1
|
Prignano LA, Stevens MJ, Vanegas JM, Rempe SB, Dempski RE. Metadynamics simulations reveal mechanisms of Na+ and Ca2+ transport in two open states of the channelrhodopsin chimera, C1C2. PLoS One 2024; 19:e0309553. [PMID: 39241014 PMCID: PMC11379304 DOI: 10.1371/journal.pone.0309553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/30/2024] [Indexed: 09/08/2024] Open
Abstract
Cation conducting channelrhodopsins (ChRs) are a popular tool used in optogenetics to control the activity of excitable cells and tissues using light. ChRs with altered ion selectivity are in high demand for use in different cell types and for other specialized applications. However, a detailed mechanism of ion permeation in ChRs is not fully resolved. Here, we use complementary experimental and computational methods to uncover the mechanisms of cation transport and valence selectivity through the channelrhodopsin chimera, C1C2, in the high- and low-conducting open states. Electrophysiology measurements identified a single-residue substitution within the central gate, N297D, that increased Ca2+ permeability vs. Na+ by nearly two-fold at peak current, but less so at stationary current. We then developed molecular models of dimeric wild-type C1C2 and N297D mutant channels in both open states and calculated the PMF profiles for Na+ and Ca2+ permeation through each protein using well-tempered/multiple-walker metadynamics. Results of these studies agree well with experimental measurements and demonstrate that the pore entrance on the extracellular side differs from original predictions and is actually located in a gap between helices I and II. Cation transport occurs via a relay mechanism where cations are passed between flexible carboxylate sidechains lining the full length of the pore by sidechain swinging, like a monkey swinging on vines. In the mutant channel, residue D297 enhances Ca2+ permeability by mediating the handoff between the central and cytosolic binding sites via direct coordination and sidechain swinging. We also found that altered cation binding affinities at both the extracellular entrance and central binding sites underly the distinct transport properties of the low-conducting open state. This work significantly advances our understanding of ion selectivity and permeation in cation channelrhodopsins and provides the insights needed for successful development of new ion-selective optogenetic tools.
Collapse
Affiliation(s)
- Lindsey A Prignano
- Department of Chemistry & Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Mark J Stevens
- Sandia National Laboratories, Albuquerque, New Mexico, United States of America
| | - Juan M Vanegas
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Susan B Rempe
- Sandia National Laboratories, Albuquerque, New Mexico, United States of America
| | - Robert E Dempski
- Department of Chemistry & Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
2
|
Qi C, Qian C, Steijvers E, Colvin RA, Lee D. Single dopaminergic neuron DAN-c1 in Drosophila larval brain mediates aversive olfactory learning through D2-like receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575767. [PMID: 38293177 PMCID: PMC10827047 DOI: 10.1101/2024.01.15.575767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The intricate relationship between the dopaminergic system and olfactory associative learning in Drosophila has been an intense scientific inquiry. Leveraging the formidable genetic tools, we conducted a screening of 57 dopaminergic drivers, leading to the discovery of DAN-c1 driver, uniquely targeting the single dopaminergic neuron (DAN) in each brain hemisphere. While the involvement of excitatory D1-like receptors is well-established, the role of D2-like receptors (D2Rs) remains underexplored. Our investigation reveals the expression of D2Rs in both DANs and the mushroom body (MB) of third instar larval brains. Silencing D2Rs in DAN-c1 via microRNA disrupts aversive learning, further supported by optogenetic activation of DAN-c1 during training, affirming the inhibitory role of D2R autoreceptor. Intriguingly, D2R knockdown in the MB impairs both appetitive and aversive learning. These findings elucidate the distinct contributions of D2Rs in diverse brain structures, providing novel insights into the molecular mechanisms governing associative learning in Drosophila larvae.
Collapse
Affiliation(s)
- Cheng Qi
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | | | | | - Robert A. Colvin
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Daewoo Lee
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
3
|
Dunham KE, Venton BJ. Electrochemical and biosensor techniques to monitor neurotransmitter changes with depression. Anal Bioanal Chem 2024; 416:2301-2318. [PMID: 38289354 PMCID: PMC10950978 DOI: 10.1007/s00216-024-05136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024]
Abstract
Depression is a common mental illness. However, its current treatments, like selective serotonin reuptake inhibitors (SSRIs) and micro-dosing ketamine, are extremely variable between patients and not well understood. Three neurotransmitters: serotonin, histamine, and glutamate, have been proposed to be key mediators of depression. This review focuses on analytical methods to quantify these neurotransmitters to better understand neurological mechanisms of depression and how they are altered during treatment. To quantitatively measure serotonin and histamine, electrochemical techniques such as chronoamperometry and fast-scan cyclic voltammetry (FSCV) have been improved to study how specific molecular targets, like transporters and receptors, change with antidepressants and inflammation. Specifically, these studies show that different SSRIs have unique effects on serotonin reuptake and release. Histamine is normally elevated during stress, and a new inflammation hypothesis of depression links histamine and cytokine release. Electrochemical measurements revealed that stress increases histamine, decreases serotonin, and leads to changes in cytokines, like interleukin-6. Biosensors can also measure non-electroactive neurotransmitters, including glutamate and cytokines. In particular, new genetic sensors have shown how glutamate changes with chronic stress, as well as with ketamine treatment. These techniques have been used to characterize how ketamine changes glutamate and serotonin, and to understand how it is different from SSRIs. This review briefly outlines how these electrochemical techniques work, but primarily highlights how they have been used to understand the mechanisms of depression. Future studies should explore multiplexing techniques and personalized medicine using biomarkers in order to investigate multi-analyte changes to antidepressants.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
4
|
Hyun JH, Hannan P, Iwamoto H, Blakely RD, Kwon HB. Serotonin in the orbitofrontal cortex enhances cognitive flexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531880. [PMID: 36945634 PMCID: PMC10028980 DOI: 10.1101/2023.03.09.531880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Cognitive flexibility is a brain's ability to switch between different rules or action plans depending on the context. However, cellular level understanding of cognitive flexibility have been largely unexplored. We probed a specific serotonergic pathway from dorsal raphe nuclei (DRN) to the orbitofrontal cortex (OFC) while animals are performing reversal learning task. We found that serotonin release from DRN to the OFC promotes reversal learning. A long-range connection between these two brain regions was confirmed anatomically and functionally. We further show that spatiotemporally precise serotonergic action directly enhances the excitability of OFC neurons and offers enhanced spike probability of OFC network. Serotonergic action facilitated the induction of synaptic plasticity by enhancing Ca2+ influx at dendritic spines in the OFC. Thus, our findings suggest that a key signature of flexibility is the formation of choice specific ensembles via serotonin-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Jung Ho Hyun
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Patrick Hannan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - Hideki Iwamoto
- Department of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Randy D. Blakely
- Department of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| |
Collapse
|
5
|
Xiong H, Wilson BA, Slesinger PA, Qin Z. Understanding Neuropeptide Transmission in the Brain by Optical Uncaging and Release. ACS Chem Neurosci 2023; 14:516-523. [PMID: 36719384 PMCID: PMC10302814 DOI: 10.1021/acschemneuro.2c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Neuropeptides are abundant and essential signaling molecules in the nervous system involved in modulating neural circuits and behavior. Neuropeptides are generally released extrasynaptically and signal via volume transmission through G-protein-coupled receptors (GPCR). Although substantive functional roles of neuropeptides have been discovered, many questions on neuropeptide transmission remain poorly understood, including the local diffusion and transmission properties in the brain extracellular space. To address this challenge, intensive efforts are required to develop advanced tools for releasing and detecting neuropeptides with high spatiotemporal resolution. Because of the rapid development of biosensors and materials science, emerging tools are beginning to provide a better understanding of neuropeptide transmission. In this perspective, we summarize the fundamental advances in understanding neuropeptide transmission over the past decade, highlight the tools for releasing neuropeptides with high spatiotemporal solution in the brain, and discuss open questions and future directions in the field.
Collapse
Affiliation(s)
- Hejian Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Blake A. Wilson
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, The University of Texas at Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
6
|
Dumitrescu E, Copeland JM, Venton BJ. Parkin Knockdown Modulates Dopamine Release in the Central Complex, but Not the Mushroom Body Heel, of Aging Drosophila. ACS Chem Neurosci 2023; 14:198-208. [PMID: 36576890 PMCID: PMC9897283 DOI: 10.1021/acschemneuro.2c00277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons leading to reduced locomotion. Mutations of parkin gene in Drosophila produce the same phenotypes as vertebrate models, but the effect of parkin knockdown on dopamine release is not known. Here, we report age-dependent, spatial variation of dopamine release in the brain of parkin-RNAi adult Drosophila. Dopamine was repetitively stimulated by local application of acetylcholine and quantified by fast-scan cyclic voltammetry in the central complex or mushroom body heel. In the central complex, the main area controlling locomotor function, dopamine release is maintained for repeated stimulations in aged control flies, but lower concentrations of dopamine are released in the central complex of aged parkin-RNAi flies. In the mushroom body heel, the dopamine release decrease in older parkin-RNAi flies is similar to controls. There is not significant dopaminergic neuronal loss even in older parkin knockdown flies, which indicates that the changes in stimulated dopamine release are due to alterations of neuronal function. In young parkin-RNAi flies, locomotion is inhibited by 30%, while in older parkin-RNAi flies it is inhibited by 85%. Overall, stimulated dopamine release is modulated by parkin in an age and brain region dependent manner. Correlating the functional state of the dopaminergic system with behavioral phenotypes provides unique insights into the PD mechanism. Drosophila can be used to study dopamine functionality in PD, elucidate how genetics influence dopamine, and test potential therapies to maintain dopamine release.
Collapse
Affiliation(s)
- Eduard Dumitrescu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901
| | | | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901,Corresponding Author: , 434-243-2132
| |
Collapse
|
7
|
Kaur H, Siwal SS, Saini RV, Singh N, Thakur VK. Significance of an Electrochemical Sensor and Nanocomposites: Toward the Electrocatalytic Detection of Neurotransmitters and Their Importance within the Physiological System. ACS NANOSCIENCE AU 2022; 3:1-27. [PMID: 37101467 PMCID: PMC10125382 DOI: 10.1021/acsnanoscienceau.2c00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
A prominent neurotransmitter (NT), dopamine (DA), is a chemical messenger that transmits signals between one neuron to the next to pass on a signal to and from the central nervous system (CNS). The imbalanced concentration of DA may cause numerous neurological sicknesses and syndromes, for example, Parkinson's disease (PD) and schizophrenia. There are many types of NTs in the brain, including epinephrine, norepinephrine (NE), serotonin, and glutamate. Electrochemical sensors have offered a creative direction to biomedical analysis and testing. Researches are in progress to improve the performance of sensors and develop new protocols for sensor design. This review article focuses on the area of sensor growth to discover the applicability of polymers and metallic particles and composite materials as tools in electrochemical sensor surface incorporation. Electrochemical sensors have attracted the attention of researchers as they possess high sensitivity, quick reaction rate, good controllability, and instantaneous detection. Efficient complex materials provide considerable benefits for biological detection as they have exclusive chemical and physical properties. Due to distinctive electrocatalytic characteristics, metallic nanoparticles add fascinating traits to materials that depend on the material's morphology and size. Herein, we have collected much information on NTs and their importance within the physiological system. Furthermore, the electrochemical sensors and corresponding techniques (such as voltammetric, amperometry, impedance, and chronoamperometry) and the different types of electrodes' roles in the analysis of NTs are discussed. Furthermore, other methods for detecting NTs include optical and microdialysis methods. Finally, we show the advantages and disadvantages of different techniques and conclude remarks with future perspectives.
Collapse
Affiliation(s)
- Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Reena V. Saini
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nirankar Singh
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, United Kingdom
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
- Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| |
Collapse
|
8
|
Dunham KE, Venton BJ. SSRI antidepressants differentially modulate serotonin reuptake and release in Drosophila. J Neurochem 2022; 162:404-416. [PMID: 35736504 PMCID: PMC9427694 DOI: 10.1111/jnc.15658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
Abstract
Selective serotonin reuptake inhibitor (SSRI) antidepressants are commonly prescribed treatments for depression, but their effects on serotonin reuptake and release are not well understood. Drosophila melanogaster, the fruit fly, expresses the serotonin transporter (dSERT), the major target of SSRIs, but real-time serotonin changes after SSRIs have not been characterized in this model. The goal of this study was to characterize effects of SSRIs on serotonin concentration and reuptake in Drosophila larvae. We applied various doses (0.1-100 μM) of fluoxetine (Prozac), escitalopram (Lexapro), citalopram (Celexa), and paroxetine (Paxil), to ventral nerve cord (VNC) tissue and measured optogenetically-stimulated serotonin release with fast-scan cyclic voltammetry (FSCV). Fluoxetine increased reuptake from 1 to 100 μM, but serotonin concentration only increased at 100 μM. Thus, fluoxetine occupies dSERT and slows clearance but does not affect concentration. Escitalopram and paroxetine increased serotonin concentrations at all doses, but escitalopram increased reuptake more. Citalopram showed lower concentration changes and faster reuptake profiles compared with escitalopram, so the racemic mixture of citalopram does not change reuptake as much as the S-isomer. Dose response curves were constructed to compare dSERT affinities and paroxetine showed the highest affinity and fluoxetine the lowest. These data demonstrate SSRI mechanisms are complex, with separate effects on reuptake or release. Furthermore, dynamic serotonin changes in Drosophila are similar to previous studies in mammals. This work establishes how antidepressants affect serotonin in real-time, which is useful for future studies that will investigate pharmacological effects of SSRIs with different genetic mutations in Drosophila.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Virginia, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Virginia, USA
| |
Collapse
|
9
|
Everett AC, Graul BE, Ronström JW, Robinson JK, Watts DB, España RA, Siciliano CA, Yorgason JT. Effectiveness and Relationship between Biased and Unbiased Measures of Dopamine Release and Clearance. ACS Chem Neurosci 2022; 13:1534-1548. [PMID: 35482592 PMCID: PMC10763521 DOI: 10.1021/acschemneuro.2c00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fast-scan cyclic voltammetry (FSCV) is an effective tool for measuring dopamine release and clearance throughout the brain, especially the striatum where dopamine terminals are abundant and signals are heavily regulated by release machinery and the dopamine transporter (DAT). Peak height measurement is perhaps the most common method for measuring dopamine release, but it is influenced by changes in clearance. Michaelis-Menten-based modeling has been a standard in measuring dopamine clearance, but it is problematic in that it requires experimenter fitted modeling subject to experimenter bias. This study presents the use of the first derivative (velocity) of evoked dopamine signals as an alternative approach for measuring and distinguishing dopamine release from clearance. Maximal upward velocity predicts reductions in dopamine peak height due to D2 and GABAB receptor stimulation and by alterations in calcium concentrations. The Michaelis-Menten maximal velocity (Vmax) measure, an approximation for DAT levels, predicts maximal downward velocity in slices and in vivo. Dopamine peak height and upward velocity were similar between wild-type and DAT knock-out (DATKO) mice. In contrast, downward velocity was lower and exponential decay (tau) was higher in DATKO mice, supporting the use of both measures for extreme changes in DAT activity. In slices, the competitive DAT inhibitors cocaine, PTT, and WF23 increased peak height and upward velocity differentially across increasing concentrations, with PTT and cocaine reducing these measures at high concentrations. Downward velocity and tau values decreased and increased respectively across concentrations, with greater potency and efficacy observed with WF23 and PTT. In vivo recordings demonstrated similar effects of WF23, PTT, and cocaine on measures of release and clearance. Tau was a more sensitive measure at low concentrations, supporting its use as a surrogate for the Michaelis-Menten measure of apparent affinity (Km). Together, these results inform on the use of these various measures for dopamine release and clearance.
Collapse
Affiliation(s)
- Anna C. Everett
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - Ben E. Graul
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - Joakim W. Ronström
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - J. Kayden Robinson
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - Daniel B. Watts
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - Rodrigo A. España
- Drexel University, Department of Neurobiology & Anatomy, Philadelphia, PA 28619, USA
| | - Cody A. Siciliano
- Vanderbilt University, Center for Addiction Research, Nashville, TN 37203, USA
| | - Jordan T. Yorgason
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| |
Collapse
|
10
|
Dunham KE, Venton BJ. Improving serotonin fast-scan cyclic voltammetry detection: new waveforms to reduce electrode fouling. Analyst 2021; 145:7437-7446. [PMID: 32955048 DOI: 10.1039/d0an01406k] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Serotonin is a neuromodulator implicated in depression that is often measured in real-time by fast-scan cyclic voltammetry (FSCV). A specialized "Jackson" waveform (JW, 0.2, 1.0 V, -0.1 V, 0.2 V, 1000 V s-1) was developed to reduce serotonin fouling, but the 1.0 V switching potential limits sensitivity and electrodes still foul. The goal of this study was to test the effects of extending the FSCV switching potential to increase serotonin sensitivity and decrease fouling. We compared the Jackson waveform, the dopamine waveform (DA, -0.4 V, 1.3 V, 400 V s-1), and two new waveforms: the extended serotonin waveform (ESW, 0.2, 1.3, -0.1, 0.2, 1000 V s-1) and extended hold serotonin waveform (EHSW, 0.2, 1.3 (hold 1 ms), -0.1, 0.2, 400 V s-1). The EHSW was the most sensitive (LOD = 0.6 nM), and the JW the least sensitive (LOD = 2.4 nM). With the Jackson waveform, electrode fouling was significant with repeated injections of serotonin or exposure to its metabolite, 5-hydroxyindoleacetic acid (5-HIAA). Using the extended waveforms, electrodes fouled 50% less than with the Jackson waveform for both analytes. No electrode fouling was observed with the dopamine waveform because of the negative holding potential. The Jackson waveform was the most selective for serotonin over dopamine (800×), and the ESW was also highly selective. All waveforms were useful for measuring serotonin with optogenetic stimulation in Drosophila larvae. These results provide new FSCV waveforms to measure dynamic serotonin changes with different experimental requirements, like high sensitivity (EHSW), high selectivity (ESW, JW), or eliminating electrode fouling (DA).
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | | |
Collapse
|
11
|
Privman Champaloux E, Donelson N, Pyakurel P, Wolin D, Ostendorf L, Denno M, Borman R, Burke C, Short-Miller JC, Yoder MR, Copeland JM, Sanyal S, Venton BJ. Ring Finger Protein 11 (RNF11) Modulates Dopamine Release in Drosophila. Neuroscience 2020; 452:37-48. [PMID: 33176188 DOI: 10.1016/j.neuroscience.2020.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Recent work indicates a role for RING finger protein 11 (RNF11) in Parkinson disease (PD) pathology, which involves the loss of dopaminergic neurons. However, the role of RNF11 in regulating dopamine neurotransmission has not been studied. In this work, we tested the effect of RNF11 RNAi knockdown or overexpression on stimulated dopamine release in the larval Drosophila central nervous system. Dopamine release was stimulated using optogenetics and monitored in real-time using fast-scan cyclic voltammetry at an electrode implanted in an isolated ventral nerve cord. RNF11 knockdown doubled dopamine release, but there was no decrease in dopamine from RNF11 overexpression. RNF11 knockdown did not significantly increase stimulated serotonin or octopamine release, indicating the effect is dopamine specific. Dopamine clearance was also changed, as RNF11 RNAi flies had a higher Vmax and RNF11 overexpressing flies had a lower Vmax than control flies. RNF11 RNAi flies had increased mRNA levels of dopamine transporter (DAT) in RNF11, confirming changes in DAT. In RNF11 RNAi flies, release was maintained better for stimulations repeated at short intervals, indicating increases in the recycled releasable pool of dopamine. Nisoxetine, a DAT inhibitor, and flupenthixol, a D2 antagonist, did not affect RNF11 RNAi or overexpressing flies differently than control. Thus, RNF11 knockdown causes early changes in dopamine neurotransmission, and this is the first work to demonstrate that RNF11 affects both dopamine release and uptake. RNF11 expression decreases in human dopaminergic neurons during PD, and that decrease may be protective by increasing dopamine neurotransmission in the surviving dopaminergic neurons.
Collapse
Affiliation(s)
- Eve Privman Champaloux
- Neuroscience Graduate Program and Medical Scientist Training Program, University of Virginia, Charlottesville, VA, United States
| | | | - Poojan Pyakurel
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Danielle Wolin
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Leah Ostendorf
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Madelaine Denno
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Ryan Borman
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | | | - Jonah C Short-Miller
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, United States
| | - Maria R Yoder
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, United States
| | - Jeffrey M Copeland
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States; Department of Biology, Eastern Mennonite University, Harrisonburg, VA, United States
| | | | - B Jill Venton
- Neuroscience Graduate Program and Medical Scientist Training Program, University of Virginia, Charlottesville, VA, United States; Department of Chemistry, University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
12
|
Shin M, Copeland JM, Venton BJ. Real-Time Measurement of Stimulated Dopamine Release in Compartments of the Adult Drosophila melanogaster Mushroom Body. Anal Chem 2020; 92:14398-14407. [PMID: 33048531 DOI: 10.1021/acs.analchem.0c02305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila melanogaster, a fruit fly, is an exquisite model organism to understand neurotransmission. Dopaminergic signaling in the Drosophila mushroom body (MB) is involved in olfactory learning and memory, with different compartments controlling aversive learning (heel) vs. appetitive learning (medial tip). Here, the goal was to develop techniques to measure endogenous dopamine in compartments of the MB for the first time. We compared three stimulation methods: acetylcholine (natural stimulus), P2X2 (chemogenetics), and CsChrimson (optogenetics). Evoked dopamine release was measured with fast-scan cyclic voltammetry in isolated adult Drosophila brains. Acetylcholine stimulated the largest dopamine release (0.40 μM) followed by P2X2 (0.14 μM) and CsChrimson (0.07 μM). With the larger acetylcholine and P2X2 stimulations, there were no regional or sex differences in dopamine release. However, with CsChrimson, dopamine release was significantly higher in the heel than the medial tip, and females had more dopamine than males. Michaelis-Menten modeling of the single-light pulse revealed no significant regional differences in Km, but the heel had a significantly lower Vmax (0.12 μM/s vs. 0.19 μM/s) and higher dopamine release (0.05 μM vs. 0.03 μM). Optogenetic experiments are challenging because CsChrimson is also sensitive to blue light used to activate green fluorescent protein, and thus, light exposure during brain dissection must be minimized. These experiments expand the toolkit for measuring endogenous dopamine release in Drosophila, introducing chemogenetic and optogenetic experiments for the first time. With a variety of stimulations, different experiments will help improve our understanding of neurochemical signaling in Drosophila.
Collapse
Affiliation(s)
- Mimi Shin
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| | - Jeffrey M Copeland
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States.,Department of Biology, Eastern Mennonite University, Harrisonburg, Virginia 22802, United States
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| |
Collapse
|
13
|
Hidalgo S, Fuenzalida-Uribe N, Molina-Mateo D, Escobar AP, Oliva C, España RA, Andrés ME, Campusano JM. Study of the release of endogenous amines in Drosophila brain in vivo in response to stimuli linked to aversive olfactory conditioning. J Neurochem 2020; 156:337-351. [PMID: 32596813 DOI: 10.1111/jnc.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/27/2022]
Abstract
A highly challenging question in neuroscience is to understand how aminergic neural circuits contribute to the planning and execution of behaviors, including the generation of olfactory memories. In this regard, electrophysiological techniques like Local Field Potential or imaging methods have been used to answer questions relevant to cell and circuit physiology in different animal models, such as the fly Drosophila melanogaster. However, these techniques do not provide information on the neurochemical identity of the circuits of interest. Different approaches including fast scan cyclic voltammetry, allow researchers to identify and quantify in a timely fashion the release of endogenous neuroactive molecules, but have been only used in in vitro Drosophila brain preparations. Here, we report a procedure to record for the first time the release of endogenous amines -dopamine, serotonin and octopamine- in adult fly brain in vivo, by fast scan cyclic voltammetry. As a proof of principle, we carried out recordings in the calyx region of the Mushroom Bodies, the brain area mainly associated to the generation of olfactory memories in flies. By using principal component regression in normalized training sets for in vivo recordings, we detect an increase in octopamine and serotonin levels in response to electric shock and olfactory cues respectively. This new approach allows the study of dynamic changes in amine neurotransmission that underlie complex behaviors in Drosophila and shed new light on the contribution of these amines to olfactory processing in this animal model.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,School of Physiology, Pharmacology and Ncxeuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Nicolás Fuenzalida-Uribe
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Molina-Mateo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica P Escobar
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Oliva
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Maria Estela Andrés
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge M Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencia UC, Santiago, Chile
| |
Collapse
|
14
|
Su Y, Bian S, Sawan M. Real-time in vivo detection techniques for neurotransmitters: a review. Analyst 2020; 145:6193-6210. [DOI: 10.1039/d0an01175d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional synapses in the central nervous system depend on a chemical signal exchange process that involves neurotransmitter delivery between neurons and receptor cells in the neuro system.
Collapse
Affiliation(s)
- Yi Su
- Zhejiang university
- Hangzhou, 310058
- China
- CENBRAIN Lab
- School of Engineering
| | - Sumin Bian
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| | - Mohamad Sawan
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| |
Collapse
|
15
|
Yang C, Hu K, Wang D, Zubi Y, Lee ST, Puthongkham P, Mirkin MV, Venton BJ. Cavity Carbon-Nanopipette Electrodes for Dopamine Detection. Anal Chem 2019; 91:4618-4624. [PMID: 30810304 PMCID: PMC6526101 DOI: 10.1021/acs.analchem.8b05885] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microelectrodes are typically used for neurotransmitter detection, but nanoelectrodes are not because there is a trade-off between spatial resolution and sensitivity that is dependent on surface area. Cavity carbon-nanopipette electrodes (CNPEs), with tip diameters of a few hundred nanometers, have been developed for nanoscale electrochemistry. Here, we characterize the electrochemical performance of CNPEs with fast-scan cyclic voltammetry (FSCV) for the first time. Dopamine detection using cavity CNPEs, with a depth equivalent to a few radii, is compared with that using open-tube CNPEs, an essentially infinite geometry. Open-tube CNPEs have very slow temporal responses that change over time as the liquid rises in the CNPE. However, a cavity CNPE has a fast temporal response to a bolus of dopamine that is not different from that of a traditional carbon-fiber microelectrode. Cavity CNPEs, with tip diameters of 200-400 nm, have high currents because the small cavity traps and increases the local dopamine concentration. The trapping also leads to an FSCV frequency-independent response and the appearance of cyclization peaks that are normally observed only with large concentrations of dopamine. CNPEs have high dopamine selectivity over ascorbic acid (AA) because of the repulsion of AA by the negative electric field at the holding potential and the irreversible redox reaction. In mouse-brain slices, cavity CNPEs detected exogenously applied dopamine, showing they do not clog in tissue. Thus, cavity CNPEs are promising neurochemical sensors that provide spatial resolution on the scale of hundreds of nanometers, which is useful for small model organisms or for locations near specific cells.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| | - Keke Hu
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, New York 11367
- The Graduate Center of the City University of New York, New York, New York 10016
| | - Dengchao Wang
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, New York 11367
| | - Yasmine Zubi
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| | - Scott T. Lee
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| | | | - Michael V. Mirkin
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, New York 11367
- The Graduate Center of the City University of New York, New York, New York 10016
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
16
|
An optimized and automated approach to quantifying channelrhodopsin photocurrent kinetics. Anal Biochem 2018; 566:160-167. [PMID: 30502319 DOI: 10.1016/j.ab.2018.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023]
Abstract
Channelrhodopsins are light-activated ion channels that enable targetable activation or inhibition of excitable cells with light. Ion conductance can generally be described by a four step photocycle, which includes two open and two closed states. While a complete understanding of channelrhodopsin function cannot be understood in the absence of kinetic modeling, model fitting requires manual fitting, which is laborious and technically complicated for non-experts. To enhance analysis of photocurrent data, this manuscript describes a fitting program where electrophysiology data can be automatically and quantitatively analyzed. Significant improvement in this program when compared to our previous version includes 1) the ability to automatically find the experiment start time using the derivative of the current signal, 2) utilizing the Object Oriented Programing (OPP) paradigm which is significantly more reliable if the code is used by people with little to no programming experience and 3) the distribution of the code is simplified to sharing a single MATLAB file, including rigorous comments throughout. To demonstrate the utility of this program, we show automated fitting of photocurrents from two member proteins: channelrhodopsin-2 and a chimera between channelrhodopsin-1 and channelrhodopsin-2 (C1C2).
Collapse
|
17
|
Abstract
Understanding how activity patterns in specific neural circuits coordinate an animal’s behavior remains a key area of neuroscience research. Genetic tools and a brain of tractable complexity make Drosophila a premier model organism for these studies. Here, we review the wealth of reagents available to map and manipulate neuronal activity with light.
Collapse
|
18
|
Shin M, Copeland JM, Venton BJ. Drosophila as a Model System for Neurotransmitter Measurements. ACS Chem Neurosci 2018; 9:1872-1883. [PMID: 29411967 DOI: 10.1021/acschemneuro.7b00456] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drosophila melanogaster, the fruit fly, is an important, simple model organism for studying the effects of genetic mutations on neuronal activity and behavior. Biologists use Drosophila for neuroscience studies because of its genetic tractability, complex behaviors, well-known and simple neuroanatomy, and many orthologues to human genes. Neurochemical measurements in Drosophila are challenging due to the small size of the central nervous system. Recently, methods have been developed to measure real-time neurotransmitter release and clearance in both larvae and adults using electrochemistry. These studies have characterized dopamine, serotonin, and octopamine release in both wild type and genetic mutant flies. Tissue content measurements are also important, and separations are predominantly used. Capillary electrophoresis, with either electrochemical, laser-induced fluorescence, or mass spectrometry detection, facilitates tissue content measurements from single, isolated Drosophila brains or small samples of hemolymph. Neurochemical studies in Drosophila have revealed that flies have functioning transporters and autoreceptors, that their metabolism is different than in mammals, and that flies have regional, life stage, and sex differences in neurotransmission. Future studies will develop smaller electrodes, expand optical imaging techniques, explore physiological stimulations, and use advanced genetics to target single neuron release or study neurochemical changes in models of human diseases.
Collapse
Affiliation(s)
- Mimi Shin
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22901, United States
| | - Jeffrey M. Copeland
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22901, United States
- Department of Biology, Eastern Mennonite University, Harrisonburg, Virginia 22802, United States
| | - B. Jill Venton
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22901, United States
| |
Collapse
|
19
|
Majdi S, Larsson A, Hoang Philipsen M, Ewing AG. Electrochemistry in and of the Fly Brain. ELECTROANAL 2018. [DOI: 10.1002/elan.201700790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Soodabeh Majdi
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 41296 Gothenburg Sweden
| | - Anna Larsson
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 41296 Gothenburg Sweden
| | - Mai Hoang Philipsen
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 41296 Gothenburg Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 41296 Gothenburg Sweden
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
20
|
Moran RJ, Kishida KT, Lohrenz T, Saez I, Laxton AW, Witcher MR, Tatter SB, Ellis TL, Phillips PEM, Dayan P, Montague PR. The Protective Action Encoding of Serotonin Transients in the Human Brain. Neuropsychopharmacology 2018; 43:1425-1435. [PMID: 29297512 PMCID: PMC5916372 DOI: 10.1038/npp.2017.304] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/01/2017] [Accepted: 11/28/2017] [Indexed: 01/14/2023]
Abstract
The role of serotonin in human brain function remains elusive due, at least in part, to our inability to measure rapidly the local concentration of this neurotransmitter. We used fast-scan cyclic voltammetry to infer serotonergic signaling from the striatum of 14 brains of human patients with Parkinson's disease. Here we report these novel measurements and show that they correlate with outcomes and decisions in a sequential investment game. We find that serotonergic concentrations transiently increase as a whole following negative reward prediction errors, while reversing when counterfactual losses predominate. This provides initial evidence that the serotonergic system acts as an opponent to dopamine signaling, as anticipated by theoretical models. Serotonin transients on one trial were also associated with actions on the next trial in a manner that correlated with decreased exposure to poor outcomes. Thus, the fluctuations observed for serotonin appear to correlate with the inhibition of over-reactions and promote persistence of ongoing strategies in the face of short-term environmental changes. Together these findings elucidate a role for serotonin in the striatum, suggesting it encodes a protective action strategy that mitigates risk and modulates choice selection particularly following negative environmental events.
Collapse
Affiliation(s)
- Rosalyn J Moran
- Department of Engineering Mathematics, School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Bristol, UK
| | - Kenneth T Kishida
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA,Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Terry Lohrenz
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Ignacio Saez
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Adrian W Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark R Witcher
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen B Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas L Ellis
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Paul EM Phillips
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA,Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Peter Dayan
- The Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - P Read Montague
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA,Department of Physics, Virginia Tech, Blacksburg, VA, USA,Wellcome Trust Centre for Neuroimaging, University College London, London, UK,Virginia Tech Carilion, Research Institute, 2 Riverside Circle, Roanoke, VA 24016, USA, Tel: +1 540 526 2006, Fax: +1 540 982 3805, E-mail:
| |
Collapse
|
21
|
Pyakurel P, Shin M, Venton BJ. Nicotinic acetylcholine receptor (nAChR) mediated dopamine release in larval Drosophila melanogaster. Neurochem Int 2018; 114:33-41. [PMID: 29305920 DOI: 10.1016/j.neuint.2017.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/04/2017] [Accepted: 12/29/2017] [Indexed: 01/13/2023]
Abstract
Acetylcholine is an excitatory neurotransmitter in the central nervous system of insects and the nicotinic acetylcholine receptor (nAChR) is a target for neonicotinoid insecticides. Functional insect nAChRs are difficult to express in host cells, and hence difficult to study. In mammals, acetylcholine and nicotine evoke dopamine release, but the extent to which this mechanism is conserved in insects is unknown. In intact larval ventral nerve cords (VNCs), we studied dopamine evoked by acetylcholine, nicotine, or neonicotinoids. Using fast-scan cyclic voltammetry, we confirmed dopamine was measured by its cyclic voltammogram and also by feeding Drosophila the synthesis inhibitor, 3-iodotyrosine, which lowered the evoked dopamine response. Acetylcholine (1.8 pmol) evoked on average 0.43 ± 0.04 μM dopamine. Dopamine release significantly decreased after incubation with α-bungarotoxin, demonstrating the release is mediated by nAChR, but atropine, a muscarinic AChR antagonist, had no effect. Nicotine (t1/2 = 71 s) and the neonicotinoids nitenpyram and imidacloprid (t1/2 = 86 s, 121 s respectively) also evoked dopamine release, which lasted longer than acetylcholine-stimulated release (t1/2 = 19 s). Nicotine-stimulated dopamine was significantly lower in the presence of sodium channel blocker, tetrodotoxin, showing that the release is exocytotic. Drosophila that have mutations in the nAChR subunit α1 or β2 have significantly lower neonicotinoid-stimulated release but no changes in nicotine-stimulated release. This work demonstrates that nAChR agonists mediate dopamine release in Drosophila larval VNC and that mutations in nAChR subunits affect how insecticides stimulate dopamine release.
Collapse
Affiliation(s)
- Poojan Pyakurel
- Department of Chemistry, University of Virginia, United States
| | - Mimi Shin
- Department of Chemistry, University of Virginia, United States
| | - B Jill Venton
- Department of Chemistry, University of Virginia, United States.
| |
Collapse
|
22
|
Study of the Contribution of Nicotinic Receptors to the Release of Endogenous Biogenic Amines in Drosophila Brain. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-1-4939-3768-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
23
|
Pyakurel P, Privman Champaloux E, Venton BJ. Fast-Scan Cyclic Voltammetry (FSCV) Detection of Endogenous Octopamine in Drosophila melanogaster Ventral Nerve Cord. ACS Chem Neurosci 2016; 7:1112-9. [PMID: 27326831 DOI: 10.1021/acschemneuro.6b00070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Octopamine is an endogenous biogenic amine neurotransmitter, neurohormone, and neuromodulator in invertebrates and has functional analogy with norepinephrine in vertebrates. Fast-scan cyclic voltammetry (FSCV) can detect rapid changes in neurotransmitters, but FSCV has not been optimized for octopamine detection in situ. The goal of this study was to characterize octopamine release in the ventral nerve cord of Drosophila larvae for the first time. A FSCV waveform was optimized so that the potential for octopamine oxidation would not be near the switching potential where interferences can occur. Endogenous octopamine release was stimulated by genetically inserting either the ATP sensitive channel, P2X2, or the red-light sensitive channelrhodopsin, CsChrimson, into cells expressing tyrosine decarboxylase (TDC), an octopamine synthesis enzyme. To ensure that release is due to octopamine and not the precursor tyramine, the octopamine synthesis inhibitor disulfiram was applied, and the signal decreased by 80%. Stimulated release was vesicular, and a 2 s continuous light stimulation of CsChrimson evoked 0.22 ± 0.03 μM of octopamine release in the larval ventral nerve cord. Repeated stimulations were stable with 2 or 5 min interstimulation times. With pulsed stimulations, the release was dependent on the frequency of applied light pulse. An octopamine transporter has not been identified, and blockers of the dopamine transporter and serotonin transporter had no significant effect on the clearance time of octopamine, suggesting that they do not take up octopamine. This study shows that octopamine can be monitored in Drosophila, facilitating future studies of how octopamine release functions in the insect brain.
Collapse
Affiliation(s)
- Poojan Pyakurel
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904, United States
| | - Eve Privman Champaloux
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
24
|
Walters SH, Robbins EM, Michael AC. Kinetic Diversity of Striatal Dopamine: Evidence from a Novel Protocol for Voltammetry. ACS Chem Neurosci 2016; 7:662-7. [PMID: 26886408 DOI: 10.1021/acschemneuro.6b00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In vivo voltammetry reveals substantial diversity of dopamine kinetics in the rat striatum. To substantiate this kinetic diversity, we evaluate the temporal distortion of dopamine measurements arising from the diffusion-limited adsorption of dopamine to voltammetric microelectrodes. We validate two mathematical procedures for correcting adsorptive distortion, both of which substantiate that dopamine's apparent kinetic diversity is not an adsorption artifact.
Collapse
Affiliation(s)
- Seth H. Walters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Elaine M. Robbins
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
25
|
Modulatory Action by the Serotonergic System: Behavior and Neurophysiology in Drosophila melanogaster. Neural Plast 2016; 2016:7291438. [PMID: 26989517 PMCID: PMC4773565 DOI: 10.1155/2016/7291438] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 01/13/2023] Open
Abstract
Serotonin modulates various physiological processes and behaviors. This study investigates the role of 5-HT in locomotion and feeding behaviors as well as in modulation of sensory-motor circuits. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae 5-HT, a 5-HT precursor, or an inhibitor of tryptophan hydroxylase during early stages of development. The effects of feeding fluoxetine, a selective serotonin reuptake inhibitor, during early second instars were also examined. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or enhanced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotion and feeding behaviors in larvae. Acute activation of 5-HT neurons disrupts normal locomotion activity in adult flies. To determine which 5-HT receptor subtype modulates the evoked sensory-motor activity, pharmacological agents were used. In addition, the activity of 5-HT neurons was enhanced by expressing and activating TrpA1 channels or channelrhodopsin-2 while recording the evoked excitatory postsynaptic potentials (EPSPs) in muscle fibers. 5-HT2 receptor activation mediates a modulatory role in a sensory-motor circuit, and the activation of 5-HT neurons can suppress the neural circuit activity, while fluoxetine can significantly decrease the sensory-motor activity.
Collapse
|
26
|
Privman E, Venton BJ. Comparison of dopamine kinetics in the larval Drosophila ventral nerve cord and protocerebrum with improved optogenetic stimulation. J Neurochem 2015; 135:695-704. [PMID: 26296526 DOI: 10.1111/jnc.13286] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022]
Abstract
Dopamine release and uptake have been studied in the Drosophila larval ventral nerve cord (VNC) using optogenetics to stimulate endogenous release. However, other areas of the central nervous system remain uncharacterized. Here, we compare dopamine release in the VNC and protocerebrum of larval Drosophila. Stimulations were performed with CsChrimson, a new, improved, red light-activated channelrhodopsin. In both regions, dopamine release was observed after only a single, 4 ms duration light pulse. Michaelis-Menten modeling was used to understand release and uptake parameters for dopamine. The amount of dopamine released ([DA]p ) on the first stimulation pulse is higher than the average [DA]p released from subsequent pulses. The initial and average amount of dopamine released per stimulation pulse is smaller in the protocerebrum than in the VNC. The average Vmax of 0.08 μM/s in the protocerebrum was significantly higher than the Vmax of 0.05 μM/s in the VNC. The average Km of 0.11 μM in the protocerebrum was not significantly different from the Km of 0.10 μM in the VNC. When the competitive dopamine transporter (DAT) inhibitor nisoxetine was applied, the Km increased significantly in both regions while Vmax stayed the same. This work demonstrates regional differences in dopamine release and uptake kinetics, indicating important variation in the amount of dopamine available for neurotransmission and neuromodulation. We use a new optogenetic tool, red light activated CsChrimson, to stimulate the release of dopamine in the ventral nerve cord and medial protocerebrum of the larval Drosophila central nervous system. We monitored extracellular dopamine by fast scan cyclic voltammetry and used Michaelis-Menten modeling to probe the regulation of extracellular dopamine, discovering important similarities and differences in these two regions.
Collapse
Affiliation(s)
- Eve Privman
- Department of Chemistry, Neuroscience Graduate Program, and Medical Scientist Training Program, University of Virginia, Charlottesville, Virginia, USA
| | - B Jill Venton
- Department of Chemistry, Neuroscience Graduate Program, and Medical Scientist Training Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
27
|
Xiao N, Venton BJ. Characterization of dopamine releasable and reserve pools in Drosophila larvae using ATP/P2X2 -mediated stimulation. J Neurochem 2015; 134:445-54. [PMID: 25951875 DOI: 10.1111/jnc.13148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/04/2015] [Accepted: 03/31/2015] [Indexed: 12/23/2022]
Abstract
Dopaminergic signaling pathways are conserved between mammals and Drosophila, but the factors important for maintaining the functional pool of synaptic dopamine are not fully understood in Drosophila. In this study, we characterized the releasable and reserve dopamine pools in Drosophila larvae using ATP/P2X2 -mediated stimulation. Dopamine release was stable with stimulations performed at least every 5 min but decayed with stimulations performed 2 min apart or less, indicating the replenishment of the releasable pool occurred on a time scale between 2 and 5 min. Dopamine synthesis or uptake was pharmacologically inhibited with 3-iodotyrosine and cocaine, respectively, to evaluate their contributions to maintain the releasable dopamine pool. We found that both synthesis and uptake were needed to maintain the releasable dopamine pool, with synthesis playing a major part in long-term replenishment and uptake being more important for short-term replenishment. These effects of synthesis and uptake on different time scales in Drosophila are analogous to mammals. However, unlike in mammals, cocaine did not activate a reserve pool of dopamine in Drosophila when using P2X2 stimulations. Our study shows that both synthesis and uptake replenish the releasable pool, providing a better understanding of dopamine regulation in Drosophila. The maintenance of the releasable dopamine pool was examined in Drosophila larva. Both synthesis and uptake were needed to maintain the releasable dopamine pool, with synthesis being most important on a longer time scale and uptake on a shorter time scale. Dopamine release was stimulated by applying ATP which activated P2X2 channels specifically expressed in dopaminergic neurons.
Collapse
Affiliation(s)
- Ning Xiao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
28
|
Rees HR, Anderson SE, Privman E, Bau HH, Venton BJ. Carbon nanopipette electrodes for dopamine detection in Drosophila. Anal Chem 2015; 87:3849-55. [PMID: 25711512 PMCID: PMC4400659 DOI: 10.1021/ac504596y] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Small, robust, sensitive electrodes are desired for in vivo neurotransmitter measurements. Carbon nanopipettes have been previously manufactured and used for single-cell drug delivery and electrophysiological measurements. Here, a modified fabrication procedure was developed to produce batches of solid carbon nanopipette electrodes (CNPEs) with ∼250 nm diameter tips, and controllable lengths of exposed carbon, ranging from 5 to 175 μm. The electrochemical properties of CNPEs were characterized with fast-scan cyclic voltammetry (FSCV) for the first time. CNPEs were used to detect the electroactive neurotransmitters dopamine, serotonin, and octopamine. CNPEs were significantly more sensitive for serotonin detection than traditional carbon-fiber microelectrodes (CFMEs). Similar to CFMEs, CNPEs have a linear response for dopamine concentrations ranging from 0.1 to 10 μM and a limit of detection of 25 ± 5 nM. Recordings with CNPEs were stable for over 3 h when the applied triangle waveform was scanned between -0.4 and +1.3 V vs Ag/AgCl/Cl(-) at 400 V/s. CNPEs were used to detect endogenous dopamine release in Drosophila larvae using optogenetics, which verified the utility of CNPEs for in vivo neuroscience studies. CNPEs are advantageous because they are 1 order of magnitude smaller in diameter than typical CFMEs and have a sharp, tunable geometry that facilitates penetration and implantation for localized measurements in distinct regions of small organisms, such as the Drosophila brain.
Collapse
Affiliation(s)
| | - Sean E Anderson
- §Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Haim H Bau
- §Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
29
|
Chen S, Zhou H, Guo S, Zhang J, Qu Y, Feng Z, Xu K, Zheng X. Optogenetics Based Rat-Robot Control: Optical Stimulation Encodes "Stop" and "Escape" Commands. Ann Biomed Eng 2015; 43:1851-64. [PMID: 25567506 DOI: 10.1007/s10439-014-1235-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 12/19/2014] [Indexed: 12/15/2022]
Abstract
Electric brain stimulation is frequently used in bio-robot control. However, one possible limitation of electric stimulation is the resultant wide range of influences that may lead to unexpected side-effects. Although there has been prior research done towards optogenetics based brain activation, there has not been much development regarding the comparisons between electric and optical methods of brain activation. In this study, we first encode "Stop" and "Escape" commands by optical stimulation in the dorsal periaqueductal grey (dPAG). The rats behavioral comparisons are then noted down under these two methods. The dPAG neural activity recorded during optical stimulation suggests rate and temporal coding mechanisms in behavioral control. The behavioral comparisons show that rats exhibit anxiety under the "Stop" command conveyed through both optical and electric methods. However, rats are able to recover more quickly from freezing only under optical "Stop" command. Under "Escape" commands, also conveyed through optical means, the rat would move with lessened urgency but the results are more stable. Moreover, c-Fos study shows the optical stimulation activates restricted range in midbrain: the optical stimulation affected only dPAG and its downstreams but electric stimulation activates both the upstream and downstream circuits, in which the glutamatergic neurons are largely occupied and play important role in "Stop" and "Escape" behavior controls. We conclude that optical stimulation is more suited for encoding "Stop" and "Escape" commands for rat-robot control.
Collapse
Affiliation(s)
- SiCong Chen
- Department of Biomedical Engineering, Key Laboratory of Ministry of Education, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bucher ES, Wightman RM. Electrochemical Analysis of Neurotransmitters. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:239-61. [PMID: 25939038 PMCID: PMC4728736 DOI: 10.1146/annurev-anchem-071114-040426] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.
Collapse
|
31
|
Majdi S, Ren L, Fathali H, Li X, Ewing AG. Selected recent in vivo studies on chemical measurements in invertebrates. Analyst 2015; 140:3676-86. [DOI: 10.1039/c4an02172j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Review ofin vivoanalysis of brain chemicals in invertebrates.
Collapse
Affiliation(s)
- S. Majdi
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - L. Ren
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - H. Fathali
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - X. Li
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - A. G. Ewing
- Department of Chemistry and Chemical Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
- Department of Chemistry and Molecular Biology
| |
Collapse
|