1
|
Su R, Chen F, Zhang X, Qin Y, Zhang Y, Zhang W. Immune defense adaptation of Strauchbufo raddei population in heavy metal polluted area: Insights from developmental and environmental perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123126. [PMID: 39500166 DOI: 10.1016/j.jenvman.2024.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024]
Abstract
The adjustment of immune defense mechanisms is a crucial aspect of biological adaptation to stressful environments. Amphibians, with their unique metamorphic process, experience distinct life stages and exhibit diverse immune defense components. While previous studies have focused on specific immune changes during particular life stages under stress, this research addresses a critical gap by exploring the adaptive immune defense strategies of Strauchbufo raddei in heavy metal-polluted environments. We conducted laboratory experiments, exposing offspring from both polluted and unpolluted areas to control and heavy metal treatments, while continuously monitoring changes in immune components during key metamorphic stages. Notably, we examined the role of the skin microbiome, a crucial but often overlooked barrier against pathogens. The results indicated that individuals from polluted areas exhibited some tolerance to heavy metal exposure, though overall immune function remained diminished. During metamorphosis, when immune defenses are most vulnerable, the skin microbiome rapidly enriched beneficial bacteria, preventing pathogenic colonization and playing a pivotal role in maintaining immune defense in contaminated environments. Moreover, our research highlights energy allocation strategies involving corticosterone and body fat content, enabling populations to maintain development despite immune compromise. The immune adaptations observed may be fixed through genetic assimilation, suggesting a rapid evolutionary response to environmental stress. However, this reduces phenotypic plasticity, making populations more vulnerable to future environmental changes. This study provides key insights into the survival strategies of amphibian populations in heavy metal-contaminated areas, laying the foundation for future research on molecular and evolutionary adaptations.
Collapse
Affiliation(s)
- Rui Su
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Fanrui Chen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Xueying Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yuting Qin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Wenya Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Guan KL, Luo XJ, Zhu CH, Chen X, Chen PP, Guo J, Hu KQ, Zeng YH, Mai BX. Tissue-Specific Distribution and Maternal Transfer of Persistent Organic Halogenated Pollutants in Frogs. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1557-1568. [PMID: 38695729 DOI: 10.1002/etc.5882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 04/01/2024] [Indexed: 06/27/2024]
Abstract
Persistent organic pollutants pose a great threat to amphibian populations, but information on the bioaccumulation of contaminants in amphibians remains scarce. To examine the tissue distribution and maternal transfer of organic halogenated pollutants (OHPs) in frogs, seven types of tissues from black-spotted frog (muscle, liver, kidney, stomach, intestine, heart, and egg) were collected from an e-waste-polluted area in South China. Among the seven frog tissues, median total OHP concentrations of 2.3 to 9.7 μg/g lipid weight were found (in 31 polychlorinated biphenyl [PCB] individuals and 15 polybrominated diphenyl ether [PBDE], dechlorane plus [syn-DP and anti-DP], bexabromobenzene [HBB], polybrominated biphenyl] PBB153 and -209], and decabromodiphenyl ethane [DBDPE] individuals). Sex-specific differences in contaminant concentration and compound compositions were observed among the frog tissues, and eggs had a significantly higher contaminant burden on the whole body of female frogs. In addition, a significant sex difference in the concentration ratios of other tissues to the liver was observed in most tissues except for muscle. These results suggest that egg production may involve the mobilization of other maternal tissues besides muscle, which resulted in the sex-specific distribution. Different parental tissues had similar maternal transfer mechanisms; factors other than lipophilicity (e.g., molecular size and proteinophilic characteristics) could influence the maternal transfer of OHPs in frogs. Environ Toxicol Chem 2024;43:1557-1568. © 2024 SETAC.
Collapse
Affiliation(s)
- Ke-Lan Guan
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Chu-Hong Zhu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Peng Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Guo
- Guangdong University of Petrochemical Technology, Maoming, China
| | - Ke-Qi Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Hauser KA, Garvey CN, Popovic M, Grayfer L. Biology of amphibian granulocytes - From evolutionary pressures to functional consequences. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104623. [PMID: 36563918 DOI: 10.1016/j.dci.2022.104623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Granulocyte-lineage cells are important innate immune effectors across all vertebrates. Named for conspicuous secretory granules, granulocytes have historically been studied for their antimicrobial roles. Although versions of these cells are found in all vertebrate species examined to date, disparate environmental and physiological pressures acting on distinct vertebrate classes have shaped many of the facets dictating granulocyte biology. Immune pressures further determine granulopoietic constraints, ultimately governing granulocyte functions. For amphibians that inhabit pathogen-rich aquatic environments for some or all their lives, their unique granulocyte biologies satisfy many of their antimicrobial needs. Amphibians also occupy an intermediate position in the evolution of vertebrate immune systems, using combinations of primitive (e.g., subcapsular liver) and more recently evolved (e.g., bone marrow) tissue sites for hematopoiesis and specifically, granulopoiesis. The last decade of research has revealed vertebrate granulocytes in general, and amphibian granulocytes in particular, are more complex than originally assumed. With dynamic leukocyte phenotypes, granulocyte-lineage cells are being acknowledged for their multifaceted roles beyond immunity in other physiological processes. Here we provide an overview of granulopoiesis in amphibians, highlight key differences in these processes compared to higher vertebrates, and identify open questions.
Collapse
Affiliation(s)
- Kelsey A Hauser
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, United States
| | - Christina N Garvey
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, United States
| | - Milan Popovic
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, United States
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, United States.
| |
Collapse
|
4
|
BDE-47 Induces Immunotoxicity in RAW264.7 Macrophages through the Reactive Oxygen Species-Mediated Mitochondrial Apoptotic Pathway. Molecules 2023; 28:molecules28052036. [PMID: 36903282 PMCID: PMC10004313 DOI: 10.3390/molecules28052036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are classic and emerging pollutants that are potentially harmful to the human immune system. Research on their immunotoxicity and mechanisms suggests that they play an important role in the resulting pernicious effects of PBDEs. 2,2',4,4'-Tetrabrominated biphenyl ether (BDE-47) is the most biotoxic PBDE congener, and, in this study, we evaluated its toxicity toward RAW264.7 cells of mouse macrophages. The results show that exposure to BDE-47 led to a significant decrease in cell viability and a prominent increase in apoptosis. A decrease in mitochondrial membrane potential (MMP) and an increase in cytochrome C release and caspase cascade activation thus demonstrate that cell apoptosis induced by BDE-47 occurs via the mitochondrial pathway. In addition, BDE-47 inhibits phagocytosis in RAW264.7 cells, changes the related immune factor index, and causes immune function damage. Furthermore, we discovered a significant increase in the level of cellular reactive oxygen species (ROS), and the regulation of genes linked to oxidative stress was also demonstrated using transcriptome sequencing. The degree of apoptosis and immune function impairment caused by BDE-47 could be reversed after treatment with the antioxidant NAC and, conversely, exacerbated by treatment with the ROS-inducer BSO. These findings indicate that oxidative damage caused by BDE-47 is a critical event that leads to mitochondrial apoptosis in RAW264.7 macrophages, ultimately resulting in the suppression of immune function.
Collapse
|
5
|
Cary TL, Karasov WH. Larval Exposure to Polychlorinated Biphenyl-126 Led to a Long-Lasting Decrease in Immune Function in Postmetamorphic Juvenile Northern Leopard Frogs, Lithobates pipiens. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:81-94. [PMID: 34807990 DOI: 10.1002/etc.5233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Amphibian populations are decreasing worldwide, and pollution is a contributing factor. Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants known to exert immunotoxicity. To assess impacts of PCBs on frogs, we exposed Lithobates pipiens tadpoles to a diet of PCB-126 (0-5 ng PCB-126/g wet food) through metamorphic climax. Postmetamorphic frogs were immunized with keyhole limpet hemocyanin (KLH); then production of KLH-specific IgY, as well as total IgY and IgM, was measured (Trial I). A second larval study (0 and 7.3 ng PCB-126/g wet food) was performed to investigate whether PCB altered antigenic responses in prometamorphic tadpoles (Gosner Stage 36-39), and to measure the innate immune response of postmetamorphic frogs (Trial II). After larval PCB-126 exposure, both KLH-specific IgY levels and complement activity were reduced. Because postmetamorphic frogs carried a body burden of PCB-126 (2.4 ng/g or less), we wanted to determine whether the effect on immune response was due to larval exposure or to the resulting body burden as frogs. To test this, we reared tadpoles under control conditions (no PCB), and limited PCB exposure to postmetamorphosis only by injecting 2-week-old frogs with 10 ng PCB-126/g (Trial III). The resulting body burden (3.4 ng/g) was similar to that of frogs in Trial I, but we no longer detected suppression of KLH-specific IgY or hemolytic activity. These results suggest life-stage-specific immune responses; however, because we administered PCB-126 differently between trials, it is premature to conclude that these differences are intrinsically life stage dependent, and further study is warranted. Regardless, our study demonstrated a long-lasting effect of larval PCB-126 exposure that persisted through metamorphosis and suppressed frog immunity. Environ Toxicol Chem 2022;41:81-94. © 2021 SETAC.
Collapse
Affiliation(s)
- Tawnya L Cary
- Department of Zoology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biology, Beloit College, Beloit, Wisconsin, USA
| | - William H Karasov
- Department of Zoology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Forest & Wildlife Ecology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Wang J, Yan Z, Zheng X, Wang S, Fan J, Sun Q, Xu J, Men S. Health risk assessment and development of human health ambient water quality criteria for PBDEs in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149353. [PMID: 34364281 DOI: 10.1016/j.scitotenv.2021.149353] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are not only a class of highly efficient brominated flame retardants (BFRs) but also a class of typical persistent organic pollutants (POPs) that are persistent and widely distributed in various environmental media. This study examined the concentrations of PBDEs in five environmental media (water, soil, air, dust, and food) and two human body media (human milk and blood) in China from 2010 to 2020. In addition, this study conducted multi-pathway exposure health risk assessments of populations of different ages in urban, rural, key regions, and industrial factories using the Monte-Carlo simulation. Finally, the human health ambient water quality criteria (AWQC) of eight PBDEs were derived using Chinese exposure parameters and bioaccumulation factors (BAFs). The results showed that the eastern and southeastern coastal regions of China were heavily polluted by PBDEs, and the variation trends of the ΣPBDEs concentrations in the different exposure media were not consistent. PBDEs did not pose a risk to urban and rural residents in ordinary regions, but the hazard indexes (HIs) for residents in key regions and occupational workers exceeded the safety threshold. Dust exposure was the primary exposure pathway for urban and rural residents in ordinary regions, but for residents in key regions and occupational workers, dietary exposure was the primary exposure pathway. BDE-209 was found to be the most serious individual PBDE congener in China. The following human health AWQC values of the PBDEs were derived: drinking water exposure: 0.233-65.2 μg·L-1; and drinking water and aquatic products exposure: 8.51 × 10-4-1.10 μg·L-1.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qianhang Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiayun Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shuhui Men
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
7
|
Yahn JM, Karasov WH. The Effects of Dietary Polybrominated Diphenyl Ether Exposure and Rearing Temperature on Tadpole Growth, Development, and Their Underlying Processes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3181-3192. [PMID: 34500499 DOI: 10.1002/etc.5207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/05/2020] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Depression of growth rate due to polybrominated diphenyl ethers (PBDEs) has been documented in birds, mammals, amphibians, and fish at single temperatures. However, the underlying energetic mechanism for this effect and how it might change in relation to changing environmental temperature remain unstudied. We used a simple energy budget to address hypotheses regarding effects of PBDEs on tadpole (Lithobates pipiens) growth: that reductions in growth are linked to increased respiratory costs, reductions in digestive performance, differences in body composition, reductions in food intake, or a combination of these factors. From 18 days postfertilization (dpf) until 42 dpf, tadpoles were exposed dietarily to a pentabromodiphenyl ether mixture (DE-71TM ) at a concentration of 100 ng DE-71/g wet mass under a rearing temperature of either 22 or 27 °C. After 20 days of PBDE exposure, total PBDEs in tadpoles averaged 148.4 ng/g wet mass, with no differences by rearing temperature and approximately 50% higher than in their diet; controls not fed PBDE had levels <1 ng/g. Exposure to PBDE resulted in reductions in body length, mass, and development compared to controls, independent of rearing temperature; PBDE had no effect on measures of body composition, dry matter digestibility, or oxygen consumption. A simple energy budget using data from the present study revealed that a 10% decrease in feeding rate could explain the lower mass gain of tadpoles exposed to PBDE. Growth depression by PBDE could be due to (1) direct inhibition of growth processes by PBDE that indirectly decreases total energy demand and food intake, and (2) direct inhibition of food intake. Future studies to disentangle these possible pathways of PBDE effects are warranted. Environ Toxicol Chem 2021;40:3181-3192. © 2021 SETAC.
Collapse
|
8
|
Brown CT, Yahn JM, Karasov WH. Warmer temperature increases toxicokinetic elimination of PCBs and PBDEs in Northern leopard frog larvae (Lithobates pipiens). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105806. [PMID: 33819675 DOI: 10.1016/j.aquatox.2021.105806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 05/14/2023]
Abstract
We studied the temperature dependence of accumulation and elimination of two polychlorinated biphenyls (PCBs; PCB-70 and PCB-126) and a commercial mixture of congeners of polybrominated diphenyl ethers (PBDEs; DE-71™)) in Northern leopard frog (Lithobates pipiens) tadpoles. We reared tadpoles at 18, 23, or 27 °C for 5.3 or up to 13.6 weeks (longer at cooler temperature where development is slower) on diets containing the toxicants, each at several different toxicant concentrations, and compared tissue concentrations as a function of food concentration and rearing temperature. Following > 1 month of accumulation, tissue concentrations of all three toxicants in exposed tadpoles were linearly related to dietary concentrations as expected for first order kinetics, with no significant effect of rearing temperature.We also raised free-swimming L. pipiens tadpoles for 14 days on foods containing either toxicant at 18 or 27 °C during an accumulation phase, and then during depuration (declining toxicant) phase of 14 days we provided food without toxicants and measured the decline of toxicants in tadpole tissue. All the congeners were eliminated faster at warmer rearing temperature, as expected. Using Arrhenius' equation, we calculated that the apparent activation energy for elimination of both PCB congeners by tadpoles was 1.21 eV (95% confidence interval 0.6-1.8 eV). We discuss how this value was within the range of estimates for metabolic reactions generally (range 0.2 - 1.2 eV), which might include metabolic pathways for biotransformation and elimination of PCBs. Furthermore, we discuss how the lack of an effect of rearing temperature on tadpole near-steady-state tissue residue levels suggests that faster elimination at the warmer temperature was balanced by faster uptake, which is plausible considering the similar temperature sensitivities (i.e., activation energies) of all these processes. Although interactions between toxicants and temperature can be complex and likely toxicant-dependent, it is plausible that patterns observed in tadpoles might apply to other aquatic organisms. Published data on depuration in 11 fish species eliminating 8 other organic toxicants indicated that they also had similar apparent activation energy for elimination (0.82 ± 0.12 eV; 95% confidence interval 0.56 - 1.08 eV), even though none of those studied toxicants were PCBs or PBDEs. Additional research on toxicant-temperature interactions can help improve our ability to predict toxicant bioaccumulation in warming climate scenarios.
Collapse
Affiliation(s)
- Cherry T Brown
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jeremiah M Yahn
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
9
|
Brown SR, Flynn RW, Hoverman JT. Perfluoroalkyl Substances Increase Susceptibility of Northern Leopard Frog Tadpoles to Trematode Infection. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:689-694. [PMID: 31995841 DOI: 10.1002/etc.4678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/23/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Per/polyfluoroalkyl substances (PFAS) are contaminants of emerging concern that can impair immune function, yet few studies have tested whether exposure increases infection risk. Using laboratory experiments, we found that exposure to 10 ppb of perfluorohexanesulfonic acid increased trematode (Echinoparyphium lineage 3) infections in larval northern leopard frogs (Lithobates pipiens). However, there was no effect of perfluorooctanesulfonic acid. Our results demonstrate that PFAS can potentially enhance infection risk in natural systems. Environ Toxicol Chem 2021;40:689-694. © 2020 SETAC.
Collapse
Affiliation(s)
- Sophia R Brown
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - R Wesley Flynn
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
10
|
Liu Y, Luo X, Zeng Y, Wang Q, Tu W, Yang C, Mai B. Trophic Magnification of Short- and Medium-Chain Chlorinated Paraffins in Terrestrial Food Webs and Their Bioamplification in Insects and Amphibians during Metamorphosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11282-11291. [PMID: 32822158 DOI: 10.1021/acs.est.0c03096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Studies on the biomagnification of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in terrestrial ecosystems and their bioamplification during metamorphosis in insects and amphibians are scarce. Therefore, this study sought to characterize the occurrence and trophic dynamics of SCCPs and MCCPs in an insect-dominated terrestrial food web in an e-waste recycling site in South China. Median ∑SCCPs and ∑MCCPs concentrations in the organisms ranged from 2200 to 34 000 ng/g lipid weight and from 990 to 19 000 ng/g lipid weight, respectively. The homologue profiles of CPs in the predators were distinct from those in insects, presenting more short chain-high chlorinated congeners (C10-12Cl8-10). The trophic magnification factors (TMFs) of ∑SCCPs and ∑MCCPs were 2.08 and 2.45, respectively, indicating biomagnification in the terrestrial food web. A significant positive relationship between the TMFs and octanol-air partition coefficients was observed. TMFs were also positively correlated with chlorination degree but did not correlate with carbon chain length. Nonlinear correlations between metamorphosis-associated bioamplification and the octanol-water partition coefficients of SCCPs and MCCPs were observed for insects, whereas negative linear correlations were observed for amphibians, which suggested species-specific alterations to the chemicals during metamorphosis.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanghong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Chunyan Yang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
11
|
Brannelly LA, Ohmer MEB, Saenz V, Richards‐Zawacki CL. Effects of hydroperiod on growth, development, survival and immune defences in a temperate amphibian. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura A. Brannelly
- Department of Biological Sciences, Dietrich School of Arts and Sciences University of Pittsburgh Pittsburgh PA USA
| | - Michel E. B. Ohmer
- Department of Biological Sciences, Dietrich School of Arts and Sciences University of Pittsburgh Pittsburgh PA USA
| | - Veronica Saenz
- Department of Biological Sciences, Dietrich School of Arts and Sciences University of Pittsburgh Pittsburgh PA USA
| | - Corinne L. Richards‐Zawacki
- Department of Biological Sciences, Dietrich School of Arts and Sciences University of Pittsburgh Pittsburgh PA USA
| |
Collapse
|
12
|
|
13
|
Thornton LM, Path EM, Nystrom GS, Venables BJ, Sellin Jeffries MK. Embryo-larval BDE-47 exposure causes decreased pathogen resistance in adult male fathead minnows (Pimephales promelas). FISH & SHELLFISH IMMUNOLOGY 2018; 80:80-87. [PMID: 29859315 DOI: 10.1016/j.fsi.2018.05.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Exposures to polybrominated diphenyl ethers (PBDEs) have been shown to alter immune function in adult organisms across a variety of taxa. However, few if any studies have investigated the long-term consequences of early life stage PBDE exposures on immune function in fish. This study sought to determine the effects of early life stage BDE-47 exposure on pathogen resistance in the fathead minnow (Pimephales promelas) following an extended depuration period (≥180 d). Minnows were exposed to BDE-47 via a combination of maternal transfer and diet through 34 days post fertilization (dpf), raised to adulthood (>215 dpf) on a clean diet, then subjected to pathogen resistance trials. Early life stage exposures to BDE-47 did not affect the ability of females to survive from Yersinia ruckeri infection. However, the survival of BDE-47 exposed males was significantly reduced relative to controls, indicating that developmental exposures to BDE-47 altered male immunity. Because BDE-47 is a known thyroid hormone disruptor and thyroid hormone disruptors have the potential to adversely impact immune development and function, metrics indicative of thyroid disruption were evaluated, as were immune parameters known to be altered in response to thyroid disruption. BDE-47 exposed minnows exhibited signs of thyroid disruption (i.e., reduced growth); however, no alterations were observed in immune parameters known to be influenced by thyroid hormones (i.e., thymus size, expression of genes associated with lymphoid development) suggesting that the observed alterations in immunocompetence may occur through alternative mechanisms. Regardless of the mechanisms responsible, the results of this study demonstrate the potential for early life stage PBDE exposures to adversely impact immunity and illustrate that the immunological consequences of PBDE exposures are sex dependent.
Collapse
Affiliation(s)
- Leah M Thornton
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Elise M Path
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Gunnar S Nystrom
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Barney J Venables
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | | |
Collapse
|
14
|
Gallant MJ, Hogan NS. Developmental expression profiles and thyroidal regulation of cytokines during metamorphosis in the amphibian Xenopus laevis. Gen Comp Endocrinol 2018; 263:62-71. [PMID: 29656046 DOI: 10.1016/j.ygcen.2018.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/09/2018] [Accepted: 04/03/2018] [Indexed: 11/21/2022]
Abstract
Early life-stages of amphibians rely on the innate immune system for defense against pathogens. While thyroid hormones (TH) are critical for metamorphosis and later development of the adaptive immune system, the role of TH in innate immune system development is less clear. An integral part of the innate immune response are pro-inflammatory cytokines - effector molecules that allow communication between components of the immune system. The objective of this study was to characterize the expression of key pro-inflammatory cytokines, tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β) and interferon-γ (IFN-γ), throughout amphibian development and determine the impacts of thyroidal modulation on their expression. Xenopus laevis were sampled at various stages of development encompassing early embryogenesis to late prometamorphosis and cytokine expression was measured by real-time PCR. Expression of TNFα and IL-1β were transient over development, increasing with developmental stage, while IFN-γ remained relatively stable. Functionally athyroid, premetamorphic tadpoles were exposed to thyroxine (0.5 and 2 μg/L) or sodium perchlorate (125 and 500 μg/L) for seven days. Tadpoles demonstrated characteristic responses of advanced development with thyroxine exposure and delayed development (although to a lesser extent) and increased thyroid gland area and follicular cell height with sodium perchlorate exposure. Exposure to thyroxine for two days resulted in decreased expression of IL-1β in tadpole trunks. Sodium perchlorate had negligible effects on cytokine expression. Overall, these results demonstrate that cytokine transcript levels vary with stage of tadpole development but that their ontogenic regulation is not likely exclusively influenced by thyroid status. Understanding the direct and indirect effects of altered hormone status may provide insight into potential mechanisms of altered immune function during amphibian development.
Collapse
Affiliation(s)
- Melanie J Gallant
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Natacha S Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada.
| |
Collapse
|
15
|
Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Aldrich A, Berg C, Ortiz-Santaliestra M, Weir S, Streissl F, Smith RH. Scientific Opinion on the state of the science on pesticide risk assessment for amphibians and reptiles. EFSA J 2018; 16:e05125. [PMID: 32625798 PMCID: PMC7009658 DOI: 10.2903/j.efsa.2018.5125] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Following a request from EFSA, the Panel on Plant Protection Products and their Residues developed an opinion on the science to support the potential development of a risk assessment scheme of plant protection products for amphibians and reptiles. The coverage of the risk to amphibians and reptiles by current risk assessments for other vertebrate groups was investigated. Available test methods and exposure models were reviewed with regard to their applicability to amphibians and reptiles. Proposals were made for specific protection goals aiming to protect important ecosystem services and taking into consideration the regulatory framework and existing protection goals for other vertebrates. Uncertainties, knowledge gaps and research needs were highlighted.
Collapse
|
16
|
Cramp RL, Franklin CE. Exploring the link between ultraviolet B radiation and immune function in amphibians: implications for emerging infectious diseases. CONSERVATION PHYSIOLOGY 2018; 6:coy035. [PMID: 29992023 PMCID: PMC6022628 DOI: 10.1093/conphys/coy035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/27/2018] [Accepted: 06/07/2018] [Indexed: 05/07/2023]
Abstract
Amphibian populations the world over are under threat of extinction, with as many as 40% of assessed species listed as threatened under IUCN Red List criteria (a significantly higher proportion than other vertebrate group). Amongst the key threats to amphibian species is the emergence of novel infectious diseases, which have been implicated in the catastrophic amphibian population declines and extinctions seen in many parts of the world. The recent emergence of these diseases coincides with increased ambient levels of ultraviolet B radiation (UVBR) due to anthropogenic thinning of the Earth's protective ozone layer, raising questions about potential interactions between UVBR exposure and disease in amphibians. While reasonably well documented in other vertebrate groups (particularly mammals), the immunosuppressive capacity of UVBR and the potential for it to influence disease outcomes has been largely overlooked in amphibians. Herein, we review the evidence for UVBR-associated immune system disruption in amphibians and identify a number of direct and indirect pathways through which UVBR may influence immune function and disease susceptibility in amphibians. By exploring the physiological mechanisms through which UVBR may affect host immune function, we demonstrate how ambient UVBR could increase amphibian susceptibility to disease. We conclude by discussing the potential implications of elevated UVBR for inter and intraspecific differences in disease dynamics and discuss how future research in this field may be directed to improve our understanding of the role that UVBR plays in amphibian immune function.
Collapse
Affiliation(s)
- Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Goddard Building (8), St Lucia, Queensland, Australia
- Corresponding author: School of Biological Sciences, The University of Queensland, Goddard Building (8), St Lucia, Queensland 4072, Australia.
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Goddard Building (8), St Lucia, Queensland, Australia
| |
Collapse
|
17
|
Bókony V, Mikó Z, Móricz ÁM, Krüzselyi D, Hettyey A. Chronic exposure to a glyphosate-based herbicide makes toad larvae more toxic. Proc Biol Sci 2017; 284:20170493. [PMID: 28679726 PMCID: PMC5524492 DOI: 10.1098/rspb.2017.0493] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/01/2017] [Indexed: 01/18/2023] Open
Abstract
Chemical pollutants can exert various sublethal effects on wildlife, leading to complex fitness consequences. Many animals use defensive chemicals as protection from predators and diseases, yet the effects of chemical contaminants on this important fitness component are poorly known. Understanding such effects is especially relevant for amphibians, the globally most threatened group of vertebrates, because they are particularly vulnerable to chemical pollution. We conducted two experiments to investigate how exposure to glyphosate-based herbicides, the most widespread agrochemicals worldwide, affects the production of bufadienolides, the main compounds of chemical defence in common toads (Bufo bufo). In both experiments, herbicide exposure increased the amount of bufadienolides in toad tadpoles. In the laboratory, individuals exposed to 4 mg a.e./L glyphosate throughout their larval development had higher bufadienolide content at metamorphosis than non-exposed tadpoles, whereas exposure for 9 days to the same concentration or to 2 mg a.e./L throughout larval development or for 9 days had no detectable effect. In outdoor mesocosms, tadpoles from 16 populations exhibited elevated bufadienolide content after three-weeks exposure to both concentrations of the herbicide. These results show that pesticide exposure can have unexpected effects on non-target organisms, with potential consequences for the conservation management of toxin-producing species and their predators.
Collapse
Affiliation(s)
- Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary
| | - Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary
| | - Ágnes M Móricz
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary
| | - Dániel Krüzselyi
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary
| |
Collapse
|
18
|
Freitas MB, Brown CT, Karasov WH. Warmer temperature modifies effects of polybrominated diphenyl ethers on hormone profiles in leopard frog tadpoles (Lithobates pipiens). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:120-127. [PMID: 27228472 DOI: 10.1002/etc.3506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/17/2015] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Amphibian populations have been declining, and climate change and exposure to environmental contaminants are thought to be involved. Higher water temperature accelerates larval development; however, its combined effects with contaminants and their influence on hormones during metamorphosis are poorly understood. The authors investigated changes in whole-body triiodothyronine (T3) and corticosterone concentrations in developing leopard frogs reared at 23 °C and 28 °C on diets with 0 ng g-1 , 6 ng g-1 , and 37 ng g-1 of a technical mixture of polybrominated diphenyl ethers (PBDE; DE-71) from 10 d to 44 d (premetamorphosis to late climax; Gosner Stages 28 to 46). Unlike controls, PBDE-exposed tadpoles (6 ng g-1 ) reared at 23 °C failed to show any increase in T3 concentrations throughout metamorphosis, and exposed tadpoles reared at 28 °C showed a lower peak at climax compared to controls. Corticosterone levels progressively increased throughout metamorphosis, but the levels were higher in PBDE-exposed tadpoles compared to controls at both temperatures. At the warmer temperature, corticosterone increase occurred earlier (at early climax) in controls and exposed tadpoles compared to tadpoles reared at the cooler temperature (late climax), coinciding with the faster development observed at 28 °C. Tadpoles reared at 28 °C were longer and developed faster than tadpoles reared at 23 °C. At both temperatures, PBDE exposure decreased T3 and increased corticosterone concentrations, which can potentially impair developing tadpoles. Environ Toxicol Chem 2017;36:120-127. © 2016 SETAC.
Collapse
Affiliation(s)
- Mariella B Freitas
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cherry T Brown
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Fort DJ, Mathis M, Fort CE, Fort HM, Fort TD, Linzey DW, Bacon JP. Splenic immunotoxicity in developing cane toads (Rhinella marina) from Bermuda. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2604-2612. [PMID: 26991249 DOI: 10.1002/etc.3431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/28/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
The impacts of contaminated sediment from 2 ponds in Bermuda on immune function in newly metamorphosed cane toads were examined. In the present study, a partial life-cycle experiment exposing Gosner stage 20 cane toad tadpoles to pond sediment and laboratory culture water through metamorphosis and into a juvenile state was performed. A basic immunology battery, including general necropsy, spleen somatic index, spleen white pulp content, splenocyte tissue density, and splenocyte viability, was conducted in newly metamorphosed Rhinella marina exposed to Bermuda freshwater sediment and baseline specimens collected from 2 separate populations in south Texas and south Florida, USA. Immune function was evaluated using a lymphocyte proliferation assay with subset specimens infected with Mycobacterium chelonae. In the Bermuda population exposed to pond sediment, splenocyte tissue density was markedly lower and lymphocyte proliferation substantially less relative to cohorts exposed to control sediment and to the North American populations. Considerable increases in spleen weight and liver and spleen lesions related to M. chelonae infection were recorded in challenged Bermuda R. marina compared with unchallenged specimens. Overall, immune function in Bermuda R. marina was compromised compared with North American mainland R. marina regardless of treatment but more dramatically in specimens exposed to Bermuda pond sediments. Environ Toxicol Chem 2016;35:2604-2612. © 2016 SETAC.
Collapse
Affiliation(s)
- Douglas J Fort
- Fort Environmental Laboratories, Stillwater, Oklahoma, USA.
| | - Michael Mathis
- Fort Environmental Laboratories, Stillwater, Oklahoma, USA
| | - Chelsea E Fort
- Fort Environmental Laboratories, Stillwater, Oklahoma, USA
| | - Hayley M Fort
- Fort Environmental Laboratories, Stillwater, Oklahoma, USA
| | - Troy D Fort
- Fort Environmental Laboratories, Stillwater, Oklahoma, USA
| | - Donald W Linzey
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, USA
| | | |
Collapse
|
20
|
Feng Y, Zeng W, Wang Y, Shen H, Wang Y. Long-term exposure to high levels of decabrominated diphenyl ether inhibits CD4 T-cell functions in C57Bl/6 mice. J Appl Toxicol 2015; 36:1112-9. [PMID: 26682527 DOI: 10.1002/jat.3270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/09/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022]
Abstract
In recent years, the adverse health effects of decabrominated diphenyl ether (BDE-209) have raised more concerns as a growing number of studies reported its persistence in the environment and abundance in the human population, especially in occupational environmental compartments and exposed personnel. This study applies our previous animal model simulating occupational exposure to BDE-209 to investigate its potential adverse effects on CD4 T cells. Female C57Bl/6 mice were orally gavaged with BDE-209 at a dose of 800 mg kg(-1) every 2 days for 10 months and the blood of each mouse was collected for analysis. Kinetic changes of the peripheral immune system were investigated from 1 to 5 months of exposure. The chronic effects on cytokine production, proliferation and the antigen-specific responses of CD4 T cells were evaluated at 7, 9 and 10 months, respectively. The results have shown that impaired proliferation and cytokine (IFN-γ, IL-2 or TNF-α) production of CD4 T cells were observed in BDE-209-exposed mice, accompanied by increased T regulatory cells in the blood. BDE-209 exposure in vitro also suppressed the reactivity of CD4 T cells at concentrations of 0.01, 0.1, 1 and 10 μM. Furthermore, we observed weaker antigen-specific CD4 T-cell responses to Listeria monocytogenes infection in the mice exposed to BDE-209, suggesting decreased resistance to exogenous pathogens. Taken together, these observations indicate an impaired cellular immunity after long-term and relative high-dose exposure to BDE-209 in adult mice. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yan Feng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weihong Zeng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hao Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Wang
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
21
|
Arkoosh MR, Van Gaest AL, Strickland SA, Hutchinson GP, Krupkin AB, Dietrich JP. Dietary Exposure to Individual Polybrominated Diphenyl Ether Congeners BDE-47 and BDE-99 Alters Innate Immunity and Disease Susceptibility in Juvenile Chinook Salmon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6974-6981. [PMID: 25938634 DOI: 10.1021/acs.est.5b01076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), used as commercial flame-retardants, are bioaccumulating in threatened Pacific salmon. However, little is known of PBDE effects on critical physiological functions required for optimal health and survival. BDE-47 and BDE-99 are the predominant PBDE congeners found in Chinook salmon collected from the Pacific Northwest. In the present study, both innate immunity (phagocytosis and production of superoxide anion) and pathogen challenge were used to evaluate health and survival in groups of juvenile Chinook salmon exposed orally to either BDE-47 or BDE-99 at environmentally relevant concentrations. Head kidney macrophages from Chinook salmon exposed to BDE-99, but not those exposed to BDE-47, were found to have a reduced ability in vitro to engulf foreign particles. However, both congeners increased the in vitro production of superoxide anion in head kidney macrophages. Salmon exposed to either congener had reduced survival during challenge with the pathogenic marine bacteria Listonella anguillarum. The concentration response curves generated for these end points were nonmonotonic and demonstrated a requirement for using multiple environmentally relevant PBDE concentrations for effect studies. Consequently, predicting risk from toxicity reference values traditionally generated with monotonic concentration responses may underestimate PBDE effect on critical physiological functions required for optimal health and survival in salmon.
Collapse
|
22
|
Kohl KD, Cary TL, Karasov WH, Dearing MD. Larval exposure to polychlorinated biphenyl 126 (PCB-126) causes persistent alteration of the amphibian gut microbiota. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1113-8. [PMID: 25651416 DOI: 10.1002/etc.2905] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 12/23/2014] [Accepted: 01/20/2015] [Indexed: 05/20/2023]
Abstract
Interactions between gut microbes and anthropogenic pollutants have been under study. The authors investigated the effects of larval exposure to polychlorinated biphenyl 126 (PCB-126) on the gut microbial communities of tadpoles and frogs. Frogs treated with PCBs exhibited increased species richness in the gut and harbored communities significantly enriched in Fusobacteria. These results suggest that anthropogenic pollutants alter gut microbial populations, which may have health and fitness consequences for hosts.
Collapse
Affiliation(s)
- Kevin D Kohl
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
23
|
Route WT, Dykstra CR, Rasmussen PW, Key RL, Meyer MW, Mathew J. Patterns and trends in brominated flame retardants in bald eagle nestlings from the upper midwestern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12516-24. [PMID: 25272197 DOI: 10.1021/es501859a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report on patterns and trends in polybrominated diphenyl ethers (PBDEs) in the plasma of 284 bald eagle nestlings sampled between 1995 and 2011 at six study areas in the upper Midwestern United States. Geometric mean concentrations of total PBDEs (Σ of nine congeners) ranged from 1.78 ng/mL in the upper St. Croix River watershed to 12.0 ng/mL on the Mississippi River. Lake Superior nestlings fell between these two extremes. Between 2006 and 2011, trends differed among study areas with three declining, two remaining stable, and one increasing. Variation in ΣPBDE trends among study areas was linked to trends in individual congeners. The lower brominated PBDEs (BDE-47, -99, and -100) declined 4-10% while the higher brominated congeners (BDE-153 and -154) increased by about 7.0% annually from 2006 to 2011. This increase was the greatest in nestlings from the St. Croix River and below its confluence with the Mississippi River. Region-wide, our data suggest ΣPBDEs increased in bald eagle nestlings from 1995 through the mid-2000s and then declined by 5.5% annually from 2006 to 2011. These regional trends are consistent with the removal of penta- and octa-PBDEs from the global market.
Collapse
Affiliation(s)
- William T Route
- U.S. National Park Service , Great Lakes Inventory and Monitoring Network, Ashland, Wisconsin 54806, United States
| | | | | | | | | | | |
Collapse
|