1
|
Childress E, Capstick RA, Crocker KE, Ledyard ML, Bender AM, Maurer MA, Billard NB, Cho HP, Rodriguez AL, Niswender CM, Peng W, Rook JM, Chang S, Blobaum AL, Boutaud O, Thompson Gray A, Jones CK, Conn PJ, Felts AS, Lindsley CW, Temple KJ. Discovery of 4-(5-Membered)Heteroarylether-6-methylpicolinamide Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5. ACS Med Chem Lett 2024; 15:2210-2219. [PMID: 39691522 PMCID: PMC11647725 DOI: 10.1021/acsmedchemlett.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024] Open
Abstract
This Letter details our efforts to develop novel, non-acetylene-containing metabotropic glutamate receptor subtype 5 (mGlu5) negative allosteric modulators (NAMs) with improved pharmacological properties. This endeavor involved replacing the ether-linked pyrimidine moiety, a metabolic liability, with various 5-membered heterocycles. From this exercise, we identified VU6043653, a highly brain penetrant and selective mGlu5 NAM which displayed moderate potency against both human and rat mGlu5. Moreover, VU6043653 has overall improved pharmacological and drug metabolism and pharmacokinetic profiles when compared to its predecessor compounds. Most notably, VU6043653 exhibits low predicted human hepatic clearance, a clean cytochrome P450 profile, and minimal inhibition of the dopamine transporter.
Collapse
Affiliation(s)
- Elizabeth
S. Childress
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Rory A. Capstick
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Katherine E. Crocker
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Miranda L. Ledyard
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Aaron M. Bender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Mallory A. Maurer
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Natasha B. Billard
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Hyekyung P. Cho
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Weimin Peng
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jerri M. Rook
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Sichen Chang
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Analisa Thompson Gray
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Carrie K. Jones
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Andrew S. Felts
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kayla J. Temple
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
From bench to bedside: The mGluR5 system in people with and without Autism Spectrum Disorder and animal model systems. Transl Psychiatry 2022; 12:395. [PMID: 36127322 PMCID: PMC9489881 DOI: 10.1038/s41398-022-02143-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
The metabotropic glutamate receptor 5 (mGluR5) is a key regulator of excitatory (E) glutamate and inhibitory (I) γ-amino butyric acid (GABA) signalling in the brain. Despite the close functional ties between mGluR5 and E/I signalling, no-one has directly examined the relationship between mGluR5 and glutamate or GABA in vivo in the human brain of autistic individuals. We measured [18F] FPEB (18F-3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile) binding in 15 adults (6 with Autism Spectrum Disorder) using two regions of interest, the left dorsomedial prefrontal cortex and a region primarily composed of left striatum and thalamus. These two regions were mapped out using MEGA-PRESS voxels and then superimposed on reconstructed PET images. This allowed for direct comparison between mGluR5, GABA + and Glx. To better understand the molecular underpinnings of our results we used an autoradiography study of mGluR5 in three mouse models associated with ASD: Cntnap2 knockout, Shank3 knockout, and 16p11.2 deletion. Autistic individuals had significantly higher [18F] FPEB binding (t (13) = -2.86, p = 0.047) in the left striatum/thalamus region of interest as compared to controls. Within this region, there was a strong negative correlation between GABA + and mGluR5 density across the entire cohort (Pearson's correlation: r (14) = -0.763, p = 0.002). Cntnap2 KO mice had significantly higher mGlu5 receptor binding in the striatum (caudate-putamen) as compared to wild-type (WT) mice (n = 15, p = 0.03). There were no differences in mGluR5 binding for mice with the Shank3 knockout or 16p11.2 deletion. Given that Cntnap2 is associated with a specific striatal deficit of parvalbumin positive GABA interneurons and 'autistic' features, our findings suggest that an increase in mGluR5 in ASD may relate to GABAergic interneuron abnormalities.
Collapse
|
3
|
Graziani D, Caligari S, Callegari E, De Toma C, Longhi M, Frigerio F, Dilernia R, Menegon S, Pinzi L, Pirona L, Tazzari V, Valsecchi AE, Vistoli G, Rastelli G, Riva C. Evaluation of Amides, Carbamates, Sulfonamides, and Ureas of 4-Prop-2-ynylidenecycloalkylamine as Potent, Selective, and Bioavailable Negative Allosteric Modulators of Metabotropic Glutamate Receptor 5. J Med Chem 2019; 62:1246-1273. [PMID: 30624919 DOI: 10.1021/acs.jmedchem.8b01226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Negative allosteric modulators (NAMs) of the metabotropic glutamate receptor 5 (mGlu5) hold great promise for the treatment of a variety of central nervous system disorders. We have recently reported that prop-2-ynylidenecycloalkylamine derivatives are potent and selective NAMs of the mGlu5 receptor. In this work, we explored the amide, carbamate, sulfonamide, and urea derivatives of prop-2-ynylidenecycloalkylamine compounds with the aim of improving solubility and metabolic stability. In silico and experimental analyses were performed on the synthesized series of compounds to investigate structure-activity relationships. Compounds 12, 32, and 49 of the carbamate, urea, and amide classes, respectively, showed the most suitable cytochrome inhibition and metabolic stability profiles. Among them, compound 12 showed excellent selectivity, solubility, and stability profiles as well as suitable in vitro and in vivo pharmacokinetic properties. It was highly absorbed in rats and dogs and was active in anxiety, neuropathic pain, and lower urinary tract models.
Collapse
Affiliation(s)
- Davide Graziani
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Silvia Caligari
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Elisa Callegari
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Carlo De Toma
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Matteo Longhi
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Fabio Frigerio
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Roberto Dilernia
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Sergio Menegon
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Luca Pinzi
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Lorenza Pirona
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Valerio Tazzari
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Anna Elisa Valsecchi
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences , Università degli Studi di Milano , Via Mangiagalli 25 , 20133 Milan , Italy
| | - Giulio Rastelli
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Carlo Riva
- Drug Discovery Department , Recordati S.p.A. , Via M. Civitali 1 , 20148 Milan , Italy
| |
Collapse
|
4
|
Aroyl and acyl cyanides as orthogonal protecting groups or as building blocks for the synthesis of heterocycles. Mol Divers 2019; 23:1065-1084. [PMID: 30666490 DOI: 10.1007/s11030-019-09915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
α-Cyanoketones represent a synthetically attractive scaffold possessing bifunctional reactivity which enabled synthesis of a diversity of products. This involves reaction of nucleophiles with electrophilic carbonyl carbon performing an efficient and regioselective way to acylation reaction, cycloaddition of activated cyano function with dipolarophiles, metal-catalyzed cross-dehydrogenative coupling carbocyanation across C-C multiple bonds as well as hydrocyanation. This review provides the recent developments in the chemistry of α-cyanoketones which will be beneficial for researchers and scientists in such field.
Collapse
|
5
|
Felts AS, Bollinger KA, Brassard CJ, Rodriguez AL, Morrison RD, Scott Daniels J, Blobaum AL, Niswender CM, Jones CK, Conn PJ, Emmitte KA, Lindsley CW. Discovery of 4-alkoxy-6-methylpicolinamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorg Med Chem Lett 2019; 29:47-50. [PMID: 30446311 PMCID: PMC6295259 DOI: 10.1016/j.bmcl.2018.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/06/2023]
Abstract
This letter describes the further chemical optimization of VU0424238 (auglurant), an mGlu5 NAM clinical candidate that failed in non-human primate (NHP) 28 day toxicology due to accumulation of a species-specific aldehyde oxidase (AO) metabolite of the pyrimidine head group. Here, we excised the pyrimidine moiety, identified the minimum pharmacophore, and then developed a new series of saturated ether head groups that ablated any AO contribution to metabolism. Putative back-up compounds in this novel series provided increased sp3 character, uniform CYP450-mediated metabolism across species, good functional potency and high CNS penetration. Key to the optimization was a combination of matrix and iterative libraries that allowed rapid surveillance of multiple domains of the allosteric ligand.
Collapse
Affiliation(s)
- Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Katrina A Bollinger
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christopher J Brassard
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
6
|
Lacivita E, Perrone R, Margari L, Leopoldo M. Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. J Med Chem 2017; 60:9114-9141. [PMID: 29039668 DOI: 10.1021/acs.jmedchem.7b00965] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests, and activities. Various factors are involved in the etiopathogenesis of ASD, including genetic factors, environmental toxins and stressors, impaired immune responses, mitochondrial dysfunction, and neuroinflammation. The heterogeneity in the phenotype among ASD patients and the complex etiology of the condition have long impeded the advancement of the development of pharmacological therapies. In the recent years, the integration of findings from mouse models to human genetics resulted in considerable progress toward the understanding of ASD pathophysiology. Currently, strategies to treat core symptoms of ASD are directed to correct synaptic dysfunctions, abnormalities in central oxytocin, vasopressin, and serotonin neurotransmission, and neuroinflammation. Here, we present a survey of the studies that have suggested molecular targets for drug development for ASD and the state-of-the-art of medicinal chemistry efforts in related areas.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Roberto Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Lucia Margari
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Unità di Neuropsichiatria Infantile, Università degli Studi di Bari Aldo Moro , Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
7
|
Hirose W, Kato Y, Natsutani I, Takata M, Kitaichi M, Imai S, Hayashi S, Arai Y, Hoshino K, Yoshida K. Synthesis and optimization of 4,5,6,7-tetrahydrooxazolo[4,5-c]pyridines as potent and orally-active metabotropic glutamate receptor 5 negative allosteric modulators. Bioorg Med Chem Lett 2017; 27:4331-4335. [PMID: 28838696 DOI: 10.1016/j.bmcl.2017.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 11/28/2022]
Abstract
We describe here the design, synthesis and characterization of a series of 4,5,6,7-tetrahydrooxazolo[4,5-c]pyridines as metabotropic glutamate receptor (mGluR) 5 negative allosteric modulators (NAMs). Optimization of the substituents led to the identification of several compounds with good pharmacokinetic profiles, including long half life and high oral bioavailability, in both rats and monkeys. The receptor occupancy test in the rat cortex revealed favorable brain penetration of these compounds. The reprsentative compound 13 produced oral antidepressant-like effect in the rat forced swimming test (MED: 0.3mg/kg, q.d.).
Collapse
Affiliation(s)
- Wataru Hirose
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan.
| | - Yoshihiro Kato
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Itaru Natsutani
- Drug Research Division, Sumitomo Dainippon Pharma, 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Makoto Takata
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Maiko Kitaichi
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Satoki Imai
- Drug Research Division, Sumitomo Dainippon Pharma, 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Shun Hayashi
- Drug Research Division, Sumitomo Dainippon Pharma, 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Yukiyo Arai
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Kohei Hoshino
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Kohzo Yoshida
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan.
| |
Collapse
|
8
|
Fedotova J, Kubatka P, Büsselberg D, Shleikin AG, Caprnda M, Dragasek J, Rodrigo L, Pohanka M, Gasparova I, Nosal V, Opatrilova R, Qaradakhi T, Zulli A, Kruzliak P. Therapeutical strategies for anxiety and anxiety-like disorders using plant-derived natural compounds and plant extracts. Biomed Pharmacother 2017; 95:437-446. [PMID: 28863384 DOI: 10.1016/j.biopha.2017.08.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 01/20/2023] Open
Abstract
Anxiety and anxiety-like disorders describe many mental disorders, yet fear is a common overwhelming symptom often leading to depression. Currently two basic strategies are discussed to treat anxiety: pharmacotherapy or psychotherapy. In the pharmacotherapeutical clinical approach, several conventional synthetic anxiolytic drugs are being used with several adverse effects. Therefore, studies to find suitable safe medicines from natural sources are being sought by researchers. The results of a plethora experimental studies demonstrated that dietary phytochemicals like alkaloids, terpenes, flavonoids, phenolic acids, lignans, cinnamates, and saponins or various plant extracts with the mixture of different phytochemicals possess anxiolytic effects in a wide range of animal models of anxiety. The involved mechanisms of anxiolytics action include interaction with γ-aminobutyric acid A receptors at benzodiazepine (BZD) and non-BZD sites with various affinity to different subunits, serotonergic 5-hydrodytryptamine receptors, noradrenergic and dopaminergic systems, glutamate receptors, and cannabinoid receptors. This review focuses on the use of both plant-derived natural compounds and plant extracts with anxiolytic effects, describing their biological effects and clinical application.
Collapse
Affiliation(s)
- Julia Fedotova
- Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia; Laboratory of Comparative Somnology and Neuroendocrinology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; Department of Chemistry and Molecular Biology, ITMO University, St. Petersburg, Russia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia; Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Alexander G Shleikin
- Department of Chemistry and Molecular Biology, ITMO University, St. Petersburg, Russia
| | - Martin Caprnda
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jozef Dragasek
- Department of Psychiatry, Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovakia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University Hospital of Asturia (HUCA), Oviedo, Spain
| | - Miroslav Pohanka
- Facultpy of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Iveta Gasparova
- Institute of Biology, Genetics and Medical Genetics, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Vladimir Nosal
- Clinic of Neurology, Jessenius Faculty of Medicine, Comenius University and University Hospital in Martin, Martin, Slovakia
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Tawar Qaradakhi
- The Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Werribee Campus, Victoria, Australia
| | - Anthony Zulli
- The Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Werribee Campus, Victoria, Australia
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| |
Collapse
|
9
|
Pairas GN, Perperopoulou F, Tsoungas PG, Varvounis G. The Isoxazole Ring and ItsN-Oxide: A Privileged Core Structure in Neuropsychiatric Therapeutics. ChemMedChem 2017; 12:408-419. [DOI: 10.1002/cmdc.201700023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/13/2017] [Indexed: 01/23/2023]
Affiliation(s)
- George N. Pairas
- Laboratory of Medicinal Chemistry, Department of Pharmacy; University of Patras; 265 04 Patras Greece
| | - Fereniki Perperopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology; Agricultural University of Athens; 75 Iera Odos St. 118 55 Athens Greece
| | - Petros G. Tsoungas
- Laboratory of Biochemistry; Hellenic Pasteur Institute; 127 Vas. Sofias Ave. 115 21 Athens Greece
| | - George Varvounis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry; University of Ioannina; 451 10 Ioannina Greece
| |
Collapse
|
10
|
Emmitte KA. mGlu5negative allosteric modulators: a patent review (2013 - 2016). Expert Opin Ther Pat 2017; 27:691-706. [DOI: 10.1080/13543776.2017.1280466] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
11
|
Brahmi J, Ghannay S, Bakari S, Aouadi K, Kadri A, Msaddek M, Vidal S. Unprecedented stereoselective synthesis of 3-methylisoxazolidine-5-aryl-1,2,4-oxadiazoles via 1,3-dipolar cycloaddition and study of their in vitro antioxidant activity. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1244692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jihed Brahmi
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Faculty of Sciences of Monastir, University of Monastir, Monastir, Tunisia
| | - Siwar Ghannay
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Faculty of Sciences of Monastir, University of Monastir, Monastir, Tunisia
| | - Sana Bakari
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
| | - Kaïss Aouadi
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Faculty of Sciences of Monastir, University of Monastir, Monastir, Tunisia
| | - Adel Kadri
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
- College of Science and Arts in Baljurashi, Al Baha University, Al Baha, Saudi Arabia
| | - Moncef Msaddek
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Faculty of Sciences of Monastir, University of Monastir, Monastir, Tunisia
| | - Sébastien Vidal
- University of Lyon 1, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR CNRS 5246, Organic Chemistry 2: Glycochemistry, Villeurbanne, France
| |
Collapse
|
12
|
Synthesis, structure-activity relationships and biological evaluation of 4,5,6,7-tetrahydropyrazolopyrazines as metabotropic glutamate receptor 5 negative allosteric modulators. Bioorg Med Chem Lett 2016; 26:3866-9. [PMID: 27432763 DOI: 10.1016/j.bmcl.2016.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/20/2022]
Abstract
The design, synthesis and SAR studies of novel 4,5,6,7-tetrahydropyrazolopyrazines as metabotropic glutamate receptor 5 (mGluR5) negative allosteric modulators (NAMs) are presented in this letter. Starting from a HTS hit compound (1, IC50=477nM), optimization of various groups led to the synthesis of a potent mGluR5 NAM (32, IC50=75nM) with excellent rat PK profile and good brain penetration. This compound produced oral antidepressant-like effect in a mouse tale suspension model (MED: 30mg/kg).
Collapse
|
13
|
Lindsley CW, Emmitte KA, Hopkins CR, Bridges TM, Gregory KJ, Niswender CM, Conn PJ. Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chem Rev 2016; 116:6707-41. [PMID: 26882314 PMCID: PMC4988345 DOI: 10.1021/acs.chemrev.5b00656] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric modulation of GPCRs has initiated a new era of basic and translational discovery, filled with therapeutic promise yet fraught with caveats. Allosteric ligands stabilize unique conformations of the GPCR that afford fundamentally new receptors, capable of novel pharmacology, unprecedented subtype selectivity, and unique signal bias. This review provides a comprehensive overview of the basics of GPCR allosteric pharmacology, medicinal chemistry, drug metabolism, and validated approaches to address each of the major challenges and caveats. Then, the review narrows focus to highlight recent advances in the discovery of allosteric ligands for metabotropic glutamate receptor subtypes 1-5 and 7 (mGlu1-5,7) highlighting key concepts ("molecular switches", signal bias, heterodimers) and practical solutions to enable the development of tool compounds and clinical candidates. The review closes with a section on late-breaking new advances with allosteric ligands for other GPCRs and emerging data for endogenous allosteric modulators.
Collapse
Affiliation(s)
- Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Corey R. Hopkins
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville VIC 3052, Australia
| | - Colleen M. Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
14
|
N-Alkylpyrido[1',2':1,5]pyrazolo-[4,3-d]pyrimidin-4-amines: A new series of negative allosteric modulators of mGlu1/5 with CNS exposure in rodents. Bioorg Med Chem Lett 2016; 26:1894-900. [PMID: 26988308 DOI: 10.1016/j.bmcl.2016.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/20/2022]
Abstract
Selective negative allosteric modulators (NAMs) of each of the group I metabotropic glutamate receptors (mGlu1 and mGlu5) have been well characterized in the literature and offer potential as therapeutics in several disorders of the central nervous system (CNS). Still, compounds that are potent mGlu1/5 NAMs with selectivity versus the other six members of the mGlu family as well as the balance of properties required for use in vivo are lacking. A medicinal chemistry effort centered on the identification of a lead series with the potential of delivering such compounds is described in this Letter. Specifically, a new class of pyrido[1',2':1,5]pyrazolo[4,3-d]pyrimidin-4-amines was designed as a novel isosteric replacement for 4-aminoquinazolines, and compounds from within this chemotype exhibited dual NAM activity at both group I mGlus. One compound, VU0467558 (29), demonstrated near equipotent activity at both receptors, selectivity versus other mGlus, a favorable ancillary pharmacology profile, and CNS exposure in rodents.
Collapse
|
15
|
Gould RW, Amato RJ, Bubser M, Joffe ME, Nedelcovych MT, Thompson AD, Nickols HH, Yuh JP, Zhan X, Felts AS, Rodriguez AL, Morrison RD, Byers FW, Rook JM, Daniels JS, Niswender CM, Conn PJ, Emmitte KA, Lindsley CW, Jones CK. Partial mGlu₅ Negative Allosteric Modulators Attenuate Cocaine-Mediated Behaviors and Lack Psychotomimetic-Like Effects. Neuropsychopharmacology 2016; 41:1166-78. [PMID: 26315507 PMCID: PMC4748441 DOI: 10.1038/npp.2015.265] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/17/2015] [Accepted: 08/21/2015] [Indexed: 11/09/2022]
Abstract
Cocaine abuse remains a public health concern for which pharmacotherapies are largely ineffective. Comorbidities between cocaine abuse, depression, and anxiety support the development of novel treatments targeting multiple symptom clusters. Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor 5 (mGlu5) subtype are currently in clinical trials for the treatment of multiple neuropsychiatric disorders and have shown promise in preclinical models of substance abuse. However, complete blockade or inverse agonist activity by some full mGlu5 NAM chemotypes demonstrated adverse effects, including psychosis in humans and psychotomimetic-like effects in animals, suggesting a narrow therapeutic window. Development of partial mGlu5 NAMs, characterized by their submaximal but saturable levels of blockade, may represent a novel approach to broaden the therapeutic window. To understand potential therapeutic vs adverse effects in preclinical behavioral assays, we examined the partial mGlu5 NAMs, M-5MPEP and Br-5MPEPy, in comparison with the full mGlu5 NAM MTEP across models of addiction and psychotomimetic-like activity. M-5MPEP, Br-5MPEPy, and MTEP dose-dependently decreased cocaine self-administration and attenuated the discriminative stimulus effects of cocaine. M-5MPEP and Br-5MPEPy also demonstrated antidepressant- and anxiolytic-like activity. Dose-dependent effects of partial and full mGlu5 NAMs in these assays corresponded with increasing in vivo mGlu5 occupancy, demonstrating an orderly occupancy-to-efficacy relationship. PCP-induced hyperlocomotion was potentiated by MTEP, but not by M-5MPEP and Br-5MPEPy. Further, MTEP, but not M-5MPEP, potentiated the discriminative-stimulus effects of PCP. The present data suggest that partial mGlu5 NAM activity is sufficient to produce therapeutic effects similar to full mGlu5 NAMs, but with a broader therapeutic index.
Collapse
Affiliation(s)
- Robert W Gould
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Russell J Amato
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Bubser
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Max E Joffe
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael T Nedelcovych
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Analisa D Thompson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hilary H Nickols
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Division of Neuropathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Johannes P Yuh
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaoyan Zhan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alice L Rodriguez
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ryan D Morrison
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank W Byers
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jerri M Rook
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John S Daniels
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle A Emmitte
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
16
|
Mihov Y, Hasler G. Negative Allosteric Modulators of Metabotropic Glutamate Receptors Subtype 5 in Addiction: a Therapeutic Window. Int J Neuropsychopharmacol 2016; 19:pyw002. [PMID: 26802568 PMCID: PMC4966271 DOI: 10.1093/ijnp/pyw002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/08/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Abundant evidence at the anatomical, electrophysiological, and molecular levels implicates metabotropic glutamate receptor subtype 5 (mGluR5) in addiction. Consistently, the effects of a wide range of doses of different mGluR5 negative allosteric modulators (NAMs) have been tested in various animal models of addiction. Here, these studies were subjected to a systematic review to find out if mGluR5 NAMs have a therapeutic potential that can be translated to the clinic. METHODS Literature on consumption/self-administration and reinstatement of drug seeking as outcomes of interest published up to April 2015 was retrieved via PubMed. The review focused on the effects of systemic (i.p., i.v., s.c.) administration of the mGluR5 NAMs 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) and 2-Methyl-6-(phenylethynyl)pyridine (MPEP) on paradigms with cocaine, ethanol, nicotine, and food in rats. RESULTS MTEP and MPEP were found to reduce self-administration of cocaine, ethanol, and nicotine at doses ≥1mg/kg and 2.5mg/kg, respectively. Dose-response relationship resembled a sigmoidal curve, with low doses not reaching statistical significance and high doses reliably inhibiting self-administration of drugs of abuse. Importantly, self-administration of cocaine, ethanol, and nicotine, but not food, was reduced by MTEP and MPEP in the dose range of 1 to 2mg/kg and 2.5 to 3.2mg/kg, respectively. This dose range corresponds to approximately 50% to 80% mGluR5 occupancy. Interestingly, the limited data found in mice and monkeys showed a similar therapeutic window. CONCLUSION Altogether, this review suggests a therapeutic window for mGluR5 NAMs that can be translated to the treatment of substance-related and addictive disorders.
Collapse
Affiliation(s)
- Yoan Mihov
- Division of Molecular Psychiatry, Translational Research Center, Psychiatric University Hospital, University of Bern, Switzerland
| | - Gregor Hasler
- Division of Molecular Psychiatry, Translational Research Center, Psychiatric University Hospital, University of Bern, Switzerland
| |
Collapse
|
17
|
Computer-aided design of negative allosteric modulators of metabotropic glutamate receptor 5 (mGluR5): Comparative molecular field analysis of aryl ether derivatives. Bioorg Med Chem Lett 2016; 26:1140-4. [PMID: 26826734 DOI: 10.1016/j.bmcl.2016.01.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 01/27/2023]
Abstract
The metabotropic glutamate receptors (mGlu receptors) have emerged as attractive targets for number of neurological and psychiatric disorders. Recently, mGluR5 negative allosteric modulators (NAMs) have gained considerable attention in pharmacological research. Comparative molecular field analysis (CoMFA) was performed on 73 analogs of aryl ether which were reported as mGluR5 NAMs. The study produced a statistically significant model with high correlation coefficient and good predictive abilities.
Collapse
|
18
|
Synthesis and biological evaluation of picolinamides and thiazole-2-carboxamides as mGluR5 (metabotropic glutamate receptor 5) antagonists. Bioorg Med Chem Lett 2016; 26:140-4. [DOI: 10.1016/j.bmcl.2015.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/01/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022]
|
19
|
Topiol S, Sabio M. 7TM X-ray structures for class C GPCRs as new drug-discovery tools. 1. mGluR5. Bioorg Med Chem Lett 2016; 26:484-494. [DOI: 10.1016/j.bmcl.2015.11.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 11/28/2022]
|
20
|
Felts AS, Rodriguez AL, Smith KA, Engers JL, Morrison RD, Byers FW, Blobaum AL, Locuson CW, Chang S, Venable DF, Niswender CM, Daniels JS, Conn PJ, Lindsley CW, Emmitte KA. Design of 4-Oxo-1-aryl-1,4-dihydroquinoline-3-carboxamides as Selective Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 2. J Med Chem 2015; 58:9027-40. [PMID: 26524606 DOI: 10.1021/acs.jmedchem.5b01371] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Both orthosteric and allosteric antagonists of the group II metabotropic glutamate receptors (mGlus) have been used to establish a link between mGlu2/3 inhibition and a variety of CNS diseases and disorders. Though these tools typically have good selectivity for mGlu2/3 versus the remaining six members of the mGlu family, compounds that are selective for only one of the individual group II mGlus have proved elusive. Herein we report on the discovery of a potent and highly selective mGlu2 negative allosteric modulator 58 (VU6001192) from a series of 4-oxo-1-aryl-1,4-dihydroquinoline-3-carboxamides. The concept for the design of this series centered on morphing a quinoline series recently disclosed in the patent literature into a chemotype previously used for the preparation of muscarinic acetylcholine receptor subtype 1 positive allosteric modulators. Compound 58 exhibits a favorable profile and will be a useful tool for understanding the biological implications of selective inhibition of mGlu2 in the CNS.
Collapse
Affiliation(s)
- Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Katrina A Smith
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Julie L Engers
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Frank W Byers
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Charles W Locuson
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Sichen Chang
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Daryl F Venable
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37232, United States
| |
Collapse
|
21
|
Jiang L, Li Y, Qiao L, Chen X, He Y, Zhang Y, Li G. Discovery of potential negative allosteric modulators of mGluR5 from natural products using pharmacophore modeling, molecular docking, and molecular dynamics simulation studies. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mGluR5, which belongs to the G-protein-coupled receptor superfamily, is believed to be associated with many human diseases, such as a wide range of neurological disorders, gastroesophageal reflux disease, and cancer. Comparing with compounds that target on the orthosteric binding site, significant roles have been established for mGluR5 negative allosteric modulators (NAMs) due to their higher subtype selectivity and more suitable pharmacokinetic profiles. Nevertheless, to date, none of them have come to market for various reasons. In this study, a 3D quantitative pharmacophore model was generated by using the HypoGen module in Discovery Studio 4.0. With several validation methods ultilized, the optimal pharmacophore model Hypo2 was selected to discover potential mGluR5 NAMs from natural products. Two hundred and seventeen potential NAMs were obtained after being filtered by Lipinski’s rule (≥4). Then, molecular docking was used to refine the pharmacophore-based screening results and analyze the binding mode of NAMs and mGluR5. Three compounds, aglaiduline, 5-O-ethyl-hirsutanonol, and yakuchinone A, with good ADMET properties, acceptable Fit value and estimated value, and high docking score, were reserved for a molecular dynamics simulation study. All of them have stability of ligand binding. From our computational results, there might exhibit drug-like negative allosteric moderating effects on mGluR5 in these natural products. This work provides a reliable method for discovering mGluR5 NAMs from natural products.
Collapse
Affiliation(s)
- Ludi Jiang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yong Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Liansheng Qiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xi Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yusu He
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yanling Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Gongyu Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| |
Collapse
|
22
|
Garcia-Barrantes PM, Cho HP, Niswender CM, Byers FW, Locuson CW, Blobaum AL, Xiang Z, Rook JM, Conn PJ, Lindsley CW. Development of Novel, CNS Penetrant Positive Allosteric Modulators for the Metabotropic Glutamate Receptor Subtype 1 (mGlu1), Based on an N-(3-Chloro-4-(1,3-dioxoisoindolin-2-yl)phenyl)-3-methylfuran-2-carboxamide Scaffold, That Potentiate Wild Type and Mutant mGlu1 Receptors Found in Schizophrenics. J Med Chem 2015; 58:7959-71. [PMID: 26426481 DOI: 10.1021/acs.jmedchem.5b00727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The therapeutic potential of selective mGlu1 activation is vastly unexplored relative to the other group I mGlu receptor, mGlu5; therefore, our lab has focused considerable effort toward developing mGlu1 positive allosteric modulators (PAMs) suitable as in vivo proof of concept tool compounds. Optimization of a series of mGlu1 PAMs based on an N-(3-chloro-4-(1,3-dioxoisoindolin-2-yl)phenyl)-3-methylfuran-2-carboxamide scaffold provided 17e, a potent (mGlu1 EC50 = 31.8 nM) and highly CNS penetrant (brain to plasma ratio (Kp) of 1.02) mGlu1 PAM tool compound, that potentiated not only wild-type human mGlu1 but also mutant mGlu1 receptors derived from deleterious GRM1 mutations found in schizophrenic patients. Moreover, both electrophysiological and in vivo studies indicate the mGlu1 ago-PAMs/PAMs do not possess the same epileptiform adverse effect liability as mGlu5 ago-PAMs/PAMs and maintain temporal activity suggesting a broader therapeutic window.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Craig W Lindsley
- Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
23
|
Yoshikawa K, Ohyama T, Takahashi E, Numajiri Y, Konno M, Moriyama M, Takemi N, Kunita K, Nishimura K, Hayashi R. Identification of alpha-substituted acylamines as novel, potent, and orally active mGluR5 negative allosteric modulators. Bioorg Med Chem Lett 2015; 25:3135-41. [PMID: 26112438 DOI: 10.1016/j.bmcl.2015.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/15/2015] [Accepted: 06/01/2015] [Indexed: 11/29/2022]
Abstract
This Letter describes the identification of a series of novel non-acetylenic mGluR5 negative allosteric modulators based on the alpha-substituted acylamine structure. An initial structure-activity relationship study suggested that (R)-19b and (R)-19j might have good in vitro activity. When administered orally, these compounds were found to have an anxiolytic-like effect in a mouse model of stress-induced hyperthermia.
Collapse
Affiliation(s)
- Keita Yoshikawa
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| | - Tomofumi Ohyama
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Eiki Takahashi
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Yoshitaka Numajiri
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Mitsuhiro Konno
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Masaki Moriyama
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Natsumi Takemi
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Kana Kunita
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Kazumi Nishimura
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Ryoji Hayashi
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| |
Collapse
|
24
|
Christopher JA, Aves SJ, Bennett KA, Doré AS, Errey JC, Jazayeri A, Marshall FH, Okrasa K, Serrano-Vega MJ, Tehan BG, Wiggin GR, Congreve M. Fragment and Structure-Based Drug Discovery for a Class C GPCR: Discovery of the mGlu5 Negative Allosteric Modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 2015. [PMID: 26225459 DOI: 10.1021/acs.jmedchem.5b00892] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fragment screening of a thermostabilized mGlu5 receptor using a high-concentration radioligand binding assay enabled the identification of moderate affinity, high ligand efficiency (LE) pyrimidine hit 5. Subsequent optimization using structure-based drug discovery methods led to the selection of 25, HTL14242, as an advanced lead compound for further development. Structures of the stabilized mGlu5 receptor complexed with 25 and another molecule in the series, 14, were determined at resolutions of 2.6 and 3.1 Å, respectively.
Collapse
Affiliation(s)
- John A Christopher
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Sarah J Aves
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Kirstie A Bennett
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Andrew S Doré
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - James C Errey
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Ali Jazayeri
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Fiona H Marshall
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Krzysztof Okrasa
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Maria J Serrano-Vega
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Benjamin G Tehan
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Giselle R Wiggin
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Miles Congreve
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| |
Collapse
|
25
|
Mirza B. An efficient mEthod for the One-Pot Tandem Synthesis of 3,5-Disubstituted-1,2,4-Oxadiazoles from Benzyl Halides. JOURNAL OF CHEMICAL RESEARCH 2015. [DOI: 10.3184/174751915x14353363823928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The first example of a one-pot tandem approach for the synthesis of 3,5-disubstituted-1,2,4-oxadiazole derivatives from benzyl halides and amidoxime is reported. Derivatives of 3,5-disubstituted 1,2,4-oxadiazole were obtained in excellent yields under mild conditions using DMSO in the absence of an additional oxidant. Benzyl bromides bearing a range of substituents proved to be suitable substrates for this method which provides a very efficient and convenient application of the Kornblum oxidation.
Collapse
Affiliation(s)
- Behrooz Mirza
- Department of Applied Chemistry, Faculty of Science, Islamic Azad University, South Tehran Branch, Tehran, Iran
| |
Collapse
|
26
|
Structures of mGluRs shed light on the challenges of drug development of allosteric modulators. Curr Opin Pharmacol 2015; 20:1-7. [DOI: 10.1016/j.coph.2014.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/24/2014] [Accepted: 09/27/2014] [Indexed: 01/06/2023]
|
27
|
Yasgar A, Simeonov A. Current approaches for the discovery of drugs that deter substance and drug abuse. Expert Opin Drug Discov 2014; 9:1319-31. [PMID: 25251069 DOI: 10.1517/17460441.2014.956721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Much has been presented and debated on the topic of drug abuse and its multidimensional nature, including the role of society and its customs and laws, economical factors, and the magnitude and nature of the burden. Given the complex nature of the receptors and pathways implicated in regulation of the cognitive and behavioral processes associated with addiction, a large number of molecular targets have been interrogated during recent years to discover starting points for development of small-molecule interventions. AREAS COVERED This review describes recent developments in the field of early drug discovery for drug abuse interventions with an emphasis on the advances published during the 2012 - 2014 period. EXPERT OPINION Technologically, the processes/platforms utilized in drug abuse drug discovery are nearly identical to those used in the other disease areas. A key complicating factor in drug abuse research is the enormous biological complexity surrounding the brain processes involved and the associated difficulty in finding 'good' targets and achieving exquisite selectivity of treatment agents. While tremendous progress has been made during recent years to use the power of high-throughput technologies to discover proof-of-principle molecules for many new targets, next-generation models will be especially important in this field. Examples include: seeking advantageous drug-drug combinations, the use of automated whole-animal behavioral screening systems, advancing our understanding of the role of epigenetics in drug addiction and the employment of organoid-level 3D test platforms (also referred to as tissue-chip or organs-on-chip).
Collapse
Affiliation(s)
- Adam Yasgar
- National Institutes of Health, NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Bethesda, MD , USA +1 301 217 5721 ; +1 301 217 5736 ;
| | | |
Collapse
|
28
|
Lindsley CW. 2013 Philip S. Portoghese Medicinal Chemistry Lectureship: drug discovery targeting allosteric sites. J Med Chem 2014; 57:7485-98. [PMID: 25180768 PMCID: PMC4174999 DOI: 10.1021/jm5011786] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 02/06/2023]
Abstract
The identification of sites on receptors topographically distinct from the orthosteric sites, so-called allosteric sites, has heralded novel approaches and modes of pharmacology for target modulation. Over the past 20 years, our understanding of allosteric modulation has grown significantly, and numerous advantages, as well as caveats (e.g., flat structure-activity relationships, species differences, "molecular switches"), have been identified. For multiple receptors and proteins, numerous examples have been described where unprecedented levels of selectivity are achieved along with improved physiochemical properties. While not a panacea, these novel approaches represent exciting opportunities for tool compound development to probe the pharmacology and therapeutic potential of discrete molecular targets, as well as new medicines. In this Perspective, in commemoration of the 2013 Philip S. Portoghese Medicinal Chemistry Lectureship ( Lindsley , C. W. Adventures in allosteric drug discovery . Presented at the 246th National Meeting of the American Chemical Society, Indianapolis, IN, September 10, 2013 ; The 2013 Portoghese Lectureship ), several vignettes of drug discovery campaigns targeting novel allosteric mechanisms will be recounted, along with lessons learned and guidelines that have emerged for successful lead optimization.
Collapse
Affiliation(s)
- Craig W. Lindsley
- Departments of Pharmacology
and Chemistry, Vanderbilt Center for Neuroscience Drug Discovery,
Vanderbilt Specialized Chemistry Center (MLPCN), Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
29
|
Gómez-Santacana X, Rovira X, Dalton JA, Goudet C, Pin JP, Gorostiza P, Giraldo J, Llebaria A. A double effect molecular switch leads to a novel potent negative allosteric modulator of metabotropic glutamate receptor 5. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00208c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Bates BS, Rodriguez AL, Felts AS, Morrison RD, Venable DF, Blobaum AL, Byers FW, Lawson KP, Daniels JS, Niswender CM, Jones CK, Conn PJ, Lindsley CW, Emmitte KA. Discovery of VU0431316: a negative allosteric modulator of mGlu5 with activity in a mouse model of anxiety. Bioorg Med Chem Lett 2014; 24:3307-14. [PMID: 24969015 DOI: 10.1016/j.bmcl.2014.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
Abstract
Development of SAR in an aryl ether series of mGlu5 NAMs leading to the identification of pyrazine analog VU0431316 is described in this Letter. VU0431316 is a potent and selective non-competitive antagonist of mGlu5 that binds at a known allosteric binding site. VU0431316 demonstrates an attractive DMPK profile, including moderate clearance and good bioavailability in rats. Intraperitoneal (IP) dosing of VU0431316 in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu5 antagonists and other anxiolytics, produced dose proportional effects.
Collapse
Affiliation(s)
- Brittney S Bates
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daryl F Venable
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frank W Byers
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kera P Lawson
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
31
|
Gregory KJ, Nguyen ED, Malosh C, Mendenhall JL, Zic JZ, Bates BS, Noetzel MJ, Squire EF, Turner EM, Rook JM, Emmitte KA, Stauffer SR, Lindsley CW, Meiler J, Conn PJ. Identification of specific ligand-receptor interactions that govern binding and cooperativity of diverse modulators to a common metabotropic glutamate receptor 5 allosteric site. ACS Chem Neurosci 2014; 5:282-95. [PMID: 24528109 DOI: 10.1021/cn400225x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A common metabotropic glutamate receptor 5 (mGlu5) allosteric site is known to accommodate diverse chemotypes. However, the structural relationship between compounds from different scaffolds and mGlu5 is not well understood. In an effort to better understand the molecular determinants that govern allosteric modulator interactions with mGlu5, we employed a combination of site-directed mutagenesis and computational modeling. With few exceptions, six residues (P654, Y658, T780, W784, S808, and A809) were identified as key affinity determinants across all seven allosteric modulator scaffolds. To improve our interpretation of how diverse allosteric modulators occupy the common allosteric site, we sampled the wealth of mGlu5 structure-activity relationship (SAR) data available by docking 60 ligands (actives and inactives) representing seven chemical scaffolds into our mGlu5 comparative model. To spatially and chemically compare binding modes of ligands from diverse scaffolds, the ChargeRMSD measure was developed. We found a common binding mode for the modulators that placed the long axes of the ligands parallel to the transmembrane helices 3 and 7. W784 in TM6 not only was identified as a key NAM cooperativity determinant across multiple scaffolds, but also caused a NAM to PAM switch for two different scaffolds. Moreover, a single point mutation in TM5, G747V, altered the architecture of the common allosteric site such that 4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (VU29) was noncompetitive with the common allosteric site. Our findings highlight the subtleties of allosteric modulator binding to mGlu5 and demonstrate the utility in incorporating SAR information to strengthen the interpretation and analyses of docking and mutational data.
Collapse
Affiliation(s)
- Karen J. Gregory
- Drug Discovery
Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Engers DW, Lindsley CW. Allosteric modulation of Class C GPCRs: a novel approach for the treatment of CNS disorders. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e269-76. [PMID: 24050278 DOI: 10.1016/j.ddtec.2012.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Allosteric modulation has emerged as an innovative pharmacological approach to selectively activate or inhibit several Class C GPCRs. Of the Class C GPCRs, metabotropic glutamate (mGlu) receptors represent the most promising candidates for clinical success, and both positive allosteric modulators (PAMs) and negative allosteric modulators (NAMs) of mGluRs have demonstrated therapeutic potential for a range of psychiatric and neurological disorders such as pain, depression, anxiety, cognition, Fragile X syndrome, Parkinson’s disease and schizophrenia.
Collapse
|
33
|
Keck TM, Zou MF, Bi GH, Zhang HY, Wang XF, Yang HJ, Srivastava R, Gardner EL, Xi ZX, Newman AH. A novel mGluR5 antagonist, MFZ 10-7, inhibits cocaine-taking and cocaine-seeking behavior in rats. Addict Biol 2014; 19:195-209. [PMID: 24001208 DOI: 10.1111/adb.12086] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pre-clinical studies suggest that negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGluR5), including 2-methyl-6-(phenylethynyl)pyridine (MPEP), 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and fenobam are highly effective in attenuating drug-taking and drug-seeking behaviors. However, both MPEP and MTEP have no translational potential for use in humans because of their off-target effects and short half-lives. Here, we report that 3-fluoro-5-[(6-methylpyridin-2-yl)ethynyl]benzonitrile (MFZ 10-7), a novel mGluR5 NAM, is more potent and selective than MPEP, MTEP and fenobam in both in vitro binding and functional assays. Similar to MTEP, intraperitoneal administration of MFZ 10-7 inhibited intravenous cocaine self-administration, cocaine-induced reinstatement of drug-seeking behavior and cocaine-associated cue-induced cocaine-seeking behavior in rats. Although MFZ 10-7 and MTEP lowered the rate of oral sucrose self-administration, they did not alter total sucrose intake. Further, MFZ 10-7 appeared to be more potent than MTEP in inducing downward shifts in the cocaine dose-response curve, but less effective than MTEP in attenuating sucrose-induced reinstatement of sucrose-seeking behavior. MFZ 10-7 and MTEP had no effect on basal locomotor behavior. These findings not only provide additional evidence supporting an important role for mGluR5 in cocaine reward and addiction, but also introduce a new tool for both in vitro and in vivo investigations with which to further characterize this role.
Collapse
Affiliation(s)
- Thomas M. Keck
- Medicinal Chemistry Section; Molecular Targets and Medications Discovery Branch; National Institute on Drug Abuse. NIH, DHHS; Baltimore MD USA
| | - Mu-Fa Zou
- Medicinal Chemistry Section; Molecular Targets and Medications Discovery Branch; National Institute on Drug Abuse. NIH, DHHS; Baltimore MD USA
| | - Guo-Hua Bi
- Neuropsychopharmacology Section; Chemical Biology Research Branch; Intramural Research Program; National Institute on Drug Abuse. NIH, DHHS; Baltimore MD USA
| | - Hai-Ying Zhang
- Neuropsychopharmacology Section; Chemical Biology Research Branch; Intramural Research Program; National Institute on Drug Abuse. NIH, DHHS; Baltimore MD USA
| | - Xiao-Fei Wang
- Neuropsychopharmacology Section; Chemical Biology Research Branch; Intramural Research Program; National Institute on Drug Abuse. NIH, DHHS; Baltimore MD USA
| | - Hong-Ju Yang
- Neuropsychopharmacology Section; Chemical Biology Research Branch; Intramural Research Program; National Institute on Drug Abuse. NIH, DHHS; Baltimore MD USA
| | - Ratika Srivastava
- Neuropsychopharmacology Section; Chemical Biology Research Branch; Intramural Research Program; National Institute on Drug Abuse. NIH, DHHS; Baltimore MD USA
| | - Eliot L. Gardner
- Neuropsychopharmacology Section; Chemical Biology Research Branch; Intramural Research Program; National Institute on Drug Abuse. NIH, DHHS; Baltimore MD USA
| | - Zheng-Xiong Xi
- Neuropsychopharmacology Section; Chemical Biology Research Branch; Intramural Research Program; National Institute on Drug Abuse. NIH, DHHS; Baltimore MD USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section; Molecular Targets and Medications Discovery Branch; National Institute on Drug Abuse. NIH, DHHS; Baltimore MD USA
| |
Collapse
|
34
|
Pourbasheer E, Aalizadeh R, Ganjali MR, Norouzi P, Banaei A. QSAR study of mGlu5 inhibitors by genetic algorithm-multiple linear regressions. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0896-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Scaffold hopping approach towards various AFQ-056 analogs as potent metabotropic glutamate receptor 5 negative allosteric modulators. Bioorg Med Chem Lett 2013; 23:6370-6. [DOI: 10.1016/j.bmcl.2013.09.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/17/2013] [Accepted: 09/21/2013] [Indexed: 11/23/2022]
|
36
|
Metabotropic glutamate receptor 5-negative allosteric modulators for the treatment of psychiatric and neurological disorders (2009–July 2013). Pharm Pat Anal 2013; 2:767-802. [DOI: 10.4155/ppa.13.58] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Negative allosteric modulators of metabotropic glutamate receptor 5 (mGlu5) have been actively pursued for over a decade as a potential treatment for anxiety, depression, substance abuse, pain, levodopa-induced dyskinesia in Parkinson’s disease, fragile X Syndrome, autism, gastroesophageal reflux disease and lower-urinary-tract disorders. This article begins with an introduction of preclinical validation of potential therapies for psychiatric and neurological disorders, and of clinical results, followed by a comprehensive overview of the mGlu5-negative allosteric modulator patent applications published between 2009 and July 2013, with a focus on the analysis of structure and in silico CNS drug-like properties of example compounds and disclosed data. Given positive results in proof-of-concept studies in humans for certain indications such as levodopa-induced dyskinesia in Parkinson’s disease, fragile X Syndrome, gastroesophageal reflux disease, migraine and anxiety, and the soaring chemical diversity among the mGlu5-negative allosteric modulators, there is reason to believe that a drug will emerge from this therapeutic class in the near future.
Collapse
|
37
|
Discovery of VU0409106: A negative allosteric modulator of mGlu5 with activity in a mouse model of anxiety. Bioorg Med Chem Lett 2013; 23:5779-85. [PMID: 24074843 DOI: 10.1016/j.bmcl.2013.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023]
Abstract
Development of SAR in an aryl ether series of mGlu5 NAMs leading to the identification of tool compound VU0409106 is described in this Letter. VU0409106 is a potent and selective negative allosteric modulator of mGlu5 that binds at the known allosteric binding site and demonstrates good CNS exposure following intraperitoneal dosing in mice. VU0409106 also proved efficacious in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu5 antagonists as well as clinically efficacious anxiolytics.
Collapse
|
38
|
Keck TM, Yang HJ, Bi GH, Huang Y, Zhang HY, Srivastava R, Gardner EL, Newman AH, Xi ZX. Fenobam sulfate inhibits cocaine-taking and cocaine-seeking behavior in rats: implications for addiction treatment in humans. Psychopharmacology (Berl) 2013; 229:253-65. [PMID: 23615919 PMCID: PMC4191672 DOI: 10.1007/s00213-013-3106-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/30/2013] [Indexed: 12/14/2022]
Abstract
RATIONALE The metabotropic glutamate receptor subtype 5 (mGluR5) has been reported to be critically involved in drug reward and addiction. Because the mGluR5 negative allosteric modulators (NAMs) 2-methyl-6-(phenylethynyl)pyridine (MPEP) and 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP) significantly inhibit addictivelike behaviors of cocaine and other drugs of abuse in experimental animals, it has been suggested that mGluR5 NAMs may have translational potential for treatment of addiction in humans. However, neither MPEP nor MTEP have been evaluated in humans due to their off-target actions and rapid metabolism. OBJECTIVES Herein, we evaluate a potential candidate for translational addiction research: a new sulfate salt formulation of fenobam, a selective mGluR5 NAM that has been investigated in humans. RESULTS In rats, fenobam sulfate had superior pharmacokinetics compared to the free base, with improved maximal plasma concentration (C max) and longer half life. Oral (p.o.) administration of fenobam sulfate (30 or 60 mg/kg) inhibited intravenous (i.v.) cocaine self-administration, cocaine-induced reinstatement of drug-seeking behavior, and cocaine-associated cue-induced cocaine-seeking behavior in rats. Fenobam sulfate also inhibited p.o. sucrose self-administration and sucrose-induced reinstatement of sucrose-seeking behavior, but had no effect on locomotion. CONCLUSIONS This study provides additional support for the role of mGluR5 signaling in cocaine addiction and suggests that fenobam sulfate may have translational potential in medication development for the treatment of cocaine addiction in humans.
Collapse
Affiliation(s)
- Thomas M. Keck
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA 21224
| | - Hong-Ju Yang
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA 21224
| | - Guo-Hua Bi
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA 21224
| | - Yong Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA 94143
| | - Hai-Ying Zhang
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA 21224
| | - Ratika Srivastava
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA 21224
| | - Eliot L. Gardner
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA 21224
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA 21224
- Corresponding authors: Z.-X. Xi – Phone: (443) 740-2517. Fax: (443) 740-2781. ; A. H. Newman – Phone: (443) 740-2887. Fax: (443) 740-2111.
| | - Zheng-Xiong Xi
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA 21224
- Corresponding authors: Z.-X. Xi – Phone: (443) 740-2517. Fax: (443) 740-2781. ; A. H. Newman – Phone: (443) 740-2887. Fax: (443) 740-2111.
| |
Collapse
|
39
|
Amato RJ, Felts AS, Rodriguez AL, Venable DF, Morrison RD, Byers FW, Daniels JS, Niswender CM, Conn PJ, Lindsley CW, Jones CK, Emmitte KA. Substituted 1-Phenyl-3-(pyridin-2-yl)urea negative allosteric modulators of mGlu5: discovery of a new tool compound VU0463841 with activity in rat models of cocaine addiction. ACS Chem Neurosci 2013; 4:1217-28. [PMID: 23682684 DOI: 10.1021/cn400070k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cocaine is a powerful and highly addictive stimulant that disrupts the normal reward circuitry in the central nervous system (CNS), producing euphoric effects. Cocaine use can lead to acute and life threatening emergencies, and abuse is associated with increased risk for contracting infectious diseases. Though certain types of behavioral therapy have proven effective for treatment of cocaine addiction, relapse remains high, and there are currently no approved medications for the treatment of cocaine abuse. Evidence has continued to accumulate that indicates a critical role for the metabotropic glutamate receptor subtype 5 (mGlu5) in the modulation of neural circuitry associated with the addictive properties of cocaine. While the small molecule mGlu5 negative allosteric modulator (NAM) field is relatively advanced, investigation into the potential of small molecule mGlu5 NAMs for the treatment of cocaine addiction remains an area of high interest. Herein we describe the discovery and characterization of a potent and selective compound 29 (VU0463841) with good CNS exposure in rats. The utility of 29 (VU0463841) was demonstrated by its ability to attenuate drug seeking behaviors in relevant rat models of cocaine addiction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Carrie K. Jones
- Tennessee
Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, Tennessee 37212, United States
| | | |
Collapse
|
40
|
Duvey G, Perry B, Le Poul E, Poli S, Bonnet B, Lambeng N, Charvin D, Donovan-Rodrigues T, Haddouk H, Gagliardi S, Rocher JP. A novel series of metabotropic glutamate receptor 5 negative allosteric modulators based on a 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine core. Bioorg Med Chem Lett 2013; 23:4523-7. [DOI: 10.1016/j.bmcl.2013.06.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/12/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
|
41
|
Discovery, synthesis, and structure–activity relationships of 2-aminoquinazoline derivatives as a novel class of metabotropic glutamate receptor 5 negative allosteric modulators. Bioorg Med Chem Lett 2013; 23:4493-500. [DOI: 10.1016/j.bmcl.2013.06.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022]
|
42
|
Kandre S, Bhagat PR, Sharma R, Gupte A. Microwave assisted synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from substituted amidoximes and benzoyl cyanides. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.04.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Rosse G. Negative allosteric modulators of metabotropic glutamate receptor subtype. ACS Med Chem Lett 2013; 4:500-1. [PMID: 24900698 DOI: 10.1021/ml400138p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Gerard Rosse
- Structure Guided Chemistry, Dart Neuroscience LLC , 7473 Lusk Boulevard, San Diego, California 92121, United States, and Adjunct Associate Professor, Department of Pharmacology and Physiology, Drexel University , College of Medicine, New College Building, 245 North 15th Street, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
44
|
Wenthur CJ, Morrison R, Felts AS, Smith KA, Engers JL, Byers FW, Daniels JS, Emmitte KA, Conn PJ, Lindsley CW. Discovery of (R)-(2-fluoro-4-((-4-methoxyphenyl)ethynyl)phenyl) (3-hydroxypiperidin-1-yl)methanone (ML337), an mGlu3 selective and CNS penetrant negative allosteric modulator (NAM). J Med Chem 2013; 56:5208-12. [PMID: 23718281 DOI: 10.1021/jm400439t] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A multidimensional, iterative parallel synthesis effort identified a series of highly selective mGlu3 NAMs with submicromolar potency and good CNS penetration. Of these, ML337 resulted (mGlu3 IC50 = 593 nM, mGlu2 IC50 >30 μM) with B:P ratios of 0.92 (mouse) to 0.3 (rat). DMPK profiling and shallow SAR led to the incorporation of deuterium atoms to address a metabolic soft spot, which subsequently lowered both in vitro and in vivo clearance by >50%.
Collapse
Affiliation(s)
- Cody J Wenthur
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Discovery of biological evaluation of pyrazole/imidazole amides as mGlu5 receptor negative allosteric modulators. Bioorg Med Chem Lett 2013; 23:2134-9. [DOI: 10.1016/j.bmcl.2013.01.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 11/22/2022]
|
46
|
Hao J, Dehlinger V, Fivush AM, Rudyk HC, Britton TC, Hollinshead SP, Vokits BP, Clark BP, Henry SS, Massey SM, Peng L, Dressman BA, Heinz BA, Roberts EF, Bracey-Walker MR, Swanson S, Catlow JT, Love PL, Tepool AD, Peters SC, Simmons RMA, Iyengar S, McKinzie DL, Monn JA. Discovery of (1R,2R)-N-(4-(6-isopropylpyridin-2-yl)-3-(2-methyl-2H-indazol-5-yl)isothiazol-5-yl)-2-methylcyclopropanecarboxamide, a potent and orally efficacious mGlu5 receptor negative allosteric modulator. Bioorg Med Chem Lett 2013; 23:1249-52. [DOI: 10.1016/j.bmcl.2013.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
|
47
|
Zhou H, Topiol SW, Grenon M, Jimenez HN, Uberti MA, Smith DG, Brodbeck RM, Chandrasena G, Pedersen H, Madsen JC, Doller D, Li G. Discovery and structure–activity relationship of 1,3-cyclohexyl amide derivatives as novel mGluR5 negative allosteric modulators. Bioorg Med Chem Lett 2013; 23:1398-406. [DOI: 10.1016/j.bmcl.2012.12.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
|
48
|
Abstract
INTRODUCTION The design and development of small molecule negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGlu5) has been an area of intense interest for over a decade. Potential roles have been established for mGlu5 NAMs in the treatment of diseases such as pain, anxiety, gastroesophageal reflux disease (GERD), Parkinson's disease levodopa-induced dyskinesia (PD-LID), fragile X syndrome (FXS), autism, addiction, and depression. AREAS COVERED This review begins with an update of the clinical trial efforts with mGlu5 NAMs. Following that update, the review summarizes small molecule mGlu5 NAM patent applications published between 2010 and 2012. These summaries are subdivided into three separate groups: inventions related to improvements in drug properties and/or developability, new chemical entities that contain a disubstituted alkyne, and new chemical entities that do not contain a disubstituted alkyne. EXPERT OPINION Given the abundant promise found within the mGlu5 NAM field, optimism remains that a drug will emerge from this therapeutic class. Still, the launch of a new drug is far from a certainty. It is encouraging to observe the ever-increasing chemical diversity among mGlu5 NAMs. Finally, in spite of the mature nature of this field, room remains for new advancements.
Collapse
Affiliation(s)
- Kyle A Emmitte
- Vanderbilt University Medical Center, Vanderbilt Center for Neuroscience Drug Discovery, Department of Chemistry, Nashville, TN 37232, USA.
| |
Collapse
|
49
|
Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 2012; 698:6-18. [PMID: 23123057 DOI: 10.1016/j.ejphar.2012.10.032] [Citation(s) in RCA: 474] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 09/26/2012] [Accepted: 10/06/2012] [Indexed: 12/13/2022]
Abstract
Glutamate is one of the most prominent neurotransmitter in the body, present in over 50% of nervous tissue and plays an important role in neuronal excitation. This neuronal excitation is short-lived and is followed by depression. Multiple abnormal triggers such as energy deficiency, oxidative stress, mitochondrial dysfunction, calcium overload, etc can lead to aberration in neuronal excitation process. Such an aberration, serves as a common pool or bridge between abnormal triggers and deleterious signaling processes with which central neurons cannot cope up, leading to death. Excitotoxicity is the pathological process by which nerve cells are damaged and killed by excessive stimulation by neurotransmitters such as glutamate and similar substances. Such excitotoxic neuronal death has been implicated in spinal cord injury, stroke, traumatic brain injury, hearing loss and in neurodegenerative diseases of the central nervous system such as stroke, epilepsy, multiple sclerosis, Alzheimer disease, Amyltropic lateral sclerosis, Parkinson's disease, Huntington disease and alcohol withdrawal. This review mainly emphasizes the triggering events which sustain neuronal excitation, role of calcium, mitochondrial dysfunction, ROS, NO, chloride homeostasis and eicosanoids pathways. Further, a brief introduction about the recent research occurring in the treatment of various neurodegenerative diseases, including a summary of the presumed physiologic mechanisms behind the pharmacology of these disorders.
Collapse
Affiliation(s)
- Ankita Mehta
- Neuropharmacology Division, ISF College of Pharmacy, Ferozpur Road, Ghal Kalan, Moga 142 001, Punjab, India
| | | | | | | | | |
Collapse
|
50
|
Morrison RD, Blobaum AL, Byers FW, Santomango TS, Bridges TM, Stec D, Brewer KA, Sanchez-Ponce R, Corlew MM, Rush R, Felts AS, Manka J, Bates BS, Venable DF, Rodriguez AL, Jones CK, Niswender CM, Conn PJ, Lindsley CW, Emmitte KA, Daniels JS. The role of aldehyde oxidase and xanthine oxidase in the biotransformation of a novel negative allosteric modulator of metabotropic glutamate receptor subtype 5. Drug Metab Dispos 2012; 40:1834-45. [PMID: 22711749 PMCID: PMC3422546 DOI: 10.1124/dmd.112.046136] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/18/2012] [Indexed: 02/06/2023] Open
Abstract
Negative allosteric modulation (NAM) of metabotropic glutamate receptor subtype 5 (mGlu₅) represents a therapeutic strategy for the treatment of childhood developmental disorders, such as fragile X syndrome and autism. VU0409106 emerged as a lead compound within a biaryl ether series, displaying potent and selective inhibition of mGlu₅. Despite its high clearance and short half-life, VU0409106 demonstrated efficacy in rodent models of anxiety after extravascular administration. However, lack of a consistent correlation in rat between in vitro hepatic clearance and in vivo plasma clearance for the biaryl ether series prompted an investigation into the biotransformation of VU0409106 using hepatic subcellular fractions. An in vitro appraisal in rat, monkey, and human liver S9 fractions indicated that the principal pathway was NADPH-independent oxidation to metabolite M1 (+16 Da). Both raloxifene (aldehyde oxidase inhibitor) and allopurinol (xanthine oxidase inhibitor) attenuated the formation of M1, thus implicating the contribution of both molybdenum hydroxylases in the biotransformation of VU0409106. The use of ¹⁸O-labeled water in the S9 experiments confirmed the hydroxylase mechanism proposed, because ¹⁸O was incorporated into M1 (+18 Da) as well as in a secondary metabolite (M2; +36 Da), the formation of which was exclusively xanthine oxidase-mediated. This unusual dual and sequential hydroxylase metabolism was confirmed in liver S9 and hepatocytes of multiple species and correlated with in vivo data because M1 and M2 were the principal metabolites detected in rats administered VU0409106. An in vitro-in vivo correlation of predicted hepatic and plasma clearance was subsequently established for VU0409106 in rats and nonhuman primates.
Collapse
Affiliation(s)
- Ryan D Morrison
- Drug Metabolism and Pharmacokinetics, Vanderbilt Center for Neurosciences Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|