1
|
Tang B, Du Y, Wang J. TAZ-hTrap: A Rationally Designed, Disulfide-Stapled Tead Helical Hairpin Trap to Selectively Capture Hippo Signaling Taz With Potent Antigynecological Tumor Activity. J Mol Recognit 2025; 38:e3111. [PMID: 39626959 DOI: 10.1002/jmr.3111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 02/01/2025]
Abstract
Transcriptional enhanced associate domain (Tead)-mediated Hippo signaling pathway regulates diverse physiological processes; its dysfunction has been implicated in an increasing number of human gynecological cancers. The transcriptional coactivator with PDZ-binding motif (Taz) binds to and then activates Tead through forming a three-helix bundle (THB) at their complex interface. The THB is defined by a double-helical hairpin from Tead and a single α-helix from Taz, serving as the key interaction hotspot between Tead and Taz. In the present study, the helical hairpin was derived from Tead protein to generate a hairpin segment, which is a 25-mer polypeptide consisting of a longer helical arm-1 and a shorter helical arm-2 as well as a flexible loop linker between them. Dynamics simulation and energetics characterization revealed that the hairpin peptide is intrinsically disordered when splitting from its protein context, thus incurring a large entropy penalty upon binding to Taz α-helix. A disulfide bridge was introduced across the two helical arms of hairpin peptide to obtain a strong binder termed TAZ-hTrap, which can maintain in a considerably structured, native-like conformation in unbound state, and the entropy penalty was minimized by disulfide stapling to effectively improve its affinity toward the α-helix. These computational findings can be further substantiated by circular dichroism and fluorescence polarization at molecular level, and viability assay also observed a potent cytotoxic effect on diverse human gynecological tumors at cellular level. In addition, we further demonstrated that the TAZ-hTrap has a good selectivity for its cognate Taz over other noncognate proteins that share a high conservation with the Taz α-helix.
Collapse
Affiliation(s)
- Bin Tang
- Department of Gynecology, Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yu Du
- Department of Gynecology, Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jun Wang
- Department of Gynecology, Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
2
|
He Q, Wei G, Ma X, Feng W, Lu X, Li Z. Structure-based design and disulfide stapling of interfacial cyclic peptidic inhibitors from thymic stromal lymphopoietin (TSLP) receptor to competitively target TSLP. Biochimie 2025; 230:156-165. [PMID: 39571720 DOI: 10.1016/j.biochi.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/16/2024] [Accepted: 11/18/2024] [Indexed: 12/02/2024]
Abstract
Human thymic stromal lymphopoietin (TSLP) is a pro-inflammatory cytokine located at the top of inflammatory cascade that makes it a promising therapeutic target in allergic asthma. The cell surface receptor of TSLP is a heterodimer consisting of a TSLP receptor (TSLPR) and an interleukin-17 receptor α (IL-7Rα). The TSLPR subunit should be first added to the free TSLP to form a TSLPR/TSLP pre-complex, which further recruits the IL-7Rα subunit to obtain the final TSLPR/IL-7Rα/TSLP complex. Previous works have been focused on targeting the IL-7Rα-binding site of TSLP. Instead, we herein reported an attempt for rational design of cyclic peptidic inhibitors to competitively disrupt the TSLPR-TSLP interaction based on their complex crystal structure by integrating dynamics simulation and energetics analysis as well as experimental assays at molecular level. An interfacial peptide segment derived from the hotspots of TSLPR that cover a specific TSLP-binding site on the TSLPR interface, which is expected to natively form a U-shaped conformation recognized by TSLP and thus compete with the cognate TSLPR for TSLP. The eS4P peptide was further stapled by a disulfide bridge between different residue pairs across its two arms, thus separately resulting in its two stapled cyclic counterparts, i.e. eS4P[189-198] and eS4P[188-200] peptides. Circular dichroism characterized that the stapling can effectively constrain the peptide into a native-like U-shpared conformation in free state, thus largely minimizing the entropy penalty upon its binding to TSLP. Affinity assays revealed that the stapling can considerably improve the peptide binding potency to TSLP by 2.9-fold and 8.3-fold at molecular level. In addition, we further demonstrated that the potent eS4P[188-200] peptide has a good selectivity for its cognate TSLP over other four noncognate cytokines IL-2, IL-7, IL-13 and IL-22 that are relevant with the TSLP. In this respect, it is considered that the disulfide-stapled cyclic peptide-mediated blockade of TLSP inflammatory cascade may be a new and promising therapeutic strategy against allergic asthma.
Collapse
Affiliation(s)
- Quan He
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Affiliated Zhenjiang Integrated Hospital of Traditional Chinese and Western Medicine of Xinglin College, Nantong University, Zhenjiang, 212000, China
| | - Guangfei Wei
- Clinical Research Center (CRC), Zhenjiang Hospital of Chinese Traditional and Western Medicine, Affiliated Zhenjiang Integrated Hospital of Traditional Chinese and Western Medicine of Xinglin College, Nantong University, Zhenjiang, 212000, China
| | - Xiaomei Ma
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Affiliated Zhenjiang Integrated Hospital of Traditional Chinese and Western Medicine of Xinglin College, Nantong University, Zhenjiang, 212000, China
| | - Weiqi Feng
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Affiliated Zhenjiang Integrated Hospital of Traditional Chinese and Western Medicine of Xinglin College, Nantong University, Zhenjiang, 212000, China
| | - Xuzhi Lu
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Affiliated Zhenjiang Integrated Hospital of Traditional Chinese and Western Medicine of Xinglin College, Nantong University, Zhenjiang, 212000, China
| | - Zhongxing Li
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Affiliated Zhenjiang Integrated Hospital of Traditional Chinese and Western Medicine of Xinglin College, Nantong University, Zhenjiang, 212000, China.
| |
Collapse
|
3
|
Wang Z, Lan J, Feng Y, Chen Y, Chen M. Rational design of potent phosphopeptide binders to endocrine Snk PBD domain by integrating machine learning optimization, molecular dynamics simulation, binding energetics rescoring, and in vitro affinity assay. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2025; 54:33-43. [PMID: 39611994 DOI: 10.1007/s00249-024-01729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
Human Snk is an evolutionarily conserved serine/threonine kinase essential for the maintenance of endocrine stability. The protein consists of a N-terminal catalytic domain and a C-terminal polo-box domain (PBD) that determines subcellular localization and substrate specificity. Here, an integrated strategy is described to explore the vast structural diversity space of Snk PBD-binding phosphopeptides at a molecular level using machine learning modeling, annealing optimization, dynamics simulation, and energetics rescoring, focusing on the recognition specificity and motif preference of the Snk PBD domain. We further performed a systematic rational design of potent phosphopeptide ligands for the domain based on the harvested knowledge, from which a few potent binders were also confirmed by fluorescence-based assays. A phosphopeptide PP17 was designed as a good binder with affinity improvement by 6.7-fold relative to the control PP0, while the other three designed phosphopeptides PP7, PP13, and PP15 exhibit a comparable potency with PP0. In addition, a basic recognition motif that divides potent Snk PBD-binding sequences into four residue blocks was defined, namely [Χ-5Χ-4]block1-[Ω-3Ω-2Ω-1]block2-[pS0/pT0]block3-[Ψ+1]block4, where the X represents any amino acid, Ω indicates polar amino acid, Ψ denotes hydrophobic amino acid, and pS0/pT0 is the anchor phosphoserine/phosphothreonine at reference residue position 0.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Pediatrics, Suzhou Ninth People's Hospital Affiliated to Soochow University, Suzhou, 215200, China
| | - Jixiao Lan
- Department of Internal Medicine, Suzhou Wujiang District Children Hospital, Soochow University, Suzhou, 215200, China
| | - Yan Feng
- Department of Internal Medicine, Suzhou Wujiang District Children Hospital, Soochow University, Suzhou, 215200, China
| | - Yumei Chen
- Department of Pediatrics, Suzhou Ninth People's Hospital Affiliated to Soochow University, Suzhou, 215200, China
| | - Meiyuan Chen
- Department of Internal Medicine, Suzhou Wujiang District Children Hospital, Soochow University, Suzhou, 215200, China.
| |
Collapse
|
4
|
Li Z, Peng Y, Ye H, Zhang Y, Zhou P. The C-terminal self-binding helical peptide of human estrogen-related receptor γ can be druggably targeted by a novel class of rationally designed peptidic antagonists. J Comput Chem 2024; 45:2771-2777. [PMID: 39158951 DOI: 10.1002/jcc.27473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024]
Abstract
Orphan nuclear estrogen-related receptor γ (ERRγ) has been recognized as a potential therapeutic target for cancer, inflammation and metabolic disorder. The ERRγ contains a regulatory AF2 helical tail linked C-terminally to its ligand-binding domain (LBD), which is a self-binding peptide (SBP) and serves as molecular switch to dynamically regulate the receptor alternation between active and inactive states by binding to and unbinding from the AF2-binding site on ERRγ LBD surface, respectively. Traditional ERRγ modulators are all small-molecule chemical ligands that can be classified into agonists and inverse agonists in terms of their action mechanism; the agonists stabilize the AF2 in ABS site with an agonist conformation, while the inverse agonists lock the AF2 out of the site to largely abolish ERRγ transcriptional activity. Here, a class of ERRγ peptidic antagonists was described to compete with native AF2 for the ABS site, thus blocking the active state of AF2 binding to ERRγ LBD domain. Self-inhibitory peptide was derived from the SBP-covering AF2 region and we expected it can rebind potently to the ABS site by reducing its intrinsic disorder and entropy cost upon the rebinding. Hydrocarbon stapling was employed to do so, which employed an all-hydrocarbon bridge across the [i, i + 4]-anchor residue pair in the N-terminal, middle or C-terminal region of the self-inhibitory peptide. As might be expected, it is revealed that the stapled peptides are good binders of ERRγ LBD domain and can effectively compete with the native AF2 helical tail for ERRγ ABS site, which exhibit a basically similar binding mode with AF2 to the site and form diverse noncovalent interactions with the site, thus conferring stability and specificity to the domain-peptide complexes.
Collapse
Affiliation(s)
- Zilong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Yue Peng
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Haiyang Ye
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Yunyi Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Peng Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| |
Collapse
|
5
|
Tang X, Chen J, Cai J, Wang Q. N-substituting perturbation on the interaction affinity and recognition specificity between rheumatic immune-related Abl SH3 domain and its peptoid ligands. J Mol Graph Model 2023; 125:108601. [PMID: 37607432 DOI: 10.1016/j.jmgm.2023.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
Abl is a nonreceptor tyrosine kinase involved in a variety of disease pathways such as rheumatic immune. Full-length Abl protein consists of a catalytic tyrosine kinase (TK) domain as well as two regulatory Src homology domains 2 and 3 (SH2 and SH3, respectively); the latter recognizes and binds to those natural proline-rich peptide segments containing a PxxP motif on the protein surface of its interacting partners. However, natural peptides cannot bind effectively to the modular domain in high affinity and strong selectivity due to their small size and broad specificity. Here, a synthetic proline-rich peptide p41 was used as template; its structural diversity was extended by combinationally replacing the Pro0 and Pro+3 residues with a number of N-substituted amino acids. Consequently, peptide affinity change upon the replacement was derived to create a systematic N-substituting perturbation profile, from which we identified several N-substitution combinations at the Pro0 and Pro+3 residues of p41 PxxP motif that may moderately or significantly improve the peptide binding potency to Abl; they represent potent peptoid binders of Abl SH3 domain, with affinity improved considerably relative to p41. More significantly, the designed potent peptoids were also found to exhibit a good SH3-selectivity for their cognate Abl over other noncognate nonreceptor tyrosine kinases, with S = 9.7-fold.
Collapse
Affiliation(s)
- Xiaomin Tang
- Department of Acupuncture Rehabilitation, Danyang Traditional Chinese Medicine Hospital, Zhenjiang 212399, China
| | - Jingjin Chen
- Department of Acupuncture Rehabilitation, Danyang Traditional Chinese Medicine Hospital, Zhenjiang 212399, China
| | - Jiahui Cai
- Department of Acupuncture Rehabilitation, Danyang Traditional Chinese Medicine Hospital, Zhenjiang 212399, China
| | - Qiuqin Wang
- Nursing College, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Lin J, Wang S, Wen L, Ye H, Shang S, Li J, Shu J, Zhou P. Targeting peptide-mediated interactions in omics. Proteomics 2023; 23:e2200175. [PMID: 36461811 DOI: 10.1002/pmic.202200175] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Peptide-mediated interactions (PMIs) play a crucial role in cell signaling network, which are responsible for about half of cellular protein-protein associations in the human interactome and have recently been recognized as a new kind of promising druggable target for drug development and disease therapy. In this article, we give a systematic review regarding the proteome-wide discovery of PMIs and targeting druggable PMIs (dPMIs) with chemical drugs, self-inhibitory peptides (SIPs) and protein agents, particularly focusing on their implications and applications for therapeutic purpose in omics. We also introduce computational peptidology strategies used to model, analyze, and design PMI-targeted molecular entities and further extend the concepts of protein context, direct/indirect readout, and enthalpy/entropy effect involved in PMIs. Current issues and future perspective on this topic are discussed. There is still a long way to go before establishment of efficient therapeutic strategies to target PMIs on the omics scale.
Collapse
Affiliation(s)
- Jing Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Shaozhou Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Li Wen
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Haiyang Ye
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Shuyong Shang
- Institute of Ecological Environment Protection, Chengdu Normal University, Chengdu, China
| | - Juelin Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Jianping Shu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Peng Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| |
Collapse
|
7
|
He Q, Xu S, Ma X, Ling T, Feng W, Lu X, Liu W, Chen Z. Coupled folding-upon-binding of human tumor suppressor MIG6 to lung cancer EGFR kinase domain and molecular trimming/stapling of MIG6-derived β-hairpins to target the coupling event. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:17-25. [PMID: 36547692 DOI: 10.1007/s00249-022-01624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Human epidermal growth factor receptor (EGFR) is involved in strong association with malignant proliferation, which has been shown to play a central role in the development and progression of non-small cell lung cancer and other solid tumors. The tumor-suppressor protein MIG6 is a negative regulator of EGFR kinase activity by binding at the activation interface of asymmetric dimer of EGFR kinase domain to disrupt EGFR dimerization and then inactivate the kinase. The protein adopts two discrete fragments 1 and 2 to directly interact with EGFR. It is revealed that the MIG6 fragment 2 is intrinsically disordered in free unbound state, but would fold into a well-structured β-hairpin when binding to EGFR, thus characterized by a so-called coupled folding-upon-binding process, which can be regarded as a compromise between favorable direct readout and unfavorable indirect readout. Here, a 23-mer F2P peptide was derived from MIG6 fragment 2, trimmed into a 17-mer tF2P peptide that contains the binding hotspot region of the fragment 2, and then constrained with an ordered hairpin conformation in free unbound state by disulfide stapling, finally resulting in a rationally stapled/trimmed stF2P peptide that largely minimizes the unfavorable indirect readout effect upon its binding to EGFR kinase domain, with affinity improved considerably upon the trimming and stapling/trimming. These rationally designed β-hairpin peptides may be further exploited as potent anti-lung cancer agents to target the activation event of EGFR dimerization.
Collapse
Affiliation(s)
- Quan He
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212000, China
| | - Shuanglan Xu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming, 650021, China
| | - Xiaomei Ma
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212000, China
| | - Ting Ling
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212000, China
| | - Weiqi Feng
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212000, China
| | - Xuzhi Lu
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212000, China
| | - Weihua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
8
|
Zhang L, Gong Y, Shen L. Molecular Stapling of Human Pediatric RSV Phosphoprotein’s C-terminal Tail-Derived Peptides to Target the Coupled Folding-Upon-Binding Event Between Phosphoprotein and Nucleocapsid. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Zhang Y, Wang J, Li W, Guo Y. Rational design of stapled helical peptides as antidiabetic PPARγ antagonists to target coactivator site by decreasing unfavorable entropy penalty instead of increasing favorable enthalpy contribution. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:535-543. [PMID: 36057906 DOI: 10.1007/s00249-022-01616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor belonging to the nuclear hormone receptor and has been exploited as a well-established druggable target for the treatment of diabetes mellitus (DM). Traditionally, small-molecule compounds have been developed to attack at the ligand site and Ser273 phosphorylation site of PPARγ. In this study, we derived helical peptide segments from the LXXLL motif region of coactivator proteins as antidiabetic PPARγ antagonists, which were expected to competitively disrupt the native interaction between PPARγ and its cognate coactivators by rebinding at PPARγ coactivator site. Structural analysis, dynamics simulation and energetics dissection revealed that these peptides cannot be well folded into active helical structure when splitting from the protein context of their parent coactivators and exhibit a large flexibility and intrinsic disorder in the free state, which would, therefore, incur a considerable entropy penalty upon rebinding to PPARγ. Hydrocarbon stapling strategy was employed to constrain these free coactivator peptides into ordered helical conformation, thus largely minimizing unfavorable entropy penalty but having only a moderate effect on favorable enthalpy contribution. The computational findings were further substantiated by fluorescence-based assays; the binding affinity of three potent SRC1, NCoA6 and p300 coactivator peptides to PPARγ was observed to be improved by 7.2-fold, 4.2-fold and 5.7-fold upon the stapling, which were also measured to have an efficient competitive potency with their unstapled counterparts for PPARγ coactivator site, with CC50 = 0.096, 0.12 and 0.18 μM, respectively.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, 261041, China
| | - Jie Wang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, 261041, China
| | - Wenchao Li
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, 261041, China
| | - Ying Guo
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, 261041, China.
| |
Collapse
|
10
|
Wu X, Qiu R, Yi W, Chen J, Zhang Z, Zhang J, Zhu Z. Structure-based analysis and rational design of human peroxiredoxin-1's C-terminus-derived peptides to target sulfiredoxin-1 in pancreatic cancer. Biophys Chem 2022; 288:106857. [PMID: 35901662 DOI: 10.1016/j.bpc.2022.106857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Human peroxiredoxin (PRX) family of antioxidant enzymes reduces hydrogen peroxide and alkyl hydroperoxide involved in the redox signaling, among which the widely documented PRX1 is a versatile molecule regulating cell growth, differentiation and apoptosis, and has been implicated in the tumorigensis of pancreatic cancer. In this study, we systematically examined the complex crystal structure of PRX1 with its cognate interacting partner sulfiredoxin-1 (SRX1) at molecular level, and found that the PRX1-SRX1 association is a typical peptide-mediated protein-protein interaction, where a 18-mer C-terminal tail (CTT) segment of PRX1 was identified to be primarily responsible for the interaction, which contributes ~80% and ~ 55% to the total binding potency of SRX1 to PRX1 monomer and homodimer, respectively. We also demonstrated that the SRX1 exhibits a strong global selectivity for PRX1 CTT tail over other PRX family proteins. Next, the intermolecular interaction between PRX1 CTT tail and SRX1 was investigated at structural, energetic and dynamic levels, from which a 9-mer core region of PRX1 CTT tail was defined as the SRX1-binding hotspot. Biophysical assays substantiated that the CTT and CTTc peptides (out of PRX1 protein context) can bind in an independent manner and possess a close affinity to SRX1. Based on the CTTc sketch a computational combinatorial library consisting of 216 designed peptide derivatives was rationally generated, from which the top-5 hits were found to have comparable affinity with CTT peptide and improved affinity relative to CTTc peptide. They can be used as structurally reduced lead molecular entities to further develop new peptidic agents for therapeutic purpose to disrupt the native PRX1-SRX1 interaction by competing with PRX1 CTT tail for the peptide-binding pocket of SRX1.
Collapse
Affiliation(s)
- Xiaoqiong Wu
- Department of Gastroenterology, Yueyang People's Hospital, the Affilinated Hospital of Hunan Normal University, Yueyang 414022, China.
| | - Rongyuan Qiu
- Department of Gastroenterology, Yueyang People's Hospital, the Affilinated Hospital of Hunan Normal University, Yueyang 414022, China
| | - Wei Yi
- Department of Gastroenterology, Yueyang People's Hospital, the Affilinated Hospital of Hunan Normal University, Yueyang 414022, China
| | - Juan Chen
- Department of Gastroenterology, Yueyang People's Hospital, the Affilinated Hospital of Hunan Normal University, Yueyang 414022, China
| | - Zhou Zhang
- Department of Gastroenterology, Yueyang People's Hospital, the Affilinated Hospital of Hunan Normal University, Yueyang 414022, China
| | - Ji Zhang
- Department of Gastroenterology, Yueyang People's Hospital, the Affilinated Hospital of Hunan Normal University, Yueyang 414022, China
| | - Zhiyuan Zhu
- Suzhou QingYaQiRui Biotechonology Co. Ltd, Suzhou 215100, China
| |
Collapse
|
11
|
Bao Z, Liu J, Fu J. Comprehensive binary interaction mapping of τ phosphotyrosine sites with SH2 domains in the human genome: Implications for the rational design of self-inhibitory phosphopeptides to target τ hyperphosphorylation signaling in Alzheimer's Disease. Amino Acids 2022; 54:859-875. [PMID: 35622130 DOI: 10.1007/s00726-022-03171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/08/2022] [Indexed: 11/01/2022]
Abstract
Human microtubule-associated protein Tau (τ) is abundant in the axons of neurons where it stabilizes microtubule bundles; abnormally hyperphosphorylated τ is a hallmark of Alzheimer's disease (AD) and related tauopathies. The hyperphosphorylation events can be recognized by phosphotyrosine-recognition domain SH2 (Src homology 2) to elicit downstream τ signaling in AD pathology. In this study, a comprehensive binary interaction map (CBIM) of all the 6 τ phosphotyrosine sites with 120 SH2 domains in the human genome was systematically created at structural level using computational analyses and binding assays, from which we were able to identify those of strong and moderate binding pairs of sites to domains. It is found that the SH2-recognition specificity of different τ phosphotyrosine sites has been evolutionally optimized to become roughly orthogonal to each other, and thus these site phosphorylations would regulate different but probably partially overlapped biological functions in τ signaling. Some SH2 groups such as SRC, RIN, PLCG, SOCS and SH2D were revealed to have effective binding potency as compared to others; they could be regarded as potential τ-associated proteins to transduce the downstream signaling. We further determined the systematic binding affinities of 6 τ-phosphopeptides to the 11 SH2 domains in SRC group, from which the FYN-τ18 and YES-τ29 pairs were identified as strong binders. Subsequently, rational molecular design was performed on τ18 and τ29 to derive a number of τ-phosphopeptide mutants with increased affinity; they are self-inhibitory candidates to competitively target τ hyperphosphorylation events in AD. In addition, it is revealed that the primary anchor pY0 and secondary anchor X+3 of τ-phosphopeptides play an important role in SRC-group SH2 recognition, which confer stability and specificity to the SH2-phosphopeptide binding, respectively.
Collapse
Affiliation(s)
- Zhonglei Bao
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Jianghua Liu
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, 163001, China
| | - Jin Fu
- Department of Neurology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
12
|
Ma H, Liu J, Wu W, He P. Interleukin-1α, Interleukin-1β and Interleukin-1 Receptor Antagonist Share a Common U-shaped Recognition Epitope on Interleukin-1 Receptor Surface. J Mol Recognit 2022; 35:e2963. [PMID: 35561040 DOI: 10.1002/jmr.2963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/06/2022]
Abstract
Interleukin-1 (IL-1) plays a central role in the regulation of immune and inflammatory responses. There are two forms of IL-1 agonists (IL-1α and IL-1β) and one form of IL-1 antagonist (IL-1Ra); they share a similar binding mode to IL-1 receptor (IL-1R) but exhibit opposite biological functions on the receptor. In this study, the intermolecular interactions of IL-1R receptor with IL-1α, IL-1β and IL-1Ra ligands were systematically investigated at structural, energetic and dynamic levels. It was found that the receptor primarily adopts a U-shaped, double-stranded and linear/conformational-hybrid epitope to commonly interact with the three ligands. The epitope covers a common protein segment (residues 107-127), which is fully located within in the C2T2 subsdomain of IL-1R extracellular domain (ECD) and contributes ~40% to the total binding energy of IL-1R/ligand association. The epitope is natively folded into an ordered conformation in IL-1R protein context but would become largely disordered out of the context. Here, we adopted a disulfide bridge to staple U-shaped epitope-derived peptides, which can be effectively constrained into a native-like conformation and thus exhibit an improved affinity to ligands as compared to their unstapled counterpart, with affinity increase by up to ~15-fold. These disulfide bridges were designed to point out of ligand/peptide complex interface and thus would not disrupt the direct complex interaction. Energetic decomposition imparted that the stapling has only a modest influence on the interaction enthalpy and desolvation effect of ligand/peptide binding, but can substantially reduce entropy penalty upon the binding. For a peptide, the stapling-addressed entropic reduction can be roughly regarded as a constant, which only improves peptide affinity to these ligands, but does not change peptide selectivity over different ligands. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huaijun Ma
- Department of Cardiac Surgery, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Surgery, Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan, China
| | - Jie Liu
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Wei Wu
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ping He
- Department of Cardiac Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Structural Mapping of BMP Conformational Epitopes and Bioengineering Design of Osteogenic Peptides to Specifically Target the Epitope-Binding Sites. Cell Mol Bioeng 2022; 15:341-352. [PMID: 36119132 PMCID: PMC9474794 DOI: 10.1007/s12195-022-00725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/11/2022] [Indexed: 11/03/2022] Open
Abstract
Introduction Human bone morphogenetic proteins (BMPs) constitute a large family of cytokines related to members of the transforming growth factor-β superfamily, which fulfill biological functions by specificity binding to their cognate type I (BRI) and type II (BRII) receptors through conformational wrist and linear knuckle epitopes, respectively. Methods and Results We systematically examined the intermolecular recognition and interaction between the BMP proteins and BRI receptor at structural, energetic and dynamic levels. The BRI-binding site consists of three hotspot regions on BMP surface, which totally contribute ~70% potency to the BMP-BRI binding events and represent the core sections of BMP conformational wrist epitope; the contribution increases in the order: hotspot 2 (~ 8%) < hotspot 3 (~ 20%) < hotspot 1 (~ 40%). Multiple sequence alignment and structural superposition revealed a consensus sequence pattern and a similar binding mode of the three hotspots shared by most BMP members, indicating a high conservation of wrist epitope in BMP family. The three hotspots are natively folded into wellstructured U-shaped,, loop and double-stranded conformations in BMP proteins, which, however, would become largely disordered when splitting from the protein context to derive osteogenic peptides in free state, thus largely impairing their rebinding capability to BRI receptor. In this respect, cyclization strategy was employed to constrain hotspot 1/3-derived peptides into a native-like conformation, which was conducted by adding a disulfide bond across the ending arms of linear peptides based on their native conformations. Fluorescence-based assays substantiated that the cyclization can effectively improve the binding affinities of osteogenic peptides to BRI receptor by 3-6-fold. The cyclic peptides also exhibit a good selectivity for BRI over BRII (> 5-fold), confirming that they can specifically target the wrist epitope-binding site of BRI receptor. Conclusion The rationally designed cyclic peptides can be regarded as the promising lead entities that should be further chemically modified to enhance their in vivo biological stability for further bioengineering therapeutic osteogenic peptides against chondrocyte senescence and bone disorder.
Collapse
|
14
|
Ma Y, Qi B, Ning M, Zhang L, An Z, Zhao J. Systematic analysis and molecular profiling of EGFR allosteric inhibitor cross-reactivity across the proto-oncogenic ErbB family kinases by integrating dynamics simulation, energetics calculation and biochemical assay. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:283-295. [PMID: 35307752 DOI: 10.1007/s00249-022-01594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/03/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Human ErbB family of proteins contains four receptor tyrosine kinases (EGFR, Her2, Her3 and Her4) and has been established as a group of attractive druggable targets against diverse cancers. Over the past decades, a variety of ATP-competitive inhibitors have been discovered to target the orthosteric site of EGFR, which, however, would eventually develop acquired drug resistance due to the missense mutations T790M/C797S occurring in orthosteric site. In recent years, a number of forth-generation inhibitors have been successfully designed to overcome the T790M/C797S-induced drug resistance by targeting EGFR allosteric site instead of orthosteric site. Considering that the four proto-oncogenic ErbB kinases share a high conservation in sequence, structure and function, we herein attempted to investigate the binding potency and cross-reactivity of cognate EGFR allosteric inhibitors over noncognate Her2, Her3 and Her4 kinases--they are closely related to gynecological tumors such as ovarian cancer but no allosteric inhibitors have been reported specifically for them to date. A systematic affinity profile of 12 allosteric inhibitors and 4 orthosteric inhibitors to the 4 ErbB kinases was created by integrating dynamics simulations, energetics calculations and biochemical assays, which was then used to derive a systematic inhibitor selectivity profile for EGFR over other three kinases. It is found that allosteric and orthosteric inhibitors exhibit moderate and modest cross-reactivity across the ErbB family, respectively, but the former generally has a higher binding potency than the latter due to the additional energy cost used for inducing kinase conformational change. Moreover, most allosteric inhibitors can be sensitized by Her2 T798M gatekeeper mutation, a counterpart of EGFR T790M gatekeeper mutation that has been previously reported to cause generic drug resistance for orthosteric inhibitors.
Collapse
Affiliation(s)
- Yanli Ma
- Department of Pharmacy, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, 061000, China
| | - Bingli Qi
- Department of Gynaecology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, 061000, China
| | - Meiying Ning
- Department of Pharmacy, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, 061000, China
| | - Lijuan Zhang
- Department of Pharmacy, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, 061000, China
| | - Zeyu An
- Department of Pharmacy, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, 061000, China
| | - Jing Zhao
- Department of Pharmacy, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, 061000, China.
| |
Collapse
|
15
|
Zhou P, Wen L, Lin J, Mei L, Liu Q, Shang S, Li J, Shu J. Integrated unsupervised-supervised modeling and prediction of protein-peptide affinities at structural level. Brief Bioinform 2022; 23:6555404. [PMID: 35352094 DOI: 10.1093/bib/bbac097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Cell signal networks are orchestrated directly or indirectly by various peptide-mediated protein-protein interactions, which are normally weak and transient and thus ideal for biological regulation and medicinal intervention. Here, we develop a general-purpose method for modeling and predicting the binding affinities of protein-peptide interactions (PpIs) at the structural level. The method is a hybrid strategy that employs an unsupervised approach to derive a layered PpI atom-residue interaction (ulPpI[a-r]) potential between different protein atom types and peptide residue types from thousands of solved PpI complex structures and then statistically correlates the potential descriptors with experimental affinities (KD values) over hundreds of known PpI samples in a supervised manner to create an integrated unsupervised-supervised PpI affinity (usPpIA) predictor. Although both the ulPpI[a-r] potential and usPpIA predictor can be used to calculate PpI affinities from their complex structures, the latter seems to perform much better than the former, suggesting that the unsupervised potential can be improved substantially with a further correction by supervised statistical learning. We examine the robustness and fault-tolerance of usPpIA predictor when applied to treat the coarse-grained PpI complex structures modeled computationally by sophisticated peptide docking and dynamics simulation. It is revealed that, despite developed solely based on solved structures, the integrated unsupervised-supervised method is also applicable for locally docked structures to reach a quantitative prediction but can only give a qualitative prediction on globally docked structures. The dynamics refinement seems not to change (or improve) the predictive results essentially, although it is computationally expensive and time-consuming relative to peptide docking. We also perform extrapolation of usPpIA predictor to the indirect affinity quantities of HLA-A*0201 binding epitope peptides and NHERF PDZ binding scaffold peptides, consequently resulting in a good and moderate correlation of the predicted KD with experimental IC50 and BLU on the two peptide sets, with Pearson's correlation coefficients Rp = 0.635 and 0.406, respectively.
Collapse
Affiliation(s)
- Peng Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Li Wen
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Jing Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Li Mei
- Institute of Culinary, Sichuan Tourism University, Chengdu 610100, China
| | - Qian Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Shuyong Shang
- of Ecological Environment Protection, Chengdu Normal University, Chengdu 611130, China
| | - Juelin Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Jianping Shu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| |
Collapse
|
16
|
Wu T, Ma H, He P, Zhang C, Wu Q. Interleukin-25 recognition by its unique receptor IL-17Rb via two discrete linear and cyclic epitopes. Chem Biol Drug Des 2021; 99:382-390. [PMID: 34873834 DOI: 10.1111/cbdd.13993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
Interleukin-17 (IL-17) is a family of pro-inflammatory cytokines and has been involved in the pathogenesis of chronic inflammatory and autoimmune diseases. The IL-17E, also known as IL-25, is a distinct member of this family that binds to its unique receptor IL-17Rb to induce the activation of nuclear factor kappa-light-chain enhancer of activated B cells. Here, we systematically examined the intermolecular recognition and association of IL-25 with IL-17Rb and demonstrated that the IL-25 primarily adopts two discrete linear and cyclic epitopes to interact with IL-17Rb. The two epitopes are separately located in the monomers 1 and 2 of IL-25 homodimer and cover sequences 125 DPRGNSELLYHN136 and 77 ELDRDLNRLPQDLY90 . They totally contribute 71.6% binding energy to the full-length IL-25. The linear epitope targets a site spanning over the extracellular fnIIID1 and fnIIID2 domains of IL-17Rb, while the cyclic epitope primarily binds at the fnIIID1 domain. In addition, we also found that the linear and cyclic epitopes are natively folded into ordered single-stranded and double-stranded conformations in IL-25 protein context, respectively, but would become largely disordered when splitting from the context to be free peptides, which, however, cannot bind effectively to IL-17Rb as them in the native state. In this respect, we extended the cyclic epitope to cover the whole IL-25 double-stranded region and added a disulfide bridge across its two strands at three selected anchor residue pairs. It is revealed that the disulfide-stapled peptides can be constrained into a native-like conformation and thus exhibit an improved binding potency to IL-17Rb as compared to their unstapled counterpart.
Collapse
Affiliation(s)
- Tao Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huaijun Ma
- Department of Cardiac Surgery, Southwest Hospital, Third Army Medical University, Chongqing, China
| | - Ping He
- Department of Cardiac Surgery, Southwest Hospital, Third Army Medical University, Chongqing, China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Lu G, Li X, Zhang J, Xu Q. Molecular insight into the affinity, specificity and cross-reactivity of systematic hepatocellular carcinoma RALT interaction profile with human receptor tyrosine kinases. Amino Acids 2021; 53:1715-1728. [PMID: 34618235 DOI: 10.1007/s00726-021-03083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
The ErbB family of receptor tyrosine kinases (RTKs) contains four members: EGFR, ErbB2, ErbB3 and ErbB4; they are involved in the tumorigenesis of diverse cancers and can be inhibited natively by receptor-associated late transducer (RALT), a negative feedback regulator of ErbB signaling in human hepatocytes and hepatocellular carcinoma. Although the biological effects of RALT on EGFR kinase have been widely documented previously, the binding behavior of RALT to other ErbB/RTK kinases still remains largely unexplored. Here, the intermolecular interactions of RALT ErbB-binding region (EBR) as well as its functional sections and peptide segments with ErbBs and other human RTKs were systematically investigated at molecular and structural levels, from which we were able to identify those potential kinase targets of RALT protein, and to profile the affinity, specificity and cross-reactivity of RALT EBR domain and its sub-regions against various RTKs. It is revealed that RALT can target all the four ErbB kinases with high affinity for EGFR/ErbB2/ErbB4 and moderate affinity for ErbB3, but generally exhibits modest affinity to other RTKs, albeit few kinases such as LTK, EPHB6, MET and MUSK were also top-ranked as the unexpected targets of RALT. Peptide segments covering the key binding regions of RALT EBR domain were identified with computational alanine scanning, which were then optimized to obtain a number of designed peptide mutants with improved selectivity between different top-ranked RTKs.
Collapse
Affiliation(s)
- Guang Lu
- Department of General Surgery, Liyang People's Hospital, Liyang, 213300, China
| | - Xiaoping Li
- Department of General Surgery, Liyang People's Hospital, Liyang, 213300, China
| | - Jun Zhang
- Department of General Surgery, Liyang People's Hospital, Liyang, 213300, China
| | - Qinghua Xu
- Department of General Surgery, Liyang People's Hospital, Liyang, 213300, China.
| |
Collapse
|
18
|
Structural definition of the discrete hotspot sites of BMP-2 conformational wrist epitope and rational design of the hotspot-derived osteogenic peptides against chondrocyte senescence. Bioorg Chem 2021; 116:105382. [PMID: 34598087 DOI: 10.1016/j.bioorg.2021.105382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023]
Abstract
The bone morphogenetic protein-2 (BMP-2) is an essential regulator of bone formation and remodeling, which has also been implicated in the pathogenesis of osteoarthritis and its closely related chondrocyte senescence. The BMP-2 uses a conformational wrist epitope and a linear knuckle epitope to interact with type-I (BMPR-I) and type-II (BMPR-II) receptors, respectively. Previously, the knuckle epitope has been intensely studied, but the wrist epitope still remains largely unexplored due to its discontinuous nature. In the present work, the intermolecular interaction of BMP-2 with BMPR-I was investigated systematically at structural, energetic and dynamic levels. Three discrete hotspots that represent the key BMPR-I recognition sites of BMP-2 were identified; they are spatially dispersed over the two monomers of BMP-2 dimer and totally account for 83.5 % binding potency of BMP-2 to BMPR-I (hotspot 1: residues 49-70 in monomer 1; hotspot 2: residues 24-31 in monomer 2; hotspot 3: residues 88-107 in monomer 2). Therefore, we defined the three discrete hotspot sites as the core region of wrist epitope; their contribution to the binding increases in the order: hotspot 2 < hotspot 3 < hotspot 1. We demonstrated that the primary hotspot 1 site has a native U-shaped conformation in the full-length BMP-2 protein context, but it cannot maintain in the native conformation when split from the context to obtain a free hotspot-1 peptide, thus largely impairing its binding potency to BMPR-I. We further employed disulfide-bonded cyclization and head-to-tail cyclization to constrain the peptide conformation, and found that only the former can effectively constrain the peptide into native conformation, thus considerably improving its binding affinity to BMPR-I, whereas the latter totally disorders the native conformation, thus rendering the peptide as a full nonbinder of BMPR-I.
Collapse
|
19
|
Zhang D, Wu H, Zhao J. Computational design and experimental substantiation of conformationally constrained peptides from the complex interfaces of transcriptional enhanced associate domains with their cofactors in gastric cancer. Comput Biol Chem 2021; 94:107569. [PMID: 34500324 DOI: 10.1016/j.compbiolchem.2021.107569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
Transcriptional enhanced associate domains (Teads) are the downstream effectors of the hippo signaling pathway and have been recognized as attractive druggable targets of gastric cancer. The biological function of Teads is regulated by diverse cofactors. In this study, the intermolecular interactions of Teads with their cognate cofactors were systematically characterized at structural, thermodynamic and dynamic levels. The Teads possess a double-stranded helical hairpin that is surrounded by three independent structural elements β-sheet, α-helix and Ω-loop of cofactor proteins and plays a central role in recognition and association with cofactors. A number of functional peptides were split from the hairpin region at Tead-cofactor complex interfaces, which, however, cannot maintain in native conformation without the support of protein context and would therefore incur a considerable entropy penalty upon competitively rebinding to the interfaces. Here, we further used disulfide and hydrocarbon bridges to cyclize and staple the hairpin and helical peptides, respectively. The chemical modification strategies were demonstrated to effectively constrain peptide conformation into active state and to largely reduce peptide flexibility in free state, thus considerably improving their affinity. Since the cyclization and stapling only minimize the indirect entropy cost but do not influence the direct enthalpy effect upon peptide binding, the designed conformationally constrained peptides can retain in their native selectivity over different cofactors. This is particularly interesting because it means that the cyclized/stapled, affinity-improved peptides can specifically compete with their parent Teads for the cofactor arrays as they share consistent target specificity.
Collapse
Affiliation(s)
- Donglei Zhang
- Department of Pharmacy, Cangzhou Central Hospital, Hebei Medical University, Cangzhou 061014, China
| | - Hongna Wu
- Cangzhou Institute for Food and Drug Control, Cangzhou 061003, China
| | - Jing Zhao
- Department of Pharmacy, Cangzhou Central Hospital, Hebei Medical University, Cangzhou 061014, China.
| |
Collapse
|
20
|
Zhong H, He J, Yu J, Li X, Mei Y, Hao L, Wu X. Mig6 not only inhibits EGFR and HER2 but also targets HER3 and HER4 in a differential specificity: Implications for targeted esophageal cancer therapy. Biochimie 2021; 190:132-142. [PMID: 34293452 DOI: 10.1016/j.biochi.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022]
Abstract
The human EGF receptor family plays pivotal roles in physiology and cancer, which contains four closely-related members: HER1/EGFR, HER2, HER3 and HER4. Previously, it was found that the mitogen-inducible gene 6 (Mig6) protein is a negative regulator of EGFR and HER2 by using its S1 segment to bind at the kinase dimerization interface. However, it is still unclear whether the S1 segment can also effectively target HER3 and HER4? Here, we performed a systematic investigation to address this issue. The segment can bind to all the four HER kinases with a varying affinity and moderate selectivity; breaking of the segment into shorter hotspot peptides would largely impair the affinity and selectivity, indicating that the full-length sequence is required for the effective binding of S1 to these kinases. The hs2 peptide, which corresponds to the middle hotspot region of S1 segment, can partially retain the affinity to HER kinases, can moderately compete with S1 segment at the dimerization interfaces, and can mimic the biological function of Mig6 protein to suppress HER4+ esophageal cancer at cellular level. In addition, we also analyzed the binding potency of S1 segment and hs2 peptide to the kinase domains of other five widely documented growth factor receptors (GFRs). It was showed that both the S1 and hs2 cannot effectively interact with these receptors. Overall, the Mig6 is suggested as a specific pan-HER inhibitor, which can target and suppress HER family members with a broad selectivity, but exhibits weak or no activity towards other GFRs.
Collapse
Affiliation(s)
- Hai Zhong
- Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Cardiothoracic Surgery, Ningbo Yinzhou Second Hospital, Ningbo, 315040, China
| | - Jiajia He
- Department of Hematologic Oncology, Ningbo Yinzhou Second Hospital, Ningbo, 315040, China
| | - Jingjing Yu
- Department of Hematologic Oncology, Ningbo Yinzhou Second Hospital, Ningbo, 315040, China
| | - Xiang Li
- Department of Emergency, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuxian Mei
- Department of Urology, Wenling Hospital of Traditional Chinese Medicine, Wenling, 317500, China
| | - Long Hao
- Department of General Surgery, Ningbo Yinzhou Second Hospital, Ningbo, 315040, China
| | - Xu Wu
- Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
21
|
Zhuang X, Shen X, Niu W, Kong L. Disulfide-stapled design of α-helical bundles to target the trimer-of-hairpins motif of human respiratory syncytial virus fusion protein. J Mol Graph Model 2021; 108:107984. [PMID: 34311259 DOI: 10.1016/j.jmgm.2021.107984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Human respiratory syncytial virus (RSV) is the major cause of acute lower respiratory tract infections worldwide in infants and young children. The RSV F glycoprotein is a class I fusion protein that mediates viral entry into host cells and is a major target of neutralizing antibodies. Targeting F glycoprotein has been recognized as a promising antiviral therapeutic strategy against RSV infection. Here, we reported the disulfide-stapled design of α-helical bundle to target the trimer-of-hairpins (TOH) motif of RSV F glycoprotein, which is the central regulatory module that triggers viral membrane fusion event. In TOH motif, three N-terminal heptad repeat (NtHR) helices form a trimeric coiled-coil core and other three C-terminal heptad repeat (CtHR) helices add to the core in an antiparallel manner. Interaction analysis between NtHR and CtHR revealed that the C-terminal tail of CtHR packs tightly against NtHR as compared to the N-terminal and middle regions of CtHR. A core binding site in CtHR C-terminus was identified, which represents a 13-mer chp peptide and can effectively interact with NtHR helix in native ordered conformation but would become largely disordered when splitting from the protein context of CtHR helix. Two chp helices were stapled together in a parallel manner with single, double or triple disulfide bridges, thus systematically resulting in seven disulfide-stapled α-helical bundles. Molecular simulations revealed that the double and triple stapling can effectively stabilize the structured conformation of α-helical bundles, whereas the free conformation of single-stapled bundles still remain intrinsically disordered in solvent. The double-stapled bundle chp-ds[508,516] and the triple-stapled bundle chp-ts[508,512,516] were rationally designed to have high potency; they can form a tight three-helix bundle with NtHR helix, thus potently targeting NtHR-CtHR interactions involved in RSV-F TOH motif through a competitive disruption mechanism.
Collapse
Affiliation(s)
- Xinrong Zhuang
- Department of Internal Medicine, Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Xuefeng Shen
- Department of Internal Medicine, Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Wensi Niu
- Department of Internal Medicine, Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Lingjun Kong
- Department of Internal Medicine, Children's Hospital of Wujiang District, Suzhou 215200, China.
| |
Collapse
|
22
|
He B, Wu T, He P, Lv F, Liu H. Structure-based derivation and optimization of YAP-like coactivator-derived peptides to selectively target TEAD family transcription factors by hydrocarbon stapling and cyclization. Chem Biol Drug Des 2021; 97:1129-1136. [PMID: 33283479 DOI: 10.1111/cbdd.13813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 11/29/2020] [Indexed: 12/25/2022]
Abstract
Human transcriptional enhanced associate domain (TEAD) family consists of four paralogous transcription factors that function to modulate gene expression by interacting with YAP-like coactivators and have been recognized as potential therapeutic targets of diverse diseases including lung cancer and gastric tumor. Here, we attempt to explore the systematic interaction profile between the 4 TEAD proteins and the peptides derived from the binding sites of 8 known YAP-like coactivators, in order to analyze the binding affinity and recognition specificity of these peptides toward the TEAD family, and to design hydrocarbon-stapled/cyclized peptides that can target the specific interaction profile for each coactivator. Structural, energetic, and dynamic investigations of TEAD-coactivator interactions reveal that the coactivators adopt three independent secondary structure regions (β-strand, α-helix, and Ω-loop) to surround on the surface of TEAD proteins, in which the α-helical and Ω-loop regions are primarily responsible for the interactions. Five α-helical peptides and four Ω-loop peptides are derived from the 8 YAP-like coactivators, and their systematic binding profile toward the 4 TEAD proteins is created, and hydrocarbon stapling and cyclization strategies are employed to constrain the free α-helical and Ω-loop peptides into their native conformations, respectively, thus effectively promoting peptide binding to TEADs. The all-hydrocarbon and disulfide bridges are designed to point out the TEAD-peptide complex interface, which would not disrupt the direct intermolecular interaction between the TEAD and peptide. Therefore, the stapling and cyclization only improve peptide binding affinity to these TEADs, but do not alter peptide recognition specificity over different TEADs.
Collapse
Affiliation(s)
- Bo He
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Wu
- Department of Thoracic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ping He
- Department of Cardiac Surgery, Southwest Hospital, Third Army Medical University, Chongqing, China
| | - Fenglin Lv
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Hongxiang Liu
- Department of Thoracic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
23
|
Zhao G, Zhang L, Che L, Li H, Liu Y, Fang J. Revisiting bone morphogenetic protein-2 knuckle epitope and redesigning the epitope-derived peptides. J Pept Sci 2021; 27:e3309. [PMID: 33619824 DOI: 10.1002/psc.3309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/04/2023]
Abstract
The bone morphogenetic protein-2 (BMP2) plays a crucial role in bone formation, growth and regeneration, which adopts a conformational wrist epitope and a linear knuckle epitope to interact with its type-I (BRI) and type-II (BRII) receptors, respectively. In this study, we systematically examine the BRII-recognition site of BMP2 at structural, energetic and dynamic levels and accurately locate hotspots of the recognition at BMP2-BRII complex interface. It is revealed that the traditional knuckle epitope (BMP2 residue range 73-92) do fully match the identified hotspots; the BMP2-recognition site includes the C-terminal region of traditional knuckle epitope as well as its flanked β-strands. In addition, the protein context of full-length BMP2 is also responsible for the recognition by addressing conformational constraint on the native epitope segment. Therefore, we herein redefine the knuckle epitope to BMP2 residue range 84-102, which has a similar sequence length but is slid along the protein sequence by ~10 residues as compared to traditional knuckle epitope. The redefined one is also a linear epitope that is natively a double-stranded β-sheet with two asymmetric arms as compared to the natively single β-strand of the traditional version, although their sequences are partially overlapped to each other. It is revealed that the redefined epitope-derived peptide LN84-102 exhibits an improved affinity by >3-fold relative to the traditional epitope-derived peptide KL73-92 . Even so, the LN84-102 peptide still cannot fully represent the BMP2 recognition event by BRII that has been reported to have a nanomolar affinity. We further introduce a disulfide bond across the two arms of double-stranded β-sheet to constrain the free LN84-102 peptide conformation, which mimics the conformational constraint addressed by protein context. Consequently, several cyclic peptides are redesigned, in which the LN84-102 (cyc89-101) is determined to exhibit a sub-micromolar affinity; this value is ~5-fold higher than its linear counterpart. Structural analysis also reveals that the cyclic peptide can interact with BRII in a similar binding mode with the redefined knuckle epitope region in full-length BMP2 protein.
Collapse
Affiliation(s)
- Guangzong Zhao
- Department of Orthopedics, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| | - Longqiang Zhang
- Department of Orthopedics, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| | - Lifan Che
- Department of Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| | - Huazhuang Li
- Department of Orthopedics, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| | - Yao Liu
- Department of Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| | - Jun Fang
- Department of Orthopedics, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| |
Collapse
|
24
|
Structure-Based Optimization of Therapeutic Peptide Selectivity Between Cerebrovascular Rho-1 and Rho-2 Kinase Isoforms. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Zhou P, Wang H, Chen Z, Liu Q. Context contribution to the intermolecular recognition of human ACE2-derived peptides by SARS-CoV-2 spike protein: implications for improving the peptide affinity but not altering the peptide specificity by optimizing indirect readout. Mol Omics 2020; 17:86-94. [PMID: 33174576 DOI: 10.1039/d0mo00103a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an etiological agent of the current rapidly growing outbreak of coronavirus disease (COVID-19), which is straining health systems around the world. Disrupting the intermolecular association of SARS-CoV-2 spike glycoprotein (S protein) with its cell surface receptor human angiotensin-converting enzyme 2 (hACE2) has been recognized as a promising therapeutic strategy against COVID-19. The association is a typical peptide-mediated interaction, where the hACE adopts an α1-helix, which can form a two-helix bundle with the α2-helix, to pack against a flat pocket on the S protein surface. Here, we demonstrate that the protein context of full-length hACE plays an essential role in supporting the hACE2 α1-helix recognition by viral S protein. Energetic analysis reveals that the α1-helical peptide (αHP) and also the two-helix bundle peptide (tBP) cannot bind effectively to S protein when they are split from the hACE protein. The context contributes moderately and considerably to the direct readout (DR) and indirect readout (IR) of peptide recognition, respectively. Dynamics simulation suggests that the two free peptides exhibit a large intrinsic disorder without the support of protein context, which would incur a considerable entropy penalty upon binding to S protein. To restore the IR effect lost by splitting peptides from hACE, we herein propose employing hydrocarbon stapling and cyclization strategies to constrain the free αHP and tBP peptides into their native ordered conformations, respectively. The stapling and cyclization are carefully designed in order to avoid influencing the peptide DR effect, which has been demonstrated to improve the peptide binding affinity (but not specificity) to S protein. The stapling/cyclization-imposed conformational constraint can effectively minimize the unfavorable IR effect (i) by reducing the peptide flexibility and entropy cost upon their binding to S protein, and (ii) by helping peptide pre-folding into their native state to facilitate the conformational selection by S protein.
Collapse
Affiliation(s)
- Peng Zhou
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, No. 2006 Xiyuan Ave West Hi-Tech Zone, Chengdu 611731, China.
| | | | | | | |
Collapse
|
26
|
Zheng W, Lan J, Feng L, Chen Z, Feng S, Gao Y, Ren F, Chen Y. Structure-Based Optimization of Conformationally Constrained Peptides to Target Esophageal Cancer TEAD Transcription Factor. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10138-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Wu Y, Jia G, Chi H, Jiao Z, Sun Y. Integrated In Silico-In Vitro Identification and Optimization of Bone Morphogenic Protein-2 Armpit Epitope as Its Antagonist Binding Site. Protein J 2020; 39:703-710. [PMID: 33130958 DOI: 10.1007/s10930-020-09937-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 11/28/2022]
Abstract
Bone morphogenic protein-2 (BMP-2) is the most documented member of BMP family and plays a crucial role in bone formation and growth. In this study, we systematically analyze and compare the complex crystal structures and interaction properties of BMP-2 with its cognate receptors BMPR-I/BMPR-II and with its natural antagonist crossveinless-2 (CV-2) using an integrated in silico-in vitro strategy. It is found that the antagonist-binding site is not fully overlapped with the two receptor-binding sites on BMP-2 surface; the antagonist can competitively disrupt BMP-2-BMPR-II interaction using a blocking-out-of-site manner, but has no substantial influence on BMP-2-BMPR-I interaction. Here, the antagonist-binding site is assigned as a new functional epitope armpit to differ from the traditional conformational epitope wrist and linear epitope knuckle at receptor-binding sites. Structural analysis reveals that the armpit comprises three sequentially discontinuous, structurally vicinal peptide segments, separately corresponding to a loop region and two β-strands crawling on the protein surface. The three segments cannot work independently when splitting from the protein context, but can restore binding capability to CV-2 if they are connected to a single peptide. A systematic combination of different-length polyglycine linkers between these segments obtains a series of designed single peptides, from which several peptides that can potently interact with the armpit-recognition site of CV-2 with high affinity and specificity are identified using energetic analysis and fluorescence assay; they are expected to target BMP-2-CV-2 interaction in a self-inhibitory manner.
Collapse
Affiliation(s)
- Yanping Wu
- Department of Joint and Traumatic Orthopedics, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Guanghong Jia
- Department of Pediatrics, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Haiyan Chi
- Department of Pediatrics, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Zhaode Jiao
- Department of Joint and Traumatic Orthopedics, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Yinghua Sun
- Department of Joint and Traumatic Orthopedics, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China.
| |
Collapse
|
28
|
Zhang D, He D, Pan X, Liu L. Rational Design and Intramolecular Cyclization of Hotspot Peptide Segments at YAP–TEAD4 Complex Interface. Protein Pept Lett 2020; 27:999-1006. [DOI: 10.2174/0929866527666200414160723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 11/22/2022]
Abstract
Background:
The Yes-Associated Protein (YAP) is a central regulator of Hippo pathway
involved in carcinogenesis, which functions through interaction with TEA Domain (TEAD)
transcription factors. Pharmacological disruption of YAP–TEAD4 complexes has been recognized
as a potential therapeutic strategy against diverse cancers by suppressing the oncogenic activity of
YAP.
Objective:
Two peptides, termed PS-1 and PS-2 are split from the interfacial context of YAP protein.
Dynamics simulations, energetics analyses and fluorescence polarizations are employed to
characterize the intrinsic disorder as well as binding energy/affinity of the two YAP peptides to
TEAD4 protein.
Methods:
Two peptides, termed PS-1 and PS-2 are split from the interfacial context of YAP protein.
Dynamics simulations, energetics analyses and fluorescence polarizations are employed to
characterize the intrinsic disorder as well as binding energy/affinity of the two YAP peptides to
TEAD4 protein.
Result:
The native conformation of PS-2 peptide is a cyclic loop, which is supposed to be constrained
by adding a disulfide bond across the spatially vicinal residue pair Arg87-Phe96 or Met86-
Phe95 at the peptide’s two ends, consequently resulting in two intramolecular cyclized counterparts
of linear PS-2 peptide, namely PS-2(cyc87,96) and PS-2(cyc86,95). The linear PS-2 peptide
is determined as a weak binder of TEAD4 (Kd = 190 μM), while the two cyclic PS-2(cyc87,96) and
PS-2(cyc86,95) peptides are measured to have moderate or high affinity towards TEAD4 (Kd = 21
and 45 μM, respectively).
Conclusion:
PS-1 and PS-2 peptides are highly flexible and cannot maintain in native active conformation
when splitting from the interfacial context, and thus would incur a considerable entropy
penalty upon rebinding to the interface. Cyclization does not influence the direct interaction between
PS-2 peptide and TEAD4 protein, but can largely reduce the intrinsic disorder of PS-2 peptide
in free state and considerably minimize indirect entropy effect upon the peptide binding.
Collapse
Affiliation(s)
- Dingwa Zhang
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an 343009, China
| | - Deyong He
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an 343009, China
| | - Xiaoliang Pan
- School of Mechanical and Electrical Engineering, Jinggangshan University, Ji’an 343009, China
| | - Lijun Liu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an 343009, China
| |
Collapse
|
29
|
Wang H, Yang Z, Liu Y. Systematic characterization of
adenosine triphosphate
response to lung cancer epidermal growth factor receptor missense mutations: A molecular insight into “generic” drug resistance mutations. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hui Wang
- Department of Respiratory Medicine Zhucheng People's Hospital Affiliated to Weifang Medical University Zhucheng China
| | - Zengjian Yang
- Department of Respiratory Medicine Zhucheng People's Hospital Affiliated to Weifang Medical University Zhucheng China
| | - Yanliang Liu
- Department of Respiratory Medicine Zhucheng People's Hospital Affiliated to Weifang Medical University Zhucheng China
| |
Collapse
|
30
|
Gao S, Wang Y, Ji L. Rational design and chemical modification of TEAD coactivator peptides to target hippo signaling pathway against gastrointestinal cancers. J Recept Signal Transduct Res 2020; 41:408-415. [PMID: 32912021 DOI: 10.1080/10799893.2020.1818093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human Hippo signaling pathway has been recognized as a new and promising therapeutic target of gastrointestinal cancers, which is regulated by the intermolecular recognition between the TEA domain (TEAD) transcription factor and its prime coactivators. The coactivator proteins adopt two hotspot sites, namely α-helix and Ω-loop, to interact with TEAD. Here, we demonstrate that both the α-helix and Ω-loop peptides cannot maintain in structured state when splitting from the full-length coactivator proteins; they exhibit a large intrinsic disorder in free state that prevents the coactivator peptide recognition by TEAD. Rational design is used to optimize the interfacial residues of coactivator α-helix peptides, which can effectively improve the favorable direct readout effect upon the peptide binding to TEAD. Chemical modification is employed to constrain the free α-helix peptide into native ordered conformation. The method introduces an all-hydrocarbon bridge across i and i + 4 residues to stabilize the helical structure of a free coactivator peptide, which can considerably reduce the unfavorable indirect readout effect upon the peptide binding to TEAD. The all-hydrocarbon bridge is designed to point out of the TEAD-peptide complex interface, which would not disrupt the direct intermolecular interaction between the TEAD and peptide. Therefore, the stapling only improves peptide affinity, but does not alter peptide specificity, to TEAD. Affinity assay confirms that the binding potency of coactivator α-helix peptides is improved substantially by >5-fold upon the rational design and chemical modification. Structural analysis reveals that the optimized/stapled peptides can form diverse nonbonded interactions such as hydrogen bonds and hydrophobic contacts with TEAD, thus conferring stability and specificity to the TEAD-peptide complex systems.
Collapse
Affiliation(s)
- Shuxia Gao
- Department of Gastroenterology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| | - Yingchao Wang
- Department of Gastroenterology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| | - Lijuan Ji
- Department of Gastroenterology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, China
| |
Collapse
|
31
|
Zhou W, Yang H, Wang H. Inverse in silico-in vitro fishing of unexpected paroxetine kinase targets from tumor druggable kinome. J Mol Model 2020; 26:197. [PMID: 32623519 DOI: 10.1007/s00894-020-04444-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
The serotonin selective reuptake inhibitor paroxetine has been clinically observed to reposition a significant suppressing potency on human tumors by unexpectedly targeting diverse kinase pathways involved in tumorigenesis. Here, we describe an inverse in silico-in vitro strategy to fish potential kinase targets using the paroxetine as bait. This is different (inverse) to the traditional drug discovery process that commonly screens small-molecule inhibitors for a specific kinase target. In the procedure, cell viability assays demonstrate that paroxetine has strong cytotoxicity on human tumor cell lines. Various protooncogene protein kinases are ontologically/manually enriched to define a druggable kinome, and a systematic interaction profile of paroxetine with the kinome is created, which indicates that paroxetine can potentially bind to some known targets or key regulators of human tumors. Kinase assays determine that paroxetine can effectively inhibit c-Src family kinases at nanomolar or micromolar levels. It is observed that the paroxetine ligand forms a tightly packed interface against the active site of these unexpected kinase targets to constitute several specific hydrogen bonds/π-π/cation-π stackings and a number of nonspecific hydrophobic/vdW contacts, while exposing a portion of molecular surface to solvent. More significantly, the ligand adopts two distinct binding modes (i.e., class I and class II) to interact with different kinases; the class-I mode has a higher stability and inhibitory activity than class-II mode. Steric clash seems to cause the ligand flipping from class I to class II. Graphical abstract.
Collapse
Affiliation(s)
- Weiyan Zhou
- Department of Gynaecology, The Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'an, Huai'an, 223002, China
| | - Hongbo Yang
- Department of Gynaecology, Huai'an Maternal and Child Health Care Center, The Affiliated Hospital of Yangzhou University Medical College, Huai'an, 223000, China
| | - Haifeng Wang
- Department of Gynaecology, Huai'an Maternal and Child Health Care Center, The Affiliated Hospital of Yangzhou University Medical College, Huai'an, 223000, China.
| |
Collapse
|
32
|
Tang W, Wang C, Zhou Y, Luo J, Ye T, Yang B. Hydrocarbon-stapling stabilization of the reduced homodimerization interaction of hepatic cancer DAP12 transmembrane domain in water phase. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-01016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Yu X, Zhang A, Sun G, Li X. Molecular selectivity design of mitogen-inducible gene-derived phosphopeptides between oncogenic HER kinases. J Mol Graph Model 2020; 99:107661. [PMID: 32574989 DOI: 10.1016/j.jmgm.2020.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 11/28/2022]
Abstract
Mitogen-inducible gene (MIG) is a natural negative regulator of the oncogenic HER kinase signaling by binding at the activation interface of kinase domain to disrupt the kinase dimerization. In this study, we systematically examine the binding structures, dynamics and energetics of MIG region 2 to four HER kinases based on their crystal or modeled complex structures, and identify an 8-mer phosphopeptide segment pYpY from the core strand sequence of MIG region 2 as the binding hotspot of MIG protein to HER kinases. We demonstrate that the small pYpY phosphopeptide can partially restore the binding affinity of full-length MIG protein, but exhibit a moderate selectivity over different HER kinases (S = 2.3-fold). In addition, the two phosphotyrosine residues pTyr394 and pTyr395 play an essential role in MIG-HER binding; dephosphorylation of them would fully eliminate the binding capability. A machine evolution algorithm is used to optimize the wild-type pYpY phosphopeptide, aiming to simultaneously improve affinity for these kinases and to maximize the affinity gap between different kinases. Consequently, a population is computationally evolved as selective phosphopeptide candidates; the dissociation constants of four representatives with HER kinases are systematically determined using binding affinity analysis, from which their selectivity is derived. The designed pYpYp3 phosphopeptide possesses a high selectivity over different HER kinases (S = 4.8-fold) and satisfactory affinity profile to these kinase (KD = 140-1000 μM). Structural analysis observes that the global binding modes of pYpYp3 to different kinases are roughly consistent, but its local conformation may vary considerably, thus conferring specificity to the phosphopeptide.
Collapse
Affiliation(s)
- Xiuli Yu
- Department of Radiotherapy, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Aiying Zhang
- Orthopaedic Trauma, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Guoyu Sun
- Intensive Care Unit, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China
| | - Xuebo Li
- Department of Radiotherapy, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang, 262500, China.
| |
Collapse
|
34
|
Studying Calcium Ion-Dependent Effect on the Inter-subunit Interaction Between the cTnC N-terminal Domain and cTnI C-terminal Switch Peptide of Human Cardiac Troponin via Chou’s 5-Steps Rule. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09875-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Wu D, Luo L, Yang Z, Chen Y, Quan Y, Min Z. Targeting Human Hippo TEAD Binding Interface with YAP/TAZ-Derived, Flexibility-Reduced Peptides in Gastric Cancer. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10069-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Fan X, Xia H, Liu X, Li B, Fang J. Computational Design and Experimental Confirmation of a Head-to-Tail Cyclic Peptide to Target Human Bone Morphogenic Protein 2 based on its Type-IA Receptor. J Bioinform Comput Biol 2020. [DOI: 10.1142/s0219720020500213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Zhang W, Liu J, Shan H, Yin F, Zhong B, Zhang C, Yu X. Machine learning-guided evolution of BMP-2 knuckle Epitope-Derived osteogenic peptides to target BMP receptor II. J Drug Target 2020; 28:802-810. [PMID: 32354236 DOI: 10.1080/1061186x.2020.1757100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Wei Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiazhi Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haojie Shan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fuli Yin
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Biao Zhong
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chi Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
38
|
Ding X, Tong C, Chen R, Wang X, Gao D, Zhu L. Systematic molecular profiling of inhibitor response to the clinical missense mutations of ErbB family kinases in human gastric cancer. J Mol Graph Model 2020; 96:107526. [DOI: 10.1016/j.jmgm.2019.107526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/14/2019] [Accepted: 12/24/2019] [Indexed: 01/20/2023]
|
39
|
Rational Derivation of Osteogenic Peptides from Bone
Morphogenetic Protein-2 Knuckle Epitope by Integrating In
Silico Analysis and In Vitro Assay. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10058-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
He Y. Systematic response of staurosporine scaffold-based inhibitors to drug-resistant cancer kinase mutations. Arch Pharm (Weinheim) 2020; 353:e1900320. [PMID: 32285482 DOI: 10.1002/ardp.201900320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/25/2020] [Accepted: 03/24/2020] [Indexed: 11/10/2022]
Abstract
Human protein kinases have been established as promising druggable targets in cancer therapy. However, a large number of acquired drug-resistant kinase mutations are observed after first- and second-line kinase inhibitor treatments, largely limiting the application of small-molecule inhibitors in the targeted cancer therapy. Previously, the pan-kinase inhibitor staurosporine and its derivatives have been reported to selectively inhibit gatekeeper mutants over wild-type kinases, suggesting that the staurosporine scaffold is potentially helpful in developing wild-type-sparing inhibitors of drug-resistant kinase mutants. Here, a systematic response profile of 32 staurosporine scaffold-based inhibitors (SSBIs) for 61 ontology-enriched drug-resistant cancer kinase mutations is created using a combination of in silico analysis and in vitro assay, from which it is possible to identify those mutations that have the potential to cause resistance or confer sensitivity to SSBIs. The profile reveals that SSBIs exhibit distinct responses to kinase gatekeeper and nongatekeeper mutations, and SSBIs bearing p7 substituents can considerably influence their response to kinase gatekeeper mutations, particularly for the mutations of the Ile residue, which possesses a Cβ methyl group that tends to cause steric clash with bound SSBIs. Nongatekeeper mutations generally have a moderate and unfavorable effect on SSBI activity, as most of them are outside the kinase active site and do not directly contact inhibitor ligands. In addition, it is found that resistance is commonly caused by mutation-induced hindrance effects, whereas sensitivity is primarily conferred by mutation-established additional interactions.
Collapse
Affiliation(s)
- Yongkang He
- Department of Infectious Diseases, Taixing People's Hospital, Yangzhou University, Taixing, China
| |
Collapse
|
41
|
Lian F, Wang Z, Zhou Z, Xu G. Identification, characterization, and comparison of n-alkanols and anesthetics binding to the C1b subdomain of protein kinase cα: similar function with different binding sites. J Recept Signal Transduct Res 2020; 40:109-116. [PMID: 32054382 DOI: 10.1080/10799893.2020.1726950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Protein kinase C (PKC) is a family of lipid-activated enzymes involved in anesthetic preconditioning signaling pathways. Previously, n-alkanols and general anesthetics have been found to activate PKC by binding to the kinase C1B subdomain. In the present study, we attempt to ascertain the molecular mechanism and interaction mode of human PKCα C1B subdomain with a variety of exogenous n-alkanols and volatile general anesthetics as well as endogenous activator phorbol ester (PE) and co-activator diacylglycerol (DG). Systematic bioinformatics analysis identifies three spatially vicinal sites on the subdomain surface to potentially accommodate small-molecule ligands, where the site 1 is a narrow, amphipathic pocket, the site 2 is a wide, flat and hydrophobic pocket, and the site 3 is a rugged, polar pocket. Further interaction modeling reveals that site 1 is the cognate binding region of natural PE activator, which can moderately simulate the kinase activity in an independent manner. The short-chain n-alkanols are speculated to also bind at the site to competitively inhibit PE-induced kinase activation. The long-chain n-alkanols and co-activator DG are found to target site 2 in a nonspecific manner, while the volatile anesthetics prefer to interact with site 3 in a specific manner. Since the site 1 is composed of two protein loops that are also shared by sites 2 and 3, binding of n-alkanols, DG and anesthetics to sites 2 and 3 can trigger a conformational displacement on the two loops, which enlarges the pocket size and changes the pocket configuration of site 1 through an allosteric mechanism, consequently enhancing kinase activation by improving PE affinity to the site.
Collapse
Affiliation(s)
- Fang Lian
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhong Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhidong Zhou
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
42
|
Systematic profiling of staralog response to acquired drug resistant kinase gatekeeper mutations in targeted cancer therapy. Amino Acids 2020; 52:511-521. [PMID: 32206932 DOI: 10.1007/s00726-020-02832-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
Kinase-targeted therapy has been widely used as a lifesaving strategy for cancer patients. However, many patients treated with targeted cancer drugs are clinically observed to rapidly develop acquired resistance. Kinase gatekeeper mutation is one of the most chief factors contributing to the resistance, which modulates the accessibility of kinase's ATP-binding pocket. Previously, the pan-kinase inhibitor Staurosporine and its analogs (termed as Staralogs) have been reported to exhibit wild-type sparing selectivity for some kinase gatekeeper mutants, such as EGFR T790M, Her2 T798M and cSrc T338M. Here, we describe an integrative approach to systematically profile the molecular response of 15 representative Staralogs to 17 kinase gatekeeper mutations in targeted cancer therapy. With the profile we are able to divide gatekeeper mutations into three classes (i.e. classes I, II and III) and to divide Staralogs into two groups (i.e. groups 1 and 2) using heuristic clustering. The class I and II mutations confer consistent sensitivity and resistance for all Staralogs, respectively, while the class III mutations address divergent effects on different Staralogs. The mutations to Ile residue can generally reduce Staralog affinity by inducing unfavorable steric hindrance, whereas the mutations to Met and Leu residues would improve Staralog affinity by establishing favorable S···π interaction, van der Waals packing and/or hydrophobic contact. The group 1 and 2 Staralogs are primarily determined by carbonyl or hydroxyl substitution state at the position 7 of Staralog core, where points to kinase gatekeeper residue and can thus be directly influenced by gatekeeper mutation.
Collapse
|
43
|
Li Y, Wei X, Wang Q, Li W, Yang T. Inverse screening of Simvastatin kinase targets from glioblastoma druggable kinome. Comput Biol Chem 2020; 86:107243. [PMID: 32172201 DOI: 10.1016/j.compbiolchem.2020.107243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022]
Abstract
The statin drug Simvastatin is a HMG-CoA reductase inhibitor that has been widely used to lower blood lipid. However, the drug is clinically observed to reposition a significant suppressing potency on glioblastoma (GBM) by unexpectedly targeting diverse kinase pathways involved in GBM tumorigensis. Here, an inverse screening strategy is described to discover potential kinase targets of Simvastatin. Various human protein kinases implicated in GBM are enriched to define a druggable kinome; the binding behavior of Simvastatin to the kinome is profiled systematically via an integrative computational approach, from which most kinases have only low or moderate binding potency to Simvastatin, while only few are identified as promising kinase hits. It is revealed that Simvastatin can potentially interact with certain known targets or key regulators of GBM such as ErbB, c-Src and FGFR signaling pathways, but exhibit low affinity to the well-established GBM target of PI3K/Akt/mTOR pathway. Further assays determine that Simvastatin can inhibit kinase hits EGFR, MET, SRC and HER2 at nanomolar level, which are comparable with those of cognate kinase inhibitors. Structural analyses reveal that the sophisticated T790 M gatekeeper mutation can considerably reduce Simvastatin sensitivity to EGFR by inducing the ligand change between different binding modes.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurosurgery, Second Affiliated Hospital, Zunyi Medical University, Zunyi 563006, China
| | - Xu Wei
- Department of Neurosurgery, Second Affiliated Hospital, Zunyi Medical University, Zunyi 563006, China
| | - Qiuhong Wang
- Department of Neurosurgery, Second Affiliated Hospital, Zunyi Medical University, Zunyi 563006, China
| | - Wei Li
- Department of Neurosurgery, Second Affiliated Hospital, Zunyi Medical University, Zunyi 563006, China
| | - Tao Yang
- Department of Neurosurgery, Second Affiliated Hospital, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
44
|
Ge C, Zhang W, He R, Cai H. Systematic Identification and Comparative Analysis of Human Cartilage-Derived Self-peptides Presented Differently by Ankylosing Spondylitis (AS)-Associated HLA-B*27:05 and Non-AS-associated HLA-B*27:09. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Gu Z, Yan T, Yan F. Rational design and improvement of the dimerization-disrupting peptide selectivity between ROCK-I and ROCK-II kinase isoforms in cerebrovascular diseases. J Mol Recognit 2020; 33:e2835. [PMID: 31995258 DOI: 10.1002/jmr.2835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 02/05/2023]
Abstract
Human rho-associated coiled-coil forming kinases (ROCKs) ROCK-I and ROCK-II have been documented as attractive therapeutic targets for cerebrovascular diseases. Although ROCK-I and ROCK-II share a high degree of structural conservation and are both present in classic rho/ROCK signaling pathway, their downstream substrates and pathological functions may be quite different. Selective targeting of the two kinase isoforms with traditional small-molecule inhibitors is a great challenge due to their surprisingly high homology in kinase domain (~90%) and the full identity in kinase active site (100%). Here, instead of developing small-molecule drugs to selectively target the adenosine triphosphate (ATP) site of two isoforms, we attempt to design peptide agents to selectively disrupt the homo-dimerization event of ROCK kinases through their dimerization domains which have a relatively low conservation (~60%). Three helical peptides H1, H2, and H3 are split from the kinase dimerization domain, from which the isolated H2 peptide is found to have the best capability to rebind at the dimerization interface. A simulated annealing (SA) iteration method is used to improve the H2 peptide selectivity between ROCK-I and ROCK-II. The method accepts moderate degradation in peptide affinity in order to maximize the affinity difference between peptide binding to the two isoforms. Consequently, hundreds of parallel SA runs yielded six promising peptide candidates with ROCK-I over ROCK-II (I over II [IoII]) calculated selectivity and four promising peptide candidates with ROCK-II over ROCK-I (II over I [IIoI]) calculated selectivity. Subsequent anisotropy assays confirm that the selectivity values range between 13.2-fold and 83.9-fold for IoII peptides, and between 5.8-fold and 21.2-fold for IIoI peptides, which are considerably increased relative to wild-type H2 peptide (2.6-fold for IoII and 2.0-fold for IIoI). The molecular origin of the designed peptide selectivity is also analyzed at structural level; it is revealed that the peptide residues can be classified into conserved, non-conserved, and others, in which the non-conserved residues play a crucial role in defining peptide selectivity, while conserved residues confer stability to kinase-peptide binding.
Collapse
Affiliation(s)
- Zhengtian Gu
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tingting Yan
- Department of Pediatrics, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Fuling Yan
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
46
|
Xu L, Chen Z, Shao K, Wang Y, Cui L, Guo N. Rational discovery of novel type-III FTF antagonists to competitively suppress TIF-2 coactivation in liver cancer. J Recept Signal Transduct Res 2019; 39:304-311. [PMID: 31755335 DOI: 10.1080/10799893.2019.1690513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Linlin Xu
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, the Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Zhongming Chen
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, the Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Keke Shao
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, the Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Yungang Wang
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, the Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Leilei Cui
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, the Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Naizhou Guo
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, the Fourth Affiliated Hospital of Nantong University, Yancheng, China
| |
Collapse
|
47
|
Chen Z, Yu X, Zhang A, Wang F, Xing Y. De Novo Hydrocarbon-Stapling Design of Single-Turn α-Helical Antimicrobial Peptides. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09964-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Rational design of type-IA receptor-derived cyclic peptides to target human bone morphogenic protein 2. J Biosci 2019. [DOI: 10.1007/s12038-019-9945-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Zhu J, Wei S, Huang L, Zhao Q, Zhu H, Zhang A. Molecular modeling and rational design of hydrocarbon-stapled/halogenated helical peptides targeting CETP self-binding site: Therapeutic implication for atherosclerosis. J Mol Graph Model 2019; 94:107455. [PMID: 31586754 DOI: 10.1016/j.jmgm.2019.107455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022]
Abstract
The human plasma cholesteryl ester transfer protein (CETP) collects triglycerides from very-/low-density lipoproteins (V/LDL) and exchanges them for cholesteryl esters from high-density lipoproteins (HDL), which has recognized as an important therapeutic target for atherosclerosis. The protein has a C-terminal amphipathic α-helix that serves as self-binding peptide to fulfill biological function by dynamically binding to/unbinding from its cognate site (termed self-binding site) in the same protein. Previously, we successfully derived and halogenated the helical peptide to competitively disrupt the self-binding behavior of CETP C-terminal tail. However, the halogenated peptides have only a limited affinity increase as compared to native helical peptide (∼3-fold), thus exhibiting only a moderate competitive potency. Here, instead of optimizing the direct intermolecular interaction of peptide with CETP self-binding site we attempt to further improve the peptide competitive potency by reducing its conformational flexibility with hydrocarbon-stapling technique. Computational analysis reveals that the helical peptide has large intrinsic disorder in unbound free state, which would incur a considerable entropy penalty upon rebinding to the self-binding site. All-hydrocarbon bridge is designed and optimized on native and halogenated peptides in terms of the helical pattern and binding mode of self-binding peptide. Dynamics simulation and circular dichroism indicate that the stapling can considerably reduce peptide disorder in free state. Energetics calculation and fluorescence assay conform that the binding affinity of stapled/halogenated peptides is improved substantially (by > 5-fold), thus exhibiting an effective competition potency with native peptide for the self-binding site. Structural examination suggests that the binding modes and nonbonded interactions of native and halogenated peptides are not influenced essentially due to the stapling.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Vascular Surgery, The Affiliated Hospital of Jiangsu University (Kunshan 1st People's Hospital), Kunshan, 215300, China
| | - Sen Wei
- Department of Vascular Surgery, The Affiliated Hospital of Jiangsu University (Kunshan 1st People's Hospital), Kunshan, 215300, China.
| | - Linchen Huang
- Department of Vascular Surgery, The Affiliated Hospital of Jiangsu University (Kunshan 1st People's Hospital), Kunshan, 215300, China
| | - Qi Zhao
- Department of Vascular Surgery, The Affiliated Hospital of Jiangsu University (Kunshan 1st People's Hospital), Kunshan, 215300, China
| | - Haichao Zhu
- Department of Vascular Surgery, The Affiliated Hospital of Jiangsu University (Kunshan 1st People's Hospital), Kunshan, 215300, China
| | - Anwei Zhang
- Department of Vascular Surgery, The Affiliated Hospital of Jiangsu University (Kunshan 1st People's Hospital), Kunshan, 215300, China
| |
Collapse
|
50
|
Zhou K, Lu J, Yin X, Xu H, Li L, Ma B. Structure-based derivation and intramolecular cyclization of peptide inhibitors from PD-1/PD-L1 complex interface as immune checkpoint blockade for breast cancer immunotherapy. Biophys Chem 2019; 253:106213. [DOI: 10.1016/j.bpc.2019.106213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022]
|