapse
|
3
|
Crowl S, Jordan BT, Ahmed H, Ma CX, Naegle KM. KSTAR: An algorithm to predict patient-specific kinase activities from phosphoproteomic data. Nat Commun 2022; 13:4283. [PMID: 35879309 PMCID: PMC9314348 DOI: 10.1038/s41467-022-32017-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
Kinase inhibitors as targeted therapies have played an important role in improving cancer outcomes. However, there are still considerable challenges, such as resistance, non-response, patient stratification, polypharmacology, and identifying combination therapy where understanding a tumor kinase activity profile could be transformative. Here, we develop a graph- and statistics-based algorithm, called KSTAR, to convert phosphoproteomic measurements of cells and tissues into a kinase activity score that is generalizable and useful for clinical pipelines, requiring no quantification of the phosphorylation sites. In this work, we demonstrate that KSTAR reliably captures expected kinase activity differences across different tissues and stimulation contexts, allows for the direct comparison of samples from independent experiments, and is robust across a wide range of dataset sizes. Finally, we apply KSTAR to clinical breast cancer phosphoproteomic data and find that there is potential for kinase activity inference from KSTAR to complement the current clinical diagnosis of HER2 status in breast cancer patients.
Collapse
Affiliation(s)
- Sam Crowl
- grid.27755.320000 0000 9136 933XUniversity of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA 22903 USA
| | - Ben T. Jordan
- grid.27755.320000 0000 9136 933XUniversity of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA 22903 USA
| | - Hamza Ahmed
- grid.27755.320000 0000 9136 933XUniversity of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA 22903 USA
| | - Cynthia X. Ma
- grid.4367.60000 0001 2355 7002Department of Medicine and Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63108 USA
| | - Kristen M. Naegle
- grid.27755.320000 0000 9136 933XUniversity of Virginia, Department of Biomedical Engineering and the Center for Public Health Genomics, Charlottesville, VA 22903 USA
| |
Collapse
|
4
|
Gouda NA, Elkamhawy A, Cho J. Emerging Therapeutic Strategies for Parkinson’s Disease and Future Prospects: A 2021 Update. Biomedicines 2022; 10:biomedicines10020371. [PMID: 35203580 PMCID: PMC8962417 DOI: 10.3390/biomedicines10020371] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder pathologically distinguished by degeneration of dopaminergic neurons in the substantia nigra pars compacta. Muscle rigidity, tremor, and bradykinesia are all clinical motor hallmarks of PD. Several pathways have been implicated in PD etiology, including mitochondrial dysfunction, impaired protein clearance, and neuroinflammation, but how these factors interact remains incompletely understood. Although many breakthroughs in PD therapy have been accomplished, there is currently no cure for PD, only trials to alleviate the related motor symptoms. To reduce or stop the clinical progression and mobility impairment, a disease-modifying approach that can directly target the etiology rather than offering symptomatic alleviation remains a major unmet clinical need in the management of PD. In this review, we briefly introduce current treatments and pathophysiology of PD. In addition, we address the novel innovative therapeutic targets for PD therapy, including α-synuclein, autophagy, neurodegeneration, neuroinflammation, and others. Several immunomodulatory approaches and stem cell research currently in clinical trials with PD patients are also discussed. Moreover, preclinical studies and clinical trials evaluating the efficacy of novel and repurposed therapeutic agents and their pragmatic applications with encouraging outcomes are summarized. Finally, molecular biomarkers under active investigation are presented as potentially valuable tools for early PD diagnosis.
Collapse
Affiliation(s)
- Noha A. Gouda
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (A.E.)
| | - Ahmed Elkamhawy
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (A.E.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Jungsook Cho
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (A.E.)
- Correspondence:
| |
Collapse
|
5
|
Wang S, Zhou D, Xu Z, Song J, Qian X, Lv X, Luan J. Anti-tumor Drug Targets Analysis: Current Insight and Future Prospect. Curr Drug Targets 2020; 20:1180-1202. [PMID: 30947670 DOI: 10.2174/1389450120666190402145325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
The incidence and mortality of malignant tumors are on the rise, which has become the second leading cause of death in the world. At present, anti-tumor drugs are one of the most common methods for treating cancer. In recent years, with the in-depth study of tumor biology and related disciplines, it has been gradually discovered that the essence of cell carcinogenesis is the infinite proliferation of cells caused by the disorder of cell signal transduction pathways, followed by a major shift in the concept of anti-tumor drugs research and development. The focus of research and development is shifting from traditional cytotoxic drugs to a new generation of anti-tumor drugs targeted at abnormal signaling system targets in tumor cells. In this review, we summarize the targets of anti-tumor drugs and analyse the molecular mechanisms of their effects, which lay a foundation for subsequent treatment, research and development.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Dexi Zhou
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhenyu Xu
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jing Song
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xueyi Qian
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
6
|
Climent N, Plana M. Immunomodulatory Activity of Tyrosine Kinase Inhibitors to Elicit Cytotoxicity Against Cancer and Viral Infection. Front Pharmacol 2019; 10:1232. [PMID: 31680987 PMCID: PMC6813222 DOI: 10.3389/fphar.2019.01232] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) of aberrant tyrosine kinase (TK) activity have been widely used to treat chronic myeloid leukemia (CML) for decades in clinic. An area of growing interest is the reported ability of TKIs to induce immunomodulatory effects with anti-tumor and anti-viral activity, which appears to be mediated by directly or indirectly acting on immune cells. In selected cases of patients with CML, TKI treatment may be interrupted and a non-drug remission may be observed. In these patients, an immune mechanism of increased anti-tumor cytotoxic activity induced by chronic administration of TKIs has been suggested. TKIs increase some populations of natural killer (NK), NK-LGL, and T-LGLs cells especially in dasatinib treated CML patients infected with cytomegalovirus (CMV). In addition, dasatinib increases responses against CMV and is able to inhibit HIV replication in vitro. Recent studies suggest that subclinical reactivation of CMV could drive expansion of specific subsets of NK- and T-cells with both anti-tumoral and anti-viral function. Therefore, the underlying mechanisms implicated in the expansion of this increased anti-tumor and anti-viral cytotoxic activity induced by TKIs could be a new therapeutic approach to take into account against cancer and viral infections such as HIV-1 infection. The present review will briefly summarize the immunomodulatory effects of TKIs on T cells, NKs, and B cells. Therapeutic implications for modulating immunity against cancer and viral infections and critical open questions are also discussed.
Collapse
Affiliation(s)
- Núria Climent
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Montserrat Plana
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Dittmann A, Kennedy NJ, Soltero NL, Morshed N, Mana MD, Yilmaz ÖH, Davis RJ, White FM. High-fat diet in a mouse insulin-resistant model induces widespread rewiring of the phosphotyrosine signaling network. Mol Syst Biol 2019; 15:e8849. [PMID: 31464373 PMCID: PMC6674232 DOI: 10.15252/msb.20198849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity-associated type 2 diabetes and accompanying diseases have developed into a leading human health risk across industrialized and developing countries. The complex molecular underpinnings of how lipid overload and lipid metabolites lead to the deregulation of metabolic processes are incompletely understood. We assessed hepatic post-translational alterations in response to treatment of cells with saturated and unsaturated free fatty acids and the consumption of a high-fat diet by mice. These data revealed widespread tyrosine phosphorylation changes affecting a large number of enzymes involved in metabolic processes as well as canonical receptor-mediated signal transduction networks. Targeting two of the most prominently affected molecular features in our data, SRC-family kinase activity and elevated reactive oxygen species, significantly abrogated the effects of saturated fat exposure in vitro and high-fat diet in vivo. In summary, we present a comprehensive view of diet-induced alterations of tyrosine signaling networks, including proteins involved in fundamental metabolic pathways.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Fatty Acids/pharmacology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Obesity/etiology
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Phosphorylation/drug effects
- Phosphotyrosine/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Processing, Post-Translational
- Proteomics/methods
- Rats
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Signal Transduction
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Antje Dittmann
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Norman J Kennedy
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Nina L Soltero
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Nader Morshed
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Miyeko D Mana
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Broad Institute of Harvard and MITCambridgeMAUSA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Broad Institute of Harvard and MITCambridgeMAUSA
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Roger J Davis
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Howard Hughes Medical InstituteWorcesterMAUSA
| | - Forest M White
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
8
|
Pondé N, Aftimos P, Piccart M. Antibody-Drug Conjugates in Breast Cancer: a Comprehensive Review. Curr Treat Options Oncol 2019; 20:37. [DOI: 10.1007/s11864-019-0633-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Bermejo M, Ambrosioni J, Bautista G, Climent N, Mateos E, Rovira C, Rodríguez-Mora S, López-Huertas MR, García-Gutiérrez V, Steegmann JL, Duarte R, Cervantes F, Plana M, Miró JM, Alcamí J, Coiras M. Evaluation of resistance to HIV-1 infection ex vivo of PBMCs isolated from patients with chronic myeloid leukemia treated with different tyrosine kinase inhibitors. Biochem Pharmacol 2018; 156:248-264. [PMID: 30142322 DOI: 10.1016/j.bcp.2018.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Current antiretroviral treatment (ART) may control HIV-1 replication but it cannot cure the infection due to the formation of a reservoir of latently infected cells. CD4+ T cell activation during HIV-1 infection eliminates the antiviral function of the restriction factor SAMHD1, allowing proviral integration and the reservoir establishment. The role of tyrosine kinases during T-cell activation is essential for these processes. Therefore, the inhibition of tyrosine kinases could control HIV-1 infection and restrict the formation of the reservoir. A family of tyrosine kinase inhibitors (TKIs) is successfully used in clinic for treating chronic myeloid leukemia (CML). The safety and efficacy against HIV-1 infection of five TKIs was assayed in PBMCs isolated from CML patients on prolonged treatment with these drugs that were infected ex vivo with HIV-1. We determined that the most potent and safe TKI against HIV-1 infection was dasatinib, which preserved SAMHD1 antiviral function and avoid T-cell activation through TCR engagement and homeostatic cytokines. Imatinib and nilotinib showed lower potency and bosutinib was quite toxic in vitro. Ponatinib presented similar profile to dasatinib but as it has been associated with higher incidence of arterial ischemic events, dasatinib would be the better choice of TKI to be used as adjuvant of ART in order to avoid the establishment and replenishment of HIV-1 reservoir and move forward towards an HIV cure.
Collapse
Affiliation(s)
- Mercedes Bermejo
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Ambrosioni
- Infectious Diseases Service, AIDS Research Group, Institut d́Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Guiomar Bautista
- Clinical Hematology Service, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Núria Climent
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Elena Mateos
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Rovira
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Sara Rodríguez-Mora
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain; Division of Infection and Immunity, University College of London, UK
| | - María Rosa López-Huertas
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) - Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Juan Luis Steegmann
- Hematology Department, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-IP), Madrid, Spain
| | - Rafael Duarte
- Clinical Hematology Service, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Francisco Cervantes
- Hematology Department, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Montserrat Plana
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - José M Miró
- Infectious Diseases Service, AIDS Research Group, Institut d́Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Wilhelm T, Bick F, Peters K, Mohta V, Tirosh B, Patterson JB, Kharabi-Masouleh B, Huber M. Infliction of proteotoxic stresses by impairment of the unfolded protein response or proteasomal inhibition as a therapeutic strategy for mast cell leukemia. Oncotarget 2017; 9:2984-3000. [PMID: 29423023 PMCID: PMC5790440 DOI: 10.18632/oncotarget.23354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/03/2017] [Indexed: 01/05/2023] Open
Abstract
The intensity and duration of endoplasmic reticulum (ER) stress converts the unfolded protein response (UPR) from an adaptive into a terminal response. The first regulates homeostasis, the latter triggers apoptosis. Cells that rapidly proliferate and possess developed secretory capabilities, such as leukemia cells, depend on an efficiently operating UPR to maintain proteostasis. Activation of terminal UPR by either blockade of adaptive UPR or exaggeration of ER stress has been explored as a novel approach in cancer therapy. For mast cell leukemia (MCL) the efficacy of both approaches, by utilizing the KITV560G,D816V-positive MCL cell line HMC-1.2, was investigated. We show that HMC-1.2 cells display a tonic activation of the IRE1α arm of the UPR, which constitutively generates spliced XBP1. Inhibition of IRE1α by different types of inhibitors (MKC-8866, STF-083010, and KIRA6) suppressed proliferation at concentrations needed for blockade of IRE1α-mediated XBP1 splicing. At higher concentrations, these inhibitors triggered an apoptotic response. Blocking the proteasome by bortezomib, which confers an exaggerated UPR, resulted in a marked cytotoxic response. Bortezomib treatment also caused activation of the kinase JNK, which played a pro-proliferative and anti-apoptotic role. Hence, the combination of bortezomib with a JNK inhibitor synergized to induce cell death. In summary, the UPR can be addressed as an effective therapeutic target against KITD816V-positive MCL.
Collapse
Affiliation(s)
- Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Fabian Bick
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Kerstin Peters
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Vrinda Mohta
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Boaz Tirosh
- The Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Behzad Kharabi-Masouleh
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Abbineni PS, Coorssen JR. Application of High-Throughput Assays to Examine Phospho-Modulation of the Late Steps of Regulated Exocytosis. High Throughput 2017; 6:ht6040017. [PMID: 29479054 PMCID: PMC5748596 DOI: 10.3390/ht6040017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 01/19/2023] Open
Abstract
Abstract: Regulated exocytosis enables a range of physiological functions including neurotransmission, and the late steps (i.e., docking, priming and Ca2+-triggered membrane fusion) are modulated by a highly conserved set of proteins and lipids. Many of the molecular components and biochemical interactions required have been identified; the precise mechanistic steps they modulate and the biochemical interactions that need to occur across steps are still the subject of intense investigation. Particularly, although the involvement of phosphorylation in modulating exocytosis has been intensively investigated over the past three decades, it is unclear which phosphorylation events are a conserved part of the fundamental fusion mechanism and/or serve as part of the physiological fusion machine (e.g., to modulate Ca2+ sensitivity). Here, the homotypic fusion of cortical vesicles was monitored by utilizing new high-throughput, cost-effective assays to assess the influence of 17 small molecule phospho-modulators on docking/priming, Ca2+ sensitivity and membrane fusion. Specific phosphatases and casein kinase 2 are implicated in modulating the Ca2+ sensitivity of fusion, whereas sphingosine kinase is implicated in modulating the ability of vesicles to fuse. These results indicate the presence of multiple kinases and phosphatases on the vesicles and critical phosphorylation sites on vesicle membrane proteins and lipids that directly influence late steps of regulated exocytosis.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, and the WSU Molecular Medicine Research Group, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Jens R Coorssen
- Faculty of Applied Health Sciences and Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
12
|
Coiras M, Ambrosioni J, Cervantes F, Miró JM, Alcamí J. Tyrosine kinase inhibitors: potential use and safety considerations in HIV-1 infection. Expert Opin Drug Saf 2017; 16:547-559. [PMID: 28387147 DOI: 10.1080/14740338.2017.1313224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Infection caused by HIV-1 is nowadays a chronic disease due to a highly efficient antiretroviral treatment that is nevertheless, unable to eliminate the virus from the organism. New strategies are necessary in order to impede the formation of the viral reservoirs, responsible for the failure of the antiretroviral treatment to cure the infection. Areas covered: The purpose of this review is to discuss the possibility of using tyrosine kinase inhibitors (TKIs) for the treatment of HIV-1 infection. These inhibitors are successfully used in patients with distinct cancers such as chronic myeloid leukemia. The most relevant papers have been selected and commented. Expert opinion: The family of TKIs are directed against the activation of tyrosine kinases from the Src family. Some of these kinases are essential for the activation of CD4 + T cells, the major target of HIV-1. During acute or primary infection the CD4 + T cells are massively activated, which is mostly responsible for the generation of the reservoirs, the spread of the infection and the destruction of activated CD4 + T cells, infected or not. Consequently, we discuss the possibility of using TKIs as adjuvant of the antiretroviral treatment against HIV-1 infection mostly, but not exclusively, during the acute/recent phase.
Collapse
Affiliation(s)
- Mayte Coiras
- a AIDS Immunopathology Unit , National Center of Microbiology, Instituto de Salud Carlos III , Madrid , Spain
| | - Juan Ambrosioni
- b Infectious Diseases Service , AIDS Research Group, Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | | | - José M Miró
- b Infectious Diseases Service , AIDS Research Group, Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - José Alcamí
- a AIDS Immunopathology Unit , National Center of Microbiology, Instituto de Salud Carlos III , Madrid , Spain
| |
Collapse
|
13
|
Li CC, Yu FS, Fan MJ, Chen YY, Lien JC, Chou YC, Lu HF, Tang NY, Peng SF, Huang WW, Chung JG. Anticancer effects of cantharidin in A431 human skin cancer (Epidermoid carcinoma) cells in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2017; 32:723-738. [PMID: 27113412 DOI: 10.1002/tox.22273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Cantharidin (CTD), a potential anticancer agent of Traditional Chinese Medicine has cytotxic effects in different human cancer cell lines. The cytotoxic effects of CTD on A431 human skin cancer (epidermoid carcinoma) cells in vitro and in A431 cell xenograft mouse model were examined. In vitro, A431 human skin cell were treated with CTD for 24 and 48 h. Cell phase distribution, ROS production, Ca2+ release, Caspase activity and the level of apoptosis associated proteins were measured. In vivo, A431 cell xenograft mouse model were examined. CTD-induced cell morphological changes and decreased percentage of viable A431 cells via G0/G1 phase arrest and induced apoptosis. CTD-induced G0/G1 phase arrest through the reduction of protein levels of cyclin E, CDK6, and cyclin D in A431 cells. CTD-induced cell apoptosis of A431 cells also was confirm by DNA gel electrophoresis showed CTD-induced DNA fragmentation. CTD reduced the mitochondrial membrane potential and stimulated release of cytochrome c, AIF and Endo G in A431 cells. Flow cytometry demonstrated that CTD increased activity of caspase-8, -9 and -3. However, when cells were pretreated with specific caspase inhibitors activity was reduced and cell viability increased. CTD increased protein levels of death receptors such as DR4, DR5, TRAIL and levels of the active form of caspase-8, -9 and -3 in A431 cells. AIF and Endo G proteins levels were also enhanced by CTD. In vivo studies showed that CTD significantly inhibited A431 cell xenograft tumors in mice. Taken together, these in vitro and in vivo results provide insight into the mechanisms of CTD on cell growth and tumor production. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 723-738, 2017.
Collapse
Affiliation(s)
- Chi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, 404
| | - Fu-Shun Yu
- School of Dentistry, China Medical University, Taichung, Taiwan, 404
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung, Taiwan, 413
| | - Ya-Yin Chen
- Department of Chinese-Western Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, 402
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, 402
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, Taiwan, 404
| | - Yu-Cheng Chou
- Division of Neurosurgical Oncology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, 407
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, 114
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, 112
| | - Nou-Ying Tang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, 402
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, 404
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, 404
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, 404
- Department of Biotechnology, Asia University, Taichung, Taiwan, 413
| |
Collapse
|
14
|
Brahmachari S, Karuppagounder SS, Ge P, Lee S, Dawson VL, Dawson TM, Ko HS. c-Abl and Parkinson's Disease: Mechanisms and Therapeutic Potential. JOURNAL OF PARKINSON'S DISEASE 2017; 7:589-601. [PMID: 29103051 PMCID: PMC5676866 DOI: 10.3233/jpd-171191] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although the etiology of Parkinson's disease (PD) is poorly understood, oxidative stress has long been implicated in the pathogenesis of the disease. However, multifaceted and divergent signaling cascades downstream of oxidative stress have posed challenges for researchers to identify a central component of the oxidative stress-induced pathways causing neurodegeneration in PD. Since 2010, c-Abl-a non-receptor tyrosine kinase and an indicator of oxidative stress-has shown remarkable potential as a future promising drug target in PD therapeutics. Although, the constitutively active form of c-Abl, Bcr-Abl, has a long history in chronic myeloid leukemia and acute lymphocytic leukemia, the role of c-Abl in PD and relevant neurodegenerative diseases was completely unknown. Recently, others and we have identified and validated c-Abl as an important pathogenic mediator of the disease, where activated c-Abl emerges as a common link to various PD-related inducers of oxidative stress relevant to both sporadic and familial forms of PD and α-synucleinopathies. This review discusses the role of c-Abl in PD and the latest advancement on c-Abl as a drug target and as a prospective biomarker.
Collapse
Affiliation(s)
- Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Senthilkumar S. Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Preston Ge
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Saebom Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| |
Collapse
|
15
|
Tse A, Verkhivker GM. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution. PLoS One 2015; 10:e0130203. [PMID: 26075886 PMCID: PMC4468085 DOI: 10.1371/journal.pone.0130203] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating residues. This study has outlined mechanisms by which inhibitor binding could modulate resilience and efficiency of allosteric interactions in the kinase structures, while preserving structural topology required for catalytic activity and regulation.
Collapse
Affiliation(s)
- Amanda Tse
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Small molecule inhibitors of protein kinases are key tools for signal transduction research and represent a major class of targeted drugs. Recent developments in quantitative proteomics enable an unbiased view on kinase inhibitor selectivity and modes of action in the biological context. While chemical proteomics techniques utilizing quantitative mass spectrometry interrogate both target specificity and affinity in cellular extracts, proteome-wide phosphorylation analyses upon kinase inhibitor treatment identify signal transduction pathway and network regulation in an unbiased manner. Thus, critical information is provided to promote new insights into mechanisms of kinase signaling and their relevance for kinase inhibitor drug discovery.
Collapse
Affiliation(s)
- Henrik Daub
- Evotec (München) GmbH, Am Klopferspitz
19a, 82152 Martinsried, Germany
| |
Collapse
|