1
|
Luglio D, Kleeman MJ, Yu X, Lin JC, Chow T, Martinez MP, Chen Z, Chen JC, Eckel SP, Schwartz J, Lurmann F, McConnell R, Xiang AH, Rahman MM. Prenatal Exposure to Source-Specific Fine Particulate Matter and Autism Spectrum Disorder. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18566-18577. [PMID: 39392704 PMCID: PMC11500427 DOI: 10.1021/acs.est.4c05563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
In this study, associations between prenatal exposure to fine particulate matter (PM2.5) from 9 sources and development of autism spectrum disorder (ASD) were assessed in a population-based retrospective pregnancy cohort in southern California. The cohort included 318,750 mother-child singleton pairs. ASD cases (N = 4559) were identified by ICD codes. Source-specific PM2.5 concentrations were estimated from a chemical transport model with a 4 × 4 km2 resolution and assigned to maternal pregnancy residential addresses. Cox proportional hazard models were used to estimate the hazard ratios (HR) of ASD development for each individual source. We also adjusted for total PM2.5 mass and in a separate model for all other sources simultaneously. Increased ASD risk was observed with on-road gasoline (HR [CI]: 1.18 [1.13, 1.24]), off-road gasoline (1.15 [1.12, 1.19]), off-road diesel (1.08 [1.05, 1.10]), food cooking (1.05 [1.02, 1.08]), aircraft (1.04 [1.01, 1.06]), and natural gas combustion (1.09 [1.06, 1.11]), each scaled to standard deviation increases in concentration. On-road gasoline and off-road gasoline were robust for other pollutant groups. PM2.5 emitted from different sources may have different impacts on ASD. The results also identify PM source mixtures for toxicological investigations that may provide evidence for future public health policies.
Collapse
Affiliation(s)
- David
G. Luglio
- Department
of Environmental Health Sciences, Tulane
University School of Public Health and Tropical Medicine, New Orleans, Louisiana 70118, United States
| | - Michael J. Kleeman
- Department
of Civil and Environmental Engineering, University of California, Davis, Davis, California 95616, United States
| | - Xin Yu
- Spatial
Science Institute, University of Southern
California, Los Angeles, California 90089, United States
| | - Jane C. Lin
- Department
of Research & Evaluation, Kaiser Permanente
Southern California, Pasadena, California 91101, United States
| | - Ting Chow
- Department
of Research & Evaluation, Kaiser Permanente
Southern California, Pasadena, California 91101, United States
| | - Mayra P. Martinez
- Department
of Research & Evaluation, Kaiser Permanente
Southern California, Pasadena, California 91101, United States
| | - Zhanghua Chen
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Jiu-Chiuan Chen
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Sandrah Proctor Eckel
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Joel Schwartz
- Department
of Environmental Health, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts 02115, United States
- Department
of Epidemiology, Harvard T.H. Chan School
of Public Health, Boston, Massachusetts 02115, United States
| | | | - Rob McConnell
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Anny H. Xiang
- Department
of Research & Evaluation, Kaiser Permanente
Southern California, Pasadena, California 91101, United States
| | - Md Mostafijur Rahman
- Department
of Environmental Health Sciences, Tulane
University School of Public Health and Tropical Medicine, New Orleans, Louisiana 70118, United States
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Goodrich AJ, Kleeman MJ, Tancredi DJ, Ludeña YJ, Bennett DH, Hertz-Picciotto I, Schmidt RJ. Ultrafine particulate matter exposure during second year of life, but not before, associated with increased risk of autism spectrum disorder in BKMR mixtures model of multiple air pollutants. ENVIRONMENTAL RESEARCH 2024; 242:117624. [PMID: 37956751 PMCID: PMC10872511 DOI: 10.1016/j.envres.2023.117624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Prenatal and early postnatal air pollution exposures have been shown to be associated with autism spectrum disorder (ASD) risk but results regarding specific air pollutants and exposure timing are mixed and no study has investigated the effects of combined exposure to multiple air pollutants using a mixtures approach. We aimed to evaluate prenatal and early life multipollutant mixtures for the drivers of associations of air pollution with ASD. This study examined 484 typically developing (TD) and 660 ASD children from the CHARGE case-control study. Daily air concentrations for NO2, O3, ultrafine (PM0.1), fine (PM0.1-2.5), and coarse (PM2.5-10) particles were predicted from chemical transport models with statistical bias adjustment based on ground-based monitors. Daily averages were calculated for each exposure period (pre-pregnancy, each trimester of pregnancy, first and second year of life) between 2000 and 2016. Air pollution variables were natural log-transformed and then standardized. Individual and joint effects of pollutant exposure with ASD, and potential interactions, were evaluated for each period using hierarchical Bayesian Kernel Machine Regression (BKMR) models, with three groups: PM size fractions (PM0.1, PM0.1-2.5, PM2.5-10), NO2, and O3. In BKMR models, the PM group was associated with ASD in year 2 (group posterior inclusion probability (gPIP) = 0.75), and marginally associated in year 1 (gPIP = 0.497). PM2.5-10 appeared to drive the association (conditional PIP (cPIP) = 0.64) in year 1, while PM0.1 appeared to drive the association in year 2 (cPIP = 0.76), with both showing a moderately strong increased risk. Pre-pregnancy O3 showed a slight J-shaped risk of ASD (gPIP = 0.55). No associations were observed for exposures during pregnancy. Pre-pregnancy O3 and year 2 p.m.0.1 exposures appear to be associated with an increased risk of ASD. Future research should examine ultrafine particulate matter in relation to ASD.
Collapse
Affiliation(s)
- Amanda J Goodrich
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA.
| | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California Davis, Sacramento, CA, USA
| | - Daniel J Tancredi
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Yunin J Ludeña
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
3
|
Imai Y, Ikemori F, Yoshino Y, Ohura T. Approaches to the source evaluation of chlorinated polycyclic aromatic hydrocarbons in fine particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114394. [PMID: 36508790 DOI: 10.1016/j.ecoenv.2022.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/14/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) have been recognized as novel hazardous pollutants; however, the dominant sources remain unclear. This study investigates the occurrences of ClPAHs in five stages of size-segregated particles collected from an urban site and evaluates the sources and factors affecting the concentrations using organic and inorganic source tracers. ClPAHs are the most frequently detected in the finest particle fraction (less than 1.1 µm; PM1.1), similar to polycyclic aromatic hydrocarbons (PAHs), hopanes, and levoglucosan (LEV). The concentrations of total ClPAHs in PM1.1 shows a significant correlation (p < 0.05) with those of total PAHs and specific hopanes but not to LEV and biogenic fatty acids; this suggests that ClPAHs dominantly originate from industrial activities and vehicular emissions. Heatmap analysis, including source tracers, is used to categorize the possible sources of ClPAHs into three types: ClPAH-specific sources, local industrial activities and vehicular emissions, and remote industrial activities. Furthermore, correlation network analysis is used to clarify the relationships between the pollutants.
Collapse
Affiliation(s)
- Yuki Imai
- Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan
| | - Fumikazu Ikemori
- Nagoya City Institute for Environmental Sciences, 5-16-8 Toyoda, Nagoya 457-0841, Japan
| | - Yuri Yoshino
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan
| | - Takeshi Ohura
- Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan; Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya 468-8502, Japan.
| |
Collapse
|
4
|
Farahani VJ, Pirhadi M, Sioutas C. Are standardized diesel exhaust particles (DEP) representative of ambient particles in air pollution toxicological studies? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147854. [PMID: 34029805 PMCID: PMC8206007 DOI: 10.1016/j.scitotenv.2021.147854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 05/21/2023]
Abstract
In this study, we investigated the chemical characteristics of standardized diesel exhaust particles (DEP) and compared them to those of read-world particulate matter (PM) collected in different urban settings to evaluate the extent to which standardized DEPs can represent ambient particles for use in toxicological studies. Standard reference material SRM-2975 was obtained from the National Institute of Standards and Technology (NIST) and was chemically analyzed for the content of elemental carbon (EC), organic carbon (OC), polycyclic aromatic hydrocarbons (PAHs), inorganic ions, and several metals and trace elements. The analysis on the filter-collected DEP sample revealed very high levels of EC (i.e., ~397 ng/μg PM) which were comparable to the OC content (~405 ng/μg PM). This is in contrast with the carbonaceous content in the emitted particles from typical filter-equipped diesel-powered vehicles, in which low levels of EC emissions were observed. Furthermore, the EC mass fraction of the DEP sample did not match the observed levels in the ambient PM of multiple US urban areas, including Los Angeles (8%), Houston (~14%), Pittsburgh (~12%), and New York (~17%). Our results illustrated the lack of several high molecular weight carcinogenic PAHs in the DEP samples, unlike our measurements in major freeways of Los Angeles. Negligible levels of inorganic ions were observed in the sample and the DEP did not contain toxic secondary organic aerosols (SOAs) formed through synchronized reactions in the atmosphere. Lastly, the analysis of redox-active metals and trace elements demonstrated that the levels of many species including vehicle emission tracers (e.g., Ba, Ti, Mn, Fe) on Los Angeles roadways were almost 20 times greater than those in the DEP sample. Based on the abovementioned inconsistencies between the chemical composition of the DEP sample and those of real-world PM measured and recorded in different conditions, we conclude that the standardized DEPs are not suitable representatives of traffic emissions nor typical ambient PM to be used in toxicological studies.
Collapse
Affiliation(s)
- Vahid Jalali Farahani
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Milad Pirhadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Farrokhzadeh S, Razmi H, Jannat B. Development of micellar solid-phase microextraction fiber based on CTAB-templated mesoporous silica electrochemically assisted self-assembled on wire: Application to chromatographic determination of polycyclic aromatic hydrocarbons. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2018.1502320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Samaneh Farrokhzadeh
- Analytical Chemistry Research Lab, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Habib Razmi
- Analytical Chemistry Research Lab, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | |
Collapse
|
6
|
Miri M, Nazarzadeh M, Alahabadi A, Ehrampoush MH, Rad A, Lotfi MH, Sheikhha MH, Sakhvidi MJZ, Nawrot TS, Dadvand P. Air pollution and telomere length in adults: A systematic review and meta-analysis of observational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:636-647. [PMID: 30384069 DOI: 10.1016/j.envpol.2018.09.130] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 05/03/2023]
Abstract
Telomere length (TL) has been suggested to be a surrogate for cellular ageing, and a record of cumulative inflammation and oxidative stress over life. An emerging body of evidence has associated exposure to air pollution to changes in TL. To date there is no available systematic review of literature on this association. We aimed to systematically review and conduct meta-analysis of published studies on the relationship between air pollution and TL in adults. Electronic databases were systematically searched for available English language studies on the association between air pollution and TL published up to 1 July 2018. Meta-analyses were conducted following MOOSE guidelines. The heterogeneity in the reported associations was assessed using Cochran's Q test and quantified as I2 index. Publication bias was assessed using Egger's regression. Our search identified 19 eligible studies including 11 retrospective and eight prospective studies of which, four had excellent quality, ten had good quality and five had fair quality. Meta-analysis result of two studies on long-term exposure to PM2.5 showed an inverse association between these exposures and TL (for 5 μg/m3 PM2.5-0.03 95% CI; -0.05, -0.01). Meta-analysis of short-term exposure to PM2.5 with three studies and Polychlorinated Biphenyls (PCBs) with two studies revealed a direct association between these exposures and TL (0.03 95% CI; 0.02, 0.04 and 0.10 95% CI; 0.06, 0.15 respectively). No statistically significant relationship between exposure to PM10 and polycyclic aromatic hydrocarbons (PAHs) exposure and TL were observed. We observed suggestive evidence for associations between air pollution and TL with potentially different direction of associations for short- and long-term exposures.
Collapse
Affiliation(s)
- Mohammad Miri
- Cellular and Molecular Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Milad Nazarzadeh
- The George Institute for Global Health, University of Oxford, Oxford, UK; The Collaboration Center of Meta-analysis Research (ccMETA), Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ahmad Alahabadi
- Cellular and Molecular Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Hassan Lotfi
- Department of Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Sheikhha
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Javad Zare Sakhvidi
- Occupational Health Research Center, Department of Occupational Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
7
|
Farrokhzadeh S, Razmi H. Use of chicken feet yellow membrane as a biosorbent in miniaturized solid phase extraction for determination of polycyclic aromatic hydrocarbons in several real samples. Microchem J 2018. [DOI: 10.1016/j.microc.2018.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Brown SG, Vaughn DL, Roberts PT. Particle count and black carbon measurements at schools in Las Vegas, NV and in the greater Salt Lake City, UT area. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2017; 67:1192-1204. [PMID: 28010175 DOI: 10.1080/10962247.2016.1270236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED As part of two separate studies aimed to characterize ambient pollutant concentrations at schools in urban areas, we compare black carbon and particle count measurements at Adcock Elementary in Las Vegas, NV (April-June 2013), and Hunter High School in the West Valley City area of greater Salt Lake City, UT (February 2012). Both schools are in urban environments, but Adcock Elementary is next to the U.S. 95 freeway. Black carbon (BC) concentrations were 13% higher at Adcock compared to Hunter, while particle count concentrations were 60% higher. When wind speeds were low-less than 2 m/sec-both BC and particle count concentrations were significantly higher at Adcock, while concentrations at Hunter did not have as strong a variation with wind speed. When wind speeds were less than 2 m/sec, emissions from the adjacent freeway greatly affected concentrations at Adcock, regardless of wind direction. At both sites, BC and particle count concentrations peaked in the morning during commute hours. At Adcock, particle count also peaked during midday or early afternoon, when BC was low and conditions were conducive to new particle formation. While this midday peak occurred at Adcock on roughly 45% of the measured days, it occurred on only about 25% of the days at Hunter, since conditions for particle formation (higher solar radiation, lower wind speeds, lower relative humidity) were more conducive at Adcock. Thus, children attending these schools are likely to be exposed to pollution peaks during school drop-off in the morning, when BC and particle count concentrations peak, and often again during lunchtime recess when particle count peaks again. IMPLICATIONS Particle count concentrations at two schools were shown to typically be independent of BC or other pollutants. At a school in close proximity to a major freeway, particle count concentrations were high during the midday and when wind speeds were low, regardless of wind direction, showing a large area of effect from roadway emissions even when the school was not downwind of the roadway. At the second school, which sits in an urban neighborhood away from freeways, high particle counts occurred even though solar radiation was low during wintertime conditions, meaning that exposure to high particle counts can occur throughout the year.
Collapse
|
9
|
Characterizing particulate polycyclic aromatic hydrocarbon emissions from diesel vehicles using a portable emissions measurement system. Sci Rep 2017; 7:10058. [PMID: 28855647 PMCID: PMC5577249 DOI: 10.1038/s41598-017-09822-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/31/2017] [Indexed: 11/30/2022] Open
Abstract
Particulate polycyclic aromatic hydrocarbons (p-PAHs) emitted from diesel vehicles are of concern because of their significant health impacts. Laboratory tests, road tunnel and roadside experiments have been conducted to measure p-PAH emissions. While providing valuable information, these methods have limited capabilities of characterizing p-PAH emissions either from individual vehicles or under real-world conditions. We employed a portable emissions measurement (PEMS) to measure real-world emission factors of priority p-PAHs for diesel vehicles representative of an array of emission control technologies. The results indicated over 80% reduction in p-PAH emission factors comparing the China V and China II emission standard groups (113 μg kg−1 vs. 733 μg kg−1). The toxicity abatement in terms of Benzo[a]pyrene equivalent emissions was substantial because of the large reductions in highly toxic components. By assessing real traffic conditions, the p-PAH emission factors on freeways were lower than on local roads by 52% ± 24%. A significant correlation (R2~0.85) between the p-PAH and black carbon emissions was identified with a mass ratio of approximately 1/2000. A literature review indicated that diesel p-PAH emission factors varied widely by engine technology, measurement methods and conditions, and the molecular diagnostic ratio method for source apportionment should be used with great caution.
Collapse
|
10
|
Razmi H, Farrokhzadeh S. Introduction of a coiled solid-phase microextraction fiber based on a coating of animal bone waste for chromatographic analysis. J Sep Sci 2017; 40:1747-1754. [DOI: 10.1002/jssc.201601240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Habib Razmi
- Analytical Chemistry Research Laboratory, Faculty of Basic Sciences; Azarbaijan Shahid Madani University; Tabriz Iran
| | - Samaneh Farrokhzadeh
- Analytical Chemistry Research Laboratory, Faculty of Basic Sciences; Azarbaijan Shahid Madani University; Tabriz Iran
| |
Collapse
|
11
|
Fabiańska M, Kozielska B, Bielaczyc P, Woodburn J, Konieczyński J. Geochemical markers and polycyclic aromatic hydrocarbons in solvent extracts from diesel engine particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6999-7011. [PMID: 26728284 PMCID: PMC4820478 DOI: 10.1007/s11356-015-5996-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/16/2015] [Indexed: 05/13/2023]
Abstract
Exhaust particulate from compression ignition (CI) engines running on engine and chassis dynamometers was studied. Particulate dichloromethane extracts were qualitatively and quantitatively analyzed for polycyclic aromatic hydrocarbons (PAHs) and biomarkers by gas chromatography with flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). PAH group profiles were made and the PAH group shares according to the number of rings (2 or 3; 4; 5 or more) as well as diagnostic indices were calculated. Values of geochemical ratios of selected biomarkers and alkyl aromatic hydrocarbons were compared with literature values. A geochemical interpretation was carried out using these values and biomarker and alkyl aromatic hydrocarbon distributions. It has been shown that geochemical features are unequivocally connected to the emission of fossil fuels and biofuels burned in CI engines. The effect of the exothermic combustion process is limited to low-molecular-weight compounds, which shows that the applied methodology permits source identification of PAHs coexisting in the particulate emitted.
Collapse
Affiliation(s)
- Monika Fabiańska
- Faculty of Earth Sciences, University of Silesia, 60 Bedzinska St, 41-200, Sosnowiec, Poland.
| | - Barbara Kozielska
- Faculty of Power and Environmental Engineering, Silesian University of Technology, 22B Konarskiego St, 44-100, Gliwice, Poland
| | - Piotr Bielaczyc
- BOSMAL Automotive Research and Development Institute Ltd, 93 Sarni Stok St, 43-300, Bielsko-Biala, Poland
| | - Joseph Woodburn
- BOSMAL Automotive Research and Development Institute Ltd, 93 Sarni Stok St, 43-300, Bielsko-Biala, Poland
| | - Jan Konieczyński
- Institute of Environmental Engineering, Polish Academy of Sciences, 34 M Sklodowskiej-Curie St, 41-819, Zabrze, Poland
| |
Collapse
|
12
|
Lim J, Lim C, Kim S, Hong J. Characterizations of organic compounds in diesel exhaust particulates. J Environ Sci (China) 2015; 34:171-183. [PMID: 26257360 DOI: 10.1016/j.jes.2015.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
To characterize how the speed and load of a medium-duty diesel engine affected the organic compounds in diesel particle matter (PM) below 1 μm, four driving conditions were examined. At all four driving conditions, concentration of identifiable organic compounds in PM ultrafine (34-94 nm) and accumulation (94-1000 nm) modes ranged from 2.9 to 5.7 μg/m(3) and 9.5 to 16.4 μg/m(3), respectively. As a function of driving conditions, the non-oxygen-containing organics exhibited a reversed concentration trend to the oxygen-containing organics. The identified organic compounds were classified into eleven classes: alkanes, alkenes, alkynes, aromatic hydrocarbons, carboxylic acids, esters, ketones, alcohols, ethers, nitrogen-containing compounds, and sulfur-containing compounds. At all driving conditions, alkane class consistently showed the highest concentration (8.3 to 18.0 μg/m(3)) followed by carboxylic acid, esters, ketones and alcohols. Twelve polycyclic aromatic hydrocarbons (PAHs) were identified with a total concentration ranging from 37.9 to 174.8 ng/m(3). In addition, nine nitrogen-containing polycyclic aromatic compounds (NPACs) were identified with a total concentration ranging from 7.0 to 10.3 ng/m(3). The most abundant PAH (phenanthrene) and NPACs (7,8-benzoquinoline and 3-nitrophenanthrene) comprise a similar molecular (3 aromatic-ring) structure under the highest engine speed and engine load.
Collapse
Affiliation(s)
- Jaehyun Lim
- Division of Global Environment Research, National Institute of Environmental Research, Incheon, Republic of Korea.
| | - Cheolsoo Lim
- Division of Global Environment Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Sangkyun Kim
- Division of Global Environment Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Jihyung Hong
- Department of Climate and Air Quality Research, National Institute of Environmental Research, Incheon, Republic of Korea
| |
Collapse
|
13
|
Zhao H, Ge Y, Zhang T, Zhang J, Tan J, Zhang H. Unregulated emissions from diesel engine with particulate filter using Fe-based fuel borne catalyst. J Environ Sci (China) 2014; 26:2027-2033. [PMID: 25288546 DOI: 10.1016/j.jes.2014.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/08/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
The alteration and formation of toxic compounds and potential changes in the toxicity of emissions when using after-treatment technologies have gained wide attention. Volatile organic compound (VOC), carbonyl compound and particle-phase polycyclic aromatic hydrocarbon (PAH) emissions were tested at European Steady State Cycle (ESC) to study unregulated emissions from a diesel engine with a fuel-borne catalyst and diesel particulate filter (FBC-DPF). An Fe-based fuel-borne catalyst was used for this study. According to the results, brake specific emissions of total VOCs without and with DPF were 4.7 and 4.9mg/kWh, respectively, showing a 4.3% increase. Benzene and n-undecane emissions increased and toluene emission decreased, while other individual VOC emissions basically had no change. When retrofitted with the FBC-DPF, total carbonyl compound emission decreased 15.7%, from 25.8 to 21.8mg/kWh. The two highest carbonyls, formaldehyde and acetaldehyde, were reduced from 20.0 and 3.7 to 16.5 and 3.3mg/kWh respectively. The specific reactivity (SR) with DPF was reduced from 6.68 to 6.64mg/kWh. Total particle-phase PAH emissions decreased 66.4% with DPF compared to that without DPF. However, the Benzo[a]pyrene equivalent (BaPeq) with DPF had increased from 0.016 to 0.030mg/kWh. Fluoranthene and Pyrene had the greatest decrease, 91.1% and 88.4% respectively. The increase of two- and three-ring PAHs with DPF indicates that the fuel-borne catalyst caused some gas-phase PAHs to adsorb on particles. The results of this study expand the knowledge of the effects of using a particulate filter and a Fe-based fuel-borne catalyst on diesel engine unregulated emissions.
Collapse
Affiliation(s)
- Hong Zhao
- College of Mechanical & Electronic Engineering, Qingdao University, Qingdao 266071, China.
| | - Yunshan Ge
- National Lab of Auto Performance & Emission Test, Beijing Institute of Technology, Beijing 100081, China
| | - Tiezhu Zhang
- College of Mechanical & Electronic Engineering, Qingdao University, Qingdao 266071, China
| | - Jipeng Zhang
- College of Mechanical & Electronic Engineering, Qingdao University, Qingdao 266071, China
| | - Jianwei Tan
- National Lab of Auto Performance & Emission Test, Beijing Institute of Technology, Beijing 100081, China
| | - Hongxin Zhang
- College of Mechanical & Electronic Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
14
|
Saito E, Tanaka N, Miyazaki A, Tsuzaki M. Concentration and particle size distribution of polycyclic aromatic hydrocarbons formed by thermal cooking. Food Chem 2014; 153:285-91. [DOI: 10.1016/j.foodchem.2013.12.055] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/13/2013] [Accepted: 12/11/2013] [Indexed: 02/02/2023]
|
15
|
Callén MS, Iturmendi A, López JM, Mastral AM. Source apportionment of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH) associated to airborne PM10 by a PMF model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2064-2076. [PMID: 24022101 DOI: 10.1007/s11356-013-2116-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/29/2013] [Indexed: 06/02/2023]
Abstract
In order to perform a study of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH), benzo(a)pyrene equivalent (BaP-eq) concentration was calculated and modelled by a receptor model based on positive matrix factorization (PMF). Nineteen PAH associated to airborne PM10 of Zaragoza, Spain, were quantified during the sampling period 2001-2009 and used as potential variables by the PMF model. Afterwards, multiple linear regression analysis was used to quantify the potential sources of BaP-eq. Five sources were obtained as the optimal solution and vehicular emission was identified as the main carcinogenic source (35 %) followed by heavy-duty vehicles (28 %), light-oil combustion (18 %), natural gas (10 %) and coal combustion (9 %). Two of the most prevailing directions contributing to this carcinogenic character were the NE and N directions associated with a highway, industrial parks and a paper factory. The lifetime lung cancer risk exceeded the unit risk of 8.7 x 10(-5) per ng/m(3) BaP in both winter and autumn seasons and the most contributing source was the vehicular emission factor becoming an important issue in control strategies.
Collapse
|
16
|
May AA, Presto AA, Hennigan CJ, Nguyen NT, Gordon TD, Robinson AL. Gas-particle partitioning of primary organic aerosol emissions: (2) diesel vehicles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8288-96. [PMID: 23786154 DOI: 10.1021/es400782j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Experiments were performed to investigate the gas-particle partitioning of primary organic aerosol (POA) emissions from two medium-duty (MDDV) and three heavy-duty (HDDV) diesel vehicles. Each test was conducted on a chassis dynamometer with the entire exhaust sampled into a constant volume sampler (CVS). The vehicles were operated over a range of driving cycles (transient, high-speed, creep/idle) on different ultralow sulfur diesel fuels with varying aromatic content. Four independent yet complementary approaches were used to investigate POA gas-particle partitioning: artifact correction of quartz filter samples, dilution from the CVS into a portable environmental chamber, heating in a thermodenuder, and thermal desorption/gas chromatography/mass spectrometry (TD-GC-MS) analysis of quartz filter samples. During tests of vehicles not equipped with diesel particulate filters (DPF), POA concentrations inside the CVS were a factor of 10 greater than ambient levels, which created large and systematic partitioning biases in the emissions data. For low-emitting DPF-equipped vehicles, as much as 90% of the POA collected on a quartz filter from the CVS were adsorbed vapors. Although the POA emission factors varied by more than an order of magnitude across the set of test vehicles, the measured gas-particle partitioning of all emissions can be predicted using a single volatility distribution derived from TD-GC-MS analysis of quartz filters. This distribution is designed to be applied directly to quartz filter data that are the basis for existing emissions inventories and chemical transport models that have implemented the volatility basis set approach.
Collapse
Affiliation(s)
- Andrew A May
- Center for Atmospheric Particle Studies, Carnegie Mellon University , Pittsburgh, Pennsylvania 15289, United States
| | | | | | | | | | | |
Collapse
|
17
|
Liu X, Zhou S, Zhu Q, Ye Y, Chen H. Ultra Preconcentration of Polycyclic Aromatic Hydrocarbons in Smoked Bacon by a Combination of SPE and DLLME. J Chromatogr Sci 2013; 52:932-7. [DOI: 10.1093/chromsci/bmt119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
18
|
Huang Y, Zhou Q, Xie G. Development of micro-solid phase extraction with titanate nanotube array modified by cetyltrimethylammonium bromide for sensitive determination of polycyclic aromatic hydrocarbons from environmental water samples. JOURNAL OF HAZARDOUS MATERIALS 2011; 193:82-89. [PMID: 21807462 DOI: 10.1016/j.jhazmat.2011.07.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 07/04/2011] [Accepted: 07/07/2011] [Indexed: 05/31/2023]
Abstract
This paper described a simple and novel analytical technique for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. A micro-solid phase extraction (μ-SPE) was developed utilizing cetyltrimethylammonium bromide modified ordered TiO(2) nanotube array. The experimental results indicated that modified TiO(2) nanotube arrays demonstrated an excellent merit on the preconcentration of PAHs, and there were excellent linear relationships between peak area and the concentration of PAHs in the range of 0.2-100 μg L(-1) and 1.0-100 μg L(-1), respectively. The detection limits of proposed method for the targeted PAHs were in the range of 0.026-0.82 μg L(-1) (S/N = 3). The real-world environmental water samples were used to validate the applicability of the proposed method and good spiked recoveries were in the range of 75.0-114%. All these results demonstrated that this new μ-SPE technique was a viable alternative to conventional enrichment techniques for the extraction and analysis of PAHs in complex samples.
Collapse
Affiliation(s)
- Yunrui Huang
- Henan Key Laboratory for Environmental pollution Control, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, School of Chemistry and Environmental Sciences, Henan Normal University, Xinxiang 453007, PR China
| | | | | |
Collapse
|
19
|
Tsai JH, Chen SJ, Huang KL, Lee WJ, Kuo WC, Lin WY. Characteristics of particulate emissions from a diesel generator fueled with varying blends of biodiesel and fossil diesel. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2011; 46:204-213. [PMID: 21240709 DOI: 10.1080/10934529.2011.532444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study investigated the particulate matter (PM), particle-bound carbons, and polycyclic aromatic hydrocarbons (PAHs) emitted from a diesel-engine generator fuelled with blends of pure fossil diesel oil (D100) and varying percentages of waste-edible-oil biodiesel (W10, 10 vol %; W20, 20 vol %; W30, 30 vol %; and W50, 50 vol %) under generator loads of 0, 1.5, and 3 kW. On average, the PM emission factors of all blends was 30.5 % (range, 13.7-52.3 %) lower than that of D100 under the tested loads. Substituting pure fossil diesel oil with varying percentages of waste-edible-oil biodiesel reduced emissions of particle-bound total carbon (TC) and elemental carbon (EC). The W20 blend had the lowest particle-bound organic carbon (OC) emissions. Notably, W10, W20, and W30 also had lower Total-PAH emissions and lower total equivalent toxicity (Total-BaP(eq)) compared to D100. Additionally, the brake-specific fuel consumption of the generator correlated positively with the ratio of waste-edible-oil biodiesel to pure fossil diesel. However, generator energy efficiency correlated negatively with the ratio of waste-edible-oil biodiesel to pure fossil diesel.
Collapse
Affiliation(s)
- Jen-Hsiung Tsai
- Department of Environmental Engineering and Science, National Pingtung University of Science and Technology, PingTung, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Xie SM, Zhang M, Wang ZY, Yuan LM. Porous metal membranes for solid-phase extraction of polycyclic aromatic hydrocarbons. Analyst 2011; 136:3988-96. [DOI: 10.1039/c1an15245a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Chien SM, Huang YJ. Sizes and polycyclic aromatic hydrocarbon composition distributions of nano, ultrafine, fine, and coarse particulates emitted from a four-stroke motorcycle. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2010; 45:1768-1774. [PMID: 20924922 DOI: 10.1080/10934529.2010.513289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Thus, this study was undertaken to determine the size distribution, concentration, species, and carcinogenic potency of particulate matter and particle-bound polycyclic aromatic hydrocarbons (PAHs) emitted from 4-st/mc at various speeds (idle, 15 km/h, 30 km/h). Approximately 80% of the particles emitted from the that is, they are primary inhalable particulates. The particle total number concentrations (TNCs) emitted while idling and at 15 and 30 km/h were 2.07 x 10⁴, 2.35 x 10⁴, and 2.60 x 10⁴ #/cm³, respectively; i.e., they increased at elevated speeds. Notably, most of the particles emitted at 30 km/h had diameters of less than 0.65 μm and contained higher percentages of total PAHs. Excluding incomplete combustion, we suspected that some of the lower-molecular-weight PAHs [phenanthrene (PA), anthracene (Ant), pyrene (Pyr)] obtained in the fine particles at idle originated from unburned 95-octane unleaded fuel. When operated at 15 km/h, pyrolysis of the PAHs dominated, resulting in increased amounts of medium-molecular-weight PAHs {fluorene (FL), Pyr, benz[a]anthracene (BaA), chrysene (CHR)} in the ultrafine particles. Furthermore, at 30 km/h, more pyrosynthesis products {benzo[a]pyrene (BaP), indeno[1,2,3,-cd]pyrene (IND), dibenz[a,h]anthracene (DBA)}, induced through combustion at the correspondingly higher temperature, were exhausted with the nanoparticles. Although the total concentrations of BaP-equivalent emissions were inconsistent with the total PAHs, the nanoscale-sized particulates emitted from the 4-st/mc at higher speeds had the strongest PAH-related carcinogenic potencies, which should be a great concern.
Collapse
Affiliation(s)
- Shu M Chien
- Department of Biomedical Engineering & Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | |
Collapse
|
22
|
Pakbin P, Ning Z, Schauer JJ, Sioutas C. Characterization of particle bound organic carbon from diesel vehicles equipped with advanced emission control technologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:4679-86. [PMID: 19673251 DOI: 10.1021/es8030825] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A chassis dynamometer study was carried out by the University of Southern California in collaboration with the Air Resources Board (CARB) to investigate the physical, chemical, and toxicological characteristics of diesel emissions of particulate matter (PM) from heavy-duty vehicles. These heavy-duty diesel vehicles (HDDV) were equipped with advanced emission control technologies, designed to meet CARB retrofit regulations. A HDDV without any emission control devices was used as the baseline vehicle. Three advanced emission control technologies; continuously regenerating technology (CRT), zeolite- and vanadium-based selective catalytic reduction technologies (Z-SCRT and V-SCRT), were tested under transient (UDDS) (1) and cruise (80 kmph) driving cycles to simulate real-world driving conditions. This paper focuses on the characterization of the particle bound organic species from the vehicle exhaust. Physical and chemical properties of PM emissions have been reported by Biswas et al. Atmos. Environ. 2008, 42, 5622-5634) and Hu et al. (Atmos. Environ. 2008, submitted) Significant reductions in the emission factors (microg/mile) of particle bound organic compounds were observed in HDDV equipped with advanced emission control technologies. V-SCRT and Z-SCRT effectively reduced PAHs, hopanes and steranes, n-alkanes and acids by more than 99%, and often to levels below detection limits for both cruise and UDDS cycles. The CRT technology also showed similar reductions with SCRT for medium and high molecular weight PAHs, acids, but with slightly lower removal efficiencies for other organic compounds. Ratios of particle bound organics-to-OC mass (microg/g) from the baseline exhaust were compared with their respective ratios in diesel fuel and lubricating oil, which revealed that hopanes and steranes originate from lubricating oil, whereas PAHs can either form during the combustion process or originate from diesel fuel itself. With the introduction of emission control technologies, the particle bound organics-to-OC ratios (microg/g) decreased considerably for PAHs, while the reduction was insignificant for hopanes and steranes, implying that fuel and lubricating oil have substantially different contributions to the total OC emitted by vehicles operating with after-treatment control devices compared to the baseline vehicle since these control technologies had a much larger impact on PAH OC than hopanes and steranes OC.
Collapse
Affiliation(s)
- Payam Pakbin
- University of Southern California, Department of Civil and Environmental Engineering, 3620 South Vermont Avenue, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
23
|
Kleeman MJ, Riddle SG, Robert MA, Jakober CA, Fine PM, Hays MD, Schauer JJ, Hannigan MP. Source apportionment of fine (PM1.8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:272-279. [PMID: 19238951 DOI: 10.1021/es800400m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Size-resolved samples of airborne particulate matter (PM) collected during a severe winter pollution episode at three sites in the San Joaquin Valley of California were extracted with organic solvents and analyzed for detailed organic compounds using GC-MS. Six particle size fractions were characterized with diameter (Dp) < 1.8 microm; the smallest size fraction was 0.056 < Dp < 0.1 microm which accounts for the majority of the mass in the ultrafine (PM0.1) size range. Source profiles for ultrafine particles developed during previous studies were applied to the measurements at each sampling site to calculate source contributions to organic carbon (OC) and elemental carbon (EC) concentrations. Ultrafine EC concentrations ranged from 0.03 microg m(-3) during the daytime to 0.18 microg m(-3) during the nighttime. Gasoline fuel, diesel fuel, and lubricating oil combustion products accounted for the majority of the ultrafine EC concentrations, with relatively minor contributions from biomass combustion and meat cooking. Ultrafine OC concentrations ranged from 0.2 microg m(-3) during the daytime to 0.8 microg m(-3) during the nighttime. Wood combustion was found to be the largest source of ultrafine OC. Meat cooking was also identified as a significant potential source of PM0.1 mass but further study is required to verify the contributions from this source. Gasoline fuel, diesel fuel, and lubricating oil combustion products made minor contributions to PM0.1 OC mass. Total ultrafine particulate matter concentrations were dominated by contributions from wood combustion and meat cooking during the current study. Future inhalation exposure studies may wish to target these sources as potential causes of adverse health effects.
Collapse
Affiliation(s)
- Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California, Davis, 1 Shields Avenue, Davis, California 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kleeman MJ, Riddle SG, Jakober CA. Size distribution of particle-phase molecular markers during a severe winter pollution episode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:6469-6475. [PMID: 18800516 DOI: 10.1021/es800346k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Airborne particulate matter was collected using filter samplers and cascade impactors in six size fractions below 1.8 microm during a severe winter air pollution event at three sites in the Central Valley of California. The smallest size fraction analyzed was 0.056 < Dp <0.1 microm particle diameter, which accounts for the majority of the mass in the ultrafine (PM0.1) size range. Separate samples were collected during the daytime (10 a.m. to 6 p.m. PST) and nighttime (8 p.m. to 8 a.m. PST) to characterize diurnal patterns. Each sample was extracted with organic solvents and analyzed using gas chromatography mass spectrometry for molecular markers that can be used for size-resolved source apportionment calculations. Colocated impactor and filter measurements were highly correlated (R8 > 0.8) for retene, benzo[ghi]flouranthene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, perylene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene, coronene, MW302 polycyclic aromatic hydrocarbon (PAHs), 17beta(H)-21alpha(H)-30-norhopane, 17alpha(H)-21beta(H)-hopane, alphabetabeta-20R-C29-ethylcholestane, levoglucosan, and cholesterol. Of these compounds, levoglucosan was present in the highest concentration (60-2080 ng m(-3)) followed by cholesterol (6-35 ng m(-3)), PAHs (2-38 ng m(-3)), and hopanes and steranes (0-2 ng m(-3)). Nighttime concentrations were higher than daytime concentrations in all cases. Organic compound size distributions were generally similar to the total carbon size distributions during the nighttime but showed greater variability during the daytime. This may reflect the dominance of fresh emission in the stagnant surface layer during the evening hours and the presence of aged organic aerosol at the surface during the daytime when the atmosphere is better mixed. All of the measured organic compound particle size distributions had a single mode that peaked somewhere between 0.18 and 0.56 microm, but the width of each distribution varied by compound. Cholesterol generally had the broadest particle size distribution, while benzo[ghi]perylene and 17alpha(H)-21beta(H)-29-norhopane generally had sharper peaks. The difference between the size distributions of the various particle-phase organic compounds reflects the fact that these compounds exist in particles emitted from different sources. The results of the current study will prove useful for size-resolved source apportionment exercises.
Collapse
Affiliation(s)
- Michael J Kleeman
- Department of Civil and Environmental Engineering, Agriculture and Environmental Chemistry Graduate Group, University of California, Davis, 1 Shields Avenue, Davis, California 95616, USA.
| | | | | |
Collapse
|
25
|
Lin CC, Chen SJ, Huang KL, Lee WJ, Lin WY, Tsai JH, Chaung HC. PAHs, PAH-induced carcinogenic potency, and particle-extract-Induced cytotoxicity of traffic-related nano/ultrafine particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:4229-4235. [PMID: 18589992 DOI: 10.1021/es703107w] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) bound in nano/ ultrafine particles from vehicle emissions may cause adverse health effects. However, little is known about the characteristics of the nanoparticle-bound PAHs and the PAH-associated carcinogenic potency/cytotoxicity; therefore, traffic-related nano/ultrafine particles were collected in this study using a microorifice uniform deposition impactor(MOUDI) and a nano-MOUDI. For PM0.056--18, the difference in size-distribution of particulate total-PAHs between non-after-rain and after-rain samples was statistically significant at alpha = 0.05; however, this difference was not significant for PM0.01--0.056. The PAH correlation between PM0.01--0.1 and PM0.1--1.8 was lower for the after-rain samples than forthe non-after-rain samples. The average particulate total-PAHs in five samplings displayed a trimodal distribution with a major peak in the Aitken mode (0.032--0.056 microm). About half of the particulate total-PAHs were in the ultrafine size range. The BaPeq sums of BaP, IND, and DBA (with toxic equivalence factors > or = 0.1) accounted for approximately 90% of the total-BaPeq in the nano/ultrafine particles, although these three compounds contributed little to the mass of the sampled particles. The mean content of the particle-bound total-PAHs/-BaPeqs and the PAH/BaPeq-derived carcinogenic potency followed the order nano > ultrafine > fine > coarse. For a sunny day sample, the cytotoxicity of particle extracts (using 1:1 (v/v) n-hexane/dichloromethane) was significantly higher (p < 0.05) for the nano (particularly the 10-18 nm)/ultrafine particles than for the coarser particles and bleomycin. Therefore, traffic-related nano and ultrafine particles are possibly cytotoxic.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Environmental Engineering and Science, National Pingtung University of Science and Technology, Nei Pu, PingTung 91201, Taiwan
| | | | | | | | | | | | | |
Collapse
|
26
|
Hays MD, Beck L, Barfield P, Lavrich RJ, Dong Y, Vander Wal RL. Physical and chemical characterization of residential oil boiler emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:2496-502. [PMID: 18504987 DOI: 10.1021/es071598e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The toxicity of emissions from the combustion of home heating oil coupled with the regional proximity and seasonal use of residential oil boilers (ROB) is an important public health concern. Yet scant physical and chemical information about the emissions from this source is available for climate and air quality modeling and for improving our understanding of aerosol-related human health effects. The gas- and particle-phase emissions from an active ROB firing distillate fuel oil (commonly known as diesel fuel) were evaluated to address this deficiency. Ion chromatography of impactor samples showed that the ultrafine ROB aerosol emissions were approximately 45% (w/w) sulfate. Gas chromatography-mass spectrometry detected various n-alkanes at trace levels, sometimes in accumulation mode particles, and out of phase with the size distributions of aerosol mass and sulfate. The carbonaceous matter in the ROB aerosol was primarily light-adsorbing elemental carbon. Gas chromatography-atomic emission spectroscopy measured a previously unrecognized organosulfur compound group in the ROB aerosol emissions. High-resolution transmission electron microscopy of ROB soot indicated the presence of a highly ordered primary particle nanostructure embedded in larger aggregates. Organic gas emissions were measured using EPA Methods TO-15 and TO-11A. The ROB emitted volatile oxygenates (8 mg/(kg of oil burned)) and olefins (5 mg/(kg of oil burned)) mostly unrelated to the base fuel composition. In the final analysis, the ROB tested was a source of numerous hazardous air pollutants as defined in the Clean Air Act Amendments. Approximations conducted using emissions data from the ROB tests show relatively low contributions to a regional-level anthropogenic emissions inventory for volitile organic compounds, PM2.5, and SO2 mass.
Collapse
Affiliation(s)
- Michael D Hays
- National Risk Management Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Kleeman MJ, Riddle SG, Robert MA, Jakober CA. Lubricating oil and fuel contributions to particulate matter emissions from light-duty gasoline and heavy-duty diesel vehicles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:235-242. [PMID: 18350902 DOI: 10.1021/es071054c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Size-resolved particulate matter emissions from heavy-duty diesel vehicles (HDDVs) and light-duty gasoline vehicles (LDGVs) operated under realistic driving cycles were analyzed for elemental carbon (EC), organic carbon (OC), hopanes, steranes, and polycyclic aromatic hydrocarbons. Measured hopane and sterane size distributions did not match the total carbon size distribution in most cases, suggesting that lubricating oil was not the dominant source of particulate carbon in the vehicle exhaust. A regression analysis using 17alpha(H)-21beta(H)-29-norhopane as a tracer for lubricating oil and benzo[ghi/perylene as a tracer for gasoline showed that gasoline fuel and lubricating oil both make significant contributions to particulate EC and OC emissions from LDGVs. A similar regression analysis performed using 17alpha(H)-21beta(H)-29-norhopane as a tracer for lubricating oil and flouranthene as a tracerfor diesel fuel was able to explain the size distribution of particulate EC and OC emissions from HDDVs. The analysis showed that EC emitted from all HDDVs operated under relatively high load conditions was dominated by diesel fuel contributions with little EC attributed to lubricating oil. Particulate OC emitted from HDDVs was more evenly apportioned between fuel and oil contributions. EC emitted from LDGVs operated underfuel-rich conditions was dominated by gasoline fuel contributions. OC emitted from visibly smoking LDGVs was mostly associated with lubricating oil, but OC emitted from all other categories of LDGVs was dominated by gasoline fuel. The current study clearly illustrates that fuel and lubricating oil make separate and distinct contributions to particulate matter emissions from motor vehicles. These particles should be tracked separately during ambient source apportionment studies since the atmospheric evolution and ultimate health effects of these particles may be different. The source profiles for fuel and lubricating oil contributions to EC and OC emissions derived in this study provide a foundation for future source apportionment calculations.
Collapse
Affiliation(s)
- Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California, Davis, I Shields Avenue, Davis 95616, USA.
| | | | | | | |
Collapse
|
28
|
Wang WD, Huang YM, Shu WQ, Cao J. Multiwalled carbon nanotubes as adsorbents of solid-phase extraction for determination of polycyclic aromatic hydrocarbons in environmental waters coupled with high-performance liquid chromatography. J Chromatogr A 2007; 1173:27-36. [DOI: 10.1016/j.chroma.2007.10.027] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 11/24/2022]
|