1
|
Dong J, Willner I. Photochemically Triggered, Transient, and Oscillatory Transcription Machineries Guide Temporal Modulation of Fibrinogenesis. J Am Chem Soc 2025; 147:2216-2227. [PMID: 39740143 PMCID: PMC11744759 DOI: 10.1021/jacs.4c16829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Photochemically triggered, transient, and temporally oscillatory-modulated transcription machineries are introduced. The resulting dynamic transcription circuits are implemented to guide photochemically triggered, transient, and oscillatory modulation of thrombin toward temporal control over fibrinogenesis. One system describes the assembly of a reaction module leading to the photochemically triggered formation of an active transcription machinery that, in the presence of RNase H, guides the transient activation of thrombin toward fibrinogenesis. A second system introduces photochemical triggering of a reaction circuit consisting of two coupled transcription machineries, leading to the temporally oscillatory formation and depletion of an intermediate reaction product. The concept is applied to develop a photochemically triggered transcription circuit that, in the presence of RNase H, leads to the oscillatory generation of an intermediate anti-thrombin aptamer-modified product. The oscillating aptamer-modified product induces the rhythmic inhibition of thrombin, accompanied by the cyclic activation and deactivation of the fibrinogenesis process. The operation of the transient and oscillatory-modulated transcription machinery reaction circuits is accompanied by computational kinetic models, allowing to predict the dynamic behaviors of the system under different auxiliary conditions. The phototriggered transient transcription machinery and oscillatory circuit-guided fibrinogenesis is examined under physiological-like conditions and within a human plasma environment.
Collapse
Affiliation(s)
- Jiantong Dong
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
2
|
Nawaz MA, Pamirsky IE, Golokhvast KS. Bioinformatics in Russia: history and present-day landscape. Brief Bioinform 2024; 25:bbae513. [PMID: 39402695 PMCID: PMC11473191 DOI: 10.1093/bib/bbae513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/12/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Bioinformatics has become an interdisciplinary subject due to its universal role in molecular biology research. The current status of Russia's bioinformatics research in Russia is not known. Here, we review the history of bioinformatics in Russia, present the current landscape, and highlight future directions and challenges. Bioinformatics research in Russia is driven by four major industries: information technology, pharmaceuticals, biotechnology, and agriculture. Over the past three decades, despite a delayed start, the field has gained momentum, especially in protein and nucleic acid research. Dedicated and shared centers for genomics, proteomics, and bioinformatics are active in different regions of Russia. Present-day bioinformatics in Russia is characterized by research issues related to genetics, metagenomics, OMICs, medical informatics, computational biology, environmental informatics, and structural bioinformatics. Notable developments are in the fields of software (tools, algorithms, and pipelines), use of high computation power (e.g. by the Siberian Supercomputer Center), and large-scale sequencing projects (the sequencing of 100 000 human genomes). Government funding is increasing, policies are being changed, and a National Genomic Information Database is being established. An increased focus on eukaryotic genome sequencing, the development of a common place for developers and researchers to share tools and data, and the use of biological modeling, machine learning, and biostatistics are key areas for future focus. Universities and research institutes have started to implement bioinformatics modules. A critical mass of bioinformaticians is essential to catch up with the global pace in the discipline.
Collapse
Affiliation(s)
- Muhammad A Nawaz
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Centre for Research in the Field of Materials and Technologies, National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
| | - Igor E Pamirsky
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya st., 2b, Presidium, Krasnoobsk, 633501, Novosibirsk Oblast, Russia
| | - Kirill S Golokhvast
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya st., 2b, Presidium, Krasnoobsk, 633501, Novosibirsk Oblast, Russia
| |
Collapse
|
3
|
Augustijn HE, Karapliafis D, Joosten KMM, Rigali S, van Wezel GP, Medema MH. LogoMotif: A Comprehensive Database of Transcription Factor Binding Site Profiles in Actinobacteria. J Mol Biol 2024; 436:168558. [PMID: 38580076 DOI: 10.1016/j.jmb.2024.168558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Actinobacteria undergo a complex multicellular life cycle and produce a wide range of specialized metabolites, including the majority of the antibiotics. These biological processes are controlled by intricate regulatory pathways, and to better understand how they are controlled we need to augment our insights into the transcription factor binding sites. Here, we present LogoMotif (https://logomotif.bioinformatics.nl), an open-source database for characterized and predicted transcription factor binding sites in Actinobacteria, along with their cognate position weight matrices and hidden Markov models. Genome-wide predictions of binding site locations in Streptomyces model organisms are supplied and visualized in interactive regulatory networks. In the web interface, users can freely access, download and investigate the underlying data. With this curated collection of actinobacterial regulatory interactions, LogoMotif serves as a basis for binding site predictions, thus providing users with clues on how to elicit the expression of genes of interest and guide genome mining efforts.
Collapse
Affiliation(s)
- Hannah E Augustijn
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands; Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Kristy M M Joosten
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Sébastien Rigali
- InBioS - Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands; Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
4
|
Khoroshkin M, Asarnow D, Zhou S, Navickas A, Winters A, Goudreau J, Zhou SK, Yu J, Palka C, Fish L, Borah A, Yousefi K, Carpenter C, Ansel KM, Cheng Y, Gilbert LA, Goodarzi H. A systematic search for RNA structural switches across the human transcriptome. Nat Methods 2024; 21:1634-1645. [PMID: 39014073 PMCID: PMC11399106 DOI: 10.1038/s41592-024-02335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/29/2024] [Indexed: 07/18/2024]
Abstract
RNA structural switches are key regulators of gene expression in bacteria, but their characterization in Metazoa remains limited. Here, we present SwitchSeeker, a comprehensive computational and experimental approach for systematic identification of functional RNA structural switches. We applied SwitchSeeker to the human transcriptome and identified 245 putative RNA switches. To validate our approach, we characterized a previously unknown RNA switch in the 3' untranslated region of the RORC (RAR-related orphan receptor C) transcript. In vivo dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq), coupled with cryogenic electron microscopy, confirmed its existence as two alternative structural conformations. Furthermore, we used genome-scale CRISPR screens to identify trans factors that regulate gene expression through this RNA structural switch. We found that nonsense-mediated messenger RNA decay acts on this element in a conformation-specific manner. SwitchSeeker provides an unbiased, experimentally driven method for discovering RNA structural switches that shape the eukaryotic gene expression landscape.
Collapse
Affiliation(s)
- Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Asarnow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Shaopu Zhou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Institut Curie, UMR3348 CNRS, U1278 Inserm, Orsay, France
| | - Aidan Winters
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Jackson Goudreau
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Simon K Zhou
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Johnny Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Christina Palka
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Lisa Fish
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ashir Borah
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kian Yousefi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher Carpenter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - K Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Luke A Gilbert
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Arc Institute, Palo Alto, CA, USA.
| |
Collapse
|
5
|
Zhu Y, Mou X, Song Y, Zhang Q, Sun B, Liu H, Tang H, Bao R. Molecular mechanism of the one-component regulator RccR on bacterial metabolism and virulence. Nucleic Acids Res 2024; 52:3433-3449. [PMID: 38477394 PMCID: PMC11014249 DOI: 10.1093/nar/gkae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The regulation of carbon metabolism and virulence is critical for the rapid adaptation of pathogenic bacteria to host conditions. In Pseudomonas aeruginosa, RccR is a transcriptional regulator of genes involved in primary carbon metabolism and is associated with bacterial resistance and virulence, although the exact mechanism is unclear. Our study demonstrates that PaRccR is a direct repressor of the transcriptional regulator genes mvaU and algU. Biochemical and structural analyses reveal that PaRccR can switch its DNA recognition mode through conformational changes triggered by KDPG binding or release. Mutagenesis and functional analysis underscore the significance of allosteric communication between the SIS domain and the DBD domain. Our findings suggest that, despite its overall structural similarity to other bacterial RpiR-type regulators, RccR displays a more complex regulatory element binding mode induced by ligands and a unique regulatory mechanism.
Collapse
Affiliation(s)
- Yibo Zhu
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Mou
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Qianqian Zhang
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Huanxiang Liu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Hong Tang
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Baugh AC, Momany C, Neidle EL. Versatility and Complexity: Common and Uncommon Facets of LysR-Type Transcriptional Regulators. Annu Rev Microbiol 2023; 77:317-339. [PMID: 37285554 DOI: 10.1146/annurev-micro-050323-040543] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
LysR-type transcriptional regulators (LTTRs) form one of the largest families of bacterial regulators. They are widely distributed and contribute to all aspects of metabolism and physiology. Most are homotetramers, with each subunit composed of an N-terminal DNA-binding domain followed by a long helix connecting to an effector-binding domain. LTTRs typically bind DNA in the presence or absence of a small-molecule ligand (effector). In response to cellular signals, conformational changes alter DNA interactions, contact with RNA polymerase, and sometimes contact with other proteins. Many are dual-function repressor-activators, although different modes of regulation may occur at multiple promoters. This review presents an update on the molecular basis of regulation, the complexity of regulatory schemes, and applications in biotechnology and medicine. The abundance of LTTRs reflects their versatility and importance. While a single regulatory model cannot describe all family members, a comparison of similarities and differences provides a framework for future study.
Collapse
Affiliation(s)
- Alyssa C Baugh
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| | - Cory Momany
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| |
Collapse
|
7
|
Rodionova IA, Lim HG, Rodionov DA, Hutchison Y, Dalldorf C, Gao Y, Monk J, Palsson BO. CyuR is a Dual Regulator for L-Cysteine Dependent Antimicrobial Resistance in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541025. [PMID: 37292663 PMCID: PMC10245726 DOI: 10.1101/2023.05.16.541025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H 2 S), mainly produced from L-cysteine (Cys), renders bacteria highly resistant to oxidative stress. This mitigation of oxidative stress was suggested to be an important survival mechanism to achieve antimicrobial resistance (AMR) in many pathogenic bacteria. CyuR (known as DecR or YbaO) is a recently characterized Cys-dependent transcription regulator, responsible for the activation of the cyuAP operon and generation of hydrogen sulfide from Cys. Despite its potential importance, the regulatory network of CyuR remains poorly understood. In this study, we investigated the roles of the CyuR regulon in a Cys-dependent AMR mechanism in E. coli strains. We found: 1) Cys metabolism has a significant role in AMR and its effect is conserved in many E. coli strains, including clinical isolates; 2) CyuR negatively controls the expression of mdlAB encoding a transporter that exports antibiotics such as cefazolin and vancomycin; 3) CyuR binds to a DNA sequence motif 'GAAwAAATTGTxGxxATTTsyCC' in the absence of Cys, confirmed by an in vitro binding assay; and 4) CyuR may regulate 25 additional genes as suggested by in silico motif scanning and transcriptome sequencing. Collectively, our findings expanded the understanding of the biological roles of CyuR relevant to antibiotic resistance associated with Cys.
Collapse
|
8
|
Sultana S, Bruns S, Wilkes H, Simon M, Wienhausen G. Vitamin B 12 is not shared by all marine prototrophic bacteria with their environment. THE ISME JOURNAL 2023; 17:836-845. [PMID: 36914732 DOI: 10.1038/s41396-023-01391-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/14/2023]
Abstract
Vitamin B12 (cobalamin, herein B12) is an essential cofactor involved in amino acid synthesis and carbon resupply to the TCA cycle for most prokaryotes, eukaryotic microorganisms, and animals. Despite being required by most, B12 is produced by only a minor fraction of prokaryotes and therefore leads to complex interaction between prototrophs and auxotrophs. However, it is unknown how B12 is provided by prototrophs to auxotrophs. In this study, 33 B12 prototrophic alphaproteobacterial strains were grown in co-culture with Thalassiosira pseudonana, a B12 auxotrophic diatom, to determine the bacterial ability to support the growth of the diatom by sharing B12. Among these strains, 18 were identified to share B12 with the diatom, while nine were identified to retain B12 and not support growth of the diatom. The other bacteria either shared B12 with the diatom only with the addition of substrate or inhibited the growth of the diatom. Extracellular B12 measurements of B12-provider and B12-retainer strains confirmed that the cofactor could only be detected in the environment of the tested B12-provider strains. Intracellular B12 was measured by LC-MS and showed that the concentrations of the different B12-provider as well as B12-retainer strains differed substantially. Although B12 is essential for the vast majority of microorganisms, mechanisms that export this essential cofactor are still unknown. Our results suggest that a large proportion of bacteria that can synthesise B12 de novo cannot share the cofactor with their environment.
Collapse
Affiliation(s)
- Sabiha Sultana
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Stefan Bruns
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, D-26129, Oldenburg, Germany
| | - Gerrit Wienhausen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany. .,Institute for Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, D-26129, Oldenburg, Germany.
| |
Collapse
|
9
|
Minazzato G, Gasparrini M, Heroux A, Sernova NV, Rodionov DA, Cianci M, Sorci L, Raffaelli N. Bacterial NadQ (COG4111) is a Nudix-like, ATP-responsive regulator of NAD biosynthesis. J Struct Biol 2022; 214:107917. [PMID: 36332744 DOI: 10.1016/j.jsb.2022.107917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Nicotinamide-adenine dinucleotide (NAD) is centrally important to metabolic reactions that involve redox chemistry. In bacteria, NAD biosynthesis is controlled by different transcription factors, depending on the species. Among the four regulators identified so far, the protein NadQ is reported to act as a repressor of the de novo NAD biosynthetic pathway in proteobacteria. Using comparative genomics, a systematic reconstruction of NadQ regulons in thousands of fully sequenced bacterial genomes has been performed, confirming that NadQ is present in α-proteobacteria and some β- and γ-proteobacteria, including pathogens like Bordetella pertussis and Neisseria meningitidis, where it likely controls de novo NAD biosynthesis. Through mobility shift assay and mutagenesis, the DNA binding activity of NadQ from Agrobacterium tumefaciens was experimentally validated and determined to be suppressed by ATP. The crystal structures of NadQ in native form and in complex with ATP were determined, indicating that NadQ is a dimer, with each monomer composed of an N-terminal Nudix domain hosting the effector binding site and a C-terminal winged helix-turn-helix domain that binds DNA. Within the dimer, we found one ATP molecule bound, at saturating concentration of the ligand, in keeping with an intrinsic asymmetry of the quaternary structure. Overall, this study provided the basis for depicting a working model of NadQ regulation mechanism.
Collapse
Affiliation(s)
- Gabriele Minazzato
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Annie Heroux
- Elettra - Sincrotrone Trieste S.C.P.A., Basovizza, Italy
| | - Natalia V Sernova
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A Rodionov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia; Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Leonardo Sorci
- Department of Materials, Environmental Sciences and Urban Planning, Division of Bioinformatics and Biochemistry, Polytechnic University of Marche, Ancona, Italy.
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
10
|
Arzamasov AA, Osterman AL. Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics. Crit Rev Biochem Mol Biol 2022; 57:562-584. [PMID: 36866565 PMCID: PMC10192226 DOI: 10.1080/10409238.2023.2182272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/11/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023]
Abstract
Bifidobacteria are early colonizers of the human neonatal gut and provide multiple health benefits to the infant, including inhibiting the growth of enteropathogens and modulating the immune system. Certain Bifidobacterium species prevail in the gut of breastfed infants due to the ability of these microorganisms to selectively forage glycans present in human milk, specifically human milk oligosaccharides (HMOs) and N-linked glycans. Therefore, these carbohydrates serve as promising prebiotic dietary supplements to stimulate the growth of bifidobacteria in the guts of children suffering from impaired gut microbiota development. However, the rational formulation of milk glycan-based prebiotics requires a detailed understanding of how bifidobacteria metabolize these carbohydrates. Accumulating biochemical and genomic data suggest that HMO and N-glycan assimilation abilities vary remarkably within the Bifidobacterium genus, both at the species and strain levels. This review focuses on the delineation and genome-based comparative analysis of differences in respective biochemical pathways, transport systems, and associated transcriptional regulatory networks, providing a foundation for genomics-based projection of milk glycan utilization capabilities across a rapidly growing number of sequenced bifidobacterial genomes and metagenomic datasets. This analysis also highlights remaining knowledge gaps and suggests directions for future studies to optimize the formulation of milk-glycan-based prebiotics that target bifidobacteria.
Collapse
Affiliation(s)
- Aleksandr A Arzamasov
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
11
|
Zhang P, Fischer A, Ouyang Y, Sohn YS, Nechushtai R, Zhang J, Tian H, Fan C, Willner I. Topologically switchable and gated transcription machinery. Chem Sci 2022; 13:10555-10565. [PMID: 36277654 PMCID: PMC9473513 DOI: 10.1039/d2sc01599d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Topological barriers control in nature the transcription machinery, thereby perturbing gene expression. Here we introduce synthetically designed DNA templates that include built-in topological barriers for switchable, triggered-controlled transcription of RNA aptamers. This is exemplified with the design of transcription templates that include reversible and switchable topological barriers consisting of a Sr2+-ion-stabilized G-quadruplex and its separation by kryptofix [2.2.2], KP, for the switchable transcription of the malachite green (MG) RNA aptamer, the T-A·T triplex barrier being separated by a fuel-strand for the cyclic triggered transcription of the 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI)-binding aptamer, and the use of a photoactivated cis/trans azobenzene-modified nucleic acid barrier for the switchable "ON"/"OFF" transcription of the MG RNA aptamer. By applying a mixture of topologically triggered templates consisting of the photoresponsive barrier and the T-A·T triplex barrier, the gated transcription of the MG aptamer or the DFHBI-binding aptamer is demonstrated. In addition, a Sr2+-ion/KP topologically triggered DNA tetrahedra promoter-transcription scaffold, for the replication of the MG RNA aptamer, and T7 RNA polymerase are integrated into DNA-based carboxymethyl cellulose hydrogel microcapsules acting as cell-like assemblies. The switchable, reversible transcription of the MG RNA aptamer in a cell-like containment is introduced.
Collapse
Affiliation(s)
- Pu Zhang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Amit Fischer
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Yang Sung Sohn
- Institute of Life Science, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Rachel Nechushtai
- Institute of Life Science, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Junji Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University 200240 Shanghai China
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
12
|
Ashniev GA, Sernova NV, Shevkoplias AE, Rodionov ID, Rodionova IA, Vitreschak AG, Gelfand MS, Rodionov DA. Evolution of transcriptional regulation of histidine metabolism in Gram-positive bacteria. BMC Genomics 2022; 23:558. [PMID: 36008760 PMCID: PMC9413887 DOI: 10.1186/s12864-022-08796-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The histidine metabolism and transport (his) genes are controlled by a variety of RNA-dependent regulatory systems among diverse taxonomic groups of bacteria including T-box riboswitches in Firmicutes and Actinobacteria and RNA attenuators in Proteobacteria. Using a comparative genomic approach, we previously identified a novel DNA-binding transcription factor (named HisR) that controls the histidine metabolism genes in diverse Gram-positive bacteria from the Firmicutes phylum. RESULTS Here we report the identification of HisR-binding sites within the regulatory regions of the histidine metabolism and transport genes in 395 genomes representing the Bacilli, Clostridia, Negativicutes, and Tissierellia classes of Firmicutes, as well as in 97 other HisR-encoding genomes from the Actinobacteria, Proteobacteria, and Synergistetes phyla. HisR belongs to the TrpR family of transcription factors, and their predicted DNA binding motifs have a similar 20-bp palindromic structure but distinct lineage-specific consensus sequences. The predicted HisR-binding motif was validated in vitro using DNA binding assays with purified protein from the human gut bacterium Ruminococcus gnavus. To fill a knowledge gap in the regulation of histidine metabolism genes in Firmicutes genomes that lack a hisR repressor gene, we systematically searched their upstream regions for potential RNA regulatory elements. As result, we identified 158 T-box riboswitches preceding the histidine biosynthesis and/or transport genes in 129 Firmicutes genomes. Finally, novel candidate RNA attenuators were identified upstream of the histidine biosynthesis operons in six species from the Bacillus cereus group, as well as in five Eubacteriales and six Erysipelotrichales species. CONCLUSIONS The obtained distribution of the HisR transcription factor and two RNA-mediated regulatory mechanisms for histidine metabolism genes across over 600 species of Firmicutes is discussed from functional and evolutionary points of view.
Collapse
Affiliation(s)
- German A Ashniev
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | - Natalia V Sernova
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | - Aleksei E Shevkoplias
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- National Research University Higher School of Economics, Moscow, Russia
| | - Ivan D Rodionov
- University of California San Diego, La Jolla, San Diego, CA, USA
| | | | - Alexey G Vitreschak
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | - Mikhail S Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitry A Rodionov
- Sanford-Burnham Medical Research Institute, La Jolla, San Diego, CA, USA.
| |
Collapse
|
13
|
Lee HY, Yoon CK, Cho YJ, Lee JW, Lee KA, Lee WJ, Seok YJ. A mannose-sensing AraC-type transcriptional activator regulates cell-cell aggregation of Vibrio cholerae. NPJ Biofilms Microbiomes 2022; 8:65. [PMID: 35987769 PMCID: PMC9392796 DOI: 10.1038/s41522-022-00331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
In addition to catalyzing coupled transport and phosphorylation of carbohydrates, the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulates various physiological processes in most bacteria. Therefore, the transcription of genes encoding the PTS is precisely regulated by transcriptional regulators depending on substrate availability. As the distribution of the mannose-specific PTS (PTSMan) is limited to animal-associated bacteria, it has been suggested to play an important role in host-bacteria interactions. In Vibrio cholerae, mannose is known to inhibit biofilm formation. During host infection, the transcription level of the V. cholerae gene encoding the putative PTSMan (hereafter referred to as manP) significantly increases, and mutations in this gene increase host survival rate. Herein, we show that an AraC-type transcriptional regulator (hereafter referred to as ManR) acts as a transcriptional activator of the mannose operon and is responsible for V. cholerae growth and biofilm inhibition on a mannose or fructose-supplemented medium. ManR activates mannose operon transcription by facilitating RNA polymerase binding to the promoter in response to mannose 6-phosphate and, to a lesser extent, to fructose 1-phosphate. When manP or manR is impaired, the mannose-induced inhibition of biofilm formation was reversed and intestinal colonization was significantly reduced in a Drosophila melanogaster infection model. Our results show that ManR recognizes mannose and fructose in the environment and facilitates V. cholerae survival in the host.
Collapse
Affiliation(s)
- Hye-Young Lee
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong-Joon Cho
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Ah Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won-Jae Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeong-Jae Seok
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Regulation of Staphylococcal Capsule by SarZ is SigA-Dependent. J Bacteriol 2022; 204:e0015222. [PMID: 35862799 PMCID: PMC9380528 DOI: 10.1128/jb.00152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Production of capsular polysaccharides in Staphylococcus aureus is transcriptionally regulated by a control region of the cap operon that consists of SigA- and SigB-dependent promoters. A large number of regulators have been shown to affect cap gene expression. However, regulation of capsule is only partially understood. Here we found that SarZ was another regulator that activated the cap genes through the SigA-dependent promoter. Gel electrophoresis mobility shift experiments revealed that SarZ is bound to a broad region of the cap promoter including the SigA-dependent promoter but mainly the downstream region. We demonstrated that activation of cap expression by SarZ was independent of MgrA, which also activated capsule through the SigA-dependent promoter. Our results further showed that oxidative stress with hydrogen peroxide (H2O2) treatments enhanced SarZ activation of cap expression, indicating that SarZ is able to sense oxidative stress to regulate capsule production. IMPORTANCE Expression of virulence genes in Staphylococcus aureus is affected by environmental cues and is regulated by a surprisingly large number of regulators. Much is still unknown about how virulence factors are regulated by environment cues at the molecular level. Capsule is an antiphagocytic virulence factor that is highly regulated. In this study, we found SarZ was an activator of capsule and that the regulation of capsule by SarZ was affected by oxidative stress. These results provide an example of how a virulence factor could be regulated in response to an environmental cue. As the host oxidative defense system plays an important role against S. aureus, this study contributes to a better understanding of virulence gene regulation and staphylococcal pathogenesis.
Collapse
|
15
|
Anderssen S, Naômé A, Jadot C, Brans A, Tocquin P, Rigali S. AURTHO: Autoregulation of transcription factors as facilitator of cis-acting element discovery. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194847. [PMID: 35901946 DOI: 10.1016/j.bbagrm.2022.194847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Transcriptional regulation is key in bacteria for providing an adequate response in time and space to changing environmental conditions. However, despite decades of research, the binding sites and therefore the target genes and the function of most transcription factors (TFs) remain unknown. Filling this gap in knowledge through conventional methods represents a colossal task which we demonstrate here can be significantly facilitated by a widespread feature in transcriptional control: the autoregulation of TFs implying that the yet unknown transcription factor binding site (TFBS) is neighboring the TF itself. In this work, we describe the "AURTHO" methodology (AUtoregulation of oRTHOlogous transcription factors), consisting of analyzing upstream regions of orthologous TFs in order to uncover their associated TFBSs. AURTHO enabled the de novo identification of novel TFBSs with an unprecedented improvement in terms of quantity and reliability. DNA-protein interaction studies on a selection of candidate cis-acting elements yielded an >90 % success rate, demonstrating the efficacy of AURTHO at highlighting true TF-TFBS couples and confirming the identification in a near future of a plethora of TFBSs across all bacterial species.
Collapse
Affiliation(s)
- Sinaeda Anderssen
- InBioS - Center for Protein Engineering, University of Liège, B-4000 Liège, Belgium
| | - Aymeric Naômé
- InBioS - Center for Protein Engineering, University of Liège, B-4000 Liège, Belgium; HEDERA 22, Boulevard du Rectorat 27b, B-4000 Liège, Belgium
| | - Cédric Jadot
- InBioS - Center for Protein Engineering, University of Liège, B-4000 Liège, Belgium
| | - Alain Brans
- InBioS - Center for Protein Engineering, University of Liège, B-4000 Liège, Belgium
| | - Pierre Tocquin
- HEDERA 22, Boulevard du Rectorat 27b, B-4000 Liège, Belgium; InBioS - PhytoSystems, University of Liège, B-4000 Liège, Belgium
| | - Sébastien Rigali
- InBioS - Center for Protein Engineering, University of Liège, B-4000 Liège, Belgium; HEDERA 22, Boulevard du Rectorat 27b, B-4000 Liège, Belgium.
| |
Collapse
|
16
|
Ashniev GA, Petrov SN, Iablokov SN, Rodionov DA. Genomics-Based Reconstruction and Predictive Profiling of Amino Acid Biosynthesis in the Human Gut Microbiome. Microorganisms 2022; 10:740. [PMID: 35456791 PMCID: PMC9026213 DOI: 10.3390/microorganisms10040740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
The human gut microbiota (HGM) have an impact on host health and disease. Amino acids are building blocks of proteins and peptides, also serving as precursors of many essential metabolites including nucleotides, cofactors, etc. Many HGM community members are unable to synthesize some amino acids (auxotrophs), while other members possess complete biosynthetic pathways for these nutrients (prototrophs). Metabolite exchange between auxotrophs and prototrophs affects microbial community structure. Previous studies of amino acid biosynthetic phenotypes were limited to model species or narrow taxonomic groups of bacteria. We analyzed over 2800 genomes representing 823 cultured HGM species with the aim to reconstruct biosynthetic pathways for proteinogenic amino acids. The genome context analysis of incomplete pathway variants allowed us to identify new potential enzyme variants in amino acid biosynthetic pathways. We further classified the studied organisms with respect to their pathway variants and inferred their prototrophic vs. auxotrophic phenotypes. A cross-species comparison was applied to assess the extent of conservation of the assigned phenotypes at distinct taxonomic levels. The obtained reference collection of binary metabolic phenotypes was used for predictive metabolic profiling of HGM samples from several large metagenomic datasets. The established approach for metabolic phenotype profiling will be useful for prediction of overall metabolic properties, interactions, and responses of HGM microbiomes as a function of dietary variations, dysbiosis and other perturbations.
Collapse
Affiliation(s)
- German A. Ashniev
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 127994 Moscow, Russia; (G.A.A.); (S.N.I.)
| | - Sergey N. Petrov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Stanislav N. Iablokov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 127994 Moscow, Russia; (G.A.A.); (S.N.I.)
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
17
|
Reconstruction and analysis of transcriptome regulatory network of Methanobrevibacter ruminantium M1. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Skakun VV, Nikolaichik YA. Development of a bacterial regulatory motif database. INFORMATICS 2022. [DOI: 10.37661/1816-0301-2022-19-1-59-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
O b j e c t i v e s . The amount of data generated by modern methods of high-throughput sequencing is such that their analysis is performed mainly in automatic mode. In particular, the use of newly decoded genomic sequences is possible only after the annotation of functional elements of the genome, which, as a rule, is performed by automatic pipelines. Such annotation pipelines do a good job to identify the genes, but none of them annotate regulatory elements. Without these elements it is not possible to understand when and how genes can be expressed. Information on the regulatory elements of bacteria is collected in several specialized databases (RegulonDB, CollecTF, Prodoric2, etc.), however, only a part of this information can be used for annotation of regulatory elements, and only for a very limited range of bacteria. Previously, we proposed a clear formal criterion for applying regulatory information to any bacterial genome. Such a criterion is the CR tag, a sequence of amino acid residues of a transcriptional regulator that specifically contacts the nitrogenous bases of regulatory element in genomic DNA. The mathematical model of a regulatory element (motif) associated with a CR tag can be correctly applied to annotate similar elements in any genomes encoding a transcriptional regulator with an identical CR tag. The accumulation of motifs associated with CR tags raised the question of their ordered storage for the convenience of subsequent use in the annotation of genomic sequences. Since no one of well-known databases uses the concept of CR tags, a new database ought to be developed. Thus, the goal of this work is to create a database with information about bacterial transcription factors and DNA sequences recognized by them, suitable for annotation of regulatory sequences in bacterial genomes.M e t h o d s . Infological modeling of the subject area was carried out using the IDEF1X methodology. The database was developed using the Microsoft SQL Server DBMS. A cross-platform application for importing data into a database is written in C++ using Qt technology.Re s u l t s . As a result of the study of the subject area, a relational data model was developed and implemented in the Microsoft SQL Server DBMS, which allows holistic storage of information about accumulated transcription regulation motifs in bacteria, including information about the publications confirming their correctness. To automate the process of entering accumulated data, a cross-platform application was developed for importing structured data on transcription factors.Co n c l u s i o n . The main difference of the developed database is the use of CR-tag concept. Records of mathematical models of regulatory elements (motifs) in the database are associated with a CR tag and, therefore, can be correctly used to annotate similar elements in any genomes encoding a transcriptional regulator with an identical CR tag. The developed database will provide structured and holistic data storage, as well as their quick search when used in the pipeline for automatic annotation of regulatory elements in bacterial genomic sequences.
Collapse
|
19
|
Identification of a transcription factor, PunR, that regulates the purine and purine nucleoside transporter punC in E. coli. Commun Biol 2021; 4:991. [PMID: 34413462 PMCID: PMC8376909 DOI: 10.1038/s42003-021-02516-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/21/2021] [Indexed: 01/26/2023] Open
Abstract
Many genes in bacterial genomes are of unknown function, often referred to as y-genes. Recently, the analytic methods have divided bacterial transcriptomes into independently modulated sets of genes (iModulons). Functionally annotated iModulons that contain y-genes lead to testable hypotheses to elucidate y-gene function. The inversely correlated expression of a putative transporter gene, ydhC, relative to purine biosynthetic genes, has led to the hypothesis that it encodes a purine-related transporter and revealed a LysR-family regulator, YdhB, with a predicted 23-bp palindromic binding motif. RNA-Seq analysis of a ydhB knockout mutant confirmed the YdhB-dependent activation of ydhC in the presence of adenosine. The deletion of either the ydhC or the ydhB gene led to a substantially decreased growth rate for E. coli in minimal medium with adenosine, inosine, or guanosine as the nitrogen source. Taken together, we provide clear evidence that YdhB activates the expression of the ydhC gene that encodes a purine transporter in E. coli. We propose that the genes ydhB and ydhC be re-named as punR and punC, respectively. Rodionova et al. find that the putative transporter gene, ydhC and its regulator ydhB are involved in purine transportation and that the expression of the ydhC gene is activated by the YdhB in E. coli. The authors suggest renaming the regulator PunR and the transporter PunC, respectively.
Collapse
|
20
|
Mingyar E, Mühling L, Kulik A, Winkler A, Wibberg D, Kalinowski J, Blin K, Weber T, Wohlleben W, Stegmann E. A Regulator Based "Semi-Targeted" Approach to Activate Silent Biosynthetic Gene Clusters. Int J Mol Sci 2021; 22:ijms22147567. [PMID: 34299187 PMCID: PMC8306873 DOI: 10.3390/ijms22147567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022] Open
Abstract
By culturing microorganisms under standard laboratory conditions, most biosynthetic gene clusters (BGCs) are not expressed, and thus, the products are not produced. To explore this biosynthetic potential, we developed a novel "semi-targeted" approach focusing on activating "silent" BGCs by concurrently introducing a group of regulator genes into streptomycetes of the Tübingen strain collection. We constructed integrative plasmids containing two classes of regulatory genes under the control of the constitutive promoter ermE*p (cluster situated regulators (CSR) and Streptomyces antibiotic regulatory proteins (SARPs)). These plasmids were introduced into Streptomyces sp. TÜ17, Streptomyces sp. TÜ10 and Streptomyces sp. TÜ102. Introduction of the CSRs-plasmid into strain S. sp. TÜ17 activated the production of mayamycin A. By using the individual regulator genes, we proved that Aur1P, was responsible for the activation. In strain S. sp. TÜ102, the introduction of the SARP-plasmid triggered the production of a chartreusin-like compound. Insertion of the CSRs-plasmid into strain S. sp. TÜ10 resulted in activating the warkmycin-BGC. In both recombinants, activation of the BGCs was only possible through the simultaneous expression of aur1PR3 and griR in S. sp. TÜ102 and aur1P and pntR in of S. sp. TÜ10.
Collapse
Affiliation(s)
- Erik Mingyar
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Lucas Mühling
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
| | - Andreas Kulik
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Anika Winkler
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany; (A.W.); (D.W.); (J.K.)
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany; (A.W.); (D.W.); (J.K.)
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany; (A.W.); (D.W.); (J.K.)
| | - Kai Blin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; (K.B.); (T.W.)
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; (K.B.); (T.W.)
| | - Wolfgang Wohlleben
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124—Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Evi Stegmann
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124—Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
21
|
Rodionov DA, Rodionova IA, Rodionov VA, Arzamasov AA, Zhang K, Rubinstein GM, Tanwee TNN, Bing RG, Crosby JR, Nookaew I, Basen M, Brown SD, Wilson CM, Klingeman DM, Poole FL, Zhang Y, Kelly RM, Adams MWW. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. mSystems 2021; 6:e0134520. [PMID: 34060910 PMCID: PMC8579813 DOI: 10.1128/msystems.01345-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Extremely thermophilic bacteria from the genus Caldicellulosiruptor can degrade polysaccharide components of plant cell walls and subsequently utilize the constituting mono- and oligosaccharides. Through metabolic engineering, ethanol and other industrially important end products can be produced. Previous experimental studies identified a variety of carbohydrate-active enzymes in model species Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor bescii, while prior transcriptomic experiments identified their putative carbohydrate uptake transporters. We investigated the mechanisms of transcriptional regulation of carbohydrate utilization genes using a comparative genomics approach applied to 14 Caldicellulosiruptor species. The reconstruction of carbohydrate utilization regulatory network includes the predicted binding sites for 34 mostly local regulators and point to the regulatory mechanisms controlling expression of genes involved in degradation of plant biomass. The Rex and CggR regulons control the central glycolytic and primary redox reactions. The identified transcription factor binding sites and regulons were validated with transcriptomic and transcription start site experimental data for C. bescii grown on cellulose, cellobiose, glucose, xylan, and xylose. The XylR and XynR regulons control xylan-induced transcriptional response of genes involved in degradation of xylan and xylose utilization. The reconstructed regulons informed the carbohydrate utilization reconstruction analysis and improved functional annotations of 51 transporters and 11 catabolic enzymes. Using gene deletion, we confirmed that the shared ATPase component MsmK is essential for growth on oligo- and polysaccharides but not for the utilization of monosaccharides. By elucidating the carbohydrate utilization framework in C. bescii, strategies for metabolic engineering can be pursued to optimize yields of bio-based fuels and chemicals from lignocellulose. IMPORTANCE To develop functional metabolic engineering platforms for nonmodel microorganisms, a comprehensive understanding of the physiological and metabolic characteristics is critical. Caldicellulosiruptor bescii and other species in this genus have untapped potential for conversion of unpretreated plant biomass into industrial fuels and chemicals. The highly interactive and complex machinery used by C. bescii to acquire and process complex carbohydrates contained in lignocellulose was elucidated here to complement related efforts to develop a metabolic engineering platform with this bacterium. Guided by the findings here, a clearer picture of how C. bescii natively drives carbohydrate utilization is provided and strategies to engineer this bacterium for optimal conversion of lignocellulose to commercial products emerge.
Collapse
Affiliation(s)
- Dmitry A. Rodionov
- Sanford-Burnhams-Prebys Medical Discovery Institute, La Jolla, California, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Irina A. Rodionova
- Department of Bioengineering, University of California—San Diego, La Jolla, California, USA
| | - Vladimir A. Rodionov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandr A. Arzamasov
- Sanford-Burnhams-Prebys Medical Discovery Institute, La Jolla, California, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ke Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Gabriel M. Rubinstein
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Mirko Basen
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Biowissenschaften, Mikrobiologie, Universität Rostock, Rostock, Germany
| | - Steven D. Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Charlotte M. Wilson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- University of Otago, Dunedin, New Zealand
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Farris L. Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
22
|
Corynebacterium glutamicum Regulation beyond Transcription: Organizing Principles and Reconstruction of an Extended Regulatory Network Incorporating Regulations Mediated by Small RNA and Protein-Protein Interactions. Microorganisms 2021; 9:microorganisms9071395. [PMID: 34203422 PMCID: PMC8303971 DOI: 10.3390/microorganisms9071395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Corynebacterium glutamicum is a Gram-positive bacterium found in soil where the condition changes demand plasticity of the regulatory machinery. The study of such machinery at the global scale has been challenged by the lack of data integration. Here, we report three regulatory network models for C. glutamicum: strong (3040 interactions) constructed solely with regulations previously supported by directed experiments; all evidence (4665 interactions) containing the strong network, regulations previously supported by nondirected experiments, and protein-protein interactions with a direct effect on gene transcription; sRNA (5222 interactions) containing the all evidence network and sRNA-mediated regulations. Compared to the previous version (2018), the strong and all evidence networks increased by 75 and 1225 interactions, respectively. We analyzed the system-level components of the three networks to identify how they differ and compared their structures against those for the networks of more than 40 species. The inclusion of the sRNA-mediated regulations changed the proportions of the system-level components and increased the number of modules but decreased their size. The C. glutamicum regulatory structure contrasted with other bacterial regulatory networks. Finally, we used the strong networks of three model organisms to provide insights and future directions of the C.glutamicum regulatory network characterization.
Collapse
|
23
|
Suvorova IA, Gelfand MS. Comparative Analysis of the IclR-Family of Bacterial Transcription Factors and Their DNA-Binding Motifs: Structure, Positioning, Co-Evolution, Regulon Content. Front Microbiol 2021; 12:675815. [PMID: 34177859 PMCID: PMC8222616 DOI: 10.3389/fmicb.2021.675815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The IclR-family is a large group of transcription factors (TFs) regulating various biological processes in diverse bacteria. Using comparative genomics techniques, we have identified binding motifs of IclR-family TFs, reconstructed regulons and analyzed their content, finding co-occurrences between the regulated COGs (clusters of orthologous genes), useful for future functional characterizations of TFs and their regulated genes. We describe two main types of IclR-family motifs, similar in sequence but different in the arrangement of the half-sites (boxes), with GKTYCRYW3-4RYGRAMC and TGRAACAN1-2TGTTYCA consensuses, and also predict that TFs in 32 orthologous groups have binding sites comprised of three boxes with alternating direction, which implies two possible alternative modes of dimerization of TFs. We identified trends in site positioning relative to the translational gene start, and show that TFs in 94 orthologous groups bind tandem sites with 18-22 nucleotides between their centers. We predict protein-DNA contacts via the correlation analysis of nucleotides in binding sites and amino acids of the DNA-binding domain of TFs, and show that the majority of interacting positions and predicted contacts are similar for both types of motifs and conform well both to available experimental data and to general protein-DNA interaction trends.
Collapse
Affiliation(s)
- Inna A Suvorova
- Institute for Information Transmission Problems of Russian Academy of Sciences (The Kharkevich Institute), Moscow, Russia
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems of Russian Academy of Sciences (The Kharkevich Institute), Moscow, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
24
|
Avican K, Aldahdooh J, Togninalli M, Mahmud AKMF, Tang J, Borgwardt KM, Rhen M, Fällman M. RNA atlas of human bacterial pathogens uncovers stress dynamics linked to infection. Nat Commun 2021; 12:3282. [PMID: 34078900 PMCID: PMC8172932 DOI: 10.1038/s41467-021-23588-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
Bacterial processes necessary for adaption to stressful host environments are potential targets for new antimicrobials. Here, we report large-scale transcriptomic analyses of 32 human bacterial pathogens grown under 11 stress conditions mimicking human host environments. The potential relevance of the in vitro stress conditions and responses is supported by comparisons with available in vivo transcriptomes of clinically important pathogens. Calculation of a probability score enables comparative cross-microbial analyses of the stress responses, revealing common and unique regulatory responses to different stresses, as well as overlapping processes participating in different stress responses. We identify conserved and species-specific 'universal stress responders', that is, genes showing altered expression in multiple stress conditions. Non-coding RNAs are involved in a substantial proportion of the responses. The data are collected in a freely available, interactive online resource (PATHOgenex).
Collapse
Affiliation(s)
- Kemal Avican
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| | - Jehad Aldahdooh
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matteo Togninalli
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - A K M Firoj Mahmud
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jing Tang
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Karsten M Borgwardt
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Maria Fällman
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
25
|
Dong W, Nie X, Zhu H, Liu Q, Shi K, You L, Zhang Y, Fan H, Yan B, Niu C, Lyu LD, Zhao GP, Yang C. Mycobacterial fatty acid catabolism is repressed by FdmR to sustain lipogenesis and virulence. Proc Natl Acad Sci U S A 2021; 118:e2019305118. [PMID: 33853942 PMCID: PMC8072231 DOI: 10.1073/pnas.2019305118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Host-derived fatty acids are an important carbon source for pathogenic mycobacteria during infection. How mycobacterial cells regulate the catabolism of fatty acids to serve the pathogenicity, however, remains unknown. Here, we identified a TetR-family transcriptional factor, FdmR, as the key regulator of fatty acid catabolism in the pathogen Mycobacterium marinum by combining use of transcriptomics, chromatin immunoprecipitation followed by sequencing, dynamic 13C-based flux analysis, metabolomics, and lipidomics. An M. marinum mutant deficient in FdmR was severely attenuated in zebrafish larvae and adult zebrafish. The mutant showed defective growth but high substrate consumption on fatty acids. FdmR was identified as a long-chain acyl-coenzyme A (acyl-CoA)-responsive repressor of genes involved in fatty acid degradation and modification. We demonstrated that FdmR functions as a valve to direct the flux of exogenously derived fatty acids away from β-oxidation toward lipid biosynthesis, thereby avoiding the overactive catabolism and accumulation of biologically toxic intermediates. Moreover, we found that FdmR suppresses degradation of long-chain acyl-CoAs endogenously synthesized through the type I fatty acid synthase. By modulating the supply of long-chain acyl-CoAs for lipogenesis, FdmR controls the abundance and chain length of virulence-associated lipids and mycolates and plays an important role in the impermeability of the cell envelope. These results reveal that despite the fact that host-derived fatty acids are used as an important carbon source, overactive catabolism of fatty acids is detrimental to mycobacterial cell growth and pathogenicity. This study thus presents FdmR as a potentially attractive target for chemotherapy.
Collapse
Affiliation(s)
- Wenyue Dong
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqun Nie
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Hong Zhu
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Kunxiong Shi
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Linlin You
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Hongyan Fan
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Bo Yan
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Chen Niu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China;
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China;
| | - Guo-Ping Zhao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chen Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| |
Collapse
|
26
|
Lei MG, Lee CY. MgrA Activates Staphylococcal Capsule via SigA-Dependent Promoter. J Bacteriol 2020; 203:e00495-20. [PMID: 33077637 PMCID: PMC7950413 DOI: 10.1128/jb.00495-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus capsule polysaccharide is an important antiphagocytic virulence factor. The cap genes are regulated at the promoter element (Pcap) upstream of the cap operon. Pcap, which consists of a dominant SigB-dependent promoter and a weaker upstream SigA-dependent promoter, is activated by global regulator MgrA. How MgrA activates capsule is unclear. Here, we showed that MgrA directly bound to the Pcap region and affected the SigA-dependent promoter. Interestingly, an electrophoretic mobility shift assay showed that MgrA bound to a large region of Pcap, mainly downstream of the SigA-dependent promoter. We further showed that the ArlRS two-component system and the Agr quorum sensing system activated capsule primarily through MgrA in the early growth phases.IMPORTANCE The virulence of Staphylococcus aureus depends on the expression of various virulence factors, which is governed by a complex regulatory network. We have been using capsule as a model virulence factor to study virulence gene regulation in S. aureus MgrA is one of the regulators of capsule and has a major effect on capsule production. However, how MgrA regulates capsule genes is not understood. In this study, we were able to define the mechanism involving MgrA regulation of capsule. In addition, we also delineated the role of MgrA in capsule regulatory pathways involving the key virulence regulators Agr and Arl. This study further advances our understanding of virulence gene regulation in S. aureus, an important human pathogen.
Collapse
Affiliation(s)
- Mei G Lei
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Chia Y Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
27
|
A review of methods for the reconstruction and analysis of integrated genome-scale models of metabolism and regulation. Biochem Soc Trans 2020; 48:1889-1903. [DOI: 10.1042/bst20190840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/16/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
The current survey aims to describe the main methodologies for extending the reconstruction and analysis of genome-scale metabolic models and phenotype simulation with Flux Balance Analysis mathematical frameworks, via the integration of Transcriptional Regulatory Networks and/or gene expression data. Although the surveyed methods are aimed at improving phenotype simulations obtained from these models, the perspective of reconstructing integrated genome-scale models of metabolism and gene expression for diverse prokaryotes is still an open challenge.
Collapse
|
28
|
Dahyot S, Oxaran V, Niepceron M, Dupart E, Legris S, Destruel L, Didi J, Clamens T, Lesouhaitier O, Zerdoumi Y, Flaman JM, Pestel-Caron M. Role of the LytSR Two-Component Regulatory System in Staphylococcus lugdunensis Biofilm Formation and Pathogenesis. Front Microbiol 2020; 11:39. [PMID: 32038604 PMCID: PMC6993578 DOI: 10.3389/fmicb.2020.00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/09/2020] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus lugdunensis is a coagulase negative Staphylococcus recognized as a virulent pathogen. It is responsible for a wide variety of infections, some of which are associated with biofilm production, such as implanted medical device infections or endocarditis. However, little is known about S. lugdunensis regulation of virulence factor expression. Two-component regulatory systems (TCS) play a critical role in bacterial adaptation, survival, and virulence. Among them, LytSR is widely conserved but has variable roles in different organisms, all connected to metabolism or cell death and lysis occurring during biofilm development. Therefore, we investigated here the functions of LytSR in S. lugdunensis pathogenesis. Deletion of lytSR in S. lugdunensis DSM 4804 strain did not alter either susceptibility to Triton X-100 induced autolysis or death induced by antibiotics targeting cell wall synthesis. Interestingly, ΔlytSR biofilm was characterized by a lower biomass, a lack of tower structures, and a higher rate of dead cells compared to the wild-type strain. Virulence toward Caenorhabditis elegans using a slow-killing assay was significantly reduced for the mutant compared to the wild-type strain. By contrast, the deletion of lytSR had no effect on the cytotoxicity of S. lugdunensis toward the human keratinocyte cell line HaCaT. Transcriptional analyses conducted at mid- and late-exponential phases showed that lytSR deletion affected the expression of 286 genes. Most of them were involved in basic functions such as the metabolism of amino acids, carbohydrates, and nucleotides. Furthermore, LytSR appeared to be involved in the regulation of genes encoding known or putative virulence and colonization factors, including the fibrinogen-binding protein Fbl, the major autolysin AtlL, and the type VII secretion system. Overall, our data suggest that the LytSR TCS is implicated in S. lugdunensis pathogenesis, through its involvement in biofilm formation and potentially by the control of genes encoding putative virulence factors.
Collapse
Affiliation(s)
- Sandrine Dahyot
- Groupe de Recherche sur l’Adaptation Microbienne (GRAM 2.0), Department of Bacteriology, Rouen University Hospital, Normandie University, UNIROUEN, UNICAEN, Rouen, France
| | - Virginie Oxaran
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Maïté Niepceron
- Groupe de Recherche sur l’Adaptation Microbienne (GRAM 2.0), Normandie University, UNIROUEN, UNICAEN, Rouen, France
| | - Eddy Dupart
- Groupe de Recherche sur l’Adaptation Microbienne (GRAM 2.0), Normandie University, UNIROUEN, UNICAEN, Rouen, France
| | - Stéphanie Legris
- Groupe de Recherche sur l’Adaptation Microbienne (GRAM 2.0), Normandie University, UNIROUEN, UNICAEN, Rouen, France
| | - Laurie Destruel
- Groupe de Recherche sur l’Adaptation Microbienne (GRAM 2.0), Normandie University, UNIROUEN, UNICAEN, Rouen, France
| | - Jennifer Didi
- Groupe de Recherche sur l’Adaptation Microbienne (GRAM 2.0), Normandie University, UNIROUEN, UNICAEN, Rouen, France
| | - Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment (LMSM), Normandie University, UNIROUEN, Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment (LMSM), Normandie University, UNIROUEN, Evreux, France
| | - Yasmine Zerdoumi
- INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Normandie University, UNIROUEN, Rouen, France
| | - Jean-Michel Flaman
- INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Normandie University, UNIROUEN, Rouen, France
| | - Martine Pestel-Caron
- Groupe de Recherche sur l’Adaptation Microbienne (GRAM 2.0), Department of Bacteriology, Rouen University Hospital, Normandie University, UNIROUEN, UNICAEN, Rouen, France
| |
Collapse
|
29
|
Nie X, Dong W, Yang C. Genomic reconstruction of σ 54 regulons in Clostridiales. BMC Genomics 2019; 20:565. [PMID: 31288763 PMCID: PMC6615313 DOI: 10.1186/s12864-019-5918-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background The σ54 factor controls unique promoters and interacts with a specialized activator (enhancer binding proteins [EBP]) for transcription initiation. Although σ54 is present in many Clostridiales species that have great importance in human health and biotechnological applications, the cellular processes controlled by σ54 remain unknown. Results For systematic analysis of the regulatory functions of σ54, we performed comparative genomic reconstruction of transcriptional regulons of σ54 in 57 species from the Clostridiales order. The EBP-binding DNA motifs and regulated genes were identified for 263 EBPs that constitute 39 distinct groups. The reconstructed σ54 regulons contain the genes involved in fermentation and amino acid catabolism. The predicted σ54 binding sites in the genomes of Clostridiales spp. were verified by in vitro binding assays. To our knowledge, this is the first report about direct regulation of the Stickland reactions and butyrate and alcohols synthesis by σ54 and the respective EBPs. Considerable variations were demonstrated in the sizes and gene contents of reconstructed σ54 regulons between different Clostridiales species. It is proposed that σ54 controls butyrate and alcohols synthesis in solvent-producing species, regulates autotrophic metabolism in acetogenic species, and affects the toxin production in pathogenic species. Conclusions This study reveals previously unrecognized functions of σ54 and provides novel insights into the regulation of fermentation and amino acid metabolism in Clostridiales species, which could have potential applications in guiding the treatment and efficient utilization of these species. Electronic supplementary material The online version of this article (10.1186/s12864-019-5918-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoqun Nie
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenyue Dong
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
30
|
Ravcheev DA, Moussu L, Smajic S, Thiele I. Comparative Genomic Analysis Reveals Novel Microcompartment-Associated Metabolic Pathways in the Human Gut Microbiome. Front Genet 2019; 10:636. [PMID: 31333721 PMCID: PMC6620236 DOI: 10.3389/fgene.2019.00636] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022] Open
Abstract
Bacterial microcompartments are self-assembling subcellular structures surrounded by a semipermeable protein shell and found only in bacteria, but not archaea or eukaryotes. The general functions of the bacterial microcompartments are to concentrate enzymes, metabolites, and cofactors for multistep pathways; maintain the cofactor ratio; protect the cell from toxic metabolic intermediates; and protect the encapsulated pathway from unwanted side reactions. The bacterial microcompartments were suggested to play a significant role in organisms of the human gut microbiome, especially for various pathogens. Here, we used a comparative genomics approach to analyze the bacterial microcompartments in 646 individual genomes of organisms commonly found in the human gut microbiome. The bacterial microcompartments were found in 150 (23.2%) analyzed genomes. These microcompartments include previously known ones for the utilization of ethanolamine, 1,2-propanediol, choline, and fucose/rhamnose. Moreover, we reconstructed two novel pathways associated with the bacterial microcompartments. These pathways are catabolic pathways for the utilization of 1-amino-2-propanol/1-amino-2-propanone and xanthine. Remarkably, the xanthine utilization pathway does not demonstrate similarity to previously known microcompartment-associated pathways. Thus, we describe a novel type of bacterial microcompartment.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lubin Moussu
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Semra Smajic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Discipline of Microbiology, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| |
Collapse
|
31
|
Bragin EY, Shtratnikova VY, Schelkunov MI, Dovbnya DV, Donova MV. Genome-wide response on phytosterol in 9-hydroxyandrostenedione-producing strain of Mycobacterium sp. VKM Ac-1817D. BMC Biotechnol 2019; 19:39. [PMID: 31238923 PMCID: PMC6593523 DOI: 10.1186/s12896-019-0533-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
Background Aerobic side chain degradation of phytosterols by actinobacteria is the basis for the industrial production of androstane steroids which are the starting materials for the synthesis of steroid hormones. A native strain of Mycobacterium sp. VKM Ac-1817D effectively produces 9α-hydroxyandrost-4-ene-3,17-dione (9-OH-AD) from phytosterol, but also is capable of slow steroid core degradation. However, the set of the genes with products that are involved in phytosterol oxidation, their organisation and regulation remain poorly understood. Results High-throughput sequencing of the global transcriptomes of the Mycobacterium sp. VKM Ac-1817D cultures grown with or without phytosterol was carried out. In the presence of phytosterol, the expression of 260 genes including those related to steroid catabolism pathways significantly increased. Two of the five genes encoding the oxygenase unit of 3-ketosteroid-9α-hydroxylase (kshA) were highly up-regulated in response to phytosterol (55- and 25-fold, respectively) as well as one of the two genes encoding its reductase subunit (kshB) (40-fold). Only one of the five putative genes encoding 3-ketosteroid-∆1-dehydrogenase (KstD_1) was up-regulated in the presence of phytosterol (61-fold), but several substitutions in the conservative positions of its product were revealed. Among the genes over-expressed in the presence of phytosterol, several dozen genes did not possess binding sites for the known regulatory factors of steroid catabolism. In the promoter regions of these genes, a regularly occurring palindromic motif was revealed. The orthologue of TetR-family transcription regulator gene Rv0767c of M. tuberculosis was identified in Mycobacterium sp. VKM Ac-1817D as G155_05115. Conclusions High expression levels of the genes related to the sterol side chain degradation and steroid 9α-hydroxylation in combination with possible defects in KstD_1 may contribute to effective 9α-hydroxyandrost-4-ene-3,17-dione accumulation from phytosterol provided by this biotechnologically relevant strain. The TetR-family transcription regulator gene G155_05115 presumably associated with the regulation of steroid catabolism. The results are of significance for the improvement of biocatalytic features of the microbial strains for the steroid industry. Electronic supplementary material The online version of this article (10.1186/s12896-019-0533-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eugeny Y Bragin
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290. .,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290.
| | - Victoria Y Shtratnikova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye gory, 1, building 40, Moscow, Russian Federation, 119992
| | - Mikhail I Schelkunov
- Skolkovo Institute of Science and Technology, Nobelya, 3, Moscow, Russian Federation, 121205.,Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny, 19, build. 1, Moscow, Russian Federation, 127051
| | - Dmitry V Dovbnya
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290.,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290
| | - Marina V Donova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", Nauki, 5, Pushchino, Russian Federation, 142290.,Pharmins Ltd., Institutskaya, 4, Pushchino, Russian Federation, 142290
| |
Collapse
|
32
|
Suvorova IA, Gelfand MS. Comparative Genomic Analysis of the Regulation of Aromatic Metabolism in Betaproteobacteria. Front Microbiol 2019; 10:642. [PMID: 30984152 PMCID: PMC6449761 DOI: 10.3389/fmicb.2019.00642] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/14/2019] [Indexed: 01/23/2023] Open
Abstract
Aromatic compounds are a common carbon and energy source for many microorganisms, some of which can even degrade toxic chloroaromatic xenobiotics. This comparative study of aromatic metabolism in 32 Betaproteobacteria species describes the links between several transcription factors (TFs) that control benzoate (BenR, BenM, BoxR, BzdR), catechol (CatR, CatM, BenM), chlorocatechol (ClcR), methylcatechol (MmlR), 2,4-dichlorophenoxyacetate (TfdR, TfdS), phenol (AphS, AphR, AphT), biphenyl (BphS), and toluene (TbuT) metabolism. We characterize the complexity and variability in the organization of aromatic metabolism operons and the structure of regulatory networks that may differ even between closely related species. Generally, the upper parts of pathways, rare pathway variants, and degradative pathways of exotic and complex, in particular, xenobiotic compounds are often controlled by a single TF, while the regulation of more common and/or central parts of the aromatic metabolism may vary widely and often involves several TFs with shared and/or dual, or cascade regulation. The most frequent and at the same time variable connections exist between AphS, AphR, AphT, and BenR. We have identified a novel LysR-family TF that regulates the metabolism of catechol (or some catechol derivative) and either substitutes CatR(M)/BenM, or shares functions with it. We have also predicted several new members of aromatic metabolism regulons, in particular, some COGs regulated by several different TFs.
Collapse
Affiliation(s)
- Inna A Suvorova
- Institute for Information Transmission Problems RAS (The Kharkevich Institute), Moscow, Russia
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems RAS (The Kharkevich Institute), Moscow, Russia.,Faculty of Computer Science, Higher School of Economics, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
33
|
Novel Metabolic Pathways and Regulons for Hexuronate Utilization in Proteobacteria. J Bacteriol 2018; 201:JB.00431-18. [PMID: 30249705 DOI: 10.1128/jb.00431-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
We used comparative genomics to reconstruct d-galacturonic and d-glucuronic acid catabolic pathways and associated transcriptional regulons involving the tripartite ATP-independent periplasmic (TRAP) family transporters that bind hexuronates in proteobacteria. The reconstructed catabolic network involves novel transcription factors, catabolic enzymes, and transporters for utilization of both hexuronates and aldarates (d-glucarate and meso-galactarate). The reconstructed regulons for a novel GntR family transcription factor, GguR, include the majority of hexuronate/aldarate utilization genes in 47 species from the Burkholderiaceae, Comamonadaceae, Halomonadaceae, and Pseudomonadaceae families. GudR, GulR, and UdhR are additional local regulators of some hexuronate/aldarate utilization genes in some of the above-mentioned organisms. The predicted DNA binding motifs of GguR and GudR regulators from Ralstonia pickettii and Polaromonas were validated by in vitro binding assays. Genes from the GulR- and GguR-controlled loci were differentially expressed in R. pickettii grown on hexuronates and aldarates. By a combination of bioinformatics and experimental techniques we identified a novel variant of the oxidative pathway for hexuronate utilization, including two previously uncharacterized subfamilies of lactone hydrolases (UxuL and UxuF). The genomic context of respective genes and reconstruction of associated pathways suggest that both enzymes catalyze the conversion of d-galactaro- and d-glucaro-1,5-lactones to the ring-opened aldarates. The activities of the purified recombinant enzymes, UxuL and UxuF, from four proteobacterial species were directly confirmed and kinetically characterized. The inferred novel aldarate-specific transporter from the tripartite tricarboxylate transporter (TTT) family transporter TctC was confirmed to bind d-glucarate in vitro This study expands our knowledge of bacterial carbohydrate catabolic pathways by identifying novel families of catabolic enzymes, transcriptional regulators, and transporters.IMPORTANCE Hexuronate catabolic pathways and their transcriptional networks are highly variable among different bacteria. We identified novel transcriptional regulators that control the hexuronate and aldarate utilization genes in four families of proteobacteria. By regulon reconstruction and genome context analysis we identified several novel components of the common hexuronate/aldarate utilization pathways, including novel uptake transporters and catabolic enzymes. Two novel families of lactonases involved in the oxidative pathway of hexuronate catabolism were characterized. Novel transcriptional regulons were validated via in vitro binding assays and gene expression studies with Polaromonas and Ralstonia species. The reconstructed catabolic pathways are interconnected with each other metabolically and coregulated via the GguR regulons in proteobacteria.
Collapse
|
34
|
Garanina IA, Fisunov GY, Govorun VM. BAC-BROWSER: The Tool for Visualization and Analysis of Prokaryotic Genomes. Front Microbiol 2018; 9:2827. [PMID: 30519231 PMCID: PMC6258810 DOI: 10.3389/fmicb.2018.02827] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Prokaryotes are actively studied objects in the scope of genomic regulation. Microbiologists need special tools for complex analysis of data to study and identification of regulatory mechanism in bacteria and archaea. We developed a tool BAC-BROWSER, specifically for visualization and analysis of small prokaryotic genomes. BAC-BROWSER provides tools for different types of analysis to study a wide set of regulatory mechanisms of prokaryotes: -transcriptional regulation by transcription factors (TFs), analysis of TFs, their targets, and binding sites.-other regulatory motifs, promoters, terminators and ribosome binding sites-transcriptional regulation by variation of operon structure, alternative starts or ends of transcription.-non-coding RNAs, antisense RNAs-RNA secondary structure, riboswitches-GC content, GC skew, codon usage BAC-browser incorporated free programs accelerating the verification of obtained results: primer design and oligocalculator, vector visualization, the tool for synthetic gene construction. The program is designed for Windows operating system and freely available for download in http://smdb.rcpcm.org/tools/index.html.
Collapse
Affiliation(s)
- Irina A Garanina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Gleb Y Fisunov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia
| | - Vadim M Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
35
|
Orlov M, Garanina I, Fisunov GY, Sorokin A. Comparative Analysis of Mycoplasma gallisepticum vlhA Promoters. Front Genet 2018; 9:569. [PMID: 30519256 PMCID: PMC6258824 DOI: 10.3389/fgene.2018.00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Mycoplasma gallisepticum is an intracellular parasite affecting respiratory tract of poultry that belongs to class Mollicutes. M. gallisepticum features numerous variable lipoprotein hemagglutinin genes (vlhA) that play a role in immune escape. The vlhA promoters have a set of distinct properties in comparison to promoters of the other genes. The vlhA promoters carry a variable GAA repeats region at approximately 40 nts upstream of transcription start site. The promoters have been considered active only in the presence of exactly 12 GAA repeats. The mechanisms of vlhA expression regulation and GAA number variation are not described. Here we tried to understand these mechanisms using different computational methods. We conducted a comparative analysis among several M. gallisepticum strains. Nucleotide sequences analysis showed the presence of highly conserved regions flanking repeated trinucleotides that are not linked to GAA number variation. VlhA genes with 12 GAA repeats and their orthologs in 12 M. gallisepticum strains are more conserved than other vlhA genes and have narrower GAA number distribution. We conducted comparative analysis of physicochemical profiles of M. gallisepticum vlhA and sigma-70 promoters. Stress-induced duplex destabilization (SIDD) profiles showed that sigma-70 group is characterized by the common to prokaryotic promoters sharp maxima while vlhA promoters are hardly destabilized with the region between GAA repeats and transcription start site having zero opening probability. Electrostatic potential profiles of vlhA promoters indicate the presence of the distinct patterns that appear to govern initial stages of specific DNA-protein recognition. Open state dynamics profiles of vlhA demonstrate the pattern that might facilitate transcription bubble formation. Obtained data could be the basis for experimental identification of mechanisms of phase variation in M. gallisepticum.
Collapse
Affiliation(s)
- Mikhail Orlov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Irina Garanina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Gleb Y Fisunov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Anatoly Sorokin
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
36
|
Pinheiro J, Lisboa J, Pombinho R, Carvalho F, Carreaux A, Brito C, Pöntinen A, Korkeala H, dos Santos NM, Morais-Cabral JH, Sousa S, Cabanes D. MouR controls the expression of the Listeria monocytogenes Agr system and mediates virulence. Nucleic Acids Res 2018; 46:9338-9352. [PMID: 30011022 PMCID: PMC6182135 DOI: 10.1093/nar/gky624] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes (Lm) causes invasive infection in susceptible animals and humans. To survive and proliferate within hosts, this facultative intracellular pathogen tightly coordinates the expression of a complex regulatory network that controls the expression of virulence factors. Here, we identified and characterized MouR, a novel virulence regulator of Lm. Through RNA-seq transcriptomic analysis, we determined the MouR regulon and demonstrated how MouR positively controls the expression of the Agr quorum sensing system (agrBDCA) of Lm. The MouR three-dimensional structure revealed a dimeric DNA-binding transcription factor belonging to the VanR class of the GntR superfamily of regulatory proteins. We also showed that by directly binding to the agr promoter region, MouR ultimately modulates chitinase activity and biofilm formation. Importantly, we demonstrated by in vitro cell invasion assays and in vivo mice infections the role of MouR in Lm virulence.
Collapse
Affiliation(s)
- Jorge Pinheiro
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto 4200-135, Portugal
| | - Johnny Lisboa
- Group of Fish Immunology & Vaccinology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| | - Rita Pombinho
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto 4200-135, Portugal
| | - Filipe Carvalho
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto 4200-135, Portugal
| | - Alexis Carreaux
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- SDV - UFR Sciences Du Vivant: Université Paris Diderot-Paris 7, Paris 75013, France
| | - Cláudia Brito
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto 4200-135, Portugal
| | - Anna Pöntinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Nuno M S dos Santos
- Group of Fish Immunology & Vaccinology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| | - João H Morais-Cabral
- Group of Structural Biochemistry, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| | - Didier Cabanes
- Group of Molecular Microbiology, IBMC – Institute for Molecular and Cell Biology; i3S – Institute for Research and Innovation in Health, Porto 4200-135, Portugal
| |
Collapse
|
37
|
Zhuo L, Zhang Z, Pan Z, Sheng DH, Hu W, Li YZ. CIRCE element evolved for the coordinated transcriptional regulation of bacterial duplicate groELs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:928-937. [PMID: 30496038 DOI: 10.1016/j.bbagrm.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 01/16/2023]
Abstract
Chaperonin groEL genes are duplicated in approximately 20% of bacteria, and the duplicates are differentially transcribed due to their divergent functions. The coordinated regulation of this differential transcription is as yet undetermined. In this study, we reported that the controlling inverted repeat of chaperone expression (CIRCE) element (the HrcA-binding site located upstream of the promoter) evolved for the transcriptional regulation of duplicate groELs. CIRCE composition and locations were found to be phylogenetically conserved in bacterial taxa. Myxococcus xanthus DK1622 has two CIRCE elements (CIRCE1groESL1 and CIRCE2groESL1) in the promoter region of groESL1 and one CIRCE element (CIRCEgroEL2) before groEL2. We also found that negative HrcA and positive ?32 regulators coordinated the transcription of duplicate groELs, and that the double deletion in DK1622 eliminated transcriptional differences and reduced the heat-shock responses of groELs. In vitro binding assays showed that HrcA protein binding was biased towards CIRCE1groESL1, followed by CIRCEgroEL2, but that HrcA proteins failed to bind with CIRCE2groESL1. Mutation experiments revealed that single-nucleotide mutations in the inverted repeat regions changed the HrcA-binding abilities of CIRCEs. We constructed an in vivo transcription-regulation system in Escherichia coli to pair each of the regulators with a groEL promoter. The results indicated that the transcriptional regulation performed by HrcA and ?32 was biased towards the groEL2 and groEL1 promoters, respectively. Based on promoter-sequence characteristics, we proposed a model of the coordinated regulation of the transcription of duplicate groELs in M. xanthus DK1622.
Collapse
Affiliation(s)
- Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Duo-Hong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
38
|
He H, Ye L, Li C, Wang H, Guo X, Wang X, Zhang Y, Xiang W. SbbR/SbbA, an Important ArpA/AfsA-Like System, Regulates Milbemycin Production in Streptomyces bingchenggensis. Front Microbiol 2018; 9:1064. [PMID: 29875761 PMCID: PMC5974925 DOI: 10.3389/fmicb.2018.01064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022] Open
Abstract
Milbemycins, a group of 16-membered macrolide antibiotics, are used widely as insecticides and anthelmintics. Previously, a limited understanding of the transcriptional regulation of milbemycin biosynthesis has hampered efforts to enhance antibiotic production by engineering of regulatory genes. Here, a novel ArpA/AfsA-type system, SbbR/SbbA (SBI_08928/SBI_08929), has been identified to be involved in regulating milbemycin biosynthesis in the industrial strain S. bingchenggensis BC04. Inactivation of sbbR in BC04 resulted in markedly decreased production of milbemycin, while deletion of sbbA enhanced milbemycin production. Electrophoresis mobility shift assays (EMSAs) and DNase I footprinting studies showed that SbbR has a specific DNA-binding activity for the promoters of milR (the cluster-situated activator gene for milbemycin production) and the bidirectionally organized genes sbbR and sbbA. Transcriptional analysis suggested that SbbR directly activates the transcription of milR, while represses its own transcription and that of sbbA. Moreover, 11 novel targets of SbbR were additionally found, including seven regulatory genes located in secondary metabolite biosynthetic gene clusters (e.g., sbi_08420, sbi_08432, sbi_09158, sbi_00827, sbi_01376, sbi_09325, and sig24sbh) and four well-known global regulatory genes (e.g., glnRsbh, wblAsbh, atrAsbh, and mtrA/Bsbh). These data suggest that SbbR is not only a direct activator of milbemycin production, but also a pleiotropic regulator that controls the expression of other cluster-situated regulatory genes and global regulatory genes. Overall, this study reveals the upper-layer regulatory system that controls milbemycin biosynthesis, which will not only expand our understanding of the complex regulation in milbemycin biosynthesis, but also provide a basis for an approach to improve milbemycin production via genetic manipulation of SbbR/SbbA system.
Collapse
Affiliation(s)
- Hairong He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Lan Ye
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Chuang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Haiyan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowei Guo
- School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Xiangjing Wang
- School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
39
|
Arzamasov AA, van Sinderen D, Rodionov DA. Comparative Genomics Reveals the Regulatory Complexity of Bifidobacterial Arabinose and Arabino-Oligosaccharide Utilization. Front Microbiol 2018; 9:776. [PMID: 29740413 PMCID: PMC5928203 DOI: 10.3389/fmicb.2018.00776] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/05/2018] [Indexed: 11/13/2022] Open
Abstract
Members of the genus Bifidobacterium are common inhabitants of the human gastrointestinal tract. Previously it was shown that arabino-oligosaccharides (AOS) might act as prebiotics and stimulate the bifidobacterial growth in the gut. However, despite the rapid accumulation of genomic data, the precise mechanisms by which these sugars are utilized and associated transcription control still remain unclear. In the current study, we used a comparative genomic approach to reconstruct arabinose and AOS utilization pathways in over 40 bacterial species belonging to the Bifidobacteriaceae family. The results indicate that the gene repertoire involved in the catabolism of these sugars is highly diverse, and even phylogenetically close species may differ in their utilization capabilities. Using bioinformatics analysis we identified potential DNA-binding motifs and reconstructed putative regulons for the arabinose and AOS utilization genes in the Bifidobacteriaceae genomes. Six LacI-family transcriptional factors (named AbfR, AauR, AauU1, AauU2, BauR1 and BauR2) and a TetR-family regulator (XsaR) presumably act as local repressors for AOS utilization genes encoding various α- or β-L-arabinofuranosidases and predicted AOS transporters. The ROK-family regulator AraU and the LacI-family regulator AraQ control adjacent operons encoding putative arabinose transporters and catabolic enzymes, respectively. However, the AraQ regulator is universally present in all Bifidobacterium species including those lacking the arabinose catabolic genes araBDA, suggesting its control of other genes. Comparative genomic analyses of prospective AraQ-binding sites allowed the reconstruction of AraQ regulons and a proposed binary repression/activation mechanism. The conserved core of reconstructed AraQ regulons in bifidobacteria includes araBDA, as well as genes from the central glycolytic and fermentation pathways (pyk, eno, gap, tkt, tal, galM, ldh). The current study expands the range of genes involved in bifidobacterial arabinose/AOS utilization and demonstrates considerable variations in associated metabolic pathways and regulons. Detailed comparative and phylogenetic analyses allowed us to hypothesize how the identified reconstructed regulons evolved in bifidobacteria. Our findings may help to improve carbohydrate catabolic phenotype prediction and metabolic modeling, while it may also facilitate rational development of novel prebiotics.
Collapse
Affiliation(s)
- Aleksandr A Arzamasov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, University College Cork, Cork, Ireland
| | - Dmitry A Rodionov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
40
|
Calhoun S, Korczynska M, Wichelecki DJ, San Francisco B, Zhao S, Rodionov DA, Vetting MW, Al-Obaidi NF, Lin H, O'Meara MJ, Scott DA, Morris JH, Russel D, Almo SC, Osterman AL, Gerlt JA, Jacobson MP, Shoichet BK, Sali A. Prediction of enzymatic pathways by integrative pathway mapping. eLife 2018; 7:31097. [PMID: 29377793 PMCID: PMC5788505 DOI: 10.7554/elife.31097] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/18/2017] [Indexed: 01/17/2023] Open
Abstract
The functions of most proteins are yet to be determined. The function of an enzyme is often defined by its interacting partners, including its substrate and product, and its role in larger metabolic networks. Here, we describe a computational method that predicts the functions of orphan enzymes by organizing them into a linear metabolic pathway. Given candidate enzyme and metabolite pathway members, this aim is achieved by finding those pathways that satisfy structural and network restraints implied by varied input information, including that from virtual screening, chemoinformatics, genomic context analysis, and ligand -binding experiments. We demonstrate this integrative pathway mapping method by predicting the L-gulonate catabolic pathway in Haemophilus influenzae Rd KW20. The prediction was subsequently validated experimentally by enzymology, crystallography, and metabolomics. Integrative pathway mapping by satisfaction of structural and network restraints is extensible to molecular networks in general and thus formally bridges the gap between structural biology and systems biology.
Collapse
Affiliation(s)
- Sara Calhoun
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Magdalena Korczynska
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Daniel J Wichelecki
- Institute for Genomic Biology, University of Illinois, Urbana, United States.,Department of Biochemistry, University of Illinois, Urbana, United States.,Department of Chemistry, University of Illinois, Urbana, United States
| | - Brian San Francisco
- Institute for Genomic Biology, University of Illinois, Urbana, United States
| | - Suwen Zhao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Dmitry A Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States.,A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - Nawar F Al-Obaidi
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - Henry Lin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Matthew J O'Meara
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - David A Scott
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - John H Morris
- Resource for Biocomputing, Visualization and Informatics, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Daniel Russel
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - John A Gerlt
- Institute for Genomic Biology, University of Illinois, Urbana, United States.,Department of Biochemistry, University of Illinois, Urbana, United States.,Department of Chemistry, University of Illinois, Urbana, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
41
|
Wittchen M, Busche T, Gaspar AH, Lee JH, Ton-That H, Kalinowski J, Tauch A. Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation. BMC Genomics 2018; 19:82. [PMID: 29370758 PMCID: PMC5784534 DOI: 10.1186/s12864-018-4481-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/16/2018] [Indexed: 12/27/2022] Open
Abstract
Background The human pathogen Corynebacterium diphtheriae is the causative agent of diphtheria. In the 1990s a large diphtheria outbreak in Eastern Europe was caused by the strain C. diphtheriae NCTC 13129. Although the genome was sequenced more than a decade ago, not much is known about its transcriptome. Our aim was to use transcriptome sequencing (RNA-Seq) to close this knowledge gap and gain insights into the transcriptional landscape of a C. diphtheriae tox+ strain. Results We applied two different RNA-Seq techniques, one to retrieve 5′-ends of primary transcripts and the other to characterize the whole transcriptional landscape in order to gain insights into various features of the C. diphtheriae NCTC 13129 transcriptome. By examining the data we identified 1656 transcription start sites (TSS), of which 1202 were assigned to genes and 454 to putative novel transcripts. By using the TSS data promoter regions recognized by the housekeeping sigma factor σA and its motifs were analyzed in detail, revealing a well conserved −10 but an only weakly conserved −35 motif, respectively. Furthermore, with the TSS data 5’-UTR lengths were explored. The observed 5’-UTRs range from zero length (leaderless transcripts), which make up 20% of all genes, up to over 450 nt long leaders, which may harbor regulatory functions. The C. diphtheriae transcriptome consists of 471 operons which are further divided into 167 sub-operon structures. In a differential expression analysis approach, we discovered that genetic disruption of the iron-sensing transcription regulator DtxR, which controls expression of diphtheria toxin (DT), causes a strong influence on general gene expression. Nearly 15% of the genome is differentially transcribed, indicating that DtxR might have other regulatory functions in addition to regulation of iron metabolism and DT. Furthermore, our findings shed light on the transcriptional landscape of the DT encoding gene tox and present evidence for two tox antisense RNAs, which point to a new way of transcriptional regulation of toxin production. Conclusions This study presents extensive insights into the transcriptome of C. diphtheriae and provides a basis for future studies regarding gene characterization, transcriptional regulatory networks, and regulation of the tox gene in particular. Electronic supplementary material The online version of this article (10.1186/s12864-018-4481-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuel Wittchen
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.,Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Andrew H Gaspar
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Ju Huck Lee
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, USA.,Present address: Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeollabuk-do, 56212, Republic of Korea
| | - Hung Ton-That
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, USA
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
42
|
Tóth R, Cabral V, Thuer E, Bohner F, Németh T, Papp C, Nimrichter L, Molnár G, Vágvölgyi C, Gabaldón T, Nosanchuk JD, Gácser A. Investigation of Candida parapsilosis virulence regulatory factors during host-pathogen interaction. Sci Rep 2018; 8:1346. [PMID: 29358719 PMCID: PMC5777994 DOI: 10.1038/s41598-018-19453-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023] Open
Abstract
Invasive candidiasis is among the most life-threatening infections in patients in intensive care units. Although Candida albicans is the leading cause of candidaemia, the incidence of Candida parapsilosis infections is also rising, particularly among the neonates. Due to differences in their biology, these species employ different antifungal resistance and virulence mechanisms and also induce dissimilar immune responses. Previously, it has been suggested that core virulence effecting transcription regulators could be attractive ligands for future antifungal drugs. Although the virulence regulatory mechanisms of C. albicans are well studied, less is known about similar mechanisms in C. parapsilosis. In order to search for potential targets for future antifungal drugs against this species, we analyzed the fungal transcriptome during host-pathogen interaction using an in vitro infection model. Selected genes with high expression levels were further examined through their respective null mutant strains, under conditions that mimic the host environment or influence pathogenicity. As a result, we identified several mutants with relevant pathogenicity affecting phenotypes. During the study we highlight three potentially tractable signaling regulators that influence C. parapsilosis pathogenicity in distinct mechanisms. During infection, CPAR2_100540 is responsible for nutrient acquisition, CPAR2_200390 for cell wall assembly and morphology switching and CPAR2_303700 for fungal viability.
Collapse
Affiliation(s)
- Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Vitor Cabral
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Ernst Thuer
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Flóra Bohner
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Tibor Németh
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gergő Molnár
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Joshua D Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary.
| |
Collapse
|
43
|
Kaznadzey A, Shelyakin P, Gelfand MS. Sugar Lego: gene composition of bacterial carbohydrate metabolism genomic loci. Biol Direct 2017; 12:28. [PMID: 29178959 PMCID: PMC5702140 DOI: 10.1186/s13062-017-0200-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022] Open
Abstract
Background Bacterial carbohydrate metabolism is extremely diverse, since carbohydrates serve as a major energy source and are involved in a variety of cellular processes. Bacterial genes belonging to same metabolic pathway are often co-localized in the chromosome, but it is not a strict rule. Gene co-localization in linked to co-evolution and co-regulation. This study focuses on a large-scale analysis of bacterial genomic loci related to the carbohydrate metabolism. Results We demonstrate that only 53% of 148,000 studied genes from over six hundred bacterial genomes are co-localized in bacterial genomes with other carbohydrate metabolism genes, which points to a significant role of singleton genes. Co-localized genes form cassettes, ranging in size from two to fifteen genes. Two major factors influencing the cassette-forming tendency are gene function and bacterial phylogeny. We have obtained a comprehensive picture of co-localization preferences of genes for nineteen major carbohydrate metabolism functional classes, over two hundred gene orthologous clusters, and thirty bacterial classes, and characterized the cassette variety in size and content among different species, highlighting a significant role of short cassettes. The preference towards co-localization of carbohydrate metabolism genes varies between 40 and 76% for bacterial taxa. Analysis of frequently co-localized genes yielded forty-five significant pairwise links between genes belonging to different functional classes. The number of such links per class range from zero to eight, demonstrating varying preferences of respective genes towards a specific chromosomal neighborhood. Genes from eleven functional classes tend to co-localize with genes from the same class, indicating an important role of clustering of genes with similar functions. At that, in most cases such co-localization does not originate from local duplication events. Conclusions Overall, we describe a complex web formed by evolutionary relationships of bacterial carbohydrate metabolism genes, manifested as co-localization patterns. Reviewers This article was reviewed by Daria V. Dibrova (A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia), nominated by Armen Mulkidjanian (University of Osnabrück, Germany), Igor Rogozin (NCBI, NLM, NIH, USA) and Yuri Wolf (NCBI, NLM, NIH, USA). Electronic supplementary material The online version of this article (10.1186/s13062-017-0200-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Kaznadzey
- A.A.Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127051, Russia.
| | - Pavel Shelyakin
- A.A.Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127051, Russia.,Vavilov Institute of General Genetics, Gubkin 3, Moscow, 119991, Russia
| | - Mikhail S Gelfand
- A.A.Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127051, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, 143028, Russia.,Faculty of Computer Science, Higher School of Economics, Kochnovsky pr. 3, Moscow, 125319, Russia.,Faculty of Bioengineering and Bioinformatics, M.V.Lomonosov Moscow State University, Vorobievy Gory 1-73, Moscow, 119991, Russia
| |
Collapse
|
44
|
Métris A, Sudhakar P, Fazekas D, Demeter A, Ari E, Olbei M, Branchu P, Kingsley RA, Baranyi J, Korcsmáros T. SalmoNet, an integrated network of ten Salmonella enterica strains reveals common and distinct pathways to host adaptation. NPJ Syst Biol Appl 2017; 3:31. [PMID: 29057095 PMCID: PMC5647365 DOI: 10.1038/s41540-017-0034-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Salmonella enterica is a prominent bacterial pathogen with implications on human and animal health. Salmonella serovars could be classified as gastro-intestinal or extra-intestinal. Genome-wide comparisons revealed that extra-intestinal strains are closer relatives of gastro-intestinal strains than to each other indicating a parallel evolution of this trait. Given the complexity of the differences, a systems-level comparison could reveal key mechanisms enabling extra-intestinal serovars to cause systemic infections. Accordingly, in this work, we introduce a unique resource, SalmoNet, which combines manual curation, high-throughput data and computational predictions to provide an integrated network for Salmonella at the metabolic, transcriptional regulatory and protein-protein interaction levels. SalmoNet provides the networks separately for five gastro-intestinal and five extra-intestinal strains. As a multi-layered, multi-strain database containing experimental data, SalmoNet is the first dedicated network resource for Salmonella. It comprehensively contains interactions between proteins encoded in Salmonella pathogenicity islands, as well as regulatory mechanisms of metabolic processes with the option to zoom-in and analyze the interactions at specific loci in more detail. Application of SalmoNet is not limited to strain comparisons as it also provides a Salmonella resource for biochemical network modeling, host-pathogen interaction studies, drug discovery, experimental validation of novel interactions, uncovering new pathological mechanisms from emergent properties and epidemiological studies. SalmoNet is available at http://salmonet.org.
Collapse
Affiliation(s)
- Aline Métris
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK.,Present Address: Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire UK
| | - Padhmanand Sudhakar
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK.,Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| | - David Fazekas
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK.,Department of Genetics, Eötvös Loránd University, Pázmány P. s. 1C, H-1117 Budapest, Hungary
| | - Amanda Demeter
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK.,Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK.,Department of Genetics, Eötvös Loránd University, Pázmány P. s. 1C, H-1117 Budapest, Hungary
| | - Eszter Ari
- Department of Genetics, Eötvös Loránd University, Pázmány P. s. 1C, H-1117 Budapest, Hungary.,Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Marton Olbei
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK.,Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| | - Priscilla Branchu
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK.,IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Rob A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK
| | - Jozsef Baranyi
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK
| | - Tamas Korcsmáros
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK.,Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| |
Collapse
|
45
|
Rodionova IA, Vetting MW, Li X, Almo SC, Osterman AL, Rodionov DA. A novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea. Nucleic Acids Res 2017; 45:3785-3799. [PMID: 28073944 PMCID: PMC5397151 DOI: 10.1093/nar/gkw1331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022] Open
Abstract
Riboflavin (vitamin B2) is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide, which are essential coenzymes in all free-living organisms. Riboflavin biosynthesis in many Bacteria but not in Archaea is controlled by FMN-responsive riboswitches. We identified a novel bifunctional riboflavin kinase/regulator (RbkR), which controls riboflavin biosynthesis and transport genes in major lineages of Crenarchaeota, Euryarchaeota and Thaumarchaeota. RbkR proteins are composed of the riboflavin kinase domain and a DNA-binding winged helix-turn-helix-like domain. Using comparative genomics, we predicted RbkR operator sites and reconstructed RbkR regulons in 94 archaeal genomes. While the identified RbkR operators showed significant variability between archaeal lineages, the conserved core of RbkR regulons includes riboflavin biosynthesis genes, known/predicted vitamin uptake transporters and the rbkR gene. The DNA motifs and CTP-dependent riboflavin kinase activity of two RbkR proteins were experimentally validated in vitro. The DNA binding activity of RbkR was stimulated by CTP and suppressed by FMN, a product of riboflavin kinase. The crystallographic structure of RbkR from Thermoplasma acidophilum was determined in complex with CTP and its DNA operator revealing key residues for operator and ligand recognition. Overall, this study contributes to our understanding of metabolic and regulatory networks for vitamin homeostasis in Archaea.
Collapse
Affiliation(s)
- Irina A Rodionova
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaoqing Li
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrei L Osterman
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dmitry A Rodionov
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051 Russia
| |
Collapse
|
46
|
Ravcheev DA, Thiele I. Comparative Genomic Analysis of the Human Gut Microbiome Reveals a Broad Distribution of Metabolic Pathways for the Degradation of Host-Synthetized Mucin Glycans and Utilization of Mucin-Derived Monosaccharides. Front Genet 2017; 8:111. [PMID: 28912798 PMCID: PMC5583593 DOI: 10.3389/fgene.2017.00111] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/11/2017] [Indexed: 12/27/2022] Open
Abstract
The colonic mucus layer is a dynamic and complex structure formed by secreted and transmembrane mucins, which are high-molecular-weight and heavily glycosylated proteins. Colonic mucus consists of a loose outer layer and a dense epithelium-attached layer. The outer layer is inhabited by various representatives of the human gut microbiota (HGM). Glycans of the colonic mucus can be used by the HGM as a source of carbon and energy when dietary fibers are not sufficiently available. Both commensals and pathogens can utilize mucin glycans. Commensals are mostly involved in the cleavage of glycans, while pathogens mostly utilize monosaccharides released by commensals. This HGM-derived degradation of the mucus layer increases pathogen susceptibility and causes many other health disorders. Here, we analyzed 397 individual HGM genomes to identify pathways for the cleavage of host-synthetized mucin glycans to monosaccharides as well as for the catabolism of the derived monosaccharides. Our key results are as follows: (i) Genes for the cleavage of mucin glycans were found in 86% of the analyzed genomes, which significantly higher than a previous estimation. (ii) Genes for the catabolism of derived monosaccharides were found in 89% of the analyzed genomes. (iii) Comparative genomic analysis identified four alternative forms of the monosaccharide-catabolizing enzymes and four alternative forms of monosaccharide transporters. (iv) Eighty-five percent of the analyzed genomes may be involved in potential feeding pathways for the monosaccharides derived from cleaved mucin glycans. (v) The analyzed genomes demonstrated different abilities to degrade known mucin glycans. Generally, the ability to degrade at least one type of mucin glycan was predicted for 81% of the analyzed genomes. (vi) Eighty-two percent of the analyzed genomes can form mutualistic pairs that are able to degrade mucin glycans and are not degradable by any of the paired organisms alone. Taken together, these findings provide further insight into the inter-microbial communications of the HGM as well as into host-HGM interactions.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| |
Collapse
|
47
|
Leyn SA, Maezato Y, Romine MF, Rodionov DA. Genomic Reconstruction of Carbohydrate Utilization Capacities in Microbial-Mat Derived Consortia. Front Microbiol 2017; 8:1304. [PMID: 28751880 PMCID: PMC5507952 DOI: 10.3389/fmicb.2017.01304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/28/2017] [Indexed: 11/29/2022] Open
Abstract
Two nearly identical unicyanobacterial consortia (UCC) were previously isolated from benthic microbial mats that occur in a heliothermal saline lake in northern Washington State. Carbohydrates are a primary source of carbon and energy for most heterotrophic bacteria. Since CO2 is the only carbon source provided, the cyanobacterium must provide a source of carbon to the heterotrophs. Available genomic sequences for all members of the UCC provide opportunity to investigate the metabolic routes of carbon transfer between autotroph and heterotrophs. Here, we applied a subsystem-based comparative genomics approach to reconstruct carbohydrate utilization pathways and identify glycohydrolytic enzymes, carbohydrate transporters and pathway-specific transcriptional regulators in 17 heterotrophic members of the UCC. The reconstructed metabolic pathways include 800 genes, near a one-fourth of which encode enzymes, transporters and regulators with newly assigned metabolic functions resulting in discovery of novel functional variants of carbohydrate utilization pathways. The in silico analysis revealed the utilization capabilities for 40 carbohydrates and their derivatives. Two Halomonas species demonstrated the largest number of sugar catabolic pathways. Trehalose, sucrose, maltose, glucose, and beta-glucosides are the most commonly utilized saccharides in this community. Reconstructed regulons for global regulators HexR and CceR include central carbohydrate metabolism genes in the members of Gammaproteobacteria and Alphaproteobacteria, respectively. Genomics analyses were supplemented by experimental characterization of metabolic phenotypes in four isolates derived from the consortia. Measurements of isolate growth on the defined medium supplied with individual carbohydrates confirmed most of the predicted catabolic phenotypes. Not all consortia members use carbohydrates and only a few use complex polysaccharides suggesting a hierarchical carbon flow from cyanobacteria to each heterotroph. In summary, the genomics-based identification of carbohydrate utilization capabilities provides a basis for future experimental studies of carbon flow in UCC.
Collapse
Affiliation(s)
- Semen A Leyn
- Sanford-Burnham-Prebys Medical Discovery Institute, La JollaCA, United States.,A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia
| | - Yukari Maezato
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Margaret F Romine
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Dmitry A Rodionov
- Sanford-Burnham-Prebys Medical Discovery Institute, La JollaCA, United States.,A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
48
|
Nagy YI, Hussein MMM, Ragab YM, Attia AS. Isogenic mutations in the Moraxella catarrhalis CydDC system display pleiotropic phenotypes and reveal the role of a palindrome sequence in its transcriptional regulation. Microbiol Res 2017. [PMID: 28647125 DOI: 10.1016/j.micres.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Moraxella catarrhalis is becoming an important human respiratory tract pathogen affecting significant proportions from the population. However, still little is known about its physiology and molecular regulation. To this end, the CydDC, which is a heterodimeric ATP binding cassette transporter that has been shown to contribute to the maintenance of the redox homeostasis across the periplasm in other Gram-negative bacteria, is studied here. Amino acids multiple sequence alignments indicated that M. catarrhalis CydC is different from the CydC proteins of the bacterial species in which this system has been previously studied. These findings prompted further interest in studying this system in M. catarrhalis. Isogenic mutant in the CydDC system showed suppression in growth rate, hypersensitivity to oxidative and reductive stress and increased accumulation of intracellular cysteine levels. In addition, the growth of cydC- mutant exhibited hypersensitivity to exogenous cysteine; however, it did not display a significant difference from its wild-type counterpart in the murine pulmonary clearance model. Moreover, a palindrome was detected 94bp upstream of the cydD ORF suggesting it might act as a potential regulatory element. Real-time reverse transcription-PCR analysis showed that deletion/change in the palindrome resulted into alterations in the transcription levels of cydC. A better understanding of such system and its regulation helps in developing better ways to combat M. catarrhalis infections.
Collapse
Affiliation(s)
- Yosra I Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Manal M M Hussein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Yasser M Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
49
|
Validating regulatory predictions from diverse bacteria with mutant fitness data. PLoS One 2017; 12:e0178258. [PMID: 28542589 PMCID: PMC5443562 DOI: 10.1371/journal.pone.0178258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/27/2017] [Indexed: 11/26/2022] Open
Abstract
Although transcriptional regulation is fundamental to understanding bacterial physiology, the targets of most bacterial transcription factors are not known. Comparative genomics has been used to identify likely targets of some of these transcription factors, but these predictions typically lack experimental support. Here, we used mutant fitness data, which measures the importance of each gene for a bacterium’s growth across many conditions, to test regulatory predictions from RegPrecise, a curated collection of comparative genomics predictions. Because characterized transcription factors often have correlated fitness with one of their targets (either positively or negatively), correlated fitness patterns provide support for the comparative genomics predictions. At a false discovery rate of 3%, we identified significant cofitness for at least one target of 158 TFs in 107 ortholog groups and from 24 bacteria. Thus, high-throughput genetics can be used to identify a high-confidence subset of the sequence-based regulatory predictions.
Collapse
|
50
|
Hibberd MC, Wu M, Rodionov DA, Li X, Cheng J, Griffin NW, Barratt MJ, Giannone RJ, Hettich RL, Osterman AL, Gordon JI. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Sci Transl Med 2017; 9:eaal4069. [PMID: 28515336 PMCID: PMC5524138 DOI: 10.1126/scitranslmed.aal4069] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
Vitamin and mineral (micronutrient) deficiencies afflict 2 billion people. Although the impact of these imbalances on host biology has been studied extensively, much less is known about their effects on the gut microbiota of developing or adult humans. Therefore, we established a community of cultured, sequenced human gut-derived bacterial species in gnotobiotic mice and fed the animals a defined micronutrient-sufficient diet, followed by a derivative diet devoid of vitamin A, folate, iron, or zinc, followed by return to the sufficient diet. Acute vitamin A deficiency had the largest effect on bacterial community structure and metatranscriptome, with Bacteroides vulgatus, a prominent responder, increasing its abundance in the absence of vitamin A. Applying retinol selection to a library of 30,300 B. vulgatus transposon mutants revealed that disruption of acrR abrogated retinol sensitivity. Genetic complementation studies, microbial RNA sequencing, and transcription factor-binding assays disclosed that AcrR is a repressor of an adjacent AcrAB-TolC efflux system. Retinol efflux measurements in wild-type and acrR-mutant strains plus treatment with a pharmacologic inhibitor of the efflux system revealed that AcrAB-TolC is a determinant of retinol and bile acid sensitivity in B. vulgatus Acute vitamin A deficiency was associated with altered bile acid metabolism in vivo, raising the possibility that retinol, bile acid metabolites, and AcrAB-TolC interact to influence the fitness of B. vulgatus and perhaps other microbiota members. This type of preclinical model can help to develop mechanistic insights about the effects of, and more effective treatment strategies for micronutrient deficiencies.
Collapse
Affiliation(s)
- Matthew C Hibberd
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Meng Wu
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dmitry A Rodionov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Xiaoqing Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jiye Cheng
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas W Griffin
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Barratt
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|