1
|
Yu Y, Zhang H, Yang F, Liu H. Integrated pharmacoanalysis, bioinformatics analysis, and experimental validation to identify the ingredients and mechanisms of Xiao-Luo-Wan in uterine fibroids treatment. PHARMACEUTICAL BIOLOGY 2025; 63:201-217. [PMID: 40219728 PMCID: PMC11999358 DOI: 10.1080/13880209.2025.2485905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
CONTEXT Xiao-Luo-Wan (XLW), a classical prescription in traditional Chinese medicine, has therapeutic effects on uterine fibroids (UFs). Herein, its anti-UF effects were examined using a systematic pharmacological method. OBJECTIVE To explore the active ingredients of XLW via mass spectrometry and its potential effects on UFs by network pharmacology, molecular docking, and experimental validation. MATERIALS AND METHODS A mass spectrometer was used to scrutinize the composition of the XLW drug-containing serum. The critical targets and potential mechanisms of XLW against UFs were predicted by network pharmacology and molecular docking. Next, human uterine leiomyoma cells (UMCs) were treated with 20%, 30%, or 40% XLW serum for 24 h, 48 h or 72 h. Cell viability was analyzed via a CCK-8 assay, and cell apoptosis and the cell cycle were examined via flow cytometry. The predicted targets were further identified by RT-PCR and western blotting. RESULTS There were 16 chemical components identified in XLW drug-containing serum, with 53 target genes predicated in the treatment of UFs. The molecular binding of core targets, including TRIM9, NF-κB and p38MAPK, was relatively stable to components, especially buergerinin B, cedrol and ent-15B-16-epoxy- kauan-17-ol. The in vitro experiments revealed that the IC50 of XLW in UMCs was 63.21%, and the anti-UF effects of XLW may be closely associated with targets that inhibit cell proliferation and promote cell apoptosis by regulating TRIM9, NF-κB and p38MAPK expression. DISCUSSION AND CONCLUSIONS The integration of mass spectrometry, network pharmacology, molecular docking and biological experiments revealed the key constituents of XLW and its pharmacological mechanism in UFs, which may help in the discovery of therapeutic agents for treating UFs.
Collapse
Affiliation(s)
- Yonghui Yu
- Gynecological Department of Traditional Chinese Medicine, China–Japan Friendship Hospital, Beijing, China
| | - Haojun Zhang
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing, China
| | - Fang Yang
- Gynecological Department of Traditional Chinese Medicine, China–Japan Friendship Hospital, Beijing, China
| | - Hong Liu
- Gynecological Department of Traditional Chinese Medicine, China–Japan Friendship Hospital, Beijing, China
| |
Collapse
|
2
|
Yasmine J, Sola P, Rymbai E, Dutta BJ, Buragohain S. Computational phytochemical screening for Parkinson's disease therapeutics: c-Abl and beyond. Comput Biol Chem 2025; 116:108370. [PMID: 39952103 DOI: 10.1016/j.compbiolchem.2025.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Parkinson's disease (PD), a rapidly growing neurodegenerative disorder, is characterized by intracellular α-synuclein aggregates. The tyrosine kinase c-Abl plays a critical role in PD pathogenesis. This study aimed to identify novel c-Abl inhibitors from natural products using molecular docking and dynamics simulations. We explored phytochemicals from Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT) database and employed molecular docking and molecular dynamics to discover c-Abl inhibitors. Three potential hits: IMPHY008934, IMPHY009589, and IMPHY006310 were identified. These compounds demonstrated comparable binding affinity to Nilotinib, a comparison drug. Toxicity predictions revealed IMPHY008934 and IMPHY009589 exhibited lower toxicity than Nilotinib. Molecular dynamics simulations confirmed the stability of IMPHY009589 and IMPHY008934 with c-Abl. Density functional theory (DFT) analysis showed that IMPHY006310 and IMPHY008934 displayed enhanced reactivity and polarizability. Our findings suggest these natural compounds may target c-Abl in PD pathogenesis and possibly downregulate the overexpressed α-synuclein and may serve as promising leads for PD therapy.
Collapse
Affiliation(s)
- Jesmina Yasmine
- Department of Pharmacology, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Assam 781125, India
| | - Piyong Sola
- Department of Pharmacology, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Assam 781125, India.
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, (A constituent College of JSS Academy of Higher Education & Research), Ooty, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Assam 781125, India
| | - Sankarkishor Buragohain
- Department of Pharmacology, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Assam 781125, India
| |
Collapse
|
3
|
Jing Y, Zhao G, Xu Y, McGuire T, Hou G, Zhao J, Chen M, Lopez O, Xue Y, Xie XQ. GCN-BBB: Deep Learning Blood-Brain Barrier (BBB) Permeability PharmacoAnalytics with Graph Convolutional Neural (GCN) Network. AAPS J 2025; 27:73. [PMID: 40180695 DOI: 10.1208/s12248-025-01059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
The Blood-Brain Barrier (BBB) is a selective barrier between the Central Nervous System (CNS) and the peripheral system, regulating the distribution of molecules. BBB permeability has been crucial in CNS-targeting drug development, such as glioblastoma-related drug discovery. In addition, more CNS diseases still present significant challenges, for instance, neurological disorders like Alzheimer's Disease (AD) and drug abuse. Conversely, cannabinoid drugs that do not cross the BBB are needed to avoid off-target CNS psychotropic effects. In vitro and in vivo experiments measuring BBB permeability are costly and low throughput. Computational pharmacoanalytics modeling, particularly using deep-learning Graph Neural Networks (GNNs), offers a promising alternative. GNNs excel at capturing intricate relationships in graph-based information, such as small molecular structures. In this study, we developed GNNs model for BBB permeability using the graph representation of drugs. The GNNs were compared with other algorithms using molecular fingerprints or physical-chemical descriptors. With a dataset of 1924 molecules, the best GNNs model, a convolutional graph neural network using a normalized Laplacian matrix (GCN_2), achieved a precision of 0.94, recall of 0.96, F1 score of 0.95, and MCC score of 0.77. This outperformed other machine learning algorithms with molecular fingerprints. The findings indicate that the graphic representation of small molecules combined with GNNs architecture is powerful in predicting BBB permeability with high accuracy and recall. The developed GNNs model can be utilized in the initial screening stage for new drug development.
Collapse
Affiliation(s)
- Yankang Jing
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology (PSP) Pharmacoanalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
- National Center of Excellence for Computational Drug Abuse Research University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - Guangyi Zhao
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology (PSP) Pharmacoanalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
- National Center of Excellence for Computational Drug Abuse Research University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - Yuanyuan Xu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology (PSP) Pharmacoanalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
- National Center of Excellence for Computational Drug Abuse Research University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - Terence McGuire
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology (PSP) Pharmacoanalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
- National Center of Excellence for Computational Drug Abuse Research University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - Ganqian Hou
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology (PSP) Pharmacoanalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
- National Center of Excellence for Computational Drug Abuse Research University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - Jack Zhao
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology (PSP) Pharmacoanalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
- National Center of Excellence for Computational Drug Abuse Research University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - Maozi Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology (PSP) Pharmacoanalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
- National Center of Excellence for Computational Drug Abuse Research University of Pittsburgh, Pittsburgh, PA, 15261, United States of America
| | - Oscar Lopez
- Department of Neurology, Psychiatry and Clinical & Translational Sciences, Alzheimer'S Disease Research Center, University of Pittsburgh, Pittsburgh, 15260, United States of America.
| | - Ying Xue
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology (PSP) Pharmacoanalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America.
- National Center of Excellence for Computational Drug Abuse Research University of Pittsburgh, Pittsburgh, PA, 15261, United States of America.
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America.
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology (PSP) Pharmacoanalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America.
- National Center of Excellence for Computational Drug Abuse Research University of Pittsburgh, Pittsburgh, PA, 15261, United States of America.
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, 15261, United States of America.
- Department of Computational Biology and Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, United States of America.
| |
Collapse
|
4
|
Kuo YC, Lawal B, Lukman HY, Chen LC, Huang SL, Chen YF, Fadaka AO, Olawale F, Olasupo A, Ajenifujah OT, Fouad D, Papadakis M, Batiha GES, Sabiu S, Wu AT, Huang HS. Bioprospection of Hura crepitans metabolites against oxidative stress and inflammation: An in vitro and in silico exploration. Int J Med Sci 2025; 22:1837-1851. [PMID: 40225868 PMCID: PMC11983311 DOI: 10.7150/ijms.109116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/30/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Despite the recognized therapeutic potential of Hura crepitans, its mechanistic antioxidant and anti-inflammatory actions remain underexplored. Methods: This study investigates the inhibitory effects, binding stability, and interactions of metabolites from H. crepitans on oxidative and inflammatory biomarkers/targets using in vitro analyses and molecular dynamics (MD) simulations. Results: In vitro experiments revealed significant dose-dependent antioxidant and anti-inflammatory activities. The crude methanolic extract (CMEHC) showed notable half-maximal inhibitory concentration (IC50) values for antioxidant assays, such as diphenyl picrylhydrazine (45.51 µg/mL) and ferric-reducing power (10.86 µg/mL), with comparable performance to standard ascorbic acid. Anti-inflammatory activities, including protein denaturation, proteinase inhibition, and membrane stabilization, demonstrated IC50 values between 77.29-171.30 µg/mL. Liquid chromatography-mass spectrophotometry identified five primary compounds, predominantly phenolics, with rutin as the most abundant. Computational analyses confirmed these compounds' safety profiles, robust binding interactions, and stability against oxidative and inflammatory targets, with rutin forming the most stable interactions. Conclusion: These findings highlight the potential of H. crepitans phenolics as alternative therapies for oxidative stress and inflammation, warranting further drug development studies.
Collapse
Affiliation(s)
- Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Bashir Lawal
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Halimat Yusuf Lukman
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban 4000, South Africa
| | - Lung-Ching Chen
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Sheng-Liang Huang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Centre, Taipei 11490, Taiwan
| | - Yi-Fong Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Adewale O. Fadaka
- Department of Biotechnology, University of The Western Cape, Belleville, South Africa
| | - Femi Olawale
- Nano Gene and Drug Delivery Group, University of Kwazulu Natal, South Africa
| | - Ayo Olasupo
- Wonderful Institute for Sustainable Engineering, Chemical and Petroleum Engineering. University of Kansas
| | - Olabode T Ajenifujah
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh PA, USA 15213
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh 11495, Saudi Arabia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P. O. Box 1334, Durban 4000, South Africa
| | - Alexander T.H. Wu
- The Ph.D. Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsu-Shan Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
5
|
Vollmer LL, Liu F, Nmezi B, Bey GR, Herdman N, Shun TY, Gough A, Liu R, Wipf P, Lezon TR, Padiath QS, Vogt A. A high throughput, high content screen for non-toxic small molecules that reduce levels of the nuclear lamina protein, Lamin B1. Sci Rep 2025; 15:7314. [PMID: 40025114 PMCID: PMC11873125 DOI: 10.1038/s41598-025-91546-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Lamin B1 (LMNB1) is an intermediate filament protein that is an integral component of the nuclear lamina, a structure that is critical for nuclear organization and function. Mutations involving the lamin B1 gene cause the adult-onset demyelinating disorder, Autosomal Dominant Leukodystrophy (ADLD) which is charactered by increased lamin B1 expression. Increased LMNB1 expression is also associated with poorer outcomes in multiple cancer subtypes. Reducing LMNB1 is thus an attractive therapeutic pathway for ADLD and potentially other diseases. Here we present the results of a high throughput / high content screen (HTS/HCS) to identify small molecules that reduce LMNB1 levels. Approximately 97,000 molecules were screened using an inducible mouse fibroblast model of LMNB1 overexpression that we have previously generated. Two small molecules, Pubchem CID 662896 and CID 5308648, were identified that reduced LMNB1 in a dose dependent manner without causing cellular toxicity and corrected nuclear abnormalities associated with LMNB1 overexpression, a hallmark of ADLD. CID 662896 also reduced LMNB1 levels in ADLD patient fibroblast samples, exhibited favorable "drug-like" physicochemical properties and crossed the blood brain barrier in mouse studies. While CID 662896 may be a promising candidate for ADLD therapy, further investigations are required to determine its mechanism of action and ability to target disease relevant cell types.
Collapse
Affiliation(s)
- Laura L Vollmer
- Drug Discovery Institute, University of Pittsburgh, School of Medicine, 4313 Pittsburgh Technology Center, 700 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Fang Liu
- Department of Human Genetics, University of Pittsburgh, School of Public Health, 3135 Pitt Public Health Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Bruce Nmezi
- Department of Human Genetics, University of Pittsburgh, School of Public Health, 3135 Pitt Public Health Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Guillermo Rodriguez Bey
- Department of Human Genetics, University of Pittsburgh, School of Public Health, 3135 Pitt Public Health Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Nathan Herdman
- Department of Human Genetics, University of Pittsburgh, School of Public Health, 3135 Pitt Public Health Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Tong Ying Shun
- Drug Discovery Institute, University of Pittsburgh, School of Medicine, 4313 Pittsburgh Technology Center, 700 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Albert Gough
- Drug Discovery Institute, University of Pittsburgh, School of Medicine, 4313 Pittsburgh Technology Center, 700 Technology Drive, Pittsburgh, PA, 15219, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ruiting Liu
- Department of Chemistry, University of Pittsburgh, Dietrich School of Arts and Sciences, Pittsburgh, PA, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Dietrich School of Arts and Sciences, Pittsburgh, PA, USA
| | - Timothy R Lezon
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Certara, Radnor, PA, USA
| | - Quasar S Padiath
- Department of Human Genetics, University of Pittsburgh, School of Public Health, 3135 Pitt Public Health Pittsburgh, Pittsburgh, PA, 15261, USA.
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Andreas Vogt
- Drug Discovery Institute, University of Pittsburgh, School of Medicine, 4313 Pittsburgh Technology Center, 700 Technology Drive, Pittsburgh, PA, 15219, USA.
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Siangcham T, Vivithanaporn P, Jantakee K, Ruangtong J, Thongsepee N, Martviset P, Chantree P, Sornchuer P, Sangpairoj K. Impact of Benzo(a)pyrene and Pyrene Exposure on Activating Autophagy and Correlation with Endoplasmic Reticulum Stress in Human Astrocytes. Int J Mol Sci 2025; 26:1748. [PMID: 40004212 PMCID: PMC11855727 DOI: 10.3390/ijms26041748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Benzo(a)pyrene (B(a)P) and pyrene, the most prominent subtypes of polycyclic aromatic hydrocarbons (PAHs), contaminate environments as organic pollutants. They adversely affect body systems, including degeneration of the central nervous system. This study investigated the in vitro toxic effects of B(a)P and pyrene on proliferation, endoplasmic reticulum (ER) stress induction, and autophagy in human astrocytes using U-87 MG human astrocytoma cells as a model. Both B(a)P and pyrene were toxic to U-87 MG cells in a concentration-dependent manner. Astrocytic proliferation was interfered with, enhancing S-phase cell cycle arrest. B(a)P promoted the presence of autophagic vesicles and the expression of autophagic markers LC3, beclin-1, and p62, suggesting activated autophagy. B(a)P enhanced the expression of ER stress markers BiP, PERK, and IRE1. ER stress appeared to be correlated with autophagy induction, as demonstrated by experiments using chloroquine, an autophagy inhibitor. Pyrene enhanced the expression of autophagic markers and ER stress primarily via PERK activation, although autophagic vesicles were not observed. The study demonstrates that B(a)P enhances ER stress-mediated autophagy more evidently than pyrene and affected toxicity to astrocytes. These results provide a basis for understanding the toxic effects of the main PAH substances affecting astrocytes.
Collapse
Affiliation(s)
- Tanapan Siangcham
- Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand;
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand;
| | - Kanyaluck Jantakee
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
| | - Nattaya Thongsepee
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pongsakorn Martviset
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pathanin Chantree
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Phornphan Sornchuer
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Kant Sangpairoj
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (K.J.); (J.R.); (N.T.); (P.M.); (P.C.); (P.S.)
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
7
|
Al-Karmalawy AA, Mohamed AF, Shalaby HN, Elmaaty AA, El-Shiekh RA, Zeidan MA, Alnajjar R, Alzahrani AYA, Al Mughram MH, Shaldam MA, Tawfik HO. Donepezil-based rational design of N-substituted quinazolinthioacetamide candidates as potential acetylcholine esterase inhibitors for the treatment of Alzheimer's disease: in vitro and in vivo studies. RSC Med Chem 2025:d4md00778f. [PMID: 40027342 PMCID: PMC11865952 DOI: 10.1039/d4md00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
Alzheimer's disease (AD) stands as one of the most outstanding progressive neurodegenerative disorders. Obviously, acetylcholine esterase (AChE) is the primary enzyme responsible for breaking down acetylcholine (ACh) with a much more prominent effect than butyrylcholine esterase (BuChE). Hence, novel quinazoline derivatives (3a-p) were designed and synthesized as AChE inhibitors for AD treatment. The newly synthesized quinazoline derivatives (3a-p) were pursued for their inhibitory potential towards both AChE and BuChE. Notably, compound 3e displayed the highest inhibitory potential towards AChE (IC50 = 9.26 nM) surpassing donepezil (IC50 = 16.43 nM). On the other side, compound 3e effectively negated the decline in memory acquisition and retention instigated by ICV administration of streptozotocin (STZ) in mice, an effect that was comparable to that produced by donepezil. Moreover, compound 3e, reduced BACE1 by 51.08% (p < 0.0001), Aβ42 by 52.47% (p < 0.0001), and p(Ser199)-tau by 69.16% (p < 0.0001) compared to STZ mice. Such effects were similar to those of donepezil which reduced all 3 parameters by 57.53%, 58.5%, and 66.78%, respectively, compared to STZ mice. Furthermore, molecular docking studies showed that the superimposition view clarified the similar binding mode of both 3e and the co-crystallized donepezil at the AChE binding pocket. Moreover, the docked complexes (3e-AChE and 3e-BuChE) were further subject to molecular dynamics simulations for 100 ns. In addition, eligible pharmacokinetic profiles as well as feasible BBB penetration were anticipated for compound 3e using ADME and BBB permeation prediction studies. Accordingly, the synthesized compounds, in particular compound 3e, can be treated as promising lead compounds for AD treatment with future further optimization.
Collapse
Affiliation(s)
- Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq Baghdad 10023 Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University Cairo Egypt
- Faculty of Pharmacy, King Salman International University (KSIU) South Sinai 46612 Egypt
| | - Heba Nasr Shalaby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University Cairo Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42526 Egypt
- Medicinal Chemistry Department, Clinical Pharmacy Program, East Port said National University Port Said 42526 Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University Kasr-El-Ainy Street Cairo 11562 Egypt
| | - Mohamed A Zeidan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| | - Radwan Alnajjar
- CADD Unit, Faculty of Pharmacy, Libyan International Medical University Benghazi 16063 Libya
| | | | - Mohammed H Al Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University Abha 61421 Saudi Arabia
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University Kafrelsheikh 33516 Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University Tanta 31527 Egypt
| |
Collapse
|
8
|
Wang D, Zhang J, Dai H, Tong K, Chen M, Peng J, Huang W. Probable targets and mechanism of ginsenoside Rg1 for non-alcoholic fatty liver disease: a study integrating network pharmacology, molecular docking, and molecular dynamics simulation. J Biomol Struct Dyn 2025; 43:932-945. [PMID: 38038388 DOI: 10.1080/07391102.2023.2289045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/09/2023] [Indexed: 12/02/2023]
Abstract
Ginsenoside Rg1 (GRg1), a key bioactive component of medicinal herbs, has shown beneficial effects on non-alcoholic fatty liver disease (NAFLD) and numerous other conditions. Nevertheless, the specific targets that are actively involved and the potential mechanisms underlying NAFLD treatment remain unclear. This study aimed to elucidate the therapeutic effects and mechanism of GRg1 in alleviating NAFLD using a combined approach of network pharmacology and molecular biology validation. The analysis yielded 294 targets for GRg1 and 1293 associated with NAFLD, resulting in 89 overlapping targets. Through protein-protein interactions (PPI) network topology analysis, 10 key targets were identified. Upon evaluating the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analysis, GRg1 may exert therapeutic effects on NAFLD by negatively regulating the apoptotic process, insulin and endocrine resistance, the AGE-RAGE signaling pathway in diabetic complications, and the Estrogen, PI3K/Akt, and MAPK pathways. The three differential gene targets for Akt1, EGFR, and IGF1 were identified through the compound-target network in conjunction with the aforementioned methods. The molecular docking and molecular dynamics (MD) simulations showed that AKT1 and EGFR had a strong binding affinity with GRg1. Overall, our findings point to a novel therapeutic strategy involving NAFLD, with further in vivo and in vitro studies promising to deepen our comprehension and validate its potential advantages.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Danni Wang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haifeng Dai
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kexin Tong
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjing Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayi Peng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxiang Huang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Patrushev SS, Kichkina DO, Moralev AD, Rybalova TV, Krasnov VI, Chernyak EI, Zenkova MA, Markov AV, Shults EE. Synthesis and exploration of anticancer potential of spirocyclic 1,2,3-triazoline and aziridine derivatives of natural eudesmanolide isoalantolactone. Bioorg Chem 2025; 155:108124. [PMID: 39798454 DOI: 10.1016/j.bioorg.2025.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
Eudesmane-type sesquiterpene lactone isoalantolactone 1 is of great interest due to its availability, biological activity and synthetic application. Respective series of original spirocyclic (11S,5') (1,2,3-triazoline-eudesma-4,15-enolides) and (11S)-aziridine-eudesma-4,15-enolides were efficiently synthesized via a chemoselective 1,3-dipolar cycloaddition reaction of organic azides to the exocyclic double bond of the lactone ring of isoalantolactone or 13E-(aryl)isoalantolactones by heating in DMF or toluene. The thermal reactions of isoalantolactone with benzyl azide, 2-azidoethanol, or n-butyl azide in 2-methoxyethanol afforded 13-(alkyamino)isoalantolactones formed as a mixture of (Z) and (E)-isomers. The results of in vitro biological assays showed that novel spirocyclic isoalantolactone derivatives exhibited cytotoxicity against human breast cancer and glioblastoma cells at low micromolar concentrations. The most cytotoxic and selective (11S,5')-spiro-1,2,3-triazoline from 13E-(fluorophenyl)isoalantolactone 20 (IC50(MCF-7) = 8 ± 0.1 µM, SI(MCF-7) > 12.5) was found to induce ROS-dependent death of MCF-7 human breast cancer cells via mitochondrial apoptosis. The corresponding (11S)-spiroaziridine derivatives 21 at non-toxic concentrations (10 and 20 µM) effectively suppressed motility, clonogenicity and adhesion of glioblastoma cells and exhibited synergistic cytotoxicity in combination with temozolomide. In silico analysis revealed the potential ability of the 13-aryl (11S)-spiroaziridine derivative 21 to bypass the blood-brain barrier and exhibit anti-glioblastoma activity probably based on the direct interaction with Hsp90α.
Collapse
Affiliation(s)
- Sergey S Patrushev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia
| | - Daria O Kichkina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia
| | - Arseny D Moralev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia
| | - Tatyana V Rybalova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 9, Novosibirsk 630090, Russia
| | - Vyacheslav I Krasnov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 9, Novosibirsk 630090, Russia
| | - Elena I Chernyak
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 9, Novosibirsk 630090, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia
| | - Andrey V Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 8, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia.
| | - Elvira E Shults
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 9, Novosibirsk 630090, Russia.
| |
Collapse
|
10
|
Naeimi H, Taheri M, Ghafouri H, Mohammadi A. Investigation of Thiazolidine-2,4-Dione Derivatives as Acetylcholinesterase Inhibitors: Synthesis, In Vitro Biological Activities and In Silico Studies. ChemistryOpen 2025:e202400294. [PMID: 39797425 DOI: 10.1002/open.202400294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE. Additionally, all the TZD derivatives (CHT1-5) showed an acceptable affinity for AChE inhibition, and the results showed convincing binding modes in the active site of AChE. Among them, 5-(4-methoxybenzylidene) thiazolidine-2,4-dione (CHT1) was identified as the most potent AChE inhibitor (IC50 of 165.93 nM) with the highest antioxidant activity. Following the exposure of PC12 cells to Aβ1-42 (100 μM), a marked reduction in cell survival was observed. Pretreatment of PC12 cells with TZD derivatives had a neuroprotective effect and significantly enhanced cell survival in response to Aβ-induced toxicity. Western blotting analysis revealed that CHT1 (5 and 8 μM) downregulated p-Tau and HSP70 expression levels. The results indicate that CHT1 is a promising and effective AchE-I that could be utilized as a powerful candidate against AD.
Collapse
Affiliation(s)
- Hanane Naeimi
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, 4193833697, Iran
| |
Collapse
|
11
|
Chi ST, Wei PC, Chiu YJ, Lin TH, Lin CH, Chen CM, Yao CF, Lin W, Lee-Chen GJ, Chang KH. Indole and Coumarin Derivatives Targeting EEF2K in Aβ Folding Reporter Cells. J Neurochem 2025; 169:e16300. [PMID: 39754378 DOI: 10.1111/jnc.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025]
Abstract
Misfolding and accumulation of amyloid-β (Aβ) in the brains of patients with Alzheimer's disease (AD) lead to neuronal loss through various mechanisms, including the downregulation of eukaryotic elongation factor 2 (EEF2) protein synthesis signaling. This study investigated the neuroprotective effects of indole and coumarin derivatives on Aβ folding and EEF2 signaling using SH-SY5Y cells expressing Aβ-green fluorescent protein (GFP) folding reporter. Among the tested compounds, two indole (NC009-1, -6) and two coumarin (LM-021, -036) derivatives effectively reduced Aβ misfolding and associated reactive oxygen species (ROS) production. Additionally, these compounds decreased acetylcholinesterase and caspase-3/-6 activities while promoting neurite outgrowth. NC009-1 increased active phosphorylation of extracellular-signal regulated kinase (ERK) (T202/Y204), leading to an increase in inactive eukaryotic elongation factor 2 kinase (EEF2K) phosphorylation (S366). LM-021 decreased the active phosphorylation of AMP-activated protein kinase (AMPK) (T172) and EEF2K (S398), while LM-036 exhibited dual effects, increasing inactive phosphorylation and decreasing active phosphorylation of EEF2K. These changes in EEF2K phosphorylation led to decreased EEF2K activity and a subsequent reduction in inactive phosphorylation of EEF2 (T56). This cascade further promoted the phosphorylation of transcription factor cAMP-response-element binding protein (CREB) (S133) and the expression of brain-derived neurotrophic factor (BDNF), and reduced BCL-2 associated X-protein (BAX)/B-cell lymphoma 2 (BCL2) ratio. Knockdown of EEF2 abolished the effects of NC009-1, LM-021, and LM-036 on CREB phosphorylation, BDNF expression, caspase-3 activity, and neurite outgrowth. These findings demonstrate that NC009-1, LM-021, and LM-036 exert their neuroprotective effects through modulation of EEF2K signaling, highlighting their potentials as therapeutic candidates for AD.
Collapse
Affiliation(s)
- Shun-Tzu Chi
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Cih Wei
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Jen Chiu
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Hsien Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
12
|
Zhou W, Chang Y, Xiao Q, Deng Z, Zhang L, Yuan Z, Du Z. Structural optimization of naturally derived Ar-turmerone, as novel neuroinflammation suppressors effective in an Alzheimer mouse model. Bioorg Med Chem 2025; 117:118014. [PMID: 39602866 DOI: 10.1016/j.bmc.2024.118014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Microglia-mediated neuroinflammation plays a pivotal role in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. The modulation of chronic and sustained inflammatory processes in the brain with small molecules presents a promising therapeutic strategy for these devastating conditions. Aromatic turmerone (ar-turmerone, ART), an active constituent of turmeric essential oil derived from the edible plant Curcuma longa, has shown substantial potential in mitigating neuroinflammatory responses and associated cognitive deficits. Building on our previous work, we sought to discover more potent neuroinflammation suppressors by designing and synthesizing a series of ar-turmerone derivatives to investigate their structure-activity relationships. Microglia-based cellular evaluations revealed that naphthyl-substituted (7c) and N-substituted amides (7a) demonstrated the most pronounced inhibitory effects against NO, TNF-α, and IL-1β release in vitro. Furthermore, in a lipopolysaccharide (LPS)-induced neuroinflammation model of Alzheimer's disease in mice, these two compounds significantly reduced proinflammatory cytokine release, protected neurons from damage, and ameliorated memory impairments and cognitive deficits in Morris water maze tests. This structural optimization of ar-turmerone yielded highly potent anti-neuroinflammatory compounds, which may serve as promising agents for the treatment of neuroinflammation-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Wei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Yuanyuan Chang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Qingwei Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhujie Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
13
|
Wu X, Guo CX, Wang SF, Gong TT, Yao JW, Hu L, Deng ZY, Tang L, Xie P, Zhang Z, Chen Y. Knowledgebase-Driven Exploration and Experimental Verification of Simvastatin's Inhibitory Impact on P2X7/NLRP3 Inflammasome Pathway. Chem Biol Drug Des 2025; 105:e70048. [PMID: 39834043 DOI: 10.1111/cbdd.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/13/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Depression is a mental health disorder and is the fourth most prevalent disease. Previous studies have suggested that statins are involved in the reduction of neuroinflammation. However, the potential mechanism for this relationship is unclear. The current study aimed to elucidate this by examining the effects of simvastatin on the P2X7/NLRP3 pathway in rats exposed to chronic mild stress (CMS). To achieve this goal, a depression database was first constructed, and simvastatin was used as an input to predict potential targets using machine/deep learning methods. Interestingly, the P2X7/NLRP3 pathway was predicted as a potential target for simvastatin. Subsequently, a depression rat model was established by inducing CMS for 4 weeks. Behavioral changes were detected via a sucrose preference test and forced swim test. The depression rats were then treated with simvastatin (10 mg/kg/day) for 14 days. Following treatment, changes in behavior and the activation of the NLRP3/ASC/caspase-1 inflammasome pathway in the depression model rats were observed. The P2X7 agonist (ATP) and selective P2X7 antagonist brilliant blue G (BBG) were also used for in vivo intervention. Data from the experiment showed that treatment with simvastatin and BBG significantly reduced the depressive-like behaviors in depression model rats, as well as the protein and mRNA expression levels of P2X7 and NLRP3 inflammasome. The protein and mRNA levels of the pro-inflammatory cytokine interleukin-1β significantly increased. These results demonstrate that simvastatin exerted an antidepressant-like effect in the CMS model of rats, and this effect was dependent on the inhibition of the P2X7/NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Xinhai Wu
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Chen-Xin Guo
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Sheng-Feng Wang
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ting-Ting Gong
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Jing-Wei Yao
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Lin Hu
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zu-Yue Deng
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Lan Tang
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Peng Xie
- Guangxi Institute for Food and Drug Control, Nanning, People's Republic of China
| | - Zan Zhang
- Guangxi Institute for Food and Drug Control, Nanning, People's Republic of China
| | - Yan Chen
- College of Pharmacology Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
14
|
Lim SW, Chen WC, Ko HJ, Su YF, Wu CH, Huang FL, Li CF, Tsai CY. 6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation. Biomol Ther (Seoul) 2025; 33:129-142. [PMID: 39632791 PMCID: PMC11704400 DOI: 10.4062/biomolther.2024.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
Collapse
Affiliation(s)
- Sher-Wei Lim
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan 702, Taiwan
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan
| | - Wei-Chung Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Pathology, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Fu-Long Huang
- Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan 717302, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Cheng Yu Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
15
|
Rymbai E, Roy D, Jupudi S, Srinivasadesikan V. The identification of c-Abl inhibitors as potential agents for Parkinson's disease: a preliminary in silico approach. Mol Divers 2024; 28:4051-4065. [PMID: 38273156 DOI: 10.1007/s11030-023-10796-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Parkinson's disease (PD) is the most common movement disorder worldwide. PD is primarily associated with the mutation, overexpression, and phosphorylation of α-synuclein. At the molecular level, the upstream protein c-Abl, a tyrosine kinase, has been shown to regulate α-synuclein activation and expression patterns. This study aimed to identify potential c-Abl inhibitors through in silico approaches. Molecular docking was performed using PyRx software, followed by Prime MM-GBSA studies. BBB permeability and toxicity were predicted using CBligand and ProTox-II, respectively. ADME was assessed using QikProp. Molecular dynamics were carried out using Desmond (Academic version). DFT calculations were performed using the Gaussian 16 suite program. The binding scores of the top hits, norimatinib, DB07326, and entinostat were - 11.8 kcal/mol, - 11.8 kcal/mol, and - 10.8 kcal/mol, respectively. These hits displayed drug-likeness with acceptable ADME properties, except for the standard, nilotinib, which violated Lipinski's rule of five. Similarly, the molecular dynamics showed that the top hits remained stable during the 100 ns simulation. DFT results indicate DB04739 as a potent reactive hit. While based on toxicity prediction, entinostat may be a potential candidate for preclinical and clinical testing in PD. Further studies are warranted to confirm the activity and efficacy of these ligands for PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| | - Dhritiman Roy
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Venkatesan Srinivasadesikan
- Department of Sciences and Humanities, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, India
| |
Collapse
|
16
|
Dasgupta A, Kalidass K, Farisha S, Saha R, Ghosh S, Ampasala DR. Identification of novel brain penetrant GSK-3β inhibitors toward Alzheimer's disease therapy by virtual screening, molecular docking, dynamic simulation, and MMPBSA analysis. J Biomol Struct Dyn 2024:1-27. [PMID: 39427335 DOI: 10.1080/07391102.2024.2411524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/05/2024] [Indexed: 10/22/2024]
Abstract
One of the significant therapeutic targets for Alzheimer's disease (AD) is Glycogen Synthase Kinase-3β (GSK-3β). Inhibition of GSK-3β can prevent hyperphosphorylation of tau, and thus prevent formation and accumulation of neurofibrillary tangles and neuropil threads that block intracellular transport, trigger unfolded protein response, and increase oxidative stress, cumulatively leading to neurodegeneration. In this study, we have performed structure-based virtual screening of two small-molecule libraries from ChemDiv CNS databases using AutoDock Vina to identify hit molecules based on their binding affinities compared to that of an established GSK-3β inhibitor, indirubin-3'-monoxime (IMO). Pharmacoinformatic screening on SwissADME and pkCSM servers enabled identification of lead molecules with favorable pharmacoinformatic properties for drug likeliness, including blood brain barrier (BBB) permeability. Further, molecular dynamic simulations identified six candidate lead molecules that show stable complex formation with GSK-3β in dynamic state under physiological conditions. Principal component analysis of the dynamic state was used to plot Free Energy Landscapes (FELs) of GSK-3β-ligand complexes. STRIDE secondary structure analysis of the lowest energy conformations identified from FEL plots, and binding free energy calculations by Molecular Mechanics Poisson-Boltzmann Surface Area ((ΔGbind)MM-PBSA) of the simulation trajectories led to the identification of two ligands as potential lead molecules having favorable free energy landscape profiles as well as significantly lower (ΔGbind)MM-PBSA in dynamic state compared to that of reference inhibitor IMO. Hence, this study identifies two novel brain penetrant GSK-3β inhibitors that are likely to have therapeutic potential against Alzheimer's disease.
Collapse
Affiliation(s)
- Asmita Dasgupta
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | - Kastro Kalidass
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | - Shabnam Farisha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | - Rounak Saha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | - Sanjukta Ghosh
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | | |
Collapse
|
17
|
Lin TH, Chen WL, Hsu SF, Chen IC, Lin CH, Chang KH, Wu YR, Chen YR, Yao CF, Lin W, Lee-Chen GJ, Chen CM. Small Molecules Inducing Autophagic Degradation of Expanded Polyglutamine Protein through Interaction with Both Mutant ATXN3 and LC3. Int J Mol Sci 2024; 25:10707. [PMID: 39409036 PMCID: PMC11477298 DOI: 10.3390/ijms251910707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Polyglutamine (polyQ)-mediated spinocerebellar ataxia (SCA), including SCA1, 2, 3, 6, 7, and 17, are caused by mutant genes with expanded CAG repeats, leading to the intracellular accumulation of aggregated proteins, the production of reactive oxygen species, and cell death. Among SCA, SCA3 is caused by a mutation in the ATXN3 (ataxin-3) gene. In a circumstance of polyQ aggregation, the autophagic pathway is induced to degrade the aggregated proteins, thereby suppressing downstream deleterious effects and promoting neuronal survival. In this study, we tested the effects of synthetic indole (NC009-1, -2, -3, -6) and coumarin (LM-022, -031) derivatives as chemical chaperones to assist mutant ATXN3-Q75 folding, as well as autophagy inducers to clear aggregated protein. Among the tested compounds, NC009-1, -2, and -6 and LM-031 interfered with Escherichia coli-derived ATXN3-Q75 aggregation in thioflavin T binding and filter trap assays. In SH-SY5Y cells expressing GFP-fused ATXN3-Q75, these compounds displayed aggregation-inhibitory and neurite growth-promoting potentials compared to untreated cells. Furthermore, these compounds activated autophagy by increasing the phosphatidylethanolamine-conjugated LC3 (microtubule associated protein 1 light chain 3)-II:cytosolic LC3-I ratio in these cells. A biochemical co-immunoprecipitation assay by using a mixture of HEK 293T cell lysates containing recombinant ATXN3-Q75-Venus-C-terminus (VC) or Venus-N-terminus (VN)-LC3 protein indicated that NC009-1 and -2 and LM-031 served as an autophagosome-tethering compound (ATTEC) to interact with ATXN3-Q75 and LC3, and the interaction was further confirmed by bimolecular fluorescence complementation analysis in cells co-expressing both ATXN3-Q75-VC and VN-LC3 proteins. The study results suggest the potential of NC009-1 and -2 and LM-031 as an ATTEC in treating SCA3 and, probably, other polyQ diseases.
Collapse
Affiliation(s)
- Te-Hsien Lin
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan; (T.-H.L.); (W.-L.C.); (C.-H.L.); (K.-H.C.); (Y.-R.W.)
| | - Wan-Ling Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan; (T.-H.L.); (W.-L.C.); (C.-H.L.); (K.-H.C.); (Y.-R.W.)
| | - Shao-Fan Hsu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (S.-F.H.); (I.-C.C.)
| | - I-Cheng Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (S.-F.H.); (I.-C.C.)
| | - Chih-Hsin Lin
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan; (T.-H.L.); (W.-L.C.); (C.-H.L.); (K.-H.C.); (Y.-R.W.)
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan; (T.-H.L.); (W.-L.C.); (C.-H.L.); (K.-H.C.); (Y.-R.W.)
| | - Yih-Ru Wu
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan; (T.-H.L.); (W.-L.C.); (C.-H.L.); (K.-H.C.); (Y.-R.W.)
| | - Yi-Ru Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan; (Y.-R.C.); (C.-F.Y.); (W.L.)
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan; (Y.-R.C.); (C.-F.Y.); (W.L.)
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan; (Y.-R.C.); (C.-F.Y.); (W.L.)
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (S.-F.H.); (I.-C.C.)
| | - Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan; (T.-H.L.); (W.-L.C.); (C.-H.L.); (K.-H.C.); (Y.-R.W.)
| |
Collapse
|
18
|
Lin TH, Chiu YJ, Lin CH, Chen YR, Lin W, Wu YR, Chang KH, Chen CM, Lee-Chen GJ. Coumarin-chalcone derivatives as dual NLRP1 and NLRP3 inflammasome inhibitors targeting oxidative stress and inflammation in neurotoxin-induced HMC3 and BE(2)-M17 cell models of Parkinson's disease. Front Aging Neurosci 2024; 16:1437138. [PMID: 39411284 PMCID: PMC11473416 DOI: 10.3389/fnagi.2024.1437138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background In Parkinson's disease (PD) brains, microglia are activated to release inflammatory factors to induce the production of reactive oxygen species (ROS) in neuron, and vice versa. Moreover, neuroinflammation and its synergistic interaction with oxidative stress contribute to the pathogenesis of PD. Methods In this study, we investigated whether in-house synthetic coumarin-chalcone derivatives protect human microglia HMC3 and neuroblastoma BE(2)-M17 cells against 1-methyl-4-phenyl pyridinium (MPP+)-induced neuroinflammation and associated neuronal damage. Results Treatment with MPP+ decreased cell viability as well as increased the release of inflammatory mediators including cytokines and nitric oxide in culture medium, and enhanced expression of microglial activation markers CD68 and MHCII in HMC3 cells. The protein levels of NLRP3, CASP1, iNOS, IL-1β, IL-6, and TNF-α were also increased in MPP+-stimulated HMC3 cells. Among the four tested compounds, LM-016, LM-021, and LM-036 at 10 μM counteracted the inflammatory action of MPP+ in HMC3 cells. In addition, LM-021 and LM-036 increased cell viability, reduced lactate dehydrogenase release, ameliorated cellular ROS production, decreased caspase-1, caspase-3 and caspase-6 activities, and promoted neurite outgrowth in MPP+-treated BE(2)-M17 cells. These protective effects were mediated by down-regulating inflammatory NLRP1, IL-1β, IL-6, and TNF-α, as well as up-regulating antioxidative NRF2, NQO1, GCLC, and PGC-1α, and neuroprotective CREB, BDNF, and BCL2. Conclusion The study results strengthen the involvement of neuroinflammation and oxidative stress in PD pathogenic mechanisms, and indicate the potential use of LM-021 and LM-036 as dual inflammasome inhibitors in treating both NLRP1- and NLRP3-associated PD.
Collapse
Affiliation(s)
- Te-Hsien Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Yi-Ru Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
19
|
Gautam M, Gabrani R. Comparative analysis of α-pinene alone and combined with temozolomide in human glioblastoma cells. Nat Prod Res 2024; 38:3657-3662. [PMID: 37665021 DOI: 10.1080/14786419.2023.2252152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
α-Pinene (PEN) is a phyto compound present in terpene plants. In traditional medicine, PEN has been used for its anti-inflammatory, pain-relieving, and bronchodilator properties. The effect of PEN in combination with temozolomide (TMZ) in glioblastoma multiforme (GBM) cells has been evaluated. The action of the PEN + TMZ combination on cell migration, soft-agar, and cell death was determined in LN229 and U87MG human glioblastoma cells. In combination, PEN with TMZ showed a synergistic inhibitory effect in the GBM cells. The PEN + TMZ treatment showed a higher fluorescent intensity and reduced the percentage of wound area closure compared to the compound alone. The compounds in combination also resulted in a reduction in single-cell colony formation. To conclude, the study showed that plant-derived PEN enhanced the effectiveness of standard chemotherapeutic, TMZ, in LN229 and U87MG cells.
Collapse
Affiliation(s)
- Megha Gautam
- Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Reema Gabrani
- Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| |
Collapse
|
20
|
Liang T, Liu S, Dang B, Luan X, Guo Y, Steimbach RR, Hu J, Lu L, Yue P, Wang R, Zheng M, Gao J, Yin X, Chen X. Multimechanism biological profiling of tetrahydro-β-carboline analogues as selective HDAC6 inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem 2024; 275:116624. [PMID: 38925015 DOI: 10.1016/j.ejmech.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/08/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
With the intensive research on the pathogenesis of Alzheimer's disease (AD), inhibition of HDAC6 appears to be a potential therapeutic approach for AD. In this paper, a series of tetrahydro-β-carboline derivatives with hydroxamic acid group were fast synthesized. Among all, the most potent 15 selectively inhibited HDAC6 with IC50 of 15.2 nM and markedly increased acetylated alpha-tubulin levels. In cellular assay, 15 showed excellent neurotrophic effect by increasing the expression of GAP43 and Beta-3 tubulin markers. Besides, 15 showed neuroprotective effects in PC12 or SH-SY5Y cells against H2O2 and 6-OHDA injury through activation of Nrf2, catalase and Prx II, and significantly reduced H2O2-induced reactive oxygen species (ROS) production. In vivo, 15 significantly attenuated zebrafish anxiety-like behaviour and memory deficits in a SCOP-induced zebrafish model of AD. To sum up, multifunctional 15 might be a good lead to develop novel tetrahydrocarboline-based agents for the treatment of AD.
Collapse
Affiliation(s)
- Ting Liang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Shiru Liu
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Baiyun Dang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Xiaofa Luan
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Yifan Guo
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Raphael R Steimbach
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Biosciences Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - Jiadong Hu
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling, 712100, PR China
| | - Long Lu
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling, 712100, PR China
| | - Peiyu Yue
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling, 712100, PR China
| | - Ruotian Wang
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, Yangling, 712100, PR China
| | - Meng Zheng
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Jinming Gao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Xia Yin
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
21
|
Chung S, Jeong JH, Park JC, Han JW, Lee Y, Kim JI, Mook-Jung I. Blockade of STING activation alleviates microglial dysfunction and a broad spectrum of Alzheimer's disease pathologies. Exp Mol Med 2024; 56:1936-1951. [PMID: 39218977 PMCID: PMC11447230 DOI: 10.1038/s12276-024-01295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 09/04/2024] Open
Abstract
Abnormal glial activation promotes neurodegeneration in Alzheimer's disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD.
Collapse
Affiliation(s)
- Sunwoo Chung
- Convergence Dementia Research Center, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
| | - June-Hyun Jeong
- Convergence Dementia Research Center, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
| | - Jong-Chan Park
- Department of Biophysics & Institute of Quantum Biophysics, Sungkyunkwan University, 16419, Gyeonggi-do, Korea
| | - Jong Won Han
- Convergence Dementia Research Center, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
| | - Yeajina Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, 03080, Seoul, Korea
| | - Jong-Il Kim
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, 03080, Seoul, Korea
| | - Inhee Mook-Jung
- Convergence Dementia Research Center, College of Medicine, Seoul National University, 03080, Seoul, Korea.
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea.
| |
Collapse
|
22
|
Gianibbi B, Visibelli A, Spinsanti G, Spiga O. Three-Dimensional Quantitative Structure-Activity Relationship Study of Transient Receptor Potential Vanilloid 1 Channel Antagonists Reveals Potential for Drug Design Purposes. Int J Mol Sci 2024; 25:7951. [PMID: 39063195 PMCID: PMC11276937 DOI: 10.3390/ijms25147951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) was reported to be a putative target for recovery from chronic pain, producing analgesic effects after its inhibition. A series of drug candidates were previously developed, without the ability to ameliorate the therapeutic outcome. Starting from previously designed compounds, derived from the hybridization of antagonist SB-705498 and partial agonist MDR-652, we performed a virtual screening on a pharmacophore model built by exploiting the Cryo-EM 3D structure of a nanomolar antagonist in complex with the human TRPV1 channel. The pharmacophore model was described by three pharmacophoric features, taking advantage of both the bioactive pose of the antagonist and the receptor exclusion spheres. The results of the screening were implemented inside a 3D-QSAR model, correlating with the negative decadic logarithm of the inhibition rate of the ligands. After the validation of the obtained 3D-QSAR model, we designed a new series of compounds by introducing key modifications on the original scaffold. Again, we determined the compounds' binding poses after alignment to the pharmacophoric model, and we predicted their inhibition rates with the validated 3D-QSAR model. The obtained values resulted in being even more promising than parent compounds, demonstrating that ongoing research still leaves much room for improvement.
Collapse
Affiliation(s)
- Beatrice Gianibbi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (B.G.); (A.V.); (G.S.)
| | - Anna Visibelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (B.G.); (A.V.); (G.S.)
| | - Giacomo Spinsanti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (B.G.); (A.V.); (G.S.)
- Centro della Scienza e della Tecnica, Polo Universitario Grossetano, Via Ginori 41, 58100 Grosseto, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (B.G.); (A.V.); (G.S.)
- Centro della Scienza e della Tecnica, Polo Universitario Grossetano, Via Ginori 41, 58100 Grosseto, Italy
- Competence Center ARTES 4.0, 53100 Siena, Italy
| |
Collapse
|
23
|
Sanghai N, Vuong B, Burak Berk A, Afridi MSK, Tranmer GK. Current Small Molecule-Based Medicinal Chemistry Approaches for Neurodegeneration Therapeutics. ChemMedChem 2024; 19:e202300705. [PMID: 38329887 DOI: 10.1002/cmdc.202300705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS) possess multifactorial aetiologies. In recent years, our understanding of the biochemical and molecular pathways across NDDs has increased, however, new advances in small molecule-based therapeutic strategies targeting NDDs are obscure and scarce. Moreover, NDDs have been studied for more than five decades, however, there is a paucity of drugs that can treat NDDs. Further, the highly lipoidal blood-brain barrier (BBB) limits the uptake of many therapeutic molecules into the brain and is a complicating factor in the development of new agents to treat neurodegeneration. Considering the highly complex nature of NDDs, the association of multiple risk factors, and the challenges to overcome the BBB junction, medicinal chemists have developed small organic molecule-based novel approaches to target NDDs over the last few decades, such as designing lipophilic molecules and applying prodrug strategies. Attempts have been made to utilize a multitarget approach to modulate different biochemical molecular pathways involved in NDDs, in addition to, medicinal chemists making better decisions in identifying optimized drug candidates for the central nervous system (CNS) by using web-based computational tools. To increase the clinical success of these drug candidates, an in vitro assay modeling the BBB has been utilized by medicinal chemists in the pre-clinical phase as a further screening measure of small organic molecules. Herein, we examine some of the intriguing strategies taken by medicinal chemists to design small organic molecules to combat NDDs, with the intention of increasing our awareness of neurodegenerative therapeutics.
Collapse
Affiliation(s)
- Nitesh Sanghai
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Billy Vuong
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Ahmet Burak Berk
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | | | - Geoffrey K Tranmer
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
24
|
Kryl'skii ED, Razuvaev GA, Popova TN, Oleinik SA, Medvedeva SM, Shikhaliev KS. 6-Hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline Demonstrates Neuroprotective Properties in Experimental Parkinson's Disease by Enhancing the Antioxidant System, Normalising Chaperone Activity and Suppressing Apoptosis. Neurochem Res 2024; 49:1387-1405. [PMID: 38502411 DOI: 10.1007/s11064-024-04125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/21/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, whereby disturbances within the antioxidant defence system, increased aggregation of proteins, and activation of neuronal apoptosis all have a crucial role in the pathogenesis. In this context, exploring the neuroprotective capabilities of compounds that sustain the effectiveness of cellular defence systems in neurodegenerative disorders is worthwhile. During this study, we assessed how 6-hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline (HTHQ), which has antioxidant properties, affects the functioning of the antioxidant system, the activity of NADPH-generating enzymes and chaperones, and the level of apoptotic processes in rats with rotenone-induced PD. Six groups of animals were formed for our experiment, each with 12 animals. These were: a control group, animals with rotenone-induced PD, rats with PD given HTHQ at a dose of 50 mg/kg, rats with PD given HTHQ at a dose of 25 mg/kg, animals with pathology who were administered a comparison drug rasagiline, and control animals who were administered HTHQ at a dose of 50 mg/kg. The study results indicate that administering HTHQ led to a significant decrease in oxidative stress in PD rats. The enhanced redox status in animal tissues was linked with the recovery of antioxidant enzyme activities and NADPH-generating enzyme function, as well as an upsurge in the mRNA expression levels of antioxidant genes and factors Nrf2 and Foxo1. Administering HTHQ to rats with PD normalized the chaperone-like activity and mRNA levels of heat shock protein 70. Rats treated with the compound displayed lower apoptosis intensity when compared to animals with pathology. Therefore, owing to its antioxidant properties, HTHQ demonstrated a beneficial impact on the antioxidant system, resulting in decreased requirements for chaperone activation and the inhibition of apoptosis processes triggered in PD. HTHQ at a dose of 50 mg/kg had a greater impact on the majority of the examined variables compared to rasagiline.
Collapse
Affiliation(s)
- Evgenii D Kryl'skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia, 394018.
| | - Grigorii A Razuvaev
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia, 394018
| | - Tatyana N Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia, 394018
| | - Sergei A Oleinik
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia, 394018
| | - Svetlana M Medvedeva
- Department of Organic Chemistry, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia, 394018
| | - Khidmet S Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia, 394018
| |
Collapse
|
25
|
Sari S, Yurtoğlu S, Zengin M, Marcinkowska M, Siwek A, Saraç S. Azoles display promising anticonvulsant effects through possible PPAR-α activation. Neurosci Lett 2024; 828:137750. [PMID: 38548219 DOI: 10.1016/j.neulet.2024.137750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Azoles such as nafimidone, denzimol and loreclezole are known for their clinical efficacy against epilepsy, and loreclezole acts by potentiating γ-aminobutyric acid (GABA)-ergic currents. In the current study, we report a series of azole derivatives in alcohol ester and oxime ester structure showing promising anticonvulsant effects in 6 Hz and maximal electro shock (MES) models with minimal toxicity. The most promising of the series, 5f, was active in both 6 Hz and MES tests with a median effective dose (ED50) of 118.92 mg/kg in 6 Hz test and a median toxic dose (TD50) twice as high in mice. The compounds were predicted druglike and blood-brain barrier (BBB) penetrant in silico. Contrary to what was expected, the compounds showed no in vitro affinity to GABAA receptors (GABAARs) in radioligand binding assays; however, they were found structurally similar to peroxisome proliferator-activated receptors alpha (PPAR-α) agonists and predicted to show high affinity and agonist-like binding to PPAR-α in molecular docking studies. As a result, 5f emerged as a safe azole anticonvulsant with a wide therapeutic window and possible action through PPAR-α activation.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | - Sibel Yurtoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Agata Siwek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Selma Saraç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Baskent University, Ankara, Turkey
| |
Collapse
|
26
|
Chen IC, Chen WL, Chang KH, Lee JW, Lin TH, Lin W, Chen CM, Lee-Chen GJ. Investigating the therapeutic effects of novel compounds targeting inflammatory IL-1β and IL-6 signaling pathways in spinocerebellar ataxia type 3. Eur J Pharmacol 2024; 967:176370. [PMID: 38320719 DOI: 10.1016/j.ejphar.2024.176370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
At least seven dominantly inherited spinocerebellar ataxias (SCA) are caused by expansions of polyglutamine (polyQ)-encoding CAG repeat. The misfolded and aggregated polyQ-expanded proteins increase reactive oxygen species (ROS), cellular toxicity, and neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of coumarin derivatives LM-021, LMDS-1, LMDS-2, and pharmacological chaperone tafamidis using mouse BV-2 microglia and SCA3 ataxin-3 (ATXN3)/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing nitric oxide (NO), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α production, and CD68 antigen (CD68) and histocompatibility-2 (MHCII) expression in lipopolysaccharides (LPS)/interferon (IFN)-γ-stimulated BV-2 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP-expressing SH-SY5Y cells inflamed with LPS/IFN-γ-primed BV-2 conditioned medium, treatment with test compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced ROS and ATXN3/Q75 aggregation, and promoted neurite outgrowth. Examination of IL-1β and IL-6-mediated signaling pathways revealed that LM-021, LMDS-1, LMDS-2, and tafamidis decreased NLR family pyrin domain containing 1 (NLRP1), c-Jun N-terminal kinase/c-Jun proto-oncogene (JNK/JUN), inhibitor of kappa B (IκBα)/P65, mitogen-activated protein kinase 14/signal transducer and activator of transcription 1 (P38/STAT1), and/or Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling. The study results suggest the potential of LM-021, LMDS-1, LMDS-2, and tafamidis in treating SCA3 and probable other polyQ diseases.
Collapse
Affiliation(s)
- I-Cheng Chen
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei, 10608, Taiwan; Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Wan-Ling Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan
| | - Jun-Wei Lee
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan
| | - Te-Hsien Lin
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan.
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
27
|
Touati I, Abdalla M, Ali NH, AlRuwaili R, Alruwaili M, Britel MR, Maurady A. Constituents of Stachys plants as potential dual inhibitors of AChE and NMDAR for the treatment of Alzheimer's disease: a molecular docking and dynamic simulation study. J Biomol Struct Dyn 2024; 42:2586-2602. [PMID: 37325873 DOI: 10.1080/07391102.2023.2217925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/17/2023] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative condition characterized by progressive cognitive impairment. While the formation of β-amyloid plaques and neurofibrillary tangles are the hallmarks features of AD, the downstream consequence of these byproducts is the disruption of the cholinergic and glutamatergic neural systems. Growing evidence for the existence of interplay between AChE and NMDARs has opened up new venues for the discovery of novel ligands endowed with anticholinesterase and NMDAR-blocking activity. Plants belonging to the stachys genus have been extensively explored for having a broad range of therapeutic applications and have been used traditionally for millennia, to treat various CNS-related disorders, which makes them the ideal source of novel therapeutics. The present study was designed to identify natural dual-target inhibitors for AChE and NMDAR deriving from stachys genus for their potential use in AD. Using molecular docking, drug-likeness-profiling, MD simulation and MMGBSA calculations, an in-house database of biomolecules pertaining to the stachys genus was shortlisted based on their binding affinity, overall stability and critical ADMET parameters. Pre- and post-MD analysis revealed that Isoorientin effectively binds to AChE and NMDAR with various vital interactions, exhibits a stable behavior with minor fluctuations relative to two clinical drugs used as positive control, and displays strong and consistent interactions that lasted for the majority of the simulation. Findings from this study have elucidated the rationale behind the traditional use of Stachys plants for the treatment of AD and could provide new impetus for the development of novel dual-target therapeutics for AD treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Iman Touati
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
28
|
Rahimpour A, Shahbazi B, Mafakher L. Discovery of small molecules from natural compound databases as potent retinoid X alpha receptor agonists to treat Alzheimer's disease. J Biomol Struct Dyn 2024:1-15. [PMID: 38373033 DOI: 10.1080/07391102.2024.2313166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
Alzheimer's is characterized as a progressive neurodegenerative disease due to beta-amyloid accumulation in the brain. Some previous studies reported that RXR agonists could be effective in the treatment of Alzheimer's disease. There are currently numerous attempts being made to discover a natural RXR agonist that is more potent than 9-cis-retinoic acid (9CR). One of the most efficient resources for finding high-potential compounds is natural databases. In this study, 81215 compounds from the IB screen library as natural databases were docked against the RXR-alpha binding site. The best compounds discovered interact with the RXR-alpha binding site with a lower binding energy (-11 to -13 kcal/mol) than the binding energy of -10.94 kcal/mol for 9-cis, which means that these compounds could interact stronger with RXR-alpha than 9CR. All selected compounds could pass the blood-brain barrier. Physiochemical properties assessment indicated that all compounds passed Lipinski's rule and had the potential to be oral drug candidates. The stability of protein-ligand complexes during a timescale of 100 ns by Molecular Dynamics simulation demonstrated that all compounds could effectively interact with the RXR binding site. The molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) represented that all selected hit compounds had a better binding affinity to the alpha RXR binding site compared to 9CR, which means these hit compounds had potential drug candidates for the treatment of Alzheimer's disease. However, experimental assessment is needed to validate this result.
Collapse
Affiliation(s)
- Alireza Rahimpour
- Islamic Azad University of Science and Research Branch Tehran, Tehran, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
29
|
Uttarkar A, Rao V, Bhat D, Niranjan V. Disaggregation of amyloid-beta fibrils via natural metabolites using long timescale replica exchange molecular dynamics simulation studies. J Mol Model 2024; 30:61. [PMID: 38321243 DOI: 10.1007/s00894-024-05860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
CONTEXT Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with several presently incurable diseases such as Alzheimer's. disease that is characterized by the accumulation of amyloid fibrils in the brain, which leads to the formation of plaques and the death of brain cells. Disaggregation of amyloid fibrils is considered a promising approach to cure Alzheimer's disease. The mechanism of amyloid fibril formation is complex and not fully understood, making it difficult to develop drugs that can target the process. Diacetonamine and cystathionine are potential lead compounds to induce disaggregation of amyloid fibrils. METHODS In the current research, we have used long timescale molecular simulation studies and replica exchange molecular dynamics (REMD) for 1000 ns (1 μs) to examine the mechanisms by which natural metabolites can disaggregate amyloid-beta fibrils. Molecular docking was carried out using Glide and with prior protein minimization and ligand preparation. We focused on a screening a database of natural metabolites, as potential candidates for disaggregating amyloid fibrils. We used Desmond with OPLS 3e as a force field. MM-GBSA calculations were performed. Blood-brain barrier permeability, SASA, and radius of gyration parameters were calculated.
Collapse
Affiliation(s)
- Akshay Uttarkar
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Vibha Rao
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Dhrithi Bhat
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Vidya Niranjan
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India.
| |
Collapse
|
30
|
Shirisha T, Majhi S, Divakar K, Kashinath D. Metal-free synthesis of functionalized tacrine derivatives and their evaluation for acetyl/butyrylcholinesterase and α-glucosidase inhibition. Org Biomol Chem 2024; 22:790-804. [PMID: 38167698 DOI: 10.1039/d3ob01760e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A mild and greener protocol was developed for C-C (C(sp3)-H functionalization) and C-N bond formation to synthesize functionalized tacrine derivatives using a biodegradable and reusable deep eutectic solvent [(DES) formed from N,N'-dimethyl urea and L-(+)-tartaric acid in a 3 : 1 ratio at 80 °C]. The condensation of 9-chloro-1,2,3,4-tetrahydroacridines with a variety of aromatic aldehydes gave unsaturated compounds via C(sp3)-H functionalization (at the C-4 position) with good yields. The substituted N-aryl tacrine derivatives were obtained from the condensed products of 9-chloro-1,2,3,4-tetrahydroacridine with substituted anilines via the nucleophilic substitution reaction (SN2 type) in the DES with good yields. This is the first example of C4-functionalized tacrine derivatives, highlighting the dual capacity of the DES to serve as both a catalyst and a solvent for facilitating C-N bond formation on acridine. The generated compounds were evaluated for acetyl/butyrylcholinesterase (AChE/BChE) and α-glucosidase inhibitory activity. It was found that the majority of the compounds reported here were significantly more potent inhibitors than the standard inhibitor tacrine (AChE IC50 = 203.51 nM; BChE IC50 = 204.01 nM). Among the compounds screened, 8m was found to be more potent with IC50 = 125.06 nM and 119.68 nM towards AChE and BChE inhibition respectively. The α-glucosidase inhibitory activity of the compounds was tested using acarbose as a standard drug (IC50 = 23 100 nM) and compound 8j was found to be active with IC50 = 19 400 nM.
Collapse
Affiliation(s)
| | - Subir Majhi
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| | - Kalivarathan Divakar
- Department of Biotechnology, Sri Venkateswara College of Engineering (Autonomous), Sriperumbudur, Tamilnadu-602 117, India.
| | - Dhurke Kashinath
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| |
Collapse
|
31
|
Waly OM, El-Sayed SM, Ghaly MA, El-Subbagh HI. Multi-targeted anti-Alzheimer's agents: Synthesis, biological evaluation, and molecular modeling study of some pyrazolopyridine hybrids. Eur J Med Chem 2023; 262:115880. [PMID: 37871406 DOI: 10.1016/j.ejmech.2023.115880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
A new series of compounds bearing a pyrazolopyridine scaffold was synthesized as integrated anti-Alzheimer's disease (AD) multi-targeted ligands. Compounds 49 and 51 showed remarkable activity as hAChE inhibitors with IC50 values of 0.17 and 0.16 μM, respectively; and proved to be active hBuChE inhibitors with IC50 values 0.17 and 0.69 μM, eight and two-fold more active than the reference compound rivastigmine, respectively. Compounds 49 and 51 showed potent GSK3β inhibition with IC50 values of 0.21 and 0.26 μM, respectively compared to L807mts. Also, 49 and 51 showed 66.0 and 60.0% as tau protein aggregation inhibitors; and Aβ1-42 self-aggregation inhibitors with 79.0 and 75.0% respectively. Furthermore, 49 and 51 could bind virtually with the PAS affecting Aβ aggregation, thus preventing Aβ-dependent neurotoxicity. They proved to have the ability to chelate bio-metals such as Fe2+, Cu2+, and Zn2+ preventing their oxidative damage in the brain of AD patients, in addition to their safety upon WI-38 cell line. Both compounds could virtually penetrate BBB and obeyed Lipinski's rule of five. Compounds 49 and 51 could be considered as MTDLs for AD patients and the obtained model and pattern of substitution could be used for further development of new multi-targeted anti-Alzheimer's agents.
Collapse
Affiliation(s)
- Omnia M Waly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mariam A Ghaly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
32
|
Ahmed RF, Mahmoud WR, Abdelgawad NM, Fouad MA, Said MF. Exploring novel anticancer pyrazole benzenesulfonamides featuring tail approach strategy as carbonic anhydrase inhibitors. Eur J Med Chem 2023; 261:115805. [PMID: 37748386 DOI: 10.1016/j.ejmech.2023.115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
This study aimed to design potent carbonic anhydrase inhibitors (CAIs) based on pyrazole benzenesulfonamide core. Nine series of substituted pyrazole benzenesulfonamide compounds were synthesized with variable groups like sulphamoyl group as in compounds 4a-e, its bioisosteric carboxylic acid as in compounds 5a-e and 8e, ethyl carboxylate ester as in compounds 6a-e and 9a-e, which were designed as potential prodrugs, isothiazole ring as in compound 7, hydrazide derivative 10e, hydroxamic acid derivatives 11a-e and semicarbazide derivatives 12a-c,e. All the synthesized compounds were investigated for their carbonic anhydrase (CA) inhibitory activity against two human CA isoforms hCA IX and hCA XII and compared to acetazolamide (AAZ). Also, the compounds were assessed for their anticancer activity against 60 cancer cell lines according to the US NCI protocol. Compounds 4b, 5b, 5d, 5e, 6b, 9b, 9e and 11b revealed significant inhibitory activity against both isoforms hCA IX and hCA XII, while 6e, 9d, 11d and 11e showed significant inhibitory activity against hCA XII only compared to acetazolamide as a reference. This would highlight these compounds as promising anticancer drugs. Moreover, compound 6e revealed a remarkable cytostatic activity against CNS cancer cell line (SF-539; TGI = 5.58 μM), renal cancer cell line (786-0; TGI = 4.32 μM) and breast cancer cell line (HS 578 T; TGI = 5.43 μM). Accordingly, compound 6e was subjected to cell cycle analysis and apoptotic assay on the abovementioned cell lines at the specified GI50 (0.45, 0.89 and 1.18 μM, respectively). Also, it revealed the increment of total apoptotic cells percentage in 786-0 (53.19%), SF-539 (46.11%) and HS 578 T (43.55%) relative to the control cells (2.07, 2.64 and 2.52%, respectively). In silico prediction of BBB permeability showed that most of the calculations for compound 6e resulted as BBB (+), which is required for a compound targeting CNS. Further, the interaction of the most active compounds with the key amino acids in the active sites of hCA IX and hCA XII was highlighted by molecular docking analysis.
Collapse
Affiliation(s)
- Rehab F Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Nagwa M Abdelgawad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, Newgiza University, Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Mona F Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
33
|
Berrino E, Carradori S, Carta F, Melfi F, Gallorini M, Poli G, Tuccinardi T, Fernández-Bolaños JG, López Ó, Petzer JP, Petzer A, Guglielmi P, Secci D, Supuran CT. A Multitarget Approach against Neuroinflammation: Alkyl Substituted Coumarins as Inhibitors of Enzymes Involved in Neurodegeneration. Antioxidants (Basel) 2023; 12:2044. [PMID: 38136164 PMCID: PMC10740956 DOI: 10.3390/antiox12122044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative disorders (NDs) include a large range of diseases characterized by neural dysfunction with a multifactorial etiology. The most common NDs are Alzheimer's disease and Parkinson's disease, in which cholinergic and dopaminergic systems are impaired, respectively. Despite different brain regions being affected, oxidative stress and inflammation were found to be common triggers in the pathogenesis and progression of both diseases. By taking advantage of a multi-target approach, in this work we explored alkyl substituted coumarins as neuroprotective agents, capable to reduce oxidative stress and inflammation by inhibiting enzymes involved in neurodegeneration, among which are Carbonic Anhydrases (CAs), Monoamine Oxidases (MAOs), and Cholinesterases (ChEs). The compounds were synthesized and profiled against the three targeted enzymes. The binding mode of the most promising compounds (7 and 9) within MAO-A and -B was analyzed through molecular modeling studies, providing and explanation for the different selectivities observed for the MAO isoforms. In vitro biological studies using LPS-stimulated rat astrocytes showed that some compounds were able to counteract the oxidative stress-induced neuroinflammation and hamper interleukin-6 secretion, confirming the success of this multitarget approach.
Collapse
Affiliation(s)
- Emanuela Berrino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| | - Simone Carradori
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| | - Francesco Melfi
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Marialucia Gallorini
- Department of Pharmacy, ‘‘G. d’Annunzio” University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; (F.M.); (M.G.)
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (G.P.); (T.T.)
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (G.P.); (T.T.)
| | - José G. Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, 41012 Seville, Spain; (J.G.F.-B.); (Ó.L.)
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, 41012 Seville, Spain; (J.G.F.-B.); (Ó.L.)
| | - Jacobus P. Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.P.P.); (A.P.)
| | - Anél Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.P.P.); (A.P.)
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (E.B.); (P.G.); (D.S.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Florence, Italy; (F.C.); (C.T.S.)
| |
Collapse
|
34
|
Shaker B, Lee J, Lee Y, Yu MS, Lee HM, Lee E, Kang HC, Oh KS, Kim HW, Na D. A machine learning-based quantitative model (LogBB_Pred) to predict the blood-brain barrier permeability (logBB value) of drug compounds. Bioinformatics 2023; 39:btad577. [PMID: 37713469 PMCID: PMC10560102 DOI: 10.1093/bioinformatics/btad577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
MOTIVATION Efficient assessment of the blood-brain barrier (BBB) penetration ability of a drug compound is one of the major hurdles in central nervous system drug discovery since experimental methods are costly and time-consuming. To advance and elevate the success rate of neurotherapeutic drug discovery, it is essential to develop an accurate computational quantitative model to determine the absolute logBB value (a logarithmic ratio of the concentration of a drug in the brain to its concentration in the blood) of a drug candidate. RESULTS Here, we developed a quantitative model (LogBB_Pred) capable of predicting a logBB value of a query compound. The model achieved an R2 of 0.61 on an independent test dataset and outperformed other publicly available quantitative models. When compared with the available qualitative (classification) models that only classified whether a compound is BBB-permeable or not, our model achieved the same accuracy (0.85) with the best qualitative model and far-outperformed other qualitative models (accuracies between 0.64 and 0.70). For further evaluation, our model, quantitative models, and the qualitative models were evaluated on a real-world central nervous system drug screening library. Our model showed an accuracy of 0.97 while the other models showed an accuracy in the range of 0.29-0.83. Consequently, our model can accurately classify BBB-permeable compounds as well as predict the absolute logBB values of drug candidates. AVAILABILITY AND IMPLEMENTATION Web server is freely available on the web at http://ssbio.cau.ac.kr/software/logbb_pred/. The data used in this study are available to download at http://ssbio.cau.ac.kr/software/logbb_pred/dataset.zip.
Collapse
Affiliation(s)
- Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jingyu Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yunhyeok Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Myeong-Sang Yu
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Eunee Lee
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children’s Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul 03722, Republic of Korea
| | - Hoon-Chul Kang
- Department of Anatomy College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang-Seok Oh
- Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
35
|
Wang YH, Gao XH, Li X, Ding YJ, Shi Q, Yang ZY, Peng D, Liu HR. Design, synthesis and the evaluation of cholinesterase inhibition and blood-brain permeability of daidzein derivatives or analogs. Chem Biol Drug Des 2023; 102:718-729. [PMID: 37291745 DOI: 10.1111/cbdd.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/02/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
In the present study, a series of derivatives and analogs of daidzein were designed and synthesized to investigate cholinesterase inhibition and blood-brain barrier permeability. The enzyme assay showed that most of the compounds containing a tertiary amine group exhibit moderate cholinesterase inhibition, 7-hydroxychromone derivatives (absence of B ring of daidzein scaffold) only have a weaker bioactivity, while those compounds without the tertiary amine group have no bioactivity. Among them compound 15a (4'-N,N-dimethylaminoethoxy-7-methoxyisoflavone) appeared the best inhibitory activity (IC50 : 2.14 ± 0.31 μmol/L) and higher selectivity for AChE over BuChE (Ratio: 7.07). It was selected for the further investigation by UPLC-MS/MS. The results show that CBrain/Serum of compound 15a in mice was more than 2.87 within 240 min. This discovery may provide worthy information for the future development of central nervous drugs including but not limited to cholinesterase inhibitors.
Collapse
Affiliation(s)
- Yi-Hui Wang
- College of Chemistry and Chemical Engineering, Hu'nan University, Changsha, China
| | - Xiao-Hui Gao
- College of Pharmacy, Changsha health Vocational College, Changsha, China
| | - Xuan Li
- Department of Traditional Chinese Medicine, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yu-Jie Ding
- College of Chemistry and Chemical Engineering, Hu'nan University, Changsha, China
| | - Qing Shi
- College of Chemistry and Chemical Engineering, Hu'nan University, Changsha, China
| | - Zhi-Yu Yang
- College of Chemistry and Chemical Engineering, Hu'nan University, Changsha, China
| | - Dian Peng
- College of Pharmacy, Changsha health Vocational College, Changsha, China
| | - Hao-Ran Liu
- College of Chemistry and Chemical Engineering, Hu'nan University, Changsha, China
| |
Collapse
|
36
|
Kryl’skii ED, Razuvaev GA, Popova TN, Medvedeva SM, Shikhaliev KS. 6-Hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline Alleviates Oxidative Stress and NF-κB-Mediated Inflammation in Rats with Experimental Parkinson's Disease. Curr Issues Mol Biol 2023; 45:7653-7667. [PMID: 37754267 PMCID: PMC10528003 DOI: 10.3390/cimb45090483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
A study was conducted to investigate the effects of different doses of 6-hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline (HTHQ) on motor coordination scores, brain tissue morphology, the expression of tyrosine hydroxylase, the severity of oxidative stress parameters, the levels of the p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) factor, and the inflammatory response in rats during the development of rotenone-induced Parkinsonism. The findings indicate that HTHQ, with its antioxidant attributes, reduced the levels of 8-isoprostane, lipid oxidation products, and protein oxidation products. The decrease in oxidative stress due to HTHQ led to a reduction in the mRNA content of proinflammatory cytokines and myeloperoxidase activity, accompanying the drop in the expression of the factor NF-κB. These alterations promoted an improvement in motor coordination scores and increased tyrosine hydroxylase levels, whereas histopathological changes in the brain tissue of the experimental animals were attenuated. HTHQ exhibited greater effectiveness than the comparative drug rasagiline based on the majority of variables.
Collapse
Affiliation(s)
- Evgenii D. Kryl’skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| | - Grigorii A. Razuvaev
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| | - Svetlana M. Medvedeva
- Department of Organic Chemistry, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia
| | - Khidmet S. Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia
| |
Collapse
|
37
|
Taheri M, Ghafoori H, Sepehri H, Mohammadi A. Neuroprotective Effect of Thiazolidine-2,4-dione Derivatives on Memory Deficits and Neuropathological Symptoms of Dementia on a Scopolamine-Induced Alzheimer's Model in Adult Male Wistar Rats. ACS Chem Neurosci 2023; 14:3156-3172. [PMID: 37561907 DOI: 10.1021/acschemneuro.3c00294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with a decline in memory deficits and neuropathological diagnosis with loss of cholinergic neurons in the brains of older adults. Based on these facts and an increasing number of involved people worldwide, this investigation aimed to study the improvement of memory and cognitive impairments via an anticholinergic approach of thiazolidine-2,4-diones (TZDs) in the scopolamine-induced model of Alzheimer type in adult male Wistar rats (n = 40). The results indicated data analysis obtained from in vivo and in vitro tests for (E)-5-(3-hydroxybenzylidene)-3-(2-oxo-2-phenylethyl)thiazolidine-2,4-dione (TZ3O) (2 and 4 mg/kg) with the meta-hydroxy group and (E)-5-(4-methoxybenzylidene)-3-(2-oxo-2-phenylethyl)thiazolidine-2,4-dione (TZ4M) (2 and 3 mg/kg) with the para-methoxy group showed a neuroprotective effect. TZ3O and TZ4M alleviated the scopolamine-induced cognitive decline of the Alzheimer model in adult male Wistar rats. These initial and noteworthy results could be assumed as a starting point for the evolution of new anti-Alzheimer agents.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht 4193833697, Iran
| | - Hossein Ghafoori
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht 4193833697, Iran
| | - Hamid Sepehri
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan 4913815739, Iran
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Basic Sciences, University of Guilan, Rasht 4193833697, Iran
| |
Collapse
|
38
|
Valipour M. Therapeutic prospects of naturally occurring p38 MAPK inhibitors tanshinone IIA and pinocembrin for the treatment of SARS-CoV-2-induced CNS complications. Phytother Res 2023; 37:3724-3743. [PMID: 37282807 DOI: 10.1002/ptr.7902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
P38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is closely related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication and hyperinflammatory responses in coronavirus disease 2019 (COVID-19). Therefore, blood-brain barrier-penetrating p38 MAPK inhibitors have good potential for the treatment of central nervous system (CNS) complications of COVID-19. The aim of the present study is the characterization of the therapeutic potential of tanshinone IIA and pinocembrin for the treatment of CNS complications of COVID-19. Studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so forth were used to review the therapeutic capabilities of selected compounds. In continuation of our previous efforts to identify agents with favorable activity/toxicity profiles for the treatment of COVID-19, tanshinone IIA and pinocembrin were identified with a high ability to penetrate the CNS. Considering the nature of the study, no specific time frame was determined for the selection of studies, but the focus was strongly on studies published after the emergence of COVID-19. By describing the association of COVID-19-induced CNS disorders with p38 MAPK pathway disruption, this study concludes that tanshinone IIA and pinocembrin have great potential for better treatment of these complications. The inclusion of these compounds in the drug regimen of COVID-19 patients requires confirmation of their effectiveness through the conduction of high-quality clinical trials.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Yang PN, Chen WL, Lee JW, Lin CH, Chen YR, Lin CY, Lin W, Yao CF, Wu YR, Chang KH, Chen CM, Lee-Chen GJ. Coumarin-chalcone hybrid LM-021 and indole derivative NC009-1 targeting inflammation and oxidative stress to protect BE(2)-M17 cells against α-synuclein toxicity. Aging (Albany NY) 2023; 15:8061-8089. [PMID: 37578928 PMCID: PMC10497001 DOI: 10.18632/aging.204954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023]
Abstract
Parkinson's disease (PD) is featured mainly by the loss of dopaminergic neurons and the presence of α-synuclein-containing aggregates in the substantia nigra of brain. The α-synuclein fibrils and aggregates lead to increased oxidative stress and neural toxicity in PD. Chronic inflammation mediated by microglia is one of the hallmarks of PD pathophysiology. In this report, we showed that coumarin-chalcone hybrid LM-021 and indole derivative NC009-1 reduced the expression of major histocompatibility complex-II, NLR family pyrin domain containing (NLRP) 3, caspase-1, inducible nitric oxide synthase, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in α-synuclein-activated mouse BV-2 microglia. Release of pro-inflammatory mediators including nitric oxide, IL-1β, IL-6 and TNF-α was also mitigated. In BE(2)-M17 cells expressing A53T α-synuclein aggregates, LM-021 and NC009-1 reduced α-synuclein aggregation, neuroinflammation, oxidative stress and apoptosis, and promoted neurite outgrowth. These protective effects were mediated by downregulating NLRP1, IL-1β and IL-6, and their downstream pathways including nuclear factor (NF)-κB inhibitor alpha (IκBα)/NF-κB P65 subunit (P65), c-Jun N-terminal kinase (JNK)/proto-oncogene c-Jun (JUN), mitogen-activated protein kinase 14 (P38)/signal transducer and activator of transcription (STAT) 1, and Janus kinase 2 (JAK2)/STAT3. The study results indicate LM-021 and NC009-1 as potential new drug candidates for PD.
Collapse
Affiliation(s)
- Pei-Ning Yang
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wan-Ling Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Jun-Wei Lee
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Yi-Ru Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
40
|
Uliassi E, Bergamini C, Rizzardi N, Naldi M, Cores Á, Bartolini M, Carlos Menéndez J, Bolognesi ML. Quinolinetrione-tacrine hybrids as multi-target-directed ligands against Alzheimer's disease. Bioorg Med Chem 2023; 91:117419. [PMID: 37487339 DOI: 10.1016/j.bmc.2023.117419] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Multi-target drug discovery is one of the most active fields in the search for new drugs against Alzheimer's disease (AD). This is because the complexity of AD pathological network might be adequately tackled by multi-target-directed ligands (MTDLs) aimed at modulating simultaneously multiple targets of such a network. In a continuation of our efforts to develop MTDLs for AD, we have been focusing on the molecular hybridization of the acetylcholinesterase inhibitor tacrine with the aim of expanding its anti-AD profile. Herein, we manipulated the structure of a previously developed tacrine-quinone hybrid (1). We designed and synthesized a novel set of MTDLs (2-6) by replacing the naphthoquinone scaffold of 1 with that of 2,5,8-quinolinetrione. The most interesting hybrid 3 inhibited cholinesterase enzymes at nanomolar concentrations. In addition, 3 exerted antioxidant effects in menadione-induced oxidative stress of SH-SY5Y cells. Importantly, 3 also showed low hepatotoxicity and good anti-amyloid aggregation properties. Remarkably, we uncovered the potential of the quinolinetrione scaffold, as a novel anti-amyloid aggregation and antioxidant motif to be used in further anti-AD MTDL drug discovery endeavors.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Ángel Cores
- Department of Chemistry in Pharmaceutical Sciences, Organic and Medicinal Chemistry Unit, Faculty of Pharmacy, Universidad Complutense, 28040 Madrid, Spain
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - J Carlos Menéndez
- Department of Chemistry in Pharmaceutical Sciences, Organic and Medicinal Chemistry Unit, Faculty of Pharmacy, Universidad Complutense, 28040 Madrid, Spain.
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
41
|
Huang HS, Chiang IT, Lawal B, Weng YS, Jeng LB, Kuo YC, Liu YC, Hsu FT. A Novel Isotope-labeled Small Molecule Probe CC12 for Anti-glioma via Suppressing LYN-mediated Progression and Activating Apoptosis Pathways. Int J Biol Sci 2023; 19:3209-3225. [PMID: 37416766 PMCID: PMC10321274 DOI: 10.7150/ijbs.82266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/16/2023] [Indexed: 07/08/2023] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the most lethal malignancy in brain, which is surrounded by the blood-brain barrier (BBB), which limits the efficacy of standard treatments. Developing an effective drug that can penetrate the blood-brain barrier (BBB) remains a critical challenge in the fight against GBM. CC12 (NSC749232) is an anthraquinone tetraheterocyclic homolog with a lipophilic structure that may facilitate penetration of the brain area. Methods: We used temozolomide sensitive and resistance GBM cells and animal model to identify the CC12 delivery, anti-tumor potential and its underlying mechanism. Results: Importantly, toxicity triggered by CC12 was not associated with the methyl guanine-DNA methyl transferase (MGMT) methylation status which revealed a greater application potential compared to temozolomide. Alexa F488 cadaverine-labelled CC12 successfully infiltrated into the GBM sphere; in addition, 68Ga-labeled CC12 was also found in the orthotopic GBM area. After passing BBB, CC12 initiated both caspase-dependent intrinsic/extrinsic apoptosis pathways and apoptosis-inducing factor, EndoG-related caspase-independent apoptosis signaling in GBM. RNA sequence analysis from The Cancer Genome Atlas indicated that LYN was overexpressed in GBM is associated with poorer overall survival. We proved that targeting of LYN by CC12 may diminish GBM progression and suppress it downstream factors such as signal transduction and activator of extracellular signal-regulated kinases (ERK)/transcription 3 (STAT3)/nuclear factor (NF)-κB. CC12 was also found to participate in suppressing GBM metastasis and dysregulation of the epithelial-mesenchymal transition (EMT) through inactivation of the LYN axis. Conclusion: CC12, a newly developed BBB-penetrating drug, was found to possess an anti-GBM capacity via initiating an apoptotic mechanism and disrupting LYN/ERK/STAT3/NF-κB-regulated GBM progression.
Collapse
Affiliation(s)
- Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; and Academia Sinica, Taipei 115, Taiwan, R.O.C
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - I-Tsang Chiang
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan, R.O.C
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan, R.O.C
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan, R.O.C
- Medical administrative center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; and Academia Sinica, Taipei 115, Taiwan, R.O.C
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, R.O.C
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yueh-Shan Weng
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan, R.O.C
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
- Cell Therapy Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
- School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
- Master Program in Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Yu-Chang Liu
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan, R.O.C
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan, R.O.C
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan, R.O.C
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan, R.O.C
| |
Collapse
|
42
|
In silico study of novel niclosamide derivatives, SARS-CoV-2 nonstructural proteins catalytic residue-targeting small molecules drug candidates. ARAB J CHEM 2023; 16:104654. [PMID: 36777994 PMCID: PMC9904858 DOI: 10.1016/j.arabjc.2023.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-mediated coronavirus disease 2019 (COVID-19) infection remains a global pandemic and health emergency with overwhelming social and economic impacts throughout the world. Therapeutics for COVID-19 are limited to only remdesivir; therefore, there is a need for combined, multidisciplinary efforts to develop new therapeutic molecules and explore the effectiveness of existing drugs against SARS-CoV-2. In the present study, we reported eight (SCOV-L-02, SCOV-L-09, SCOV-L-10, SCOV-L-11, SCOV-L-15, SCOV-L-18, SCOV-L-22, and SCOV-L-23) novel structurally related small-molecule derivatives of niclosamide (SCOV-L series) for their targeting potential against angiotensin-converting enzyme-2 (ACE2), type II transmembrane serine protease (TMPRSS2), and SARS-COV-2 nonstructural proteins (NSPs) including NSP5 (3CLpro), NSP3 (PLpro), and RdRp. Our correlation analysis suggested that ACE2 and TMPRSS2 modulate host immune response via regulation of immune-infiltrating cells at the site of tissue/organs entries. In addition, we identified some TMPRSS2 and ACE2 microRNAs target regulatory networks in SARS-CoV-2 infection and thus open up a new window for microRNAs-based therapy for the treatment of SARS-CoV-2 infection. Our in vitro study revealed that with the exception of SCOV-L-11 and SCOV-L-23 which were non-active, the SCOV-L series exhibited strict antiproliferative activities and non-cytotoxic effects against ACE2- and TMPRSS2-expressing cells. Our molecular docking for the analysis of receptor-ligand interactions revealed that SCOV-L series demonstrated high ligand binding efficacies (at higher levels than clinical drugs) against the ACE2, TMPRSS2, and SARS-COV-2 NSPs. SCOV-L-18, SCOV-L-15, and SCOV-L-09 were particularly found to exhibit strong binding affinities with three key SARS-CoV-2's proteins: 3CLpro, PLpro, and RdRp. These compounds bind to the several catalytic residues of the proteins, and satisfied the criteria of drug-like candidates, having good adsorption, distribution, metabolism, excretion, and toxicity (ADMET) pharmacokinetic profile. Altogether, the present study suggests the therapeutic potential of SCOV-L series for preventing and managing SARs-COV-2 infection and are currently under detailed investigation in our lab.
Collapse
|
43
|
Zapata RC, Zhang D, Libster A, Porcu A, Montilla-Perez P, Nur A, Xu B, Zhang Z, Correa SM, Liu C, Telese F, Osborn O. Nuclear receptor 5A2 regulation of Agrp underlies olanzapine-induced hyperphagia. Mol Psychiatry 2023; 28:1857-1867. [PMID: 36765131 PMCID: PMC10412731 DOI: 10.1038/s41380-023-01981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/12/2023]
Abstract
Antipsychotic (AP) drugs are efficacious treatments for various psychiatric disorders, but excessive weight gain and subsequent development of metabolic disease remain serious side effects of their use. Increased food intake leads to AP-induced weight gain, but the underlying molecular mechanisms remain unknown. In previous studies, we identified the neuropeptide Agrp and the transcription factor nuclear receptor subfamily 5 group A member 2 (Nr5a2) as significantly upregulated genes in the hypothalamus following AP-induced hyperphagia. While Agrp is expressed specifically in the arcuate nucleus of the hypothalamus and plays a critical role in appetite stimulation, Nr5a2 is expressed in both the CNS and periphery, but its role in food intake behaviors remains unknown. In this study, we investigated the role of hypothalamic Nr5a2 in AP-induced hyperphagia and weight gain. In hypothalamic cell lines, olanzapine treatment resulted in a dose-dependent increase in gene expression of Nr5a2 and Agrp. In mice, the pharmacological inhibition of NR5A2 decreased olanzapine-induced hyperphagia and weight gain, while the knockdown of Nr5a2 in the arcuate nucleus partially reversed olanzapine-induced hyperphagia. Chromatin-immunoprecipitation studies showed for the first time that NR5A2 directly binds to the Agrp promoter region. Lastly, the analysis of single-cell RNA seq data confirms that Nr5a2 and Agrp are co-expressed in a subset of neurons in the arcuate nucleus. In summary, we identify Nr5a2 as a key mechanistic driver of AP-induced food intake. These findings can inform future clinical development of APs that do not activate hyperphagia and weight gain.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Avraham Libster
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alessandra Porcu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Aisha Nur
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Baijie Xu
- Center for Hypothalamic Research, Departments of Internal Medicine and Neuroscience, Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhi Zhang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Chen Liu
- Center for Hypothalamic Research, Departments of Internal Medicine and Neuroscience, Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
44
|
Chia SY, Khor BK, Tay YJ, Liew KF, Lee CY. Discovery of blood-brain barrier permeant amine-functionalized aurones as inhibitors of activated microglia. Bioorg Chem 2023; 135:106509. [PMID: 37030107 DOI: 10.1016/j.bioorg.2023.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
Sulfuretin, a naturally occurring aurone is reported to inhibit macrophage and microglia activation. A series of aurones incorporating basic amines and lipophilic functionalities at ring A and/or ring B were synthesized to improve upon present sulfuretin activity towards targeting brain microglia while overcoming the blood-brain barrier (BBB). Evaluation of the ability of the aurones to inhibit lipopolysaccharide (LPS)-stimulated nitric oxide (NO) secretion by murine BV-2 microglia has identified several inhibitors showing significant NO reduction at 1 to 10 µM. Potent inhibitors were represented by aurones with bulky, planar moieties at ring A (3f) or at ring B (1e and 1f) and having a pendant piperidine at ring B (1a, 2a, 2b, and 3f). The active aurones inhibited the BV-2 microglia polarizing towards the M1 state as indicated by attenuation of IL-1β and TNF-α secretions in LPS-activated microglia but did not induce the microglia towards the M2 state. The aurones 2a, 2b, and 1f showed high passive BBB permeability in the parallel artificial membrane permeability assay (PAMPA) owing to their optimal lipophilicities. 2a, being non-cell toxic, BBB permeant and potent, represents a new lead for the development of aurones as inhibitors of activated microglia.
Collapse
Affiliation(s)
- Shi Yi Chia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Boon-Keat Khor
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Yi Juin Tay
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kok Fui Liew
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Chong-Yew Lee
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
45
|
Investigating the chemical profile of Rheum lhasaense and its main ingredient of piceatannol-3'-O-β-D-glucopyranoside on ameliorating cognitive impairment. Biomed Pharmacother 2023; 160:114394. [PMID: 36774724 DOI: 10.1016/j.biopha.2023.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Rheum lhasaense A. J. Li et P. K. Hsiao, a stout herb plant from the Polygonaceae, is a typical Tibetan folk herb with heat-clearing and detoxifying effects, but does not have the typical laxative effect compared with other rhubarb plants. Nevertheless, its chemical composition and pharmacological activities still lack in-depth research. The present study endeavored to analyze the possible phytochemical constituents in R. lhasaense and explore the main compound piceatannol-3'-O-β-D-glucopyranoside (PG) effect on cognitive impairment and its underlying mechanism. The chemical profile of R. lhasaense discovered 46 compounds, including 27 stilbenoids and 13 gallotannins using UPLC-Q-TOF-MS/MS. The UPLC determined the contents of 6 main stilbenoids, among which the content of PG was the highest, up to 61.06 mg/g. Moreover, behavioral tests showed that PG (40 mg/kg and 160 mg/kg) administration markedly ameliorated memory impairments of scopolamine-induced mice. Biochemical parameters showed that PG treatment alleviated the levels of Ach, AchE, and inflammatory factors while elevating the levels of antioxidants in mice. In addition, network pharmacology was performed to reveal PG exert an mild cognitive impairment effect by participating in neurodegenerative disease pathways, proliferation and apoptosis-, and inflammation-related pathways. Eventually, the results of molecular docking and the qRT-PCR revealed that PG down-regulated the mRNA expressions of MMP3, MMP9 and BACE1 in cognitive impairment mice brain tissue. In conclusion, our results demonstrated that PG mitigated scopolamine-induced cognitive dysfunction in mice by targeting the BACE1-MMP3/9 pathway, and PG might be a promising mild AD drug candidate.
Collapse
|
46
|
Minh Quang N, Tran Thai H, Le Thi H, Duc Cuong N, Hien NQ, Hoang D, Ngoc VTB, Ky Minh V, Van Tat P. Novel Thiosemicarbazone Quantum Dots in the Treatment of Alzheimer's Disease Combining In Silico Models Using Fingerprints and Physicochemical Descriptors. ACS OMEGA 2023; 8:11076-11099. [PMID: 37008140 PMCID: PMC10061515 DOI: 10.1021/acsomega.2c07934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Searching for thiosemicarbazone derivatives with the potential to inhibit acetylcholinesterase for the treatment of Alzheimer's disease (AD) is an important current goal. The QSARKPLS, QSARANN, and QSARSVR models were constructed using binary fingerprints and physicochemical (PC) descriptors of 129 thiosemicarbazone compounds screened from a database of 3791 derivatives. The R 2 and Q 2 values for the QSARKPLS, QSARANN, and QSARSVR models are greater than 0.925 and 0.713 using dendritic fingerprint (DF) and PC descriptors, respectively. The in vitro pIC50 activities of four new design-oriented compounds N1, N2, N3, and N4, from the QSARKPLS model using DFs, are consistent with the experimental results and those from the QSARANN and QSARSVR models. The designed compounds N1, N2, N3, and N4 do not violate Lipinski-5 and Veber rules using the ADME and BoiLED-Egg methods. The binding energy, kcal mol-1, of the novel compounds to the 1ACJ-PDB protein receptor of the AChE enzyme was also obtained by molecular docking and dynamics simulations consistent with those predicted from the QSARANN and QSARSVR models. New compounds N1, N2, N3, and N4 were synthesized, and the experimental in vitro pIC50 activity was determined in agreement with those obtained from in silico models. The newly synthesized thiosemicarbazones N1, N2, N3, and N4 can inhibit 1ACJ-PDB, which is predicted to be able to cross the barrier. The DFT B3LYP/def-SV(P)-ECP quantization calculation method was used to calculate E HOMO and E LUMO to account for the activities of compounds N1, N2, N3, and N4. The quantum calculation results explained are consistent with those obtained in in silico models. The successful results here may contribute to the search for new drugs for the treatment of AD.
Collapse
Affiliation(s)
- Nguyen Minh Quang
- Faculty
of Chemical Engineering, Industrial University
of Ho Chi Minh City, 12 Nguyen Van Bao, Dist. Go Vap, Ho Chi Minh 700000, Viet Nam
| | - Hoa Tran Thai
- Faculty
of Chemistry, Hue University of Sciences, Hue University, 77 Nguyen Hue, Hue City 530000, Viet Nam
| | - Hoa Le Thi
- Faculty
of Chemistry, Hue University of Sciences, Hue University, 77 Nguyen Hue, Hue City 530000, Viet Nam
| | - Nguyen Duc Cuong
- Faculty
of Chemistry, Hue University of Sciences, Hue University, 77 Nguyen Hue, Hue City 530000, Viet Nam
- School
of Hospitality and Tourism, Hue University, 22 Lam Hoang, Hue City 530000, Viet
Nam
| | - Nguyen Quoc Hien
- Vietnam
Atomic Energy Institute, 59 Ly Thuong Kiet, Dist. Hoan Kiem, Hanoi
City 100000, Viet Nam
| | - DongQuy Hoang
- Faculty
of
Materials Science and Technology, University of Science, Vietnam National University, Ho Chi Minh 700000, Viet Nam
- Vietnam
National University, Ho Chi Minh
City 700000, Viet Nam
| | - Vu Thi Bao Ngoc
- Faculty
of Chemistry and Environment, University
of Dalat, 01 Phu Dong Thien Vuong, Dalat City 660000, Viet Nam
| | - Vo Ky Minh
- Franklin
High School, 6400 Whitelock Pkwy, Elk Grove, California 95757, United States
| | - Pham Van Tat
- Department
of Sciences and Journal Management, Hoa
Sen University, 08 Nguyen Van Trang, Dist. 01, Ho Chi Minh 700000, Viet Nam
| |
Collapse
|
47
|
Kumari S, Kumar P. Design and Computational Analysis of an MMP9 Inhibitor in Hypoxia-Induced Glioblastoma Multiforme. ACS OMEGA 2023; 8:10565-10590. [PMID: 36969457 PMCID: PMC10035023 DOI: 10.1021/acsomega.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The main therapeutic difficulties in treating hypoxia-induced glioblastoma multiforme (GBM) are toxicity of current treatments and the resistance brought on by the microenvironment. More effective therapeutic alternatives are urgently needed to reduce tumor lethality. Hence, we screened plant-based natural product panels intending to identify novel drugs without elevating drug resistance. We explored GEO for the hypoxia GBM model and compared hypoxic genes to non-neoplastic brain cells. A total of 2429 differentially expressed genes expressed exclusively in hypoxia were identified. The functional enrichment analysis demonstrated genes associated with GBM, further PPI network was constructed, and biological pathways associated with them were explored. Seven webtools, including GEPIA2.0, TIMER2.0, TCGA-GBM, and GlioVis, were used to validate 32 hub genes discovered using Cytoscape tool in GBM patient samples. Four GBM-specific hypoxic hub genes, LYN, MMP9, PSMB9, and TIMP1, were connected to the tumor microenvironment using TIMER analysis. 11 promising hits demonstrated positive drug-likeness with nontoxic characteristics and successfully crossed blood-brain barrier and ADMET analyses. Top-ranking hits have stable intermolecular interactions with the MMP9 protein according to molecular docking, MD simulation, MM-PBSA, PCA, and DCCM analyses. Herein, we have reported flavonoids, 7,4'-dihydroxyflavan, (3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-benzopyran, and 4'-hydroxy-7-methoxyflavan, to inhibit MMP9, a novel hypoxia gene signature that could serve as a promising predictor in various clinical applications, including GBM diagnosis, prognosis, and targeted therapy.
Collapse
|
48
|
Baidya ATK, Das B, Devi B, Långström B, Ågren H, Darreh-Shori T, Kumar R. Mechanistic Insight into the Inhibition of Choline Acetyltransferase by Proton Pump Inhibitors. ACS Chem Neurosci 2023; 14:749-765. [PMID: 36749117 DOI: 10.1021/acschemneuro.2c00738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Various pharmacoepidemiological investigational studies have indicated that Proton Pump Inhibitors (PPIs) may increase the likelihood of developing Alzheimer's disease (AD) and non-AD related dementias. Previously, we have reported the inhibition of the acetylcholine biosynthesizing enzyme choline acetyltransferase (ChAT) by PPIs, for which omeprazole, lansoprazole, and pantoprazole exhibited IC50 values of 0.1, 1.5, and 5.3 μM, respectively. In this study we utilize a battery of computational tools to perceive a mechanistic insight into the molecular interaction of PPIs with the ChAT binding pocket that may further help in designing novel ChAT ligands. Various in-silico tools make it possible for us to elucidate the binding interaction, conformational stability, and dynamics of the protein-ligand complexes within a 200 ns time frame. Further, the binding free energies for the PPI-ChAT complexes were explored. The results suggest that the PPIs exhibit equal or higher binding affinity toward the ChAT catalytic tunnel and are stable throughout the simulated time and that the pyridine ring of the PPIs interacts primarily with the catalytic residue His324. A free energy landscape analysis showed that the folding process was linear, and the residue interaction network analysis can provide insight into the roles of various amino acid residues in stabilization of the PPIs in the ChAT binding pocket. As a major factor for the onset of Alzheimer's disease is linked to cholinergic dysfunction, our previous and the present findings give clear insight into the PPI interaction with ChAT. The scaffold can be further simplified to develop novel ChAT ligands, which can also be used as ChAT tracer probes for the diagnosis of cholinergic dysfunction and to initiate timely therapeutic interventions to prevent or delay the progression of AD.
Collapse
Affiliation(s)
- Anurag T K Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005 U.P., India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005 U.P., India
| | - Bharti Devi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005 U.P., India
| | - Bengt Långström
- Department of Chemistry, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, NEO, Eighth Floor, 141 52 Stockholm, Sweden
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005 U.P., India
| |
Collapse
|
49
|
Investigating Therapeutic Effects of Indole Derivatives Targeting Inflammation and Oxidative Stress in Neurotoxin-Induced Cell and Mouse Models of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24032642. [PMID: 36768965 PMCID: PMC9917106 DOI: 10.3390/ijms24032642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Neuroinflammation and oxidative stress have been emerging as important pathways contributing to Parkinson's disease (PD) pathogenesis. In PD brains, the activated microglia release inflammatory factors such as interleukin (IL)-β, IL-6, tumor necrosis factor (TNF)-α, and nitric oxide (NO), which increase oxidative stress and mediate neurodegeneration. Using 1-methyl-4-phenylpyridinium (MPP+)-activated human microglial HMC3 cells and the sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, we found the potential of indole derivative NC009-1 against neuroinflammation, oxidative stress, and neurodegeneration for PD. In vitro, NC009-1 alleviated MPP+-induced cytotoxicity, reduced NO, IL-1β, IL-6, and TNF-α production, and suppressed NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in MPP+-activated HMC3 cells. In vivo, NC009-1 ameliorated motor deficits and non-motor depression, increased dopamine and dopamine transporter levels in the striatum, and reduced oxidative stress as well as microglia and astrocyte reactivity in the ventral midbrain of MPTP-treated mice. These protective effects were achieved by down-regulating NLRP3, CASP1, iNOS, IL-1β, IL-6, and TNF-α, and up-regulating SOD2, NRF2, and NQO1. These results strengthen the involvement of neuroinflammation and oxidative stress in PD pathogenic mechanism, and indicate NC009-1 as a potential drug candidate for PD treatment.
Collapse
|
50
|
The Effective Components, Core Targets, and Key Pathways of Ginseng against Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:9935942. [PMID: 36726526 PMCID: PMC9886485 DOI: 10.1155/2023/9935942] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 01/24/2023]
Abstract
Background Panax ginseng C. A. Mey (ginseng) is a traditional Chinese medicinal herb used for the treatment of nervous system disorders, such as Alzheimer's disease (AD). However, the pharmacological mechanisms of ginseng involved in AD have not been systematically investigated. Here, a network pharmacology approach was adopted to explore the effective components, core targets, and key pathways of ginseng against AD. Methods TCMSP database was used to screen the active ingredients of ginseng. Prediction of the targets of ginseng and AD-related genes was performed using online public databases. "Compound-Target," "Compound-Target-Disease," "Protein-Protein Interaction (PPI)," "Compound-Target-Pathway," and "Compound-Target-GO-Pathway" networks were constructed with Cytoscape 3.7.2 software. Gene Ontology (GO) function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed by using the DAVID database. Results A total of 22 bioactive compounds were identified from ginseng, and 481 targets of ginseng and 763 AD-related targets were obtained from public databases. The PPI network screened out 19 hub genes of ginseng against AD. According to GO function enrichment, ginseng influenced cell proliferation, death, the nitric oxide biosynthetic process, hypoxia response, and synaptic transmission. Neuroactive ligand-receptor interaction, serotonergic synapse, calcium signaling, cAMP signaling, FoxO signaling, Ras signaling, and PI3K-AKT signaling were among the most key regulatory pathways. The compound-target-GO-route network found EGFR, MAPK1, MAPK14, AKT1, CASP3, and PRKACA as key genes, with PI3K-AKT signaling being the most important pathway for ginseng's anti-AD activity. Conclusion Ginseng exerts neuroprotective effects in AD patients through multicomponent, multitarget, and multipathway modes, providing novel insight into the pharmacological and experimental research on ginseng against AD.
Collapse
|