1
|
Oliveira GD, dos S. Bury P, Huang F, Li Y, Araújo ND, Zhou J, Sun Y, Leeper FJ, Leadlay PF, Dias MVB. Structural and Functional Basis of GenB2 Isomerase Activity from Gentamicin Biosynthesis. ACS Chem Biol 2024; 19:2002-2011. [PMID: 39207862 PMCID: PMC11420954 DOI: 10.1021/acschembio.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Aminoglycosides are essential antibiotics used to treat severe infections caused mainly by Gram-negative bacteria. Gentamicin is an aminoglycoside and, despite its toxicity, is clinically used to treat several pulmonary and urinary infections. The commercial form of gentamicin is a mixture of five compounds with minor differences in the methylation of one of their aminosugars. In the case of two compounds, gentamicin C2 and C2a, the only difference is the stereochemistry of the methyl group attached to C-6'. GenB2 is the enzyme responsible for this epimerization and is one of the four PLP-dependent enzymes encoded by the gentamicin biosynthetic gene cluster. Herein, we have determined the structure of GenB2 in its holo form in complex with PMP and also in the ternary complex with gentamicin X2 and G418, two substrate analogues. Based on the structural analysis, we were able to identify the structural basis for the catalytic mechanism of this enzyme, which was also studied by site-directed mutagenesis. Unprecedently, GenB2 is a PLP-dependent enzyme from fold I, which is able to catalyze an epimerization but with a mechanism distinct from that of fold III PLP-dependent epimerases using a cysteine residue near the N-terminus. The substitution of this cysteine residue for serine or alanine completely abolished the epimerase function of the enzyme, confirming its involvement. This study not only contributes to the understanding of the enzymology of gentamicin biosynthesis but also provides valuable details for exploring the enzymatic production of new aminoglycoside derivatives.
Collapse
Affiliation(s)
- Gabriel
S. de Oliveira
- Department
of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Priscila dos S. Bury
- Department
of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Fanglu Huang
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | - Yuan Li
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry
of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Natália
C. de Araújo
- Department
of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Jiahai Zhou
- State
Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute of Advanced Technology, CAS, Shenzhen 518055, China
| | - Yuhui Sun
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry
of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Finian J. Leeper
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Peter F. Leadlay
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | - Marcio V. B. Dias
- Department
of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
2
|
Zhong Y, Zheng H, Chen X, Zhao Y, Gao T, Dong H, Luo H, Weng Z. DDI-GCN: Drug-drug interaction prediction via explainable graph convolutional networks. Artif Intell Med 2023; 144:102640. [PMID: 37783544 DOI: 10.1016/j.artmed.2023.102640] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/21/2023] [Accepted: 08/20/2023] [Indexed: 10/04/2023]
Abstract
Drug-drug interactions (DDI) may lead to unexpected side effects, which is a growing concern in both academia and industry. Many DDIs have been reported, but the underlying mechanisms are not well understood. Predicting and understanding DDIs can help researchers to improve drug safety and protect patient health. Here, we introduce DDI-GCN, a method that utilizes graph convolutional networks (GCN) to predict DDIs based on chemical structures. We demonstrate that this method achieves state-of-the-art prediction performance on the independent hold-out set. It can also provide visualization of structural features associated with DDIs, which can help us to study the underlying mechanisms. To make it easy and accessible to use, we developed a web server for DDI-GCN, which is freely available at http://wengzq-lab.cn/ddi/.
Collapse
Affiliation(s)
- Yi Zhong
- The Center for Big Data Research in Burns and Trauma, College of Computer and Data Science/College of Software, Fuzhou University, Fujian Province, China
| | - Houbing Zheng
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoming Chen
- The Center for Big Data Research in Burns and Trauma, College of Computer and Data Science/College of Software, Fuzhou University, Fujian Province, China
| | - Yu Zhao
- The Center for Big Data Research in Burns and Trauma, College of Computer and Data Science/College of Software, Fuzhou University, Fujian Province, China
| | - Tingfang Gao
- College of Biological Science and Engineering, Fuzhou University, Fujian Province, China
| | - Huiqun Dong
- College of Biological Science and Engineering, Fuzhou University, Fujian Province, China
| | - Heng Luo
- The Center for Big Data Research in Burns and Trauma, College of Computer and Data Science/College of Software, Fuzhou University, Fujian Province, China; MetaNovas Biotech Inc., Foster City, CA, USA.
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fujian Province, China; The Center for Big Data Research in Burns and Trauma, College of Computer and Data Science/College of Software, Fuzhou University, Fujian Province, China; Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Hardy A, Kever L, Frunzke J. Antiphage small molecules produced by bacteria - beyond protein-mediated defenses. Trends Microbiol 2023; 31:92-106. [PMID: 36038409 DOI: 10.1016/j.tim.2022.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022]
Abstract
Bacterial populations face the constant threat of viral predation exerted by bacteriophages ('phages'). In response, bacteria have evolved a wide range of defense mechanisms against phage challenges. Yet the vast majority of antiphage defense systems described until now are mediated by proteins or RNA complexes acting at the single-cell level. Here, we review small molecule-based defense strategies against phage infection, with a focus on the antiphage molecules described recently. Importantly, inhibition of phage infection by excreted small molecules has the potential to protect entire bacterial communities, highlighting the ecological significance of these antiphage strategies. Considering the immense repertoire of bacterial metabolites, we envision that the list of antiphage small molecules will be further expanded in the future.
Collapse
Affiliation(s)
- Aël Hardy
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Larissa Kever
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
4
|
Liu S, She P, Li Z, Li Y, Li L, Yang Y, Zhou L, Wu Y. Drug synergy discovery of tavaborole and aminoglycosides against Escherichia coli using high throughput screening. AMB Express 2022; 12:151. [PMID: 36454354 PMCID: PMC9715904 DOI: 10.1186/s13568-022-01488-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
High incidences of urinary tract infection (UTI) of aminoglycosides-resistant E.coli causes a severe burden for public health. A new therapeutic strategy to ease this crisis is to repurpose non-antibacterial compounds to increase aminoglycosides sensibility against multidrug resistant E.coli pathogens. Based on high throughput screening technology, we profile the antimicrobial activity of tavaborole, a first antifungal benzoxaborole drug for onychomycosis treatment, and investigate the synergistic interaction between tavaborole and aminoglycosides, especially tobramycin and amikacin. Most importantly, by resistance accumulation assay, we found that, tavaborole not only slowed resistance occurrence of aminoglycosides, but also reduced invasiveness of E.coli in combination with tobramycin. Mechanistic studies preliminary explored that tavaborole and aminoglycosides lead to mistranslation, but would be still necessary to investigate more details for further research. In addition, tavaborole exhibited low systematic toxicity in vitro and in vivo, and enhanced aminoglycoside bactericidal activity in mice peritonitis model. Collectively, these results suggest the potential of tavaborole as a novel aminoglycosides adjuvant to tackle the clinically relevant drug resistant E. coli and encourages us to discover more benzoxaborole analogues for circumvention of recalcitrant infections.
Collapse
Affiliation(s)
- Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
5
|
Sengupta S, Pabbaraja S, Mehta G. Domino Reactions through Recursive Anionic Cascades: The Advantageous Use of Nitronates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Goverdhan Mehta
- School of Chemistry University of Hyderabad Hyderabad 500046 India
| |
Collapse
|
6
|
Ungarean CN, Galer P, Zhang Y, Lee KS, Ngai JM, Lee S, Liu P, Sarlah D. Synthesis of (+)-ribostamycin by catalytic, enantioselective hydroamination of benzene. NATURE SYNTHESIS 2022; 1:542-547. [PMID: 36213185 PMCID: PMC9536474 DOI: 10.1038/s44160-022-00080-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/13/2022] [Indexed: 05/09/2023]
Abstract
Aminoglycosides (AGs) represent a large group of pseudoglycoside natural products, in which several different sugar moieties are harnessed to an aminocyclitol core. AGs constitute a major class of antibiotics that target the prokaryotic ribosome of many problematic pathogens. Hundreds of AGs have been isolated to date, with 1,3-diaminocyclohexanetriol, known as 2-deoxystreptamine (2-DOS), being the most abundant aglycon core. However, owning to their diverse and complex architecture, all AG-based drugs are either natural substances or analogues prepared by late-stage modifications. Synthetic approaches to AGs are rare and lengthy; most studies involve semi-synthetic reunion of modified fragments. Here we report a bottom-up chemical synthesis of the 2-DOS-based AG antibiotic ribostamycin, which proceeds in ten linear operations from benzene. A key enabling transformation involves a Cu-catalyzed, enantioselective, dearomative hydroamination, which set the stage for the rapid and selective introduction of the remaining 2-DOS heteroatom functionality. This work demonstrates how the combination of a tailored, dearomative logic and strategic use of subsequent olefin functionalizations can provide practical and concise access to the AG class of compounds.
Collapse
Affiliation(s)
- Chad N Ungarean
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Petra Galer
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Yu Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ken S Lee
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Justin M Ngai
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Sungjong Lee
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David Sarlah
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| |
Collapse
|
7
|
Zeng H, Li H, Li C, Jiang H, Zhu C. Bond Energy Enabled Amines Distinguishing: Chemo-, Regioselective 1,3-Diamination of (Trifluoromethyl)alkenes with Different Amines by Two C(sp3)-F Bonds Cleavage. Org Chem Front 2022. [DOI: 10.1039/d1qo01849c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The methods to distinguish different amines are rarely investigated. In this manuscript, a bond energy enabled amines distinguishing strategy is reported. With (trifluoromethyl)alkenes as linchpins, a chemo-, regioselective three-component defluorinative...
Collapse
|
8
|
Zhang H, Jiang T, Zhang J, Huang H. Catalytic Reactions Directed by a Structurally Well-Defined Aminomethyl Cyclopalladated Complex. Acc Chem Res 2021; 54:4305-4318. [PMID: 34761901 DOI: 10.1021/acs.accounts.1c00365] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The introduction of N-containing moieties into feedstock molecules to build nitrogenated functional molecules has always been widely studied by the organic chemistry community. Progress in this field paves new roads to the synthesis of N-containing molecules, which are of significant importance in biological activities and play vital roles in pharmaceuticals and functional materials. Remarkable progress has been achieved in the field of transition metal-catalyzed C-N bond-forming reactions, typified by alkene hydroamination and the aza-Wacker reaction. However, the poisoning effect of electron-donating amine substrates on late transition metal catalysts presents a key impediment to these reactions, thus limiting the scope of amine substrates to electron-deficient amide derivatives. To address this problem, our group developed a palladium-aminomethyl complex with a three-membered palladacycle structure that allowed for the incorporation of electron-rich amine building blocks via C-C bond instead of C-N bond construction. This Account details the discovery of the well-defined aminomethyl cyclopalladated complex and recapitulates its applications for the catalysis of a series of aminomethylation reactions. We highlight how the understanding of the fundamental structural properties of the defined complex guided us toward tuning the reactivity of nucleophiles to initiate aminomethylation in different modes. Moreover, principles of designing and establishing further cascade reactions are also described.Aminomethyl cyclopalladated complexes can be prepared via the oxidative addition of aminals or N,O-acetals to Pd0 species. Thorough structural investigations by single-crystal X-ray diffraction analysis of the cyclopalladated complex suggest the presence of both aminomethylene-PdII (3-membered-ring) and Pd0-iminium (π-ligated) resonance forms, which indicates that both the palladium center and the methylene site are electrophilic. This is further verified by analysis of charge distribution. Two general types of reactions can be established, differing by the selective affinity of the nucleophiles to the two electrophilic positions, which is relevant to the "hardness suitability" of the nucleophiles with each electrophilic site. Softer nucleophiles such as alkenes prefer to attack the palladium center to initiate the reaction, mainly via migratory insertion into the Pd-C bond on the 3-membered ring with high strain. Through tandem β-hydride or reductive elimination, the Heck-type aminomethylation of styrenes, the aminomethylalkoxylation of electron-rich olefins, and even the aminomethylamination of allenes, dienes, enynes, and carbenoids with full atom-economy have been realized in line with this reaction mode. In contrast, harder nucleophiles tend to attack the harder electrophilic methylene site, leading to the aminomethylation of electron-deficient dienes. For secondary amines, a "C-N bond metathesis" process would be furnished through a reductive elimination, 1,3-proton transfer, and oxidative addition sequence. More intriguingly, when using appropriate "dinucleophile" substrates such as electron-rich amine-tethered dienes, sequential C-N bond metathesis and intramolecular insertion would occur to furnish Pd-catalyzed annulation reactions, which exhibits both the hard and soft nucleophile reactivities mentioned above. These transformations provide convenient methods for the preparation of N-containing molecules, such as amines, diamines, amino acetals, and multiple types of N-heterocycles.
Collapse
Affiliation(s)
- Haocheng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tianxiao Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jingyun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
9
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Kiyokawa K, Jou K, Minakata S. Intramolecular C-H Amination of N-Alkylsulfamides by tert-Butyl Hypoiodite or N-Iodosuccinimide. Chemistry 2021; 27:13971-13976. [PMID: 34403187 DOI: 10.1002/chem.202102635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 01/15/2023]
Abstract
1,3-Diamines are an important class of compounds that are broadly found in natural products and are also widely used as building blocks in organic synthesis. Although the intramolecular C-H amination of N-alkylsulfamide derivatives is a reliable method for the construction of 1,3-diamine structures, the majority of these methods involve the use of a transition-metal catalyst. We herein report on a new transition-metal-free method using tert-butyl hypoiodite (t-BuOI) or N-iodosuccinimide (NIS), enabling secondary non-benzylic and tertiary C-H amination reactions to proceed. The cyclic sulfamide products can be easily transformed into 1,3-diamines. Mechanistic investigations revealed that amination reactions using t-BuOI or NIS each proceed via different pathways.
Collapse
Affiliation(s)
- Kensuke Kiyokawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Keisuke Jou
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Guo Z, Tang Y, Tang W, Chen Y. Heptose-containing bacterial natural products: structures, bioactivities, and biosyntheses. Nat Prod Rep 2021; 38:1887-1909. [PMID: 33704304 DOI: 10.1039/d0np00075b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2020Glycosylated natural products hold great potential as drugs for the treatment of human and animal diseases. Heptoses, known as seven-carbon-chain-containing sugars, are a group of saccharides that are rarely observed in natural products. Based on the structures of the heptoses, the heptose-containing natural products can be divided into four groups, characterized by heptofuranose, highly-reduced heptopyranose, d-heptopyranose, and l-heptopyranose. Many of them possess remarkable biological properties, including antibacterial, antifungal, antitumor, and pain relief activities, thereby attracting great interest in biosynthesis and chemical synthesis studies to understand their construction mechanisms and structure-activity relationships. In this review, we summarize the structural properties, biological activities, and recent progress in the biosynthesis of bacterial natural products featuring seven-carbon-chain-containing sugars. The biosynthetic origins of the heptose moieties are emphasized.
Collapse
Affiliation(s)
- Zhengyan Guo
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yue Tang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wei Tang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
12
|
Fan Z, Wang Z, Shi R, Wang Y. Dirhodium( ii)-catalyzed diamination reaction via a free radical pathway. Org Chem Front 2021. [DOI: 10.1039/d1qo00894c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unlike C–N bond formation through the well-known dirhodium(ii)-nitrenoid pathway, dirhodium(ii)-catalyzed 1,2- and 1,3-diamination reactions are realized by a free radical mechanism.
Collapse
Affiliation(s)
- Zhiying Fan
- College of Chemistry, Sichuan University, Chengdu, 610041, P.R. China
| | - Zhifan Wang
- College of Chemistry, Sichuan University, Chengdu, 610041, P.R. China
| | - Ruoyi Shi
- College of Chemistry, Sichuan University, Chengdu, 610041, P.R. China
| | - Yuanhua Wang
- College of Chemistry, Sichuan University, Chengdu, 610041, P.R. China
| |
Collapse
|
13
|
Lee ETT, Sato Y, Nishizawa S. Small molecule-PNA oligomer conjugates for rRNA A-site at neutral pH for FID assays. Chem Commun (Camb) 2020; 56:14976-14979. [PMID: 33174546 DOI: 10.1039/d0cc06084d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A triplex-forming PNA oligomer conjugated with a naphthyridine derivative (ATMND-C2-NH2) showed high selectivity and strong binding for the bacterial rRNA A-site at pH 7.0 (Kd = 190 ± 72 nM), which was accompanied by fluorogenic signaling that allowed the potential use of this conjugate probe in fluorescent indicator displacement assays.
Collapse
Affiliation(s)
- En Ting Tabitha Lee
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | | | | |
Collapse
|
14
|
Yu X, Liu S, Cheng Q, Wei T, Lee S, Zhang D, Siegwart DJ. Lipid-Modified Aminoglycosides for mRNA Delivery to the Liver. Adv Healthc Mater 2020; 9:e1901487. [PMID: 32108440 PMCID: PMC8152636 DOI: 10.1002/adhm.201901487] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/02/2020] [Indexed: 01/10/2023]
Abstract
Cationic lipid nanoparticles (LNPs) are widely used as carriers for delivery of nucleic acids. Most synthetic routes toward cationic lipids have derived from simple amine cores. Greater chemical diversity can be obtained through starting with natural products containing basic nitrogen atoms, which offers routes to more complex molecules. Natural building blocks are not extensively explored, such as aminoglycosides, which are both structurally and functionally interesting for developing new carriers for nucleic acid delivery. Herein, cationic lipid-modified aminoglycosides (CLAs) are explored as a family of vehicles for messenger RNA (mRNA) delivery. CLAs are synthesized from natural existing aminoglycosides coupling with alkyl epoxides and acrylates. The top hit (GT-EP10) is able to deliver Luc mRNA to C57BL/6 mice at a dose of 0.05 mg kg-1 to achieve a 107 average luminescence intensity in the liver. The Lox-Stop-Lox tdTomato mouse model is used to further demonstrate that this efficient mRNA delivery system can be potentially used for gene editing. Successful delivery of human erythropoietin mRNA shows that CLA-based LNPs have promising opportunities for delivery of therapeutic nucleic acids in the future.
Collapse
Affiliation(s)
- Xueliang Yu
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shuai Liu
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qiang Cheng
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tuo Wei
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sang Lee
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Di Zhang
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel J Siegwart
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
15
|
Hardouin C, Baillard S, Barière F, Craquelin A, Grandjean M, Janvier S, Le Roux S, Penloup C, Russo O. Multikilogram Synthesis of a Potent Dual Bcl-2/Bcl-xL Antagonist. 2. Manufacture of the 1,3-Diamine Moiety and Improvement of the Final Coupling Reaction. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christophe Hardouin
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Sandrine Baillard
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - François Barière
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Anthony Craquelin
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Mathieu Grandjean
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Solenn Janvier
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Stéphane Le Roux
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Christine Penloup
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Olivier Russo
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| |
Collapse
|
16
|
Duhamel T, Martínez MD, Sideri IK, Muñiz K. 1,3-Diamine Formation from an Interrupted Hofmann–Löffler Reaction: Iodine Catalyst Turnover through Ritter-Type Amination. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01566] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Duhamel
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avgda. Països Catalans, 43007 Tarragona, Spain
- Universidad de Oviedo, Julian Clavería, s/n, 33006 Oviedo, Spain
| | - Mario D. Martínez
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avgda. Països Catalans, 43007 Tarragona, Spain
| | - Ioanna K. Sideri
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avgda. Països Catalans, 43007 Tarragona, Spain
| | - Kilian Muñiz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avgda. Països Catalans, 43007 Tarragona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
17
|
Sato Y, Yajima S, Taguchi A, Baba K, Nakagomi M, Aiba Y, Nishizawa S. Trimethine cyanine dyes as deep-red fluorescent indicators with high selectivity to the internal loop of the bacterial A-site RNA. Chem Commun (Camb) 2019; 55:3183-3186. [DOI: 10.1039/c9cc00414a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report that TO-PRO-3 functions as a deep-red fluorescent indicator for the internal loop structure of the bacterial (Escherichia coli) A-site, which enables the assessment of A-site binding capability of various test compounds including blue and even-green-emitting compounds.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Sayaka Yajima
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Akifumi Taguchi
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Kyosuke Baba
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Mayu Nakagomi
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Yuri Aiba
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Seiichi Nishizawa
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| |
Collapse
|
18
|
Wang L, Wang X, Zhang G, Yang S, Li Y, Zhang Q. Copper-catalyzed 1,3-aminoazidation of arylcyclopropanes: a facile access to 1,3-diamine derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo00638a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Copper-catalyzed 1,3-aminoazidation of arylcyclopropanes with N-fluorobenzenesulfonimide (NFSI) and trimethylsilyl azide (TMSN3) has been developed, providing various 1,3-diamine derivatives in moderate to good yields under mild conditions.
Collapse
Affiliation(s)
- Lihong Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Xiaomin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Shengbiao Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yan Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
19
|
Blond A, Turcaud S, Lecourt T, Micouin L. Diastereoselective Ring Homologation of Bicyclic Hydrazines: Access to cis-1,3-Diaminocyclohexitols. ACS OMEGA 2018; 3:15302-15307. [PMID: 31458191 PMCID: PMC6643457 DOI: 10.1021/acsomega.8b02910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/01/2018] [Indexed: 06/10/2023]
Abstract
A sequence of oxidative cleavage/double nitroaldol condensation followed by a few simple synthetic transformations can lead to polyhydroxylated di- and triaminocyclohexanes from a readily available bicyclic hydrazine. This new synthetic route provides a simple and general access to densely substituted privileged scaffolds or fragments with a perfect control of their relative configuration.
Collapse
Affiliation(s)
- Aurélie Blond
- Laboratoire
de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Faculté
des Sciences Fondamentales et Biomédicales, UMR 8601, CNRS-Paris Descartes University, 45 rue des Saints Pères, Paris 75006, France
| | - Serge Turcaud
- Laboratoire
de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Faculté
des Sciences Fondamentales et Biomédicales, UMR 8601, CNRS-Paris Descartes University, 45 rue des Saints Pères, Paris 75006, France
| | - Thomas Lecourt
- Normandie
Université, INSA Rouen, UNIROUEN, CNRS, COBRA
UMR 6014, Rouen 76000, France
| | - Laurent Micouin
- Laboratoire
de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Faculté
des Sciences Fondamentales et Biomédicales, UMR 8601, CNRS-Paris Descartes University, 45 rue des Saints Pères, Paris 75006, France
| |
Collapse
|
20
|
Li B, Xu C, He YM, Deng GJ, Fan QH. Asymmetric Hydrogenation of Bis(quinolin-2-yl)methanes: A Direct Access to Chiral 1,3-Diamines. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bin Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry, Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences; Beijing 100190 China
- Key Laboratory of Environmentally Friendly Chemistry of the Ministry of Education; College of Chemistry, Xiangtan University; Xiangtan Hunan 411105 China
| | - Cong Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry, Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences; Beijing 100190 China
| | - Yan-Mei He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry, Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences; Beijing 100190 China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry of the Ministry of Education; College of Chemistry, Xiangtan University; Xiangtan Hunan 411105 China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry, Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences; Beijing 100190 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 China
| |
Collapse
|
21
|
Fluorescent Trimethylated Naphthyridine Derivative with an Aminoalkyl Side Chain as the Tightest Non-aminoglycoside Ligand for the Bacterial A-site RNA. Chemistry 2018; 24:13862-13870. [DOI: 10.1002/chem.201802320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Indexed: 12/31/2022]
|
22
|
Delost MD, Smith DT, Anderson BJ, Njardarson JT. From Oxiranes to Oligomers: Architectures of U.S. FDA Approved Pharmaceuticals Containing Oxygen Heterocycles. J Med Chem 2018; 61:10996-11020. [PMID: 30024747 DOI: 10.1021/acs.jmedchem.8b00876] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxygen heterocycles are the second most common type of heterocycles that appear as structural components of U.S. Food and Drug Administration (FDA) approved pharmaceuticals. Analysis of our database of drugs approved through 2017 reveals 311 distinct pharmaceuticals containing at least one oxygen heterocycle. Most prevalent among these are pyranoses, with furanoses, macrolactones, morpholines, and dioxolanes rounding off the top five. The main body of this Perspective is organized according to ring size, commencing with three- and four-membered rings and ending with macrocycles, polymers, and unusual oxygen-containing heterocycles. For each section, all oxygen heterocycle-containing drugs are presented along with a brief discussion about structural and drug application patterns.
Collapse
Affiliation(s)
- Michael D Delost
- Department of Chemistry and Biochemistry , University of Arizona , 1306 E. University Boulevard , Tucson , Arizona 85721 , United States
| | - David T Smith
- Department of Chemistry and Biochemistry , University of Arizona , 1306 E. University Boulevard , Tucson , Arizona 85721 , United States
| | - Benton J Anderson
- Department of Chemistry and Biochemistry , University of Arizona , 1306 E. University Boulevard , Tucson , Arizona 85721 , United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry , University of Arizona , 1306 E. University Boulevard , Tucson , Arizona 85721 , United States
| |
Collapse
|
23
|
Kukielski C, Maiti K, Bhaduri S, Story S, Arya DP. Rapid solid-phase syntheses of a peptidic-aminoglycoside library. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner. Nat Microbiol 2018; 3:611-621. [PMID: 29632368 PMCID: PMC5918160 DOI: 10.1038/s41564-018-0138-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/27/2018] [Indexed: 12/27/2022]
Abstract
Antibiotics are widely used to treat infections in humans. However, the impact of antibiotic use on host cells is understudied. Here we identify an antiviral effect of commonly used aminoglycoside antibiotics. We show that topical mucosal application of aminoglycosides prophylactically increased host resistance to a broad range of viral infections including herpes simplex viruses, influenza A virus and Zika virus. Aminoglycoside treatment also reduced viral replication in primary human cells. This antiviral activity was independent of the microbiota as aminoglycoside treatment protected germ-free mice. Microarray analysis uncovered a marked upregulation of transcripts for interferon-stimulated genes (ISGs) following aminoglycoside application. ISG induction was mediated by TLR3, and required TIR-domain-containing adapter-inducing interferon-β (TRIF), signaling adaptor, and interferon regulatory factors 3 (IRF3) and IRF7, transcription factors that promote ISG expression. XCR1+ dendritic cells, which uniquely express TLR3, were recruited to the vaginal mucosa upon aminoglycoside treatment and were required for ISG induction. These results highlight an unexpected ability of aminoglycoside antibiotics to confer broad antiviral resistance in vivo.
Collapse
|
25
|
d-Sedoheptulose-7-phosphate is a common precursor for the heptoses of septacidin and hygromycin B. Proc Natl Acad Sci U S A 2018; 115:2818-2823. [PMID: 29483275 DOI: 10.1073/pnas.1711665115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Seven-carbon-chain-containing sugars exist in several groups of important bacterial natural products. Septacidin represents a group of l-heptopyranoses containing nucleoside antibiotics with antitumor, antifungal, and pain-relief activities. Hygromycin B, an aminoglycoside anthelmintic agent used in swine and poultry farming, represents a group of d-heptopyranoses-containing antibiotics. To date, very little is known about the biosynthesis of these compounds. Here we sequenced the genome of the septacidin producer and identified the septacidin gene cluster by heterologous expression. After determining the boundaries of the septacidin gene cluster, we studied septacidin biosynthesis by in vivo and in vitro experiments and discovered that SepB, SepL, and SepC can convert d-sedoheptulose-7-phosphate (S-7-P) to ADP-l-glycero-β-d-manno-heptose, exemplifying the involvement of ADP-sugar in microbial natural product biosynthesis. Interestingly, septacidin, a secondary metabolite from a gram-positive bacterium, shares the same ADP-heptose biosynthesis pathway with the gram-negative bacterium LPS. In addition, two acyltransferase-encoding genes sepD and sepH, were proposed to be involved in septacidin side-chain formation according to the intermediates accumulated in their mutants. In hygromycin B biosynthesis, an isomerase HygP can recognize S-7-P and convert it to ADP-d-glycero-β-d-altro-heptose together with GmhA and HldE, two enzymes from the Escherichia coli LPS heptose biosynthetic pathway, suggesting that the d-heptopyranose moiety of hygromycin B is also derived from S-7-P. Unlike the other S-7-P isomerases, HygP catalyzes consecutive isomerizations and controls the stereochemistry of both C2 and C3 positions.
Collapse
|
26
|
Ma X, Yan Q, Banwell MG, Ward JS. A Total Synthesis of the Antifungal Deoxyaminocyclitol Nabscessin B from l-(+)-Tartaric Acid. Org Lett 2017; 20:142-145. [DOI: 10.1021/acs.orglett.7b03495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang Ma
- Research School of Chemistry,
Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Qiao Yan
- Research School of Chemistry,
Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Martin G. Banwell
- Research School of Chemistry,
Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Jas S. Ward
- Research School of Chemistry,
Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
27
|
Park JW, Ban YH, Nam SJ, Cha SS, Yoon YJ. Biosynthetic pathways of aminoglycosides and their engineering. Curr Opin Biotechnol 2017; 48:33-41. [PMID: 28365471 DOI: 10.1016/j.copbio.2017.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 03/15/2017] [Indexed: 11/30/2022]
Abstract
Despite decades long clinical usage, aminoglycosides still remain a valuable pharmaceutical source for fighting Gram-negative bacterial pathogens, and their newly identified bioactivities are also renewing interest in this old class of antibiotics. As Nature's gift, some aminoglycosides possess natural defensive structural elements that can circumvent drug resistance mechanisms. Thus, a detailed understanding of aminoglycoside biosynthesis will enable us to apply Nature's biosynthetic strategy towards expanding structural diversity in order to produce novel and more robust aminoglycoside analogs. The engineered biosynthesis of novel aminoglycosides is required not only to develop effective therapeutics against the emerging 'superbugs' but also to reinvigorate antibiotic lead discovery in readiness for the emerging post-antibiotic era.
Collapse
Affiliation(s)
- Je Won Park
- School of Biosystem and Biomedical Science, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Hee Ban
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
28
|
Lee J, Borovika A, Khomutnyk Y, Nagorny P. Chiral phosphoric acid-catalyzed desymmetrizative glycosylation of 2-deoxystreptamine and its application to aminoglycoside synthesis. Chem Commun (Camb) 2017; 53:8976-8979. [DOI: 10.1039/c7cc05052f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This work describes chiral phosphoric acid (CPA)-catalyzed desymmetrizative glycosylation ofmeso-diol derived from 2-deoxystreptamine.
Collapse
Affiliation(s)
- Jeonghyo Lee
- University of Michigan
- Chemistry Department
- Ann Arbor
- USA
| | - Alina Borovika
- Bristol-Myers-Squibb Co. 1 Squibb Dr. New Brunswick
- NJ 08901
- USA
| | | | - Pavel Nagorny
- University of Michigan
- Chemistry Department
- Ann Arbor
- USA
| |
Collapse
|
29
|
Hayashi M. Progress of Chiral Schiff Bases withC1Symmetry in Metal-Catalyzed Asymmetric Reactions. CHEM REC 2016; 16:2708-2735. [DOI: 10.1002/tcr.201600091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Masahiko Hayashi
- Department of Chemistry Graduate School of Science; Kobe University; Nada Kobe 657-8501 Japan
| |
Collapse
|
30
|
Chung CY, Angamuthu V, Li LS, Hou DR. Palladium-Catalyzed Allylic Substitution for the Synthesis of Pericosines. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cheng-Yu Chung
- Department of Chemistry; National Central University; 300 Jhong-Da Rd Jhong-Li Taoyuan 32001 Taiwan
| | - Venkatachalam Angamuthu
- Department of Chemistry; National Central University; 300 Jhong-Da Rd Jhong-Li Taoyuan 32001 Taiwan
| | - Long-Shiang Li
- Department of Chemistry; National Central University; 300 Jhong-Da Rd Jhong-Li Taoyuan 32001 Taiwan
| | - Duen-Ren Hou
- Department of Chemistry; National Central University; 300 Jhong-Da Rd Jhong-Li Taoyuan 32001 Taiwan
| |
Collapse
|
31
|
Zhu Y, Xu J, Mei X, Feng Z, Zhang L, Zhang Q, Zhang G, Zhu W, Liu J, Zhang C. Biochemical and Structural Insights into the Aminotransferase CrmG in Caerulomycin Biosynthesis. ACS Chem Biol 2016; 11:943-52. [PMID: 26714051 DOI: 10.1021/acschembio.5b00984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Caerulomycin A (CRM A 1) belongs to a family of natural products containing a 2,2'-bipyridyl ring core structure and is currently under development as a potent novel immunosuppressive agent. Herein, we report the functional characterization, kinetic analysis, substrate specificity, and structure insights of an aminotransferase CrmG in 1 biosynthesis. The aminotransferase CrmG was confirmed to catalyze a key transamination reaction to convert an aldehyde group to an amino group in the 1 biosynthetic pathway, preferring l-glutamate and l-glutamine as the amino donor substrates. The crystal structures of CrmG in complex with the cofactor 5'-pyridoxal phosphate (PLP) or 5'-pyridoxamine phosphate (PMP) or the acceptor substrate were determined to adopt a canonical fold-type I of PLP-dependent enzymes with a unique small additional domain. The structure guided site-directed mutagenesis identified key amino acid residues for substrate binding and catalytic activities, thus providing insights into the transamination mechanism of CrmG.
Collapse
Affiliation(s)
- Yiguang Zhu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jinxin Xu
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiangui Mei
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhan Feng
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Liping Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qingbo Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Guangtao Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Weiming Zhu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jinsong Liu
- Key
Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changsheng Zhang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology,
South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
32
|
Liu Y, Xie Y, Wang H, Huang H. Enantioselective Aminomethylamination of Conjugated Dienes with Aminals Enabled by Chiral Palladium Complex-Catalyzed C–N Bond Activation. J Am Chem Soc 2016; 138:4314-7. [DOI: 10.1021/jacs.6b00976] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yang Liu
- State Key Laboratory for Oxo Synthesis and Selective
Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinjun Xie
- State Key Laboratory for Oxo Synthesis and Selective
Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective
Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Hanmin Huang
- State Key Laboratory for Oxo Synthesis and Selective
Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
33
|
Li R, Zhao C, Yao B, Li D, Yan S, O'Shea KE, Song W. Photochemical Transformation of Aminoglycoside Antibiotics in Simulated Natural Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2921-2930. [PMID: 26886506 DOI: 10.1021/acs.est.5b05234] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aminoglycoside antibiotics are widely used in human therapy and veterinary medicine. We report herein a detailed study on the natural-organic-matter- (NOM-) photosensitized degradation of aminoglycosides in aqueous media under simulated solar irradiation. It appears that the direct reaction of the excited states of NOM ((3)NOM*) with aminoglycosides is minor. The contributions of reactive oxygen species (ROSs) in the bulk solutions are also unimportant, as determined by an assessment based on steady-state concentrations and bimolecular reaction rate constants in a homogeneous reaction model. The inhibition of the photodegradation by isopropamide is rationalized through competitive sorption with aminoglycosides on the NOM surface, whereas the addition of isopropanol negligibly affects degradation because it quenches HO(•) in the bulk solution but not HO(•) localized on the NOM surface where aminoglycosides reside. Therefore, a sorption-enhanced phototransformation mechanism is proposed. The sorption of aminoglycosides on NOM follows a dual-mode model involving Langmuir and linear isotherms. The steady-state concentration of HO(•) on the surface of NOM was calculated as 10(-14) M, 2 orders of magnitude higher than that in the bulk solution. This fundamental information is important in the assessment of the fate and transport of aminoglycosides in aqueous environments.
Collapse
Affiliation(s)
- Rui Li
- Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
| | - Cen Zhao
- Department of Chemistry & Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Bo Yao
- Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
| | - Dan Li
- Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
| | - Kevin E O'Shea
- Department of Chemistry & Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, China
| |
Collapse
|
34
|
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol Mol Biol Rev 2016; 80:1-43. [PMID: 26609051 PMCID: PMC4711186 DOI: 10.1128/mmbr.00019-15] [Citation(s) in RCA: 1045] [Impact Index Per Article: 116.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum.
Collapse
Affiliation(s)
- Essaid Ait Barka
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Parul Vatsa
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Gaveau-Vaillant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Cedric Jacquard
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christophe Clément
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Yder Ouhdouch
- Faculté de Sciences Semlalia, Université Cadi Ayyad, Laboratoire de Biologie et de Biotechnologie des Microorganismes, Marrakesh, Morocco
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Sylvius Laboratories, Leiden University, Leiden, The Netherlands
| |
Collapse
|
35
|
Molla MR, Levkin PA. Combinatorial Approach to Nanoarchitectonics for Nonviral Delivery of Nucleic Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1159-1175. [PMID: 26608939 DOI: 10.1002/adma.201502888] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Nanoparticles based on cationic polymers, lipids or lipidoids are of great interest in the field of gene delivery applications. The research on these nanosystems is rapidly growing as they hold promise to treat wide variety of human diseases ranging from viral infections to genetic disorders and cancer. Recently, combinatorial design principles have been adopted for rapid generation of large numbers of chemically diverse polymers and lipids capable of forming multifunctional nanocarriers for the use in gene delivery applications. At the same time, current high-throughput screening systems as well as convenient cell assays and readout techniques allow for fast evaluation of cell transfection efficiencies and toxicities of libraries of novel gene delivery agents. This allows for a rapid evaluation of structure-function relationship as well as identification of novel efficient nanocarriers for cell transfection and gene therapy. Here, the recent contribution of high-throughput synthesis to the development of novel nanocarriers for gene delivery applications is described.
Collapse
Affiliation(s)
- Mijanur Rahaman Molla
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- University of Heidelberg, Department of Applied Physical Chemistry, 69120, Heidelberg, Germany
| |
Collapse
|
36
|
Chandrika NT, Garneau-Tsodikova S. A review of patents (2011-2015) towards combating resistance to and toxicity of aminoglycosides. MEDCHEMCOMM 2015; 7:50-68. [PMID: 27019689 PMCID: PMC4806794 DOI: 10.1039/c5md00453e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the discovery of the first aminoglycoside (AG), streptomycin, in 1943, these broad-spectrum antibiotics have been extensively used for the treatment of Gram-negative and Gram-positive bacterial infections. The inherent toxicity (ototoxicity and nephrotoxicity) associated with their long-term use as well as the emergence of resistant bacterial strains have limited their usage. Structural modifications of AGs by AG-modifying enzymes, reduced target affinity caused by ribosomal modification, and decrease in their cellular concentration by efflux pumps have resulted in resistance towards AGs. However, the last decade has seen a renewed interest among the scientific community for AGs as exemplified by the recent influx of scientific articles and patents on their therapeutic use. In this review, we use a non-conventional approach to put forth this renaissance on AG development/application by summarizing all patents filed on AGs from 2011-2015 and highlighting some related publications on the most recent work done on AGs to overcome resistance and improving their therapeutic use while reducing ototoxicity and nephrotoxicity. We also present work towards developing amphiphilic AGs for use as fungicides as well as that towards repurposing existing AGs for potential newer applications.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| |
Collapse
|
37
|
Lins P, Reitschuler C, Illmer P. Impact of several antibiotics and 2-bromoethanesulfonate on the volatile fatty acid degradation, methanogenesis and community structure during thermophilic anaerobic digestion. BIORESOURCE TECHNOLOGY 2015; 190:148-158. [PMID: 25935395 DOI: 10.1016/j.biortech.2015.04.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
The main aim of the present study was to gain insight into the stability of an anaerobic digestion process suffering from exposure to antibiotics and the methanogenic inhibitor 2-bromoethanesulfonate (BES). For this purpose, eleven antibiotics and BES were investigated with regard to the degradation of volatile fatty acids (VFAs), methanogenesis, and impact on the microbial community structure. Only neomycin, gentamicin, rifampicin, and BES showed complete inhibitions of VFA degradations. This points to distinct interferences with important trophic degradation cascades. Based upon DGGE and sequencing approaches, Methanosarcina spp. were severely influenced by the treatments while hydrogenotrophic methanogens were less affected. Interestingly, BES and neomycin inhibited the degradation of acetate while only BES inhibited methanogenesis completely. It seems that Methanosarcina spp. were mandatory for the degradation of acetate at high rates. The present results highly emphasize the detrimental effects of antimicrobial compounds with the potential to significantly inhibit the anaerobic digestion.
Collapse
Affiliation(s)
- Philipp Lins
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25d, A-6020 Innsbruck, Austria.
| | - Christoph Reitschuler
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25d, A-6020 Innsbruck, Austria
| | - Paul Illmer
- University of Innsbruck, Institute of Microbiology, Technikerstr. 25d, A-6020 Innsbruck, Austria
| |
Collapse
|
38
|
Farouk F, Azzazy HM, Niessen WM. Challenges in the determination of aminoglycoside antibiotics, a review. Anal Chim Acta 2015; 890:21-43. [DOI: 10.1016/j.aca.2015.06.038] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/14/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
|
39
|
Abstract
Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome. Finally, the role of deacylated tRNAs in the bacterial “stringent response” mechanism that can lead to bacteria displaying antibiotic persistence phenotypes will be discussed.
Collapse
|
40
|
Gurale BP, Sardessai RS, Shashidhar MS. myo-Inositol 1,3-acetals as early intermediates during the synthesis of cyclitol derivatives. Carbohydr Res 2014; 399:8-14. [PMID: 25216930 DOI: 10.1016/j.carres.2014.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Synthetic sequences starting from commercially available myo-inositol necessarily involve protection-deprotection strategies of its six hydroxyl groups. Several strategies have been developed/attempted over the last several decades leading to the synthesis of naturally occurring phosphoinositols, their analogs, and cyclitol derivatives. Of late, myo-inositol 1,3-acetals, which can be obtained by the reductive cleavage of myo-inositol orthoesters have emerged as early intermediates for the synthesis of phosphorylated and other inositol derivatives. This mini-review is an attempt to illustrate the economy and convenience of using myo-inositol 1,3-acetals as early intermediates during syntheses from myo-inositol.
Collapse
Affiliation(s)
- Bharat P Gurale
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pashan Road, Pune 411 008, India
| | - Richa S Sardessai
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pashan Road, Pune 411 008, India
| | - Mysore S Shashidhar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pashan Road, Pune 411 008, India.
| |
Collapse
|
41
|
Larin EA, Kochubei VS, Atroshchenko YM. Regio- and stereoselective synthesis of new diaminocyclopentanols. Beilstein J Org Chem 2014; 10:2513-20. [PMID: 25383122 PMCID: PMC4222406 DOI: 10.3762/bjoc.10.262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 10/16/2014] [Indexed: 12/18/2022] Open
Abstract
The optimal conditions for regio- and stereoselective epoxide ring opening of N,N-disubstituted 1,2-epoxy-3-aminocyclopentanes by different nucleophilic reagents have been developed. The substituents on the nitrogen atom in the epoxide precursor and the orientation of the oxirane ring are crucial for the reaction outcome. Thus, treatment of (1RS,2SR,3SR)-1,2-epoxy-3-(N,N-dibenzylamino)cyclopentane (3b) with amines gave a mixture of C1 and C2 regioadducts, while the use of (1RS,2SR,3SR)-1,2-epoxy-3-(N-benzyl-N-methylamino)cyclopentane (3a) led ultimately to C1 adducts. Base-catalyzed aminolysis of epoxides 6a,b afforded mainly C1 adducts 13a,b arising from trans-diaxal opening of the epoxide ring. Using a Lewis acid catalyst, epoxides 6a,b were transformed into diaminocyclopentanols 14a,b via an alternative pathway involving the formation of aziridinium intermediate 17.
Collapse
Affiliation(s)
- Evgeni A Larin
- Organic Synthesis Department, Asinex Corporation, 101 North Chestnut, Winston-Salem 27101, NC, USA
| | - Valeri S Kochubei
- Organic Synthesis Department, Asinex Corporation, 101 North Chestnut, Winston-Salem 27101, NC, USA
| | - Yuri M Atroshchenko
- Organic Chemistry and Biochemistry Department, Tolstoi State Pedagogical University, 126 Lenin, Tula 300026, Russian Federation
| |
Collapse
|
42
|
Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Engl 2014; 53:8840-69. [PMID: 24990531 PMCID: PMC4536949 DOI: 10.1002/anie.201310843] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 01/13/2023]
Abstract
The discovery and implementation of antibiotics in the early twentieth century transformed human health and wellbeing. Chemical synthesis enabled the development of the first antibacterial substances, organoarsenicals and sulfa drugs, but these were soon outshone by a host of more powerful and vastly more complex antibiotics from nature: penicillin, streptomycin, tetracycline, and erythromycin, among others. These primary defences are now significantly less effective as an unavoidable consequence of rapid evolution of resistance within pathogenic bacteria, made worse by widespread misuse of antibiotics. For decades medicinal chemists replenished the arsenal of antibiotics by semisynthetic and to a lesser degree fully synthetic routes, but economic factors have led to a subsidence of this effort, which places society on the precipice of a disaster. We believe that the strategic application of modern chemical synthesis to antibacterial drug discovery must play a critical role if a crisis of global proportions is to be averted.
Collapse
Affiliation(s)
- Peter M. Wright
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| | - Ian B. Seiple
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| | - Andrew G. Myers
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| |
Collapse
|
43
|
Hu J, Xie Y, Huang H. Palladium‐Catalyzed Insertion of an Allene into an Aminal: Aminomethylamination of Allenes by CN Bond Activation. Angew Chem Int Ed Engl 2014; 53:7272-6. [DOI: 10.1002/anie.201403774] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/06/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Jianhua Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310024 (China)
| | - Yinjun Xie
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
| | - Hanmin Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310024 (China)
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
| |
Collapse
|
44
|
Wright PM, Seiple IB, Myers AG. Zur Rolle der chemischen Synthese in der Entwicklung antibakterieller Wirkstoffe. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310843] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Abstract
A concise asymmetric synthesis of aminocyclitols, such as diastereomeric 2-deoxystreptamine analogues and conduramine A, is described. The Pd-catalyzed asymmetric desymmetrization of meso 1,4-dibenzolate enables the synthesis of highly oxidized cyclohexane architectures. These scaffolds can potentially be used to access new aminoglycoside antibiotics and enantiomerically pure α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Barry M Trost
- Department Of Chemistry, Stanford University, Stanford, CA (USA).
| | | |
Collapse
|
46
|
Hu J, Xie Y, Huang H. Palladium‐Catalyzed Insertion of an Allene into an Aminal: Aminomethylamination of Allenes by CN Bond Activation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403774] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jianhua Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310024 (China)
| | - Yinjun Xie
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
| | - Hanmin Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310024 (China)
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
| |
Collapse
|
47
|
Larin EA, Kochubei VS, Atroshchenko YM. Synthesis of new aminocyclitols by selective epoxidation of N-benzyl-N-methyl-2-cyclohepten-1-amine and tert-butyl 4-[benzyl(methyl)amino]-2,3,4,7-tetrahydro-1H-azepine-1-carboxylate. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1070428014020183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Synthesis of triazole-functionalized 2-DOS analogues and their evaluation as A-site binders. Bioorg Med Chem Lett 2014; 24:1122-6. [DOI: 10.1016/j.bmcl.2013.12.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022]
|
49
|
Hanessian S, Saavedra OM, Vilchis-Reyes MA, Llaguno-Rueda AM. Synthesis of 4′-deoxy-4′-fluoro neamine and 4′-deoxy-4′-fluoro 4′-epi neamine. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00072b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The syntheses of 4′-deoxy-4′-fluoro neamine and 4′-deoxy-4′-fluoro 4′-epi neamine from the readily available neamine and paromamine are described.
Collapse
|
50
|
Zhang Y, Pelet JM, Heller DA, Dong Y, Chen D, Gu Z, Joseph BJ, Wallas J, Anderson DG. Lipid-modified aminoglycoside derivatives for in vivo siRNA delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:4641-5. [PMID: 23813808 PMCID: PMC3898629 DOI: 10.1002/adma.201301917] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Indexed: 04/14/2023]
Abstract
Rationally designed siRNA delivery materials that are enabled by lipid-modified aminoglycosides are demonstrated. Leading materials identified are able to self-assemble with siRNA into well-defined nanoparticles and induce efficient gene knockdown both in vitro and in vivo. Histology studies and liver function tests reveal that no apparent toxicity is caused by these nanoparticles at doses over two orders of magnitude.
Collapse
Affiliation(s)
- Yunlong Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Department of Anesthesiology, Children's Hospital Boston Boston, MA 02115, USA
| | - Jeisa M Pelet
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Department of Anesthesiology, Children's Hospital Boston Boston, MA 02115, USA
| | - Daniel A Heller
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY 10065, USA
| | - Yizhou Dong
- Department of Anesthesiology, Children's Hospital Boston Boston, MA 02115, USA
| | - Delai Chen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, MA 02139, USA
| | - Zhen Gu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Department of Anesthesiology, Children's Hospital Boston Boston, MA 02115, USA
| | - Brian J. Joseph
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY 10065, USA
| | - Jasmine Wallas
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY 10065, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Department of Anesthesiology, Children's Hospital Boston Boston, MA 02115, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology Boston, MA 02139, USA
| |
Collapse
|