1
|
Al Isawi W, Philip AS, Singh P, Zeller M, Mezei G. Supramolecular Entrapping and Extraction of Selenate, Molybdate and Tungstate Ions from Water by Nanojars. Inorg Chem 2025; 64:1048-1063. [PMID: 39752602 PMCID: PMC11752490 DOI: 10.1021/acs.inorgchem.4c04544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/21/2025]
Abstract
The supramolecular binding exclusively by H-bonds of SeO42-, MoO42- and WO42- ions to form nanojars of the formula [EO42-⊂{cis-CuII(μ-OH)(μ-pz)}n]2- (CunEO4; E = Se, Mo, W; n = 28-34; pz = pyrazolate) was studied in solution by electrospray ionization mass spectrometry, variable temperature, paramagnetic 1H NMR and UV-vis spectroscopy, and in the solid state by single-crystal X-ray crystallography. These large anions allow for the observation of a record nanojar size, Cu34EO4 (E = Mo, W). Six crystal structures are described of nanojars of varying sizes with either SeO42-, MoO42- or WO42- entrapped ions, including the first example of a cocrystal of two different nanojars in crystallographically unique positions, Cu31MoO4 and Cu32MoO4. The latter provides unprecedented structural information about the Cu8+Cu14+Cu10 ring combination of a nanojar with an entrapped tetrahedral anion. Also, the first crystal structure of a supramolecular host-guest complex with an entrapped WO42- ion, Cu31WO4 is reported in this work. The relative strength of binding of SeO42-, MoO42- and WO42- ions by nanojars of different sizes was assessed by reactivity studies toward Ba2+ ions and NH3. Thermal stability studies of the various CunEO4 nanojars were conducted in DMSO-d6 solutions over a 22-150 °C range. Furthermore, liquid-liquid extraction of SeO42-, MoO42- and WO42- ions from water into an organic solvent by nanojars was investigated.
Collapse
Affiliation(s)
- Wisam
A. Al Isawi
- Department
of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Angel S. Philip
- Department
of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Pooja Singh
- Department
of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Matthias Zeller
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Gellert Mezei
- Department
of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| |
Collapse
|
2
|
Simonova VM, Pestova ON, Espósito BP, Khripun VD. Thermodynamic Description of Oxotransfer Processes Involving Molybdenum and Tungsten Enzyme Models: DFT Calculations and Calorimetry. J Phys Chem B 2025; 129:153-161. [PMID: 39725658 DOI: 10.1021/acs.jpcb.4c06967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The enthalpy of the oxotransfer reaction of [Bu4N]2[WO2(mnt)2] (where mnt2- is maleonitriledithiolate) with PPh3 in an inert atmosphere in an acetonitrile solution was determined by calorimetry. The obtained enthalpy value (-93 ± 5) kJ mol-1 differs from the enthalpy value of the reaction carried out by us earlier under aerobic conditions by (16 ± 9) kJ mol-1. The obtained results indicate the participation of atmospheric oxygen in the catalytic process. DFT calculations of the structures [MOx(LL)2]2- (where M = Mo or W, x = 1 or 2, and LL is dithiolene ligand) were carried out. DFT calculations of the thermodynamic potential values for the oxygen transfer reaction in the system [MIVO2(LL)2]2- - [MVIO(LL)2]2- were also carried out. It was shown that the determining contribution to these processes is made by the enthalpy changes. The enthalpies of these processes depend on the donor-acceptor characteristics of the dithiolene ligands. In the case of good acceptors, the oxidation process is more exothermic. The opposite picture is observed for the reduction processes of the complex. The M═O bond length can be used as a quantitative criterion for donor-acceptor properties of the ligands. Also, for molybdenum complexes, reduction processes are more favorable, while for tungsten complexes, oxidation processes are more favorable. The calculations agree well with experimental data that prove the validity of the model used for DFT calculations.
Collapse
Affiliation(s)
- Viktoriia M Simonova
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Olga N Pestova
- Department of General and Inorganic Chemistry, Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Breno P Espósito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900, Brazil
| | - Vasilii D Khripun
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
3
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
4
|
Schmollinger S, Chen S, Merchant SS. Quantitative elemental imaging in eukaryotic algae. Metallomics 2023; 15:mfad025. [PMID: 37186252 PMCID: PMC10209819 DOI: 10.1093/mtomcs/mfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
All organisms, fundamentally, are made from the same raw material, namely the elements of the periodic table. Biochemical diversity is achieved by how these elements are utilized, for what purpose, and in which physical location. Determining elemental distributions, especially those of trace elements that facilitate metabolism as cofactors in the active centers of essential enzymes, can determine the state of metabolism, the nutritional status, or the developmental stage of an organism. Photosynthetic eukaryotes, especially algae, are excellent subjects for quantitative analysis of elemental distribution. These microbes utilize unique metabolic pathways that require various trace nutrients at their core to enable their operation. Photosynthetic microbes also have important environmental roles as primary producers in habitats with limited nutrient supplies or toxin contaminations. Accordingly, photosynthetic eukaryotes are of great interest for biotechnological exploitation, carbon sequestration, and bioremediation, with many of the applications involving various trace elements and consequently affecting their quota and intracellular distribution. A number of diverse applications were developed for elemental imaging, allowing subcellular resolution, with X-ray fluorescence microscopy (XFM, XRF) being at the forefront, enabling quantitative descriptions of intact cells in a non-destructive method. This Tutorial Review summarizes the workflow of a quantitative, single-cell elemental distribution analysis of a eukaryotic alga using XFM.
Collapse
Affiliation(s)
- Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
6
|
Oliveira AR, Mota C, Klymanska K, Biaso F, Romão MJ, Guigliarelli B, Pereira IC. Spectroscopic and Structural Characterization of Reduced Desulfovibrio vulgaris Hildenborough W-FdhAB Reveals Stable Metal Coordination during Catalysis. ACS Chem Biol 2022; 17:1901-1909. [PMID: 35766974 PMCID: PMC9774666 DOI: 10.1021/acschembio.2c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe-4S]1+ clusters, and full reduction requires Ti(III)-citrate. The redox potentials of the four [4Fe-4S]1+ centers range between -250 and -530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be -370 mV when reduced by dithionite and -340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.
Collapse
Affiliation(s)
- Ana Rita Oliveira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cristiano Mota
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Kateryna Klymanska
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Frédéric Biaso
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, Aix Marseille Univ, CNRS, BIP, Marseille 13402, France
| | - Maria João Romão
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,
| | - Bruno Guigliarelli
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, Aix Marseille Univ, CNRS, BIP, Marseille 13402, France,
| | - Inês Cardoso Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal,
| |
Collapse
|
7
|
Hemkemeyer M, Schwalb SA, Heinze S, Joergensen RG, Wichern F. Functions of elements in soil microorganisms. Microbiol Res 2021; 252:126832. [PMID: 34508963 DOI: 10.1016/j.micres.2021.126832] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The soil microbial community fulfils various functions, such as nutrient cycling and carbon (C) sequestration, therefore contributing to maintenance of soil fertility and mitigation of global warming. In this context, a major focus of research has been on C, nitrogen (N) and phosphorus (P) cycling. However, from aquatic and other environments, it is well known that other elements beyond C, N, and P are essential for microbial functioning. Nonetheless, for soil microorganisms this knowledge has not yet been synthesised. To gain a better mechanistic understanding of microbial processes in soil systems, we aimed at summarising the current knowledge on the function of a range of essential or beneficial elements, which may affect the efficiency of microbial processes in soil. This knowledge is discussed in the context of microbial driven nutrient and C cycling. Our findings may support future investigations and data evaluation, where other elements than C, N, and P affect microbial processes.
Collapse
Affiliation(s)
- Michael Hemkemeyer
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany.
| | - Sanja A Schwalb
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Stefanie Heinze
- Department of Soil Science & Soil Ecology, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Rainer Georg Joergensen
- Department of Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
8
|
Yaffa L, Pouye SF, Ndoye D, Diallo W, Diop M, Sidibe M, Diop CAK. Tetra-ammonium μ-ethyl-enedi-amine-tetra-acetato-1κ 3 O, N, O':2κ 3 O'', N', O'''-bis-[trioxidotungstate(VI)] tetra-hydrate. IUCRDATA 2021; 6:x210982. [PMID: 36338947 PMCID: PMC9462368 DOI: 10.1107/s2414314621009822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 11/10/2022] Open
Abstract
The title compound, (NH4)4[W2(C10H12N2O8)O6]·4H2O, was obtained from a mixture of tungstic acid, ammonia and ethyl-enedi-amine-tetra-acetic acid (H4edta) in a 2:4:1 ratio. The anion of the complex contains two WO3 units and one bridging edta4- ligand. Each central metal atom is tridentately coordinated by nitro-gen and two carboxyl-ate groups of the edta4- ligand, together with the three oxido ligands, producing a distorted octa-hedral coordination environment around each tungsten atom. The center of the carbon-carbon bond of the ethyl-ene bridge represents a crystallographic inversion center. The crystal structure consists of a three-dimensional supra-molecular framework built up by the dinuclear cations, the ammonium counter-ions and the solvent water mol-ecules via hydrogen bonds of the N-H⋯O and O-H⋯O type.
Collapse
Affiliation(s)
- Lamine Yaffa
- Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Sérigne Fallou Pouye
- Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Daouda Ndoye
- Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Waly Diallo
- Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Mayoro Diop
- Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Mamadou Sidibe
- Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Cheikh Abdoul Khadir Diop
- Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| |
Collapse
|
9
|
Maurya MR, Maurya SK, Kumar N, Gupta P. Biomimetic Oxidative Bromination by
cis
‐Dioxidotungsten(VI) Complexes of Salan Type N,N’‐Capped Linear Tetradentate Amino Bisphenol. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mannar R. Maurya
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Shailendra K. Maurya
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Naveen Kumar
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Puneet Gupta
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
10
|
Abstract
The accumulation of carbon dioxide in the atmosphere as a result of human activities has caused a number of adverse circumstances in the world. For this reason, the proposed solutions lie within the aim of reducing carbon dioxide emissions have been quite valuable. However, as the human activity continues to increase on this planet, the possibility of reducing carbon dioxide emissions decreases with the use of conventional methods. The emergence of compounds than can be used in different fields by converting the released carbon dioxide into different chemicals will construct a fundamental solution to the problem. Although electro-catalysis or photolithography methods have emerged for this purpose, they have not been able to achieve successful results. Alternatively, another proposed solution are enzyme based systems. Among the enzyme-based systems, pyruvate decarboxylase, carbonic anhydrase and dehydrogenases have been the most studied enzymes. Pyruvate dehydrogenase and carbonic anhydrase have either been an expensive method or were incapable of producing the desired result due to the reaction cascade they catalyze. However, the studies reporting the production of industrial chemicals from carbon dioxide using dehydrogenases and in particular, the formate dehydrogenase enzyme, have been remarkable. Moreover, reported studies have shown the existence of more active and stable enzymes, especially the dehydrogenase family that can be identified from the biome. In addition to this, their redesign through protein engineering can have an immense contribution to the increased use of enzyme-based methods in CO2 reduction, resulting in an enormous expansion of the industrial capacity.
Collapse
|
11
|
Sproules S. Oxo versus Sulfido Coordination at Tungsten: A Spectroscopic and Correlated Ab Initio Electronic Structure Study. Inorg Chem 2021; 60:9057-9063. [PMID: 34096284 DOI: 10.1021/acs.inorgchem.1c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tungsten ion that resides at the active site of a unique class of enzymes only found in esoteric hyperthermophilic archaea bacteria is known to possess at least one terminal chalcogenide ligand. The identity of this as either an oxo or sulfido (or both) is difficult to ascertain from structural studies; therefore, small-molecule analogues are developed to calibrate and substantiate spectroscopic signatures obtained from native proteins. The electronic structures of Tp*WECl2 (E = O, S; Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate) have been scrutinized using electronic, electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy to assess the impact of terminal chalcogen on the adjacent cis chloride ligands. Examination at the Cl K-edge provides a direct probe of the bonding and therein lability of these chloride ligands, and in conjunction with density functional theoretical and multireference calculations reveals greater bond covalency in Tp*WOCl2 compared to Tp*WSCl2. The computational model and electronic structure assignment are corroborated by the reproduction of spin-Hamiltonian parameters, whose magnitude is dominated by the sizeable spin-orbit coupling of tungsten.
Collapse
Affiliation(s)
- Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
12
|
Improving Arsenic Tolerance of Pyrococcus furiosus by Heterologous Expression of a Respiratory Arsenate Reductase. Appl Environ Microbiol 2020; 86:AEM.01728-20. [PMID: 32859593 DOI: 10.1128/aem.01728-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/16/2020] [Indexed: 11/20/2022] Open
Abstract
Arsenate is a notorious toxicant that is known to disrupt multiple biochemical pathways. Many microorganisms have developed mechanisms to detoxify arsenate using the ArsC-type arsenate reductase, and some even use arsenate as a terminal electron acceptor for respiration involving arsenate respiratory reductase (Arr). ArsC-type reductases have been studied extensively, but the phylogenetically unrelated Arr system is less investigated and has not been characterized from Archaea Here, we heterologously expressed the genes encoding Arr from the crenarchaeon Pyrobaculum aerophilum in the euryarchaeon Pyrococcus furiosus, both of which grow optimally near 100°C. Recombinant P. furiosus was grown on molybdenum (Mo)- or tungsten (W)-containing medium, and two types of recombinant Arr enzymes were purified, one containing Mo (Arr-Mo) and one containing W (Arr-W). Purified Arr-Mo had a 140-fold higher specific activity in arsenate [As(V)] reduction than Arr-W, and Arr-Mo also reduced arsenite [As(III)]. The P. furiosus strain expressing Arr-Mo (the Arr strain) was able to use arsenate as a terminal electron acceptor during growth on peptides. In addition, the Arr strain had increased tolerance compared to that of the parent strain to arsenate and also, surprisingly, to arsenite. Compared to the parent, the Arr strain accumulated intracellularly almost an order of magnitude more arsenic when cells were grown in the presence of arsenite. X-ray absorption spectroscopy (XAS) results suggest that the Arr strain of P. furiosus improves its tolerance to arsenite by increasing production of less-toxic arsenate and nontoxic methylated arsenicals compared to that by the parent.IMPORTANCE Arsenate respiratory reductases (Arr) are much less characterized than the detoxifying arsenate reductase system. The heterologous expression and characterization of an Arr from Pyrobaculum aerophilum in Pyrococcus furiosus provides new insights into the function of this enzyme. From in vivo studies, production of Arr not only enabled P. furiosus to use arsenate [As(V)] as a terminal electron acceptor, it also provided the organism with a higher resistance to arsenate and also, surprisingly, to arsenite [As(III)]. In contrast to the tungsten-containing oxidoreductase enzymes natively produced by P. furiosus, recombinant P. aerophilum Arr was much more active with molybdenum than with tungsten. It is also, to our knowledge, the only characterized Arr to be active with both molybdenum and tungsten in the active site.
Collapse
|
13
|
Vidovič C, Belaj F, Mösch‐Zanetti NC. Soft Scorpionate Hydridotris(2-mercapto-1-methylimidazolyl) borate) Tungsten-Oxido and -Sulfido Complexes as Acetylene Hydratase Models. Chemistry 2020; 26:12431-12444. [PMID: 32640122 PMCID: PMC7589279 DOI: 10.1002/chem.202001127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/05/2020] [Indexed: 11/08/2022]
Abstract
A series of WIV alkyne complexes with the sulfur-rich ligand hydridotris(2-mercapto-1-methylimidazolyl) borate) (TmMe ) are presented as bio-inspired models to elucidate the mechanism of the tungstoenzyme acetylene hydratase (AH). The mono- and/or bis-alkyne precursors were reacted with NaTmMe and the resulting complexes [W(CO)(C2 R2 )(TmMe )Br] (R=H 1, Me 2) oxidized to the target [WE(C2 R2 )(TmMe )Br] (E=O, R=H 4, Me 5; E=S, R=H 6, Me 7) using pyridine-N-oxide and methylthiirane. Halide abstraction with TlOTf in MeCN gave the cationic complexes [WE(C2 R2 )(MeCN)(TmMe )](OTf) (E=CO, R=H 10, Me 11; E=O, R=H 12, Me 13; E=S, R=H 14, Me 15). Without MeCN, dinuclear complexes [W2 O(μ-O)(C2 Me2 )2 (TmMe )2 ](OTf)2 (8) and [W2 (μ-S)2 (C2 Me2 )(TmMe )2 ](OTf)2 (9) could be isolated showing distinct differences between the oxido and sulfido system with the latter exhibiting only one molecule of C2 Me2 . This provides evidence that a fine balance of the softness at W is important for acetylene coordination. Upon dissolving complex 8 in acetonitrile complex 13 is reconstituted in contrast to 9. All complexes exhibit the desired stability toward water and the observed effective coordination of the scorpionate ligand avoids decomposition to disulfide, an often-occurring reaction in sulfur ligand chemistry. Hence, the data presented here point toward a mechanism with a direct coordination of acetylene in the active site and provide the basis for further model chemistry for acetylene hydratase.
Collapse
Affiliation(s)
- Carina Vidovič
- University of GrazInstitute of ChemistryDepartment of Inorganic ChemistrySchuberstraße 18010GrazAustria
| | - Ferdinand Belaj
- University of GrazInstitute of ChemistryDepartment of Inorganic ChemistrySchuberstraße 18010GrazAustria
| | - Nadia C. Mösch‐Zanetti
- University of GrazInstitute of ChemistryDepartment of Inorganic ChemistrySchuberstraße 18010GrazAustria
| |
Collapse
|
14
|
Dkhar L, Sawkmie M, Ka-Ot AL, Joshi SR, Kaminsky W, Kollipara MR. Cp and indenyl ruthenium complexes containing dithione derivatives: Synthesis, antibacterial and antifungal study. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Abstract
Tungsten is the heaviest element used in biological systems. It occurs in the active sites of several bacterial or archaeal enzymes and is ligated to an organic cofactor (metallopterin or metal binding pterin; MPT) which is referred to as tungsten cofactor (Wco). Wco-containing enzymes are found in the dimethyl sulfoxide reductase (DMSOR) and the aldehyde:ferredoxin oxidoreductase (AOR) families of MPT-containing enzymes. Some depend on Wco, such as aldehyde oxidoreductases (AORs), class II benzoyl-CoA reductases (BCRs) and acetylene hydratases (AHs), whereas others may incorporate either Wco or molybdenum cofactor (Moco), such as formate dehydrogenases, formylmethanofuran dehydrogenases or nitrate reductases. The obligately tungsten-dependent enzymes catalyze rather unusual reactions such as ones with extremely low-potential electron transfers (AOR, BCR) or an unusual hydration reaction (AH). In recent years, insights into the structure and function of many tungstoenzymes have been obtained. Though specific and unspecific ABC transporter uptake systems have been described for tungstate and molybdate, only little is known about further discriminative steps in Moco and Wco biosynthesis. In bacteria producing Moco- and Wco-containing enzymes simultaneously, paralogous isoforms of the metal insertase MoeA may be specifically involved in the molybdenum- and tungsten-insertion into MPT, and in targeting Moco or Wco to their respective apo-enzymes. Wco-containing enzymes are of emerging biotechnological interest for a number of applications such as the biocatalytic reduction of CO2, carboxylic acids and aromatic compounds, or the conversion of acetylene to acetaldehyde.
Collapse
|
16
|
Ghosh D, Sinhababu S, Santarsiero BD, Mankad NP. A W/Cu Synthetic Model for the Mo/Cu Cofactor of Aerobic CODH Indicates That Biochemical CO Oxidation Requires a Frustrated Lewis Acid/Base Pair. J Am Chem Soc 2020; 142:12635-12642. [PMID: 32598845 DOI: 10.1021/jacs.0c03343] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Constructing synthetic models of the Mo/Cu active site of aerobic carbon monoxide dehydrogenase (CODH) has been a long-standing synthetic challenge thought to be crucial for understanding how atmospheric concentrations of CO and CO2 are regulated in the global carbon cycle by chemolithoautotrophic bacteria and archaea. Here we report a W/Cu complex that is among the closest synthetic mimics constructed to date, enabled by a silyl protection/deprotection strategy that provided access to a kinetically stabilized complex with mixed O2-/S2- ligation between (bdt)(O)WVI and CuI(NHC) (bdt = benzene dithiolate, NHC = N-heterocyclic carbene) sites. Differences between the inorganic core's structural and electronic features outside the protein environment relative to the native CODH cofactor point to a biochemical CO oxidation mechanism that requires a strained active site geometry, with Lewis acid/base frustration enforced by the protein secondary structure. This new mechanistic insight has the potential to inform synthetic design strategies for multimetallic energy storage catalysts.
Collapse
Affiliation(s)
- Dibbendu Ghosh
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Soumen Sinhababu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Bernard D Santarsiero
- Department of Pharmaceutical Sciences, College of Pharmacy, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
17
|
Leimkühler S. The biosynthesis of the molybdenum cofactors in Escherichia coli. Environ Microbiol 2020; 22:2007-2026. [PMID: 32239579 DOI: 10.1111/1462-2920.15003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022]
Abstract
The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5'-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.
Collapse
Affiliation(s)
- Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
18
|
Asha T, Sithambaresan M, Prathapachandra Kurup M. Dioxidomolybdenum(VI) complexes chelated with N4-(3-methoxyphenyl)thiosemicarbazone as molybdenum(IV) precursors in oxygen atom transfer process and oxidation of styrene. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
|
20
|
Reschke S, Duffus BR, Schrapers P, Mebs S, Teutloff C, Dau H, Haumann M, Leimkühler S. Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in Escherichia coli. Biochemistry 2019; 58:2228-2242. [PMID: 30945846 DOI: 10.1021/acs.biochem.9b00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The oxidoreductase YdhV in Escherichia coli has been predicted to belong to the family of molybdenum/tungsten cofactor (Moco/Wco)-containing enzymes. In this study, we characterized the YdhV protein in detail, which shares amino acid sequence homology with a tungsten-containing benzoyl-CoA reductase binding the bis-W-MPT (for metal-binding pterin) cofactor. The cofactor was identified to be of a bis-Mo-MPT type with no guanine nucleotides present, which represents a form of Moco that has not been found previously in any molybdoenzyme. Our studies showed that YdhV has a preference for bis-Mo-MPT over bis-W-MPT to be inserted into the enzyme. In-depth characterization of YdhV by X-ray absorption and electron paramagnetic resonance spectroscopies revealed that the bis-Mo-MPT cofactor in YdhV is redox active. The bis-Mo-MPT and bis-W-MPT cofactors include metal centers that bind the four sulfurs from the two dithiolene groups in addition to a cysteine and likely a sulfido ligand. The unexpected presence of a bis-Mo-MPT cofactor opens an additional route for cofactor biosynthesis in E. coli and expands the canon of the structurally highly versatile molybdenum and tungsten cofactors.
Collapse
Affiliation(s)
- Stefan Reschke
- Institute of Biochemistry and Biology , University of Potsdam , Karl-Liebknecht-Strasse 24 , 14476 Potsdam , Germany
| | - Benjamin R Duffus
- Institute of Biochemistry and Biology , University of Potsdam , Karl-Liebknecht-Strasse 24 , 14476 Potsdam , Germany
| | | | | | - Christian Teutloff
- Institute of Experimental Physics, EPR Spectroscopy of Biological Systems , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | | | | | - Silke Leimkühler
- Institute of Biochemistry and Biology , University of Potsdam , Karl-Liebknecht-Strasse 24 , 14476 Potsdam , Germany
| |
Collapse
|
21
|
Guo Q, Li Y, Luo L. Tungsten from typical magmatic hydrothermal systems in China and its environmental transport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1523-1534. [PMID: 30677918 DOI: 10.1016/j.scitotenv.2018.12.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Tungsten is of extraordinarily high concentrations in the geothermal waters discharging from several representative Tibetan magmatic hydrothermal systems (up to 1103 μg/L), which are also characterized by exceptionally high W/Mo molar ratios (up to 1182). The geochemical origins of the tungsten in these geothermal waters were investigated, with a comparison to those from Rehai, the sole magmatic hydrothermal system in Yunnan, which is another major part of the Yunnan-Sichuan-Tibet Geothermal Province of China. The results show that the lithology of reservoir host rocks is the primary factor controlling the tungsten concentrations of the geothermal waters, although the contribution of magmatic fluid input cannot be ruled out. In this study, the geothermal waters are generally rich in sulfide, and therefore the molybdenum in the reservoir fluids has been substantially precipitated as the form of molybdenite; in contrast, the reservoir fluids are well undersaturated with respect to tungstenite which is much more soluble than molybdenite. Thus the neutral/alkaline hot springs, i.e. the evolved reservoir fluids, have high W/Mo molar ratios as well. In the hot spring sediments, the distribution pattern of tungsten is quite different. The concentrations of tungsten are the highest in the sediments with high iron concentrations collected from the acid hot spring vents and outflow channels. The adsorption of aqueous tungsten onto iron-bearing minerals, like goethite or pyrite, is favorable at acid pH values and thereby responsible for the very high tungsten concentrations of these acid hot spring sediments. The proportions of thiotungstates in total tungsten are quite low for all the hot springs, as indicated by thermodynamic calculations, suggesting that thiolation of tungstate has little impacts on the environmental transport and fate of geothermal tungsten in the investigated hydrothermal areas. This is the first study to report the tungsten geochemistry of hot springs in mainland China.
Collapse
Affiliation(s)
- Qinghai Guo
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, PR China.
| | - Yumei Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, PR China
| | - Li Luo
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, PR China
| |
Collapse
|
22
|
Chrysochos N, Ahmadi M, Wahlefeld S, Rippers Y, Zebger I, Mroginski MA, Schulzke C. Comparison of molybdenum and rhenium oxo bis-pyrazine-dithiolene complexes - in search of an alternative metal centre for molybdenum cofactor models. Dalton Trans 2019; 48:2701-2714. [PMID: 30720825 DOI: 10.1039/c8dt04237c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pair of structurally precise analogues of molybdenum and rhenium complexes, [Et4N]/K2[MoO(prdt)2] and K[ReO(prdt)2] (prdt = pyrazine-2,3-dithiolene), were synthesized. These complexes serve as structural models for the active sites of bacterial molybdenum cofactor containing enzymes. They were comprehensively characterized and investigated by NMR, computationally supported IR and resonance Raman spectroscopy, cyclic voltammetry, mass spectrometry, elemental analysis and single-crystal X-ray diffraction. All compiled data are discussed in the context of comparing chemical and electronic structures and consequences thereof. This study constitutes the first investigation of a potential alternative Moco model system bearing rhenium as the central metal in an identical coordination environment to its molybdenum analogue. Structural evaluation revealed a slightly stronger M[double bond, length as m-dash]O bond in the rhenium complex in accordance with spectroscopic results, i.e. observed bond strengths. Thermodynamic parameters for the redox processes MoIV ↔ MoV and ReIV ↔ ReV were obtained by temperature dependent cyclic voltammetry. In contrast to molybdenum, rhenium loses entropy upon reduction and its redox potential is more temperature sensitive, indicating more significant differences than the respective diagonal relationship between the two metals in the periodic table might suggest and questioning rhenium's suitability as a functional artificial active site metal.
Collapse
Affiliation(s)
- Nicolas Chrysochos
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487 Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Rajeev L, Garber ME, Zane GM, Price MN, Dubchak I, Wall JD, Novichkov PS, Mukhopadhyay A, Kazakov AE. A new family of transcriptional regulators of tungstoenzymes and molybdate/tungstate transport. Environ Microbiol 2019; 21:784-799. [PMID: 30536693 DOI: 10.1111/1462-2920.14500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 11/30/2022]
Abstract
Bacterial genes for molybdenum-containing and tungsten-containing enzymes are often differentially regulated depending on the metal availability in the environment. Here, we describe a new family of transcription factors with an unusual DNA-binding domain related to excisionases of bacteriophages. These transcription factors are associated with genes for various molybdate and tungstate-specific transporting systems as well as molybdo/tungsto-enzymes in a wide range of bacterial genomes. We used a combination of computational and experimental techniques to study a member of the TF family, named TaoR (for tungsten-containing aldehyde oxidoreductase regulator). In Desulfovibrio vulgaris Hildenborough, a model bacterium for sulfate reduction studies, TaoR activates expression of aldehyde oxidoreductase aor and represses tungsten-specific ABC-type transporter tupABC genes under tungsten-replete conditions. TaoR binding sites at aor promoter were identified by electrophoretic mobility shift assay and DNase I footprinting. We also reconstructed TaoR regulons in 45 Deltaproteobacteria by comparative genomics approach and predicted target genes for TaoR family members in other Proteobacteria and Firmicutes.
Collapse
Affiliation(s)
- L Rajeev
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - M E Garber
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Comparative Biochemistry, University of California, Berkeley, CA, 94720, USA
| | - G M Zane
- Biochemistry and Molecular Microbiology & Immunology Department, University of Missouri, Columbia, MO, 65211, USA
| | - M N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - I Dubchak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - J D Wall
- Biochemistry and Molecular Microbiology & Immunology Department, University of Missouri, Columbia, MO, 65211, USA
| | - P S Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Energy, Knowledge Base, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - A Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Comparative Biochemistry, University of California, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - A E Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
24
|
Niks D, Hille R. Molybdenum- and tungsten-containing formate dehydrogenases and formylmethanofuran dehydrogenases: Structure, mechanism, and cofactor insertion. Protein Sci 2019; 28:111-122. [PMID: 30120799 PMCID: PMC6295890 DOI: 10.1002/pro.3498] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
Abstract
An overview is provided of the molybdenum- and tungsten-containing enzymes that catalyze the interconversion of formate and CO2 , focusing on common structural and mechanistic themes, as well as a consideration of the manner in which the mature Mo- or W-containing cofactor is inserted into apoprotein.
Collapse
Affiliation(s)
- Dimitri Niks
- Department of BiochemistryUniversity of CaliforniaRiverside
| | - Russ Hille
- Department of BiochemistryUniversity of CaliforniaRiverside
| |
Collapse
|
25
|
Maity AC, Das MK, Maity S, Goswami S. Synthetic studies on the molybdenum cofactor: Total synthesis of pterindithiolenes by direct dithiolene formation from suitable pterin alkynes. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1457697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Annada C. Maity
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Manas Kumar Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Sibaprasad Maity
- Department of Applied Sciences, Haldia Institute of Technology, Hatiberia, Haldia, West Bengal, India
| | - Shyamaprosad Goswami
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
26
|
|
27
|
Shah Idil A, Donaldson N. The use of tungsten as a chronically implanted material. J Neural Eng 2018; 15:021006. [DOI: 10.1088/1741-2552/aaa502] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Okamura TA, Omi Y, Hirano Y, Onitsuka K. Comparative studies on the contribution of NHS hydrogen bonds in tungsten and molybdenum benzenedithiolate complexes. Dalton Trans 2018; 45:15651-15659. [PMID: 27722343 DOI: 10.1039/c6dt02250b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of monooxotungsten(iv) and dioxotungsten(vi) benzenedithiolates, (NEt4)2[WIVO(1,2-S2-3-RCONHC6H3)2] (1-W; R = CH3 (a), t-Bu (b), or CF3 (c)) and (NEt4)2[WVIO2(1,2-S2-3-RCONHC6H3)2] (2-W), were synthesized and compared with the corresponding molybdenum analogues. Single crystals of trans-1b-W were successfully obtained, and the crystal structure was determined by X-ray analysis although 1b-Mo could not be crystallized. The NHS hydrogen bonds shifted the potential of the W(iv/v) redox couple to more positive values, and the strength of the hydrogen bond and the positive shift value were strongly correlated. The hydrogen bonds in both 1-W and 2-W were weaker than those in the corresponding molybdenum analogues; however, the effect of the hydrogen bonds on the redox potential was greater in 1-W.
Collapse
Affiliation(s)
- Taka-Aki Okamura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Yui Omi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Yasunori Hirano
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
29
|
Gohr S, Hrobárik P, Kaupp M. Four-Component Relativistic Density Functional Calculations of EPR Parameters for Model Complexes of Tungstoenzymes. J Phys Chem A 2017; 121:9106-9117. [DOI: 10.1021/acs.jpca.7b08768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Gohr
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Peter Hrobárik
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
- Department
of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-2, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
30
|
Jiang Y, Zhang Y, Banks C, Heaven S, Longhurst P. Investigation of the impact of trace elements on anaerobic volatile fatty acid degradation using a fractional factorial experimental design. WATER RESEARCH 2017; 125:458-465. [PMID: 28898703 DOI: 10.1016/j.watres.2017.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/21/2017] [Accepted: 09/03/2017] [Indexed: 05/28/2023]
Abstract
The requirement of trace elements (TE) in anaerobic digestion process is widely documented. However, little is understood regarding the specific requirement of elements and their critical concentrations under different operating conditions such as substrate characterisation and temperature. In this study, a flask batch trial using fractional factorial design is conducted to investigate volatile fatty acids (VFA) anaerobic degradation rate under the influence of the individual and combined effect of six TEs (Co, Ni, Mo, Se, Fe and W). The experiment inoculated with food waste digestate, spiked with sodium acetate and sodium propionate both to 10 g/l. This is followed by the addition of a selection of the six elements in accordance with a 26-2 fractional factorial principle. The experiment is conducted in duplicate and the degradation of VFA is regularly monitored. Factorial effect analysis on the experimental results reveals that within these experimental conditions, Se has a key role in promoting the degradation rates of both acetic and propionic acids; Mo and Co are found to have a modest effect on increasing propionic acid degradation rate. It is also revealed that Ni shows some inhibitory effects on VFA degradation, possibly due to its toxicity. Additionally, regression coefficients for the main and second order effects are calculated to establish regression models for VFA degradation.
Collapse
Affiliation(s)
- Ying Jiang
- Centre for Bioenergy & Resource Management, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| | - Yue Zhang
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Charles Banks
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sonia Heaven
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Philip Longhurst
- Centre for Bioenergy & Resource Management, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| |
Collapse
|
31
|
Schmitt G, Arndt F, Kahnt J, Heider J. Adaptations to a Loss-of-Function Mutation in the Betaproteobacterium Aromatoleum aromaticum: Recruitment of Alternative Enzymes for Anaerobic Phenylalanine Degradation. J Bacteriol 2017; 199:e00383-17. [PMID: 28784814 PMCID: PMC5637171 DOI: 10.1128/jb.00383-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Anaerobic phenylalanine (Phe) degradation in the betaproteobacterium Aromatoleum aromaticum involves transamination and decarboxylation to phenylacetaldehyde, followed by oxidation to phenylacetate. The latter reaction is catalyzed simultaneously by two enzymes, a highly specific phenylacetaldehyde dehydrogenase (PDH) and a rather unspecific tungsten-dependent aldehyde oxidoreductase (AOR). Attempting to establish increased synthesis of AOR, we constructed a mutant lacking the gene for PDH. This mutant still grew on phenylalanine, exhibiting increased AOR activities on medium containing tungstate. In the absence of tungstate, the mutant showed initially severe growth deficiency, but it resumed growth on Phe after longer incubation times. Moreover, the growth rates of the mutant increased during several reinoculation cycles on either tungstate-proficient or -deficient media, reaching the same values as recorded in wild-type strains. We confirmed AOR as the major alternative enzyme serving Phe degradation under tungstate-supplied conditions and identified and characterized the alternative NAD-dependent aldehyde dehydrogenase AldB taking over the function under tungstate-deficient conditions. Sequence analysis of the respective genes from adapted cultures under either growth condition revealed a mutation in the upstream region of the aor operon and a mutation within the coding region of aldB, which are likely involved in the observed adaptation of the deletion mutant to regain fast growth on Phe.IMPORTANCE The betaproteobacterium Aromatoleum aromaticum degrades many aromatic compounds under denitrifying conditions. One of the steps of phenylalanine degradation is catalyzed by two simultaneously induced enzymes, a NAD(P)-dependent phenylacetaldehyde dehydrogenase and a W-containing aldehyde oxidoreductase. We report here that the latter fully complements a constructed deletion mutant lacking the gene for phenylacetaldehyde dehydrogenase and is overproduced after several reinoculations. Moreover, an alternative NAD-dependent dehydrogenase is recruited to resume growth in tungstate-free medium, which does not allow the production of aldehyde oxidoreductase. This alternative enzyme is overproduced and seems to have acquired a point mutation in the active center. Our research illustrates the flexibility of environmentally important bacteria in adapting their metabolic pathways to new challenges within only a few generations.
Collapse
Affiliation(s)
- G Schmitt
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, Marburg, Germany
| | - F Arndt
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, Marburg, Germany
| | - J Kahnt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - J Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
32
|
Synthesis and solution structure of desoxotungsten(IV) and monooxotungsten(VI) benzenedithiolate complexes containing two intramolecular NH⋯S hydrogen bonds. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.08.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, Ulbrich M, Klenk HP, Schomburg D, Petersen J, Göker M. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. THE ISME JOURNAL 2017; 11:1483-1499. [PMID: 28106881 PMCID: PMC5437341 DOI: 10.1038/ismej.2016.198] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/29/2016] [Accepted: 11/19/2016] [Indexed: 12/31/2022]
Abstract
Marine Rhodobacteraceae (Alphaproteobacteria) are key players of biogeochemical cycling, comprise up to 30% of bacterial communities in pelagic environments and are often mutualists of eukaryotes. As 'Roseobacter clade', these 'roseobacters' are assumed to be monophyletic, but non-marine Rhodobacteraceae have not yet been included in phylogenomic analyses. Therefore, we analysed 106 genome sequences, particularly emphasizing gene sampling and its effect on phylogenetic stability, and investigated relationships between marine versus non-marine habitat, evolutionary origin and genomic adaptations. Our analyses, providing no unequivocal evidence for the monophyly of roseobacters, indicate several shifts between marine and non-marine habitats that occurred independently and were accompanied by characteristic changes in genomic content of orthologs, enzymes and metabolic pathways. Non-marine Rhodobacteraceae gained high-affinity transporters to cope with much lower sulphate concentrations and lost genes related to the reduced sodium chloride and organohalogen concentrations in their habitats. Marine Rhodobacteraceae gained genes required for fucoidan desulphonation and synthesis of the plant hormone indole 3-acetic acid and the compatible solutes ectoin and carnitin. However, neither plasmid composition, even though typical for the family, nor the degree of oligotrophy shows a systematic difference between marine and non-marine Rhodobacteraceae. We suggest the operational term 'Roseobacter group' for the marine Rhodobacteraceae strains.
Collapse
Affiliation(s)
- Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Carmen Scheuner
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Irene Wagner-Döbler
- Helmholtz Centre for Infection Research, Research Group Microbial Communication, Braunschweig, Germany
| | - Marcus Ulbrich
- Institute of Biochemical Engineering, Technical University Braunschweig, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Dietmar Schomburg
- Institute of Biochemical Engineering, Technical University Braunschweig, Braunschweig, Germany
| | - Jörn Petersen
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
34
|
Habib U, Hoffman M. Effect of molybdenum and tungsten on the reduction of nitrate in nitrate reductase, a DFT study. Chem Cent J 2017; 11:35. [PMID: 29086812 PMCID: PMC5405038 DOI: 10.1186/s13065-017-0263-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/11/2017] [Indexed: 12/03/2022] Open
Abstract
The molybdenum and tungsten active site model complexes, derived from the protein X-ray crystal structure of the first W-containing nitrate reductase isolated from Pyrobaculum aerophilum, were computed for nitrate reduction at the COSMO-B3LYP/SDDp//B3LYP/Lanl2DZ(p) energy level of density functional theory. The molybdenum containing active site model complex (Mo–Nar) has the largest activation energy (34.4 kcal/mol) for the oxygen atom transfer from the nitrate to the metal center as compared to the tungsten containing active site model complex (W–Nar) (12.0 kcal/mol). Oxidation of the educt complex is close to thermoneutral (−1.9 kcal/mol) for the Mo active site model complex but strongly exothermic (−34.7 kcal/mol) for the W containing active site model complex, however, the MVI to MIV reduction requires equal amount of reductive power for both metal complexes, Mo–Nar or W–Nar.
Collapse
Affiliation(s)
- Uzma Habib
- Research Center for Modeling and Simulation (RCMS), National University of Science and Technology (NUST), H-12, Islamabad, Pakistan.
| | - Matthias Hoffman
- Institute of Inorganic Chemistry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
35
|
Sproules S, Eagle AA, George GN, White JM, Young CG. Mononuclear Sulfido-Tungsten(V) Complexes: Completing the Tp*MEXY (M = Mo, W; E = O, S) Series. Inorg Chem 2017; 56:5189-5202. [DOI: 10.1021/acs.inorgchem.7b00331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Aston A. Eagle
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Graham N. George
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Jonathan M. White
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles G. Young
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
36
|
Abstract
Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems.
Collapse
Affiliation(s)
| | - Kenneth M. Merz
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute of Cyber-Enabled Research, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
37
|
Maia LB, Moura I, Moura JJ. Molybdenum and tungsten-containing formate dehydrogenases: Aiming to inspire a catalyst for carbon dioxide utilization. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Khatua S, Naskar T, Nandi C, Majumdar A. Mononuclear bis(dithiolene) Mo(iv) and W(iv) complexes with P,P; S,S; O,S and O,O donor ligands: a comparative reactivity study. NEW J CHEM 2017. [DOI: 10.1039/c7nj01797a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparative redox reactions of eight MoIV/WIVcomplexes with P,P; S,S; S,O and O,O donor ligands are presented.
Collapse
Affiliation(s)
- S. Khatua
- Department of Inorganic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - T. Naskar
- Department of Inorganic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - C. Nandi
- Department of Inorganic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - A. Majumdar
- Department of Inorganic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
39
|
Güleryüz G, Erdemir ÜS, Arslan H, Güçer Ş. Elemental composition of Marrubium astracanicum Jacq. growing in tungsten-contaminated sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18332-18342. [PMID: 27278070 DOI: 10.1007/s11356-016-7028-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
This study evaluates the elemental (W, Mo, Zn, Fe, Cu, Cd, Mn, Pb, Cr, Co, B, and Bi) composition of Marrubium astracanicum Jacq. (Lamiaceae), around the abandoned tungsten mine on Uludağ Mountain, Turkey, to determine if it is an appropriate candidate for phytomonitoring and/or phytoremediation purposes. Three sample sites were selected around the mine for soil and plant sampling. Two sites approximately 500 m from the mine were assumed to be unpolluted sites. The other site was selected from a waste removal pool (WRP) and was assumed to be a polluted site. The soil and different organs (roots, leaves, and flowers) of plant samples were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) to determine the elemental content. The classic open wet digestion procedure was applied to the samples with 5 mL HNO3 and 3 mL H2O2 in a borosilicate glass vessel for the roots, leaves, and the flowers of the plants. Kjeldahl digestion was used for the soil samples. The W, Zn, Fe, Cu, Cd, Mn, Pb, B, and Bi contents were found to be higher in the soil samples from the waste removal pools compared with the samples from the unpolluted sites. We also found that the elemental composition of M. astracanicum has generally been increased by the activity of the tungsten mine, and there were significant correlations between the elemental contents of the soil samples and plant parts, except for Mo and Cr. The high level of many elements in the soil samples indicates the presence of contamination related to tungsten-mining activity on Uludağ Mountain. Assessing the elemental contents of M. astracanicum, we can suggest this species as a candidate for phytoremediation purposes of W-contaminated sites due to its high W-accumulation capacity.
Collapse
Affiliation(s)
- Gürcan Güleryüz
- Faculty of Arts and Sciences, Department of Biology, Uludag University, 16059, Bursa, Turkey.
| | - Ümran Seven Erdemir
- Faculty of Arts and Sciences, Department of Chemistry, Uludag University, 16059, Bursa, Turkey
| | - Hülya Arslan
- Faculty of Arts and Sciences, Department of Biology, Uludag University, 16059, Bursa, Turkey
| | - Şeref Güçer
- Faculty of Arts and Sciences, Department of Chemistry, Uludag University, 16059, Bursa, Turkey
| |
Collapse
|
40
|
Tungsten Oxide Nanoplates; the Novelty in Targeting Metalloproteinase-7 Gene in Both Cervix and Colon Cancer Cells. Appl Biochem Biotechnol 2016; 180:623-637. [PMID: 27193257 DOI: 10.1007/s12010-016-2120-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/06/2016] [Indexed: 12/11/2022]
Abstract
In this study, we synthesized tungsten oxide (WO3) nanoplates, both crystallographic phases and the morphology of the samples were determined by powder x-ray diffraction and the scanning electron microscopy, respectively. The obtained data clarified that, the all prepared WO3·H2O samples were composed of large quantity of nanoplates. The cytotoxicity patterns of nanoplates were checked on both normal and cancer mammalian cell lines. Both nanoplates cytotoxicity did not exceed the 50 % inhibitory concentration (IC50) on the all normal tested cells even by using concentrations up to 1 mg/ml. In addition, orthorhombic tungsten oxide nanoplate was more potent against both Caco2 and Hela cells by showing inhibition percentages in cellular viability 64.749 and 72.27, respectively, and with cancer selectivity index reached 3.2 and 2.6 on both colon and cervix cancer, respectively. The anticancer effects of nanoplates were translated to alteration in both pro-apoptotic and anti-apoptotic genes expressions. Tungsten oxide nanoplates down regulated the expression of B cell lymphoma 2 (Bcl-2) and metalloproteinase-7 (MMP7) genes. In addition, orthorhombic tungsten oxide nanoplates showed more potentiation in IL2 and IL8 induction (40.43 pg/ml) and upregulation of TNF-α gene expression but with lower folds than Escherichia coli lipopolysaccharide (LPS) induction.
Collapse
|
41
|
Gupta R, Sheikh HN, Kalsotra BL, Singh V. Synthesis and characterization of isothiocyanato complexes of dioxotungsten(VI) with mannich base ligands: Precursors for the preparation of pure phase nanosized tungsten(VI) trioxide. JOURNAL OF SAUDI CHEMICAL SOCIETY 2016. [DOI: 10.1016/j.jscs.2013.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Acetylene hydratase: a non-redox enzyme with tungsten and iron-sulfur centers at the active site. J Biol Inorg Chem 2016; 21:29-38. [PMID: 26790879 DOI: 10.1007/s00775-015-1330-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/30/2015] [Indexed: 01/05/2023]
Abstract
In living systems, tungsten is exclusively found in microbial enzymes coordinated by the pyranopterin cofactor, with additional metal coordination provided by oxygen and/or sulfur, and/or selenium atoms in diverse arrangements. Prominent examples are formate dehydrogenase, formylmethanofuran dehydrogenase, and aldehyde oxidoreductase all of which catalyze redox reactions. The bacterial enzyme acetylene hydratase (AH) stands out of its class as it catalyzes the conversion of acetylene to acetaldehyde, clearly a non-redox reaction and a reaction distinct from the reduction of acetylene to ethylene by nitrogenase. AH harbors two pyranopterins bound to W, and a [4Fe-4S] cluster. W is coordinated by four dithiolene sulfur atoms, one cysteine sulfur, and one oxygen ligand. AH activity requires a strong reductant suggesting W(IV) as the active oxidation state. Two different types of reaction pathways have been proposed. The 1.26 Å structure reveals a water molecule coordinated to W which could gain a partially positive net charge by the adjacent protonated Asp-13, enabling a direct attack of C2H2. To access the W-Asp site, a substrate channel was evolved distant from where it is found in other members of the DMSOR family. Computational studies of this second shell mechanism led to unrealistically high energy barriers, and alternative pathways were proposed where C2H2 binds directly to W. The architecture of the catalytic cavity, the specificity for C2H2 and the results from site-directed mutagenesis do not support this first shell mechanism. More investigations including structural information on the binding of C2H2 are needed to present a conclusive answer.
Collapse
|
43
|
Pimkov IV, Serli-Mitasev B, Peterson AA, Ratvasky SC, Hammann B, Basu P. Designing the Molybdopterin Core through Regioselective Coupling of Building Blocks. Chemistry 2015; 21:17057-72. [DOI: 10.1002/chem.201502845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 01/08/2023]
|
44
|
Okamura TA, Okamura ATA, Omi Y, Fujii M, Tatsumi M, Onitsuka K. Significant differences of monooxotungsten(IV) and dioxotungsten(VI) benzenedithiolates containing two intramolecular NHS hydrogen bonds from molybdenum analogues. Dalton Trans 2015; 44:18090-100. [PMID: 26417921 DOI: 10.1039/c5dt03278d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A monooxotungsten(iv) benzenedithiolate complex containing two intramolecular NHS hydrogen bonds, (NEt4)2[W(IV)O(1,2-S2-3-t-BuNHCOC6H3)2] (1-W), was synthesized via a ligand-exchange reaction between a new starting complex, (NEt4)2[W(IV)O(SC6F5)4], and a partially deprotonated dithiol. When dithiol was used in solution, the oxo ligand was protonated and removed to afford (NEt4)2[W(IV)(1,2-S2-3-t-BuNHCOC6H3)3]. The trans isomer, trans-1-W, was crystallized, and the molecular structure was determined via X-ray analysis. Trans-1-W was gradually isomerized by heating it in solution and it eventually achieved an approximately 1 : 1 mixture of trans/cis isomers after 48 days. However, a slightly excess amount of trans isomer remained, so the isomerization rate was considerably slower than that of the molybdenum analogue. In the presence of NEt4BH4, deuteration of the NH protons was observed in acetonitrile-d3. The oxidation of both trans- and cis-1-W by Me3NO afforded the corresponding dioxotungsten(vi) complex, (NEt4)2[W(VI)O2(1,2-S2-3-t-BuNHCOC6H3)2] (2-W), as a single isomer. The contributions of the NHS hydrogen bonds to the bond distances, vibrational data, and electrochemical properties are described via comparisons with their molybdenum analogues. The results of this comparative study yielded insights into both tungsten and molybdenum enzymes.
Collapse
Affiliation(s)
| | - A Taka-Aki Okamura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
45
|
Hu L, Chen H. Assessment of DFT Methods for Computing Activation Energies of Mo/W-Mediated Reactions. J Chem Theory Comput 2015; 11:4601-14. [DOI: 10.1021/acs.jctc.5b00373] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lianrui Hu
- Beijing National Laboratory
for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Chen
- Beijing National Laboratory
for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
46
|
Hasenaka Y, Okamura TA, Tatsumi M, Inazumi N, Onitsuka K. Behavior of anionic molybdenum(IV, VI) and tungsten(IV, VI) complexes containing bulky hydrophobic dithiolate ligands and intramolecular NH···S hydrogen bonds in nonpolar solvents. Dalton Trans 2015; 43:15491-502. [PMID: 25190301 DOI: 10.1039/c4dt01646g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molybdenum(IV, VI) and tungsten(IV, VI) complexes, (Et4N)2[M(IV)O{1,2-S2-3,6-(RCONH)2C6H2}2] and (Et4N)2[M(VI)O2{1,2-S2-3,6-(RCONH)2C6H2}2] (M = Mo, W; R = (4-(t)BuC6H4)3C), with bulky hydrophobic dithiolate ligands containing NH···S hydrogen bonds were synthesized. These complexes are soluble in nonpolar solvents like toluene, which allows the detection of unsymmetrical coordination structures and elusive intermolecular interactions in solution. The (1)H NMR spectra of the complexes in toluene-d8 revealed an unsymmetrical coordination structure, and proximity of the counterions to the anion moiety was suggested at low temperatures. The oxygen-atom-transfer reaction between the molybdenum(IV) complex and Me3NO in toluene was considerably accelerated in nonpolar solvents, and this increase was attributed to the favorable access of the substrate to the active center in the hydrophobic environment.
Collapse
Affiliation(s)
- Yuki Hasenaka
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
47
|
Majumdar A. Structural and functional models in molybdenum and tungsten bioinorganic chemistry: description of selected model complexes, present scenario and possible future scopes. Dalton Trans 2015; 43:8990-9003. [PMID: 24798698 DOI: 10.1039/c4dt00631c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A brief description about some selected model complexes in molybdenum and tungsten bioinorganic chemistry is provided. The synthetic strategies involved and their limitations are discussed. Current status of molybdenum and tungsten bioinorganic modeling chemistry is presented briefly and synthetic problems associated therein are analyzed. Possible future directions which may expand the scope of modeling chemistry are suggested.
Collapse
Affiliation(s)
- Amit Majumdar
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
48
|
Cerqueira NMFSA, Pakhira B, Sarkar S. Theoretical studies on mechanisms of some Mo enzymes. J Biol Inorg Chem 2015; 20:323-35. [DOI: 10.1007/s00775-015-1237-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/05/2015] [Indexed: 11/30/2022]
|
49
|
Synthesis and Characterization of Glucose Derived Dioxo-molybdenum (VI) Complexes and Their Application in Sulphide Oxidation. Catal Letters 2015. [DOI: 10.1007/s10562-014-1463-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Hartmann T, Schwanhold N, Leimkühler S. Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:1090-100. [PMID: 25514355 DOI: 10.1016/j.bbapap.2014.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 11/28/2022]
Abstract
The global carbon cycle depends on the biological transformations of C1 compounds, which include the reductive incorporation of CO₂into organic molecules (e.g. in photosynthesis and other autotrophic pathways), in addition to the production of CO₂from formate, a reaction that is catalyzed by formate dehydrogenases (FDHs). FDHs catalyze, in general, the oxidation of formate to CO₂and H⁺. However, selected enzymes were identified to act as CO₂reductases, which are able to reduce CO₂to formate under physiological conditions. This reaction is of interest for the generation of formate as a convenient storage form of H₂for future applications. Cofactor-containing FDHs are found in anaerobic bacteria and archaea, in addition to facultative anaerobic or aerobic bacteria. These enzymes are highly diverse and employ different cofactors such as the molybdenum cofactor (Moco), FeS clusters and flavins, or cytochromes. Some enzymes include tungsten (W) in place of molybdenum (Mo) at the active site. For catalytic activity, a selenocysteine (SeCys) or cysteine (Cys) ligand at the Mo atom in the active site is essential for the reaction. This review will focus on the characterization of Mo- and W-containing FDHs from bacteria, their active site structure, subunit compositions and its proposed catalytic mechanism. We will give an overview on the different mechanisms of substrate conversion available so far, in addition to providing an outlook on bio-applications of FDHs. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Tobias Hartmann
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, D-14476 Potsdam, Germany
| | - Nadine Schwanhold
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, D-14476 Potsdam, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, D-14476 Potsdam, Germany.
| |
Collapse
|