1
|
Yin H, Yao H, Meng B, Lin CJ, Yuan W, Yin R, Li P, Chen C, Pu Q, Zhang K, Sun G, Zhang H, Feng X. Sources and Transformation of Methylmercury in Paddy Water: Insights from Mercury Isotopes Collected by Diffusive Gradients in Thin Films. Anal Chem 2025; 97:9183-9191. [PMID: 40258263 DOI: 10.1021/acs.analchem.4c06132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Despite concerns about methylmercury (MeHg) contamination in rice, the sources and transformation mechanisms of MeHg within paddy field water, the primary source of MeHg in rice, remain unclear. Determination of the isotopic composition of MeHg in paddy water is crucial to clarify these processes. However, there is a lack of sampling and analytical methods for quantifying MeHg isotopes in water samples. In this study, we use diffusive gradients in thin films (DGT) in situ to collect MeHg from paddy water to determine the concentration of MeHg and the associated isotopic composition. This technique enables high collection efficiency of aqueous MeHg with limited Hg isotope mass-dependent fractionation (∼- 0.2‰ δ202Hg) and mass-independent fractionation (<0.1‰ Δ199Hg). Field applications using the developed DGT method suggest that in situ methylation of soluble Hg(II) drives the generation of MeHg in paddy water. MeHg in overlying water exhibits a Δ199Hg/Δ201Hg ratio of 1.07 ± 0.09, indicating significant photoreduction of aqueous Hg(II) before methylation. The absence of photodemethylation Δ199Hg/Δ201Hg ratio (∼1.36) suggests limited MeHg demethylation in the overlying water. This study provides insights into the sources and transformation of MeHg in rice paddies and helps develop mitigation strategies to reduce MeHg exposure through rice consumption.
Collapse
Affiliation(s)
- Hongqian Yin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Heng Yao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Department of Mechanical Engineering, University of West Florida Pensacola, Pensacola, Florida 32514, United States
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chaoyue Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kun Zhang
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China
| | - Guangyi Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Luo K, Yuan W, Lu Z, Xiong Z, Huang JH, Wang X, Feng X. Riverine songbirds capture high levels of atmospheric mercury pollution from brown food webs in forests by mercury isotopic evidence. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137347. [PMID: 39869980 DOI: 10.1016/j.jhazmat.2025.137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Elevated methylmercury (MeHg) exposure poses significant risks to bird health, behavior, and reproduction. Still, the risk of MeHg exposure to forest birds, accounting for over 80 % of the world's bird species, is poorly understood. This study combines Hg isotopes and video analysis, aiming to assess MeHg exposure risks to a forest riverine songbird, the spotted forktail (Enicurus maculatus) from a remote subtropical montane forest. Noticeably, 83 % of feather MeHg concentrations of adult forktails exceeded 5000 ng g-1, a threshold level potentially impacting bird reproduction, and 50 % of feather MeHg concentrations in forktail nestlings exceeded the threshold level of 1000 ng g-1, that potentially impacts the nestling growth. Forktail nestlings ingested ∼ 99 % of their MeHg from prey within brown food webs (i.e., from forest floor, aquatic, and emergent aquatic prey). The Hg isotopes reveal that MeHg along the bird food chain is mostly derived from in situ methylation of litterfall deposited atmospheric Hg0, with limited photo-demethylation (i.e., 4-12 %) in shaded forest environments. The risk of MeHg exposure of forest songbirds correlated positively with the proportion of prey consumed from brown food webs. We recommend incorporating resident riverine songbirds in monitoring programs to better evaluate the effectiveness of the Minamata Convention, especially in remote forest ecosystems where in situ MeHg production may be underestimated.
Collapse
Affiliation(s)
- Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Zichun Xiong
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Kim YG, Yoon JW, Kang S, Shin KH, Hyun JH, Ra K, Kim JH, Kwon SY. Impacts of dam construction on mercury methylation and bioaccumulation revealed by stable isotopes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125970. [PMID: 40043877 DOI: 10.1016/j.envpol.2025.125970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Impacts of dam construction on mercury (Hg) sources, biogeochemical cycling, and bioaccumulation were investigated along the west coast of Korea, where large-scale national projects were initiated between 1978 and 1990 to build dam or weir at the interface between rivers and estuaries. Total Hg (THg) and methylmercury (MeHg) concentrations and Hg stable isotopes in estuarine sediment cores sampled downstream of dam/weir reveal 74 ± 3% reduction in THg, 536 ± 158% increase in MeHg, and shifts in Hg sources from riverine export to wet deposition (precipitation) as revealed by increases in Δ199Hg (by 0.13 ± 0.03‰) and Δ200Hg (by 0.10 ± 0.01‰). Stable carbon isotopes, n-alkanes, and four geochemical pools of Hg extracted from the sediment cores show enhanced proportion of labile (F1; 0.28 ± 0.21% points) and organically-bound (F2; 34 ± 12% points) Hg fractions and the ratio of marine-based organic matter relative to recalcitrant Hg bound to terrestrial organic matter at the downstream estuary. Dam/weir constructions have significant effects on Hg bioavailability and methylation, by enhancing the proportion of dissolved Hg delivered by precipitation and those subject to efficient assimilation by marine algae and microbial utilization. This is evident by the negative δ202Hg shifts in the sediment cores at the depths of MeHg peaks. Cessation of riverine Hg input is manifested by 96% reduction of THg in shellfish and enhanced methylation appears to cause 106% increase in fish THg at the downstream estuarine ecosystem. This study underscores the importance of considering complex and long-term biogeochemical modifications as a part of Environmental Impact Assessments.
Collapse
Affiliation(s)
- Young-Gwang Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ji Won Yoon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sujin Kang
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jung-Ho Hyun
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kongtae Ra
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea; Department of Ocean Science (Oceanography), KIOST School, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jung-Hyun Kim
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
4
|
Vecchio MA, Abou-Zeid L, Suàrez-Criado L, Vandermeiren M, Grotti M, Vanhaecke F. Enhanced insight into the biogeochemical cycle of Hg in the Antarctic marine environment of Terra Nova Bay via isotopic analysis. CHEMOSPHERE 2025; 373:144157. [PMID: 39884140 DOI: 10.1016/j.chemosphere.2025.144157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Mercury (Hg) is a globally significant pollutant, which is particularly concerning due to its ability to undergo long-range atmospheric transport and its bioaccumulation and biomagnification in marine ecosystems, even in remote regions like Antarctica. This study explores the biogeochemical cycling of Hg in the marine coastal environment of Terra Nova Bay (Antarctica) by determining the total content of mercury (THg) and its isotopic composition in fish (Trematomus bernacchii), bivalve molluscs (Adamussium colbecki) and sediment samples, collected in 1996-1998 and 2021. Significantly lower THg concentrations are found in the organisms sampled in 2021 compared to those sampled in 1996-1998, with a concurrent shift toward higher δ202Hg (governed by mass-dependent isotope fractionation MDF) and lower Δ199Hg and Δ201Hg (governed by mass-independent isotope fractionation MIF) values. These results suggest changes in the exposure to Hg and the photochemical processes that the element and its species undergo, likely influenced by differences in the environmental conditions during the sampling periods, such as light exposure and ice cover. Sex-specific analysis of the 2021 fish samples further suggests differences in Hg accumulation and both MDF and MIF isotopic patterns between male and female specimens, emphasising a potential effect of sex on Hg exposure and dynamics. However, due to the limited number of individuals analyzed and the pooling of samples, this sex differentiation is still preliminary. Finally, the linear increase of Δ199Hg as a function of Δ201Hg during trophic transfer suggests MeHg bioaccumulation along the food chain. These findings provide valuable insights into the biogeochemical cycling of Hg in the Antarctic coastal marine environment and underscore the need for ongoing monitoring of Hg (including isotopic analysis) in this fragile ecosystem.
Collapse
Affiliation(s)
- Maria Alessia Vecchio
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy; Atomic & Mass Spectrometry - A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Lana Abou-Zeid
- Atomic & Mass Spectrometry - A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Laura Suàrez-Criado
- Atomic & Mass Spectrometry - A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Mathias Vandermeiren
- Atomic & Mass Spectrometry - A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Marco Grotti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry - A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| |
Collapse
|
5
|
Zhang L, Dai Q, Liu H, Li Y, Yin Y, Liu G, Dai P, Cao X, Zhang J, Cai Y. Probing methylmercury photodegradation by different fractions of natural organic matter in water: Degradation kinetics and mercury isotope fractionation characteristics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125563. [PMID: 39709054 DOI: 10.1016/j.envpol.2024.125563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Recent advancements in mercury (Hg) isotopic fractionation research have evolved from conceptual demonstrations to practical applications. However, few studies have focused on revealing fractionation fingerprinting for aqueous methylmercury (MeHg) photodegradation due to its sensitivity to natural organic matter (NOM). Here, the impact of NOM fractions with varying chemical properties on MeHg photodegradation kinetics and Hg isotope fractionation characteristics was investigated. Findings reveal that reduced NOM, containing alcohol/phenol groups, slows the degradation rate compared to the oxidized. Low-molecular-weight NOM, rich in thiol groups, enhances the degradation rate more effectively than high-molecular-weight counterparts. Hydrophilic/hydrophobic-acidic/basic NOM also significantly influence the rate constant, with the highest for hydrophilic-acidic NOM. Isotopic analysis showed that NOM's redox properties affect the extent and direction of Hg isotope fractionation. NOM with various molecular weights controls mass-dependent and mass-independent fractionation by regulating MeHg-NOM triplet radical pairs reactions, likely due to differences in functional groups. Similar effects were observed for different hydrophilic/hydrophobic-acidic/basic fractions. Further experiments with scavenger addition indicated that direct photodegradation of MeHg-NOM is a possible degradation mechanism, with free radicals/reactive oxygen species playing a minor role. These findings underscore the sensitivity of both the degradation rates and Hg isotope fingerprinting to different NOM fractions.
Collapse
Affiliation(s)
- Lian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Qingliang Dai
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guangliang Liu
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Peng Dai
- Department of Environmental Engineering and Earth Sciences, Clemson University, South Carolina, 29631, United States
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yong Cai
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Department of Chemistry & Biochemistry, Florida International University, Miami, FL, 33199, United States.
| |
Collapse
|
6
|
Wang D, Lin X, Wu G, Xu Z, Liu J, Xu X, Jia D, Liang L, Habibullah-Al-Mamun M, Qiu G. Synchronous changes in mercury stable isotopes and compound-specific amino acid nitrogen isotopes in organisms through food chains. ENVIRONMENT INTERNATIONAL 2025; 196:109327. [PMID: 39952203 DOI: 10.1016/j.envint.2025.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The relationship between stable isotope of mercury (Hg, Δ199Hg and δ202Hg) and compound-specific nitrogen isotope of amino acids (CSIA-AA, δ15NGlu and δ15NPhe) remains poorly understood. In this study, we investigated bird species and their prey in an abandoned Hg mining area, southern China to elucidate these correlations for a better understanding of Hg sources, biological transfer, accumulation and amplification through food chains. Our findings revealed distinct isotopic patterns: Δ199Hg showed a positive correlation with δ15NGlu, indicating trophic transfer processes, while a negative correlation with δ15NPhe suggested differences in Hg sources among birds. The wide ranges of δ15NPhe and Δ199Hg observed in birds appear to reflect mixtures of multiple nitrogen and Hg sources, likely due to their diverse food sources and the large variation in the proportion of MeHg in total Hg (MeHg%). The consistent slope between Δ199Hg/δ15Nphe and MeHg%/δ15Nphe, reflecting both energy and Hg sources, provides new insights into the biotransfer and accumulation of Hg in organisms. Notably, the trophic magnification factor (TMF) of MeHg observed in water birds, such as egrets, reached an exceptionally high value of 97.7 estimated from CSIA of multiple amino acids (i.e., TMFM), underscoring the significance of investigating Hg sources in birds. Our results demonstrate that the synchronous changes between CSIA-AA and odd Hg isotopes effectively identify Hg sources and transfer across multiple ecological systems.
Collapse
Affiliation(s)
- Dawei Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China; University of Chinese Academy of Sciences, Beijing 100049 China
| | - Xiaoyuan Lin
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007 China
| | - Gaoen Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228 China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China
| | - Jiemin Liu
- Guizhou Provincial People's Hospital, Guiyang 550002 China
| | - Xiaohang Xu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025 China
| | - Dongya Jia
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025 China
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025 China
| | - Md Habibullah-Al-Mamun
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000 Bangladesh
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China.
| |
Collapse
|
7
|
Besnard L, Ra K, Kim YG, Lepoint G, Jung S, Kwon SY. Bivalves as a Mercury Bioindicator: A National Isotopic Survey along the Coast of South Korea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1745-1755. [PMID: 39818755 DOI: 10.1021/acs.est.4c03788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Mercury (Hg) is a contaminant that poses health risks for human populations relying on seafood consumption. To mitigate its impact, identifying and monitoring Hg sources have become priorities, notably under the Minamata Convention. Bivalves are commonly used as sentinels in contaminant biomonitoring but can accumulate Hg from diverse environmental media. To investigate their Hg sources, bivalves (blue mussel, Mytilus edulis, and Pacific oyster, Crassostrea gigas) and their associated sediment were sampled along the coast of South Korea and analyzed for Hg concentration and isotopic values. Oysters displayed low Δ199Hg (0.19 ± 0.19‰) and δ202Hg (-0.35 ± 0.55‰), highlighting a sedimentary source, whereas mussels exhibited higher values (0.72 ± 0.87 and 0.09 ± 0.72‰, respectively) indicating bioaccumulation from the water column. Sulfur, carbon, and nitrogen stable isotopes suggested that such a difference was not due to feeding niches. However, Hg isotopic trajectory analysis showed that environmental conditions controlling the desorption and remobilization of sediment Hg, notably via tidal flows, were likely to drive the observed source(s). While sediment Hg is not systematically reflected in biota, bivalves, which typically display Hg pools accumulated by benthic or pelagic food webs, appear valuable for Minamata Convention biomonitoring, though their fluctuating Hg sources require careful interpretation.
Collapse
Affiliation(s)
- Lucien Besnard
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Kongtae Ra
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, South Korea
| | - Young Gwang Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Gilles Lepoint
- University of Liège (ULg), Laboratoire d'Ecologie Trophique et Isotopique (LETIS), B6 Sart Tilman, 4000 Liège, Belgium
| | - Saebom Jung
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| |
Collapse
|
8
|
Cho M, Lee S, Kim KW, Besnard L, Jung S, Lim SH, Li ML, Kwon SY. Selenium induces mercury isotope fractionation and detoxification in marine fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:197-206. [PMID: 39887279 DOI: 10.1093/etojnl/vgae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 02/01/2025]
Abstract
Prey fish are vital in transferring nutrients and contaminants from lower to higher trophic levels. Although the role of selenium (Se) on mercury (Hg) detoxification has been identified in marine mammals and seabirds, the metabolic pathways of Hg-Se interaction in fish remain unknown. We used Hg stable isotopes (δ202Hg, Δ199Hg) to characterize the internal dynamics of methylmercury (MeHg) and inorganic Hg (IHg) in the presence and absence of Se in juvenile olive flounders (Paralichthys olivaceus). The fish were exposed to MeHg- (1,223 ng/g, n = 31) and IHg-amended (1,515 ng/g, n = 31) food pellets for 4 weeks (bioaccumulation phase) and switched to control or Se-amended food pellets for 10 weeks (excretion phase). During the bioaccumulation phase, the Hg isotopic composition of all fish tissues shifted toward their respective food pellets. During the excretion phase, significant negative δ202Hg shifts (0.27-0.59 ‰) were recorded in the liver of fish initially fed MeHg food pellets and then switched to Se food pellets, which is indicative of Se-induced hepatic MeHg demethylation. Fish fed IHg food pellets and then switched to control or Se food pellets exhibited similar isotopic behavior, suggesting that Se plays a minor role in IHg excretion. Both δ202Hg and Δ199Hg of the liver shifted toward IHg food pellets even during the excretion phase, which we attribute to slow intestinal IHg mobilization and redistribution to the liver. We found that the liver is the major site for MeHg demethylation in the presence of Se and that Se plays a relatively minor role in IHg excretion. Tissue-specific Hg isotope dynamics and interaction with Se should be considered in future Hg ecotoxicological assessments in fish.
Collapse
Affiliation(s)
- Moonkyoung Cho
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Seunghan Lee
- Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan, South Korea
| | - Kang Woong Kim
- Aquafeed Research Center, National Institute of Fisheries Science, Pohang, South Korea
| | - Lucien Besnard
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Saebom Jung
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Seung Hyeon Lim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Mi-Ling Li
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
9
|
Pinzone M, Amouroux D, Tessier E, Acquarone M, Siebert U, Das K. Dynamics of mercury stable isotope compounds in Arctic seals: New insights from a controlled feeding trial on hooded seals Cystophora cristata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124450. [PMID: 38944182 DOI: 10.1016/j.envpol.2024.124450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Accurate interpretation of mercury (Hg) isotopic data requires the consideration of several biotic factors such as age, diet, geographical range, and tissue metabolic turnover. A priori knowledge of prey-predator isotopic incorporation rates and Hg biomagnification is essential. This study aims to assess Hg stable isotopes incorporation in an Arctic species of Phocidae, the hooded seal Cystophora cristata, kept in human care for 24 months (2012-2014) and fed on a constant diet of Norwegian Spring Spawning herring Clupea harengus. We measured THg, MMHg and iHg levels, as well as Hg stable isotope composition with both mass dependent (MDF) and mass independent (MIF) fractionation (e.g. δ202Hg and Δ199,200,201,204Hg) in hooded seal kidney, liver, hair and muscle, in addition to herring muscle. We then calculated Hg MDF and MIF isotopic fractionation between hooded seals and their prey. We found a significant shift in δ202Hg between hooded seal hair (+0.80‰) and kidney (-0.78‰), and herring muscle. In hooded seals tissues δ202Hg correlated positively with MMHg percentage. These findings suggest that tissue-specific Hg speciation is the major driver of changes in Hg isotopic fractionation rates in this Arctic predator. Δ199Hg, Δ200Hg, Δ201Hg and Δ204Hg values did not vary between herring and hooded seal tissues, confirming their utility as tracers of Hg marine and atmospheric sources in top predators. To our knowledge, this represents the first attempt to assess complex Hg isotope dynamics in the internal system of Arctic Phocidae, controlling the effects of age, diet, and distribution. Our results confirm the validity of Hg stable isotopes as tracers of environmental Hg sources even in top predators, but emphasize the importance of animal age and tissue selection for inter-study and inter-species comparisons.
Collapse
Affiliation(s)
- Marianna Pinzone
- Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), Laboratory of Oceanology, University of Liège, Liège, Belgium.
| | - David Amouroux
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France
| | - Emmanuel Tessier
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France
| | - Mario Acquarone
- Arctic Monitoring and Assessment Programme, The Fram Centre, Tromsø, Norway
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Büsum, Germany
| | - Krishna Das
- Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), Laboratory of Oceanology, University of Liège, Liège, Belgium.
| |
Collapse
|
10
|
Lim SH, Kim Y, Motta LC, Yang EJ, Rhee TS, Hong JK, Han S, Kwon SY. Near surface oxidation of elemental mercury leads to mercury exposure in the Arctic Ocean biota. Nat Commun 2024; 15:7598. [PMID: 39217169 PMCID: PMC11365953 DOI: 10.1038/s41467-024-51852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Atmospheric mercury (Hg(0), Hg(II)) and riverine exported Hg (Hg(II)) are proposed as important Hg sources to the Arctic Ocean. As plankton cannot passively uptake Hg(0), gaseous Hg(0) has to be oxidized to be bioavailable. Here, we measured Hg isotope ratios in zooplankton, Arctic cod, total gaseous Hg, sediment, seawater, and snowpack from the Bering Strait, the Chukchi Sea, and the Beaufort Sea. The Δ200Hg, used to differentiate between Hg(0) and Hg(II), shows, on average, 70% of Hg(0) in all biota and differs with seawater Δ200Hg (Hg(II)). Since Δ200Hg anomalies occur via tropospheric Hg(0) oxidation, we propose that near-surface Hg(0) oxidation via terrestrial vegetation, coastally evaded halogens, and sea salt aerosols, which preserve Δ200Hg of Hg(0) upon oxidation, supply bioavailable Hg(II) pools in seawater. Our study highlights sources and pathways in which Hg(0) poses potential ecological risks to the Arctic Ocean biota.
Collapse
Affiliation(s)
- Seung Hyeon Lim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Younggwang Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Laura C Motta
- Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Eun Jin Yang
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Tae Siek Rhee
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jong Kuk Hong
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea.
| |
Collapse
|
11
|
Evers DC, Ackerman JT, Åkerblom S, Bally D, Basu N, Bishop K, Bodin N, Braaten HFV, Burton MEH, Bustamante P, Chen C, Chételat J, Christian L, Dietz R, Drevnick P, Eagles-Smith C, Fernandez LE, Hammerschlag N, Harmelin-Vivien M, Harte A, Krümmel EM, Brito JL, Medina G, Barrios Rodriguez CA, Stenhouse I, Sunderland E, Takeuchi A, Tear T, Vega C, Wilson S, Wu P. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:325-396. [PMID: 38683471 PMCID: PMC11213816 DOI: 10.1007/s10646-024-02747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/01/2024]
Abstract
An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.
Collapse
Affiliation(s)
- David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | | | - Dominique Bally
- African Center for Environmental Health, BP 826 Cidex 03, Abidjan, Côte d'Ivoire
| | - Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Upsalla, Sweden
| | - Nathalie Bodin
- Research Institute for Sustainable Development Seychelles Fishing Authority, Victoria, Seychelles
| | | | - Mark E H Burton
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - John Chételat
- Environment and Cliamte Change Canada, National Wildlife Research Centre, Ottawa, ON, K1S 5B6, Canada
| | - Linroy Christian
- Department of Analytical Services, Dunbars, Friars Hill, St John, Antigua and Barbuda
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Paul Drevnick
- Teck American Incorporated, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Luis E Fernandez
- Sabin Center for Environment and Sustainability and Department of Biology, Wake Forest University, Winston-Salem, NC, 29106, USA
- Centro de Innovación Científica Amazonica (CINCIA), Puerto Maldonado, Madre de Dios, Peru
| | - Neil Hammerschlag
- Shark Research Foundation Inc, 29 Wideview Lane, Boutiliers Point, NS, B3Z 0M9, Canada
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS/INSU/IRD, Institut Méditerranéen d'Océanologie (MIO), UM 110, Campus de Luminy, case 901, 13288, Marseille, cedex 09, France
| | - Agustin Harte
- Basel, Rotterdam and Stockholm Conventions Secretariat, United Nations Environment Programme (UNEP), Chem. des Anémones 15, 1219, Vernier, Geneva, Switzerland
| | - Eva M Krümmel
- Inuit Circumpolar Council-Canada, Ottawa, Canada and ScienTissiME Inc, Barry's Bay, ON, Canada
| | - José Lailson Brito
- Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracana, Rio de Janeiro, RJ, Brazil
| | - Gabriela Medina
- Director of Basel Convention Coordinating Centre, Stockholm Convention Regional Centre for Latin America and the Caribbean, Hosted by the Ministry of Environment, Montevideo, Uruguay
| | | | - Iain Stenhouse
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Elsie Sunderland
- Harvard University, Pierce Hall 127, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Akinori Takeuchi
- National Institute for Environmental Studies, Health and Environmental Risk Division, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Tim Tear
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Claudia Vega
- Centro de Innovaccion Cientifica Amazonica (CINCIA), Jiron Ucayali 750, Puerto Maldonado, Madre de Dios, 17001, Peru
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, N-9296, Tromsø, Norway
| | - Pianpian Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
12
|
Bank MS, Ho QT, Kutti T, Kögel T, Rodushkin I, van der Meeren T, Wiech M, Rastrick S. Multi-isotopic composition of brown crab (Cancer pagurus) and seafloor sediment from a mine tailing sea disposal impacted fjord ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134406. [PMID: 38688218 DOI: 10.1016/j.jhazmat.2024.134406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Sea disposal of mine tailings in fjord ecosystems is an important coastal management issue in Norway and occurs at the land-sea interface. Here we studied accumulation of heavy metals in brown crab (Cancer pagurus) and seafloor sediment from Jøssingfjord, Norway during 2018 to evaluate long-term, legacy pollution effects of coastal mine tailing sea disposal activities. Nickel and copper sediment pollution in the mine tailing sea disposal area was classified as moderate and severe, respectively, under Norwegian environmental quality standards, and highlights the persistent hazard and legacy impacts of heavy metals in these impacted fjord ecosystems. Mercury, zinc, and arsenic had stronger affinities to brown crab muscle likely due to the presence of thiols, and availability of metal binding sites. Our multi-isotopic composition data showed that lead isotopes were the most useful source apportionment tool for this fjord. Overall, our study highlights the importance and value of measuring several different heavy metals and multiple isotopic signatures in different crab organs and seafloor sediment to comprehensively evaluate fjord pollution and kinetic uptake dynamics. Brown crabs were suitable eco-indicators of benthic ecosystem heavy metal pollution in a fjord ecosystem still experiencing short- and long-term physical and chemical impacts from coastal mining sea disposal activities.
Collapse
Affiliation(s)
- Michael S Bank
- Institute of Marine Research, Bergen, Norway; University of Massachusetts Amherst, Amherst, MA, USA.
| | | | - Tina Kutti
- Institute of Marine Research, Bergen, Norway
| | - Tanja Kögel
- Institute of Marine Research, Bergen, Norway
| | - Ilia Rodushkin
- Division of Geosciences, Luleå University of Technology, SE-971 87 Luleå, Sweden; ALS Scandinavia AB, SE-971 87 Luleå, Sweden
| | | | | | | |
Collapse
|
13
|
Li M, Zhang P, Mao J, Li J, Zhang Y, Xu B, Zhou J, Cao Q, Xiao H. Construction of cellulose-based hybrid hydrogel beads containing carbon dots and their high performance in the adsorption and detection of mercury ions in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121076. [PMID: 38710148 DOI: 10.1016/j.jenvman.2024.121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Cellulose-based adsorbents have been extensively developed in heavy metal capture and wastewater treatment. However, most of the reported powder adsorbents suffer from the difficulties in recycling due to their small sizes and limitations in detecting the targets for the lack of sensitive sensor moieties in the structure. Accordingly, carbon dots (CDs) were proposed to be encapsulated in cellulosic hydrogel beads to realize the simultaneous detection and adsorption of Hg (II) in water due to their excellent fluorescence sensing performance. Besides, the molding of cellulose was beneficial to its recycling and further reduced the potential environmental risk generated by secondary pollution caused by adsorbent decomposition. In addition, the detection limit of the hydrogel beads towards Hg (II) reached as low as 8.8 × 10-8 M, which was below the mercury effluent standard declared by WHO, exhibiting excellent practicability in Hg (II) detection and water treatment. The maximum adsorption capacity of CB-50 % for Hg (II) was 290.70 mg/g. Moreover, the adsorbent materials also had preeminent stability that the hydrogel beads could maintain sensitive and selective sensing performance towards Hg (II) after 2 months of storage. Additionally, only 3.3% of the CDs leaked out after 2 weeks of immersion in water, ensuring the accuracy of Hg (II) evaluation. Notably, the adsorbent retained over 80% of its original adsorption capacity after five consecutive regeneration cycles, underscoring its robustness and potential for sustainable environmental applications.
Collapse
Affiliation(s)
- Ming Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Panpan Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Jianwei Mao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Jianfeng Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Yuling Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Bo Xu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China.
| | - Jin Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China.
| | - Qianyong Cao
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, PR China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, E3B 5A3, Canada.
| |
Collapse
|
14
|
Xu Z, Lu Q, Jia D, Li S, Luo K, Su T, Chen Z, Qiu G. Significant biomagnification of methylmercury in songbird nestlings through a rice-based food web: Insights from stable mercury isotopes. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133783. [PMID: 38367440 DOI: 10.1016/j.jhazmat.2024.133783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
To elucidate the sources and transfer of mercury (Hg) in terrestrial food chains, particularly in heavily Hg-contaminated rice paddy ecosystems, we collected rice leaves, invertebrates, and Russet Sparrow nestlings from a clear food chain and analyzed the dietary compositions and potential Hg sources using stable Hg isotopes coupled with a Bayesian isotope mixing model (BIMM). Our findings indicated that MeHg exposure is dominant through the dietary route, with caterpillars, grasshoppers, and katydids being the main prey items, while the less provisioned spiders, dragonflies, and mantises contributed the most of the Hg to nestlings. We found minimal MIF but certain MDF in this terrestrial food chain and identified two distinct MeHg sources of dietary exposure and maternal transfer. We firstly found that the dietary route contributed substantially (almost tenfold) more MeHg to the nestlings than maternal transfer. These findings offer new insights into the integration of Hg from the dietary route and maternal transfers, enhancing our understanding of fluctuating Hg exposure risk during the nestling stage. Our study suggested that Hg isotopes combined with BIMM is an effective approach for tracing Hg sources in birds and for gaining in-depth insight into the trophic transfers and biomagnification of MeHg in food chains.
Collapse
Affiliation(s)
- Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qinhui Lu
- The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Dongya Jia
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Shenghao Li
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong 676200, China
| | - Tongping Su
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China.
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
15
|
Sánchez-Fortún M, Amouroux D, Tessier E, Carrasco JL, Sanpera C. Mercury stable isotopes in seabirds in the Ebro Delta (NE Iberian Peninsula): Inter-specific and temporal differences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123739. [PMID: 38458513 DOI: 10.1016/j.envpol.2024.123739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
Mercury (Hg) is a global pollutant, which particularly affects aquatic ecosystems, both marine and freshwater. Top-predators depending on these environments, such as seabirds, are regarded as suitable bioindicators of Hg pollution. In the Ebro Delta (NE Iberian Peninsula), legacy Hg pollution from a chlor-alkali industry operating in Flix and located ca. 100 km upstream of the Ebro River mouth has been impacting the delta environment and the neighboring coastal area. Furthermore, levels of Hg in the biota of the Mediterranean Sea are known to be high compared to other marine areas. In this work we used a Hg stable isotopes approach in feathers to understand the processes leading to different Hg concentrations in three Laridae species breeding in sympatry in the area (Audouin's gull Ichthyaetus audouinii, black-headed gull Chroicocephalus ridibundus, common tern Sterna hirundo). These species have distinct trophic ecologies, exhibiting a differential use of marine resources and freshwater resources (i.e., rice paddies prey). Moreover, for Audouin's gull, in which in the Ebro Delta colony temporal differences in Hg levels were documented previously, we used Hg stable isotopes to understand the impact of anthropogenic activities on Hg levels in the colony over time. Hg stable isotopes differentiated the three Laridae species according to their trophic ecologies. Furthermore, for Audouin's gull we observed temporal variations in Hg isotopic signatures possibly owing to anthropogenic-derived pollution in the Ebro Delta. To the best of our knowledge this is the first time Hg stable isotopes have been reported in seabirds from the NW Mediterranean.
Collapse
Affiliation(s)
- Moisès Sánchez-Fortún
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain.
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Josep Lluís Carrasco
- Biostatistics, Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain.
| | - Carola Sanpera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
16
|
Luo K, Yuan W, Lu Z, Xiong Z, Lin CJ, Wang X, Feng X. Unveiling the Sources and Transfer of Mercury in Forest Bird Food Chains Using Techniques of Vivo-Nest Video Recording and Stable Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6007-6018. [PMID: 38513264 DOI: 10.1021/acs.est.3c10972] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Knowledge gaps in mercury (Hg) biomagnification in forest birds, especially in the most species-rich tropical and subtropical forests, limit our understanding of the ecological risks of Hg deposition to forest birds. This study aimed to quantify Hg bioaccumulation and transfer in the food chains of forest birds in a subtropical montane forest using a bird diet recorded by video and stable Hg isotope signals of biological and environmental samples. Results show that inorganic mercury (IHg) does not biomagnify along food chains, whereas methylmercury (MeHg) has trophic magnification factors of 7.4-8.1 for the basal resource-invertebrate-bird food chain. The video observations and MeHg mass balance model suggest that Niltava (Niltava sundara) nestlings ingest 78% of their MeHg from forest floor invertebrates, while Flycatcher (Eumyias thalassinus) nestlings ingest 59% from emergent aquatic invertebrates (which fly onto the canopy) and 40% from canopy invertebrates. The diet of Niltava nestlings contains 40% more MeHg than that of Flycatcher nestlings, resulting in a 60% higher MeHg concentration in their feather. Hg isotopic model shows that atmospheric Hg0 is the main Hg source in the forest bird food chains and contributes >68% in most organisms. However, three categories of canopy invertebrates receive ∼50% Hg from atmospheric Hg2+. Overall, we highlight the ecological risk of MeHg exposure for understory insectivorous birds caused by atmospheric Hg0 deposition and methylation on the forest floor.
Collapse
Affiliation(s)
- Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Zichun Xiong
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Li S, Zhang F, Xu Z, Jia D, Wu G, Liu H, Li C, Liang L, Liu J, Chen Z, Qiu G. Using live videography observation and Bayesian isotope mixing model to identify food composition and dietary contribution to inorganic mercury and methylmercury intake by songbird nestlings. ENVIRONMENTAL RESEARCH 2024; 244:117902. [PMID: 38092237 DOI: 10.1016/j.envres.2023.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Mercury (Hg) exposure is increasing in terrestrial birds; however, studies on its sources are scarce. In the present study, we elucidated the food composition of green-backed tit nestlings from three urban forest parks (CPL, AHL, and LCG) using live videography observation (LVO). Furthermore, the daily dietary intakes of inorganic Hg (IHg) (MDIIHg) and methylmercury (MeHg) (MDIMeHg) were determined using the Bayesian isotope mixing model (BIMM) to uncover the nestlings' specific dietary Hg contribution. Both LVO and BIMM indicated that Lepidoptera (primarily caterpillar) constituted the primary food source for the nestlings in the three forests, accounting for approximately 60% of their diet in all three forest parks. The estimated MDI of Hg revealed that lepidopterans and spiders primarily contributed to IHg exposure, with a co-contribution ratio of 71.8%-97.7%. Unexpectedly, dietary MeHg was mostly derived from spiders; the highest contribution ratio of 93.6% was recorded at CPL, followed by another peak ratio of 92.9% at LCG. However, the dietary exposure was primarily IHg, accounting for 69.8% (AHL), 62.0% (LCG), and 61.3% (CPL) of the nestlings. Our study findings highlight the importance of dietary IHg transfer in evaluating the effects of Hg in nestlings. LVO, coupled with BIMM, is an effective tool for determining the food compositions of songbird nestlings and estimating the contribution of specific diets.
Collapse
Affiliation(s)
- Shenghao Li
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Fudong Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Dongya Jia
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Gaoen Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Hongjiang Liu
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Chan Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Jiemin Liu
- Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China.
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
18
|
Sackett DK, Chrisp JK, Farmer TM. Isotopes and otolith chemistry provide insight into the biogeochemical history of mercury in southern flounder across a salinity gradient. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:233-246. [PMID: 38284178 DOI: 10.1039/d3em00482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Methylmercury (MeHg) continues to pose a significant global health risk to wildlife and humans through fish consumption. Despite numerous advancements in understanding the mercury (Hg) cycle, questions remain about MeHg sources that accumulate in fish, particularly across transitional coastal areas, where harvest is prominent and Hg sources are numerous. Here we used a unique combination of Hg and nutrient isotopes, and otolith chemistry to trace the biogeochemical history of Hg and identify Hg sources that accumulated in an economically important fish species across Mobile Bay, Alabama (USA). Fish tissue Hg in our samples primarily originated from wet deposition within the watershed, and partly reflected legacy industrial Hg. Results also suggest that little Hg was lost through photochemical processes (<10% of fish tissue Hg underwent photochemical processes). Of the small amount that did occur, photodegradation of the organic form, MeHg, was not the dominant process. Biotic transformation processes were estimated to have been a primary driver of Hg fractionation (∼93%), with isotope results indicating methylation as the primary biotic fractionation process prior to Hg entering the foodweb. On a finer scale, individual lifetime estuarine habitat use influenced Hg sources that accumulated in fish and fish Hg concentrations, with runoff from terrestrial Hg sources having a larger influence on fish in freshwater regions of the estuary compared to estuarine regions. Overall, results suggest increases in Hg inputs to the Mobile Bay watershed from wet deposition, turnover of legacy sources, and runoff are likely to translate into increased uptake into the foodweb.
Collapse
Affiliation(s)
- Dana K Sackett
- Department of Environmental Science and Technology, University of Maryland, 8127 Regents Dr, College Park, MD 20742, USA.
| | - Jared K Chrisp
- Department of Forestry and Environmental Conservation, Clemson University, 262 Lehotsky Hall, Clemson, SC 29634, USA
| | - Troy M Farmer
- Department of Forestry and Environmental Conservation, Clemson University, 262 Lehotsky Hall, Clemson, SC 29634, USA
| |
Collapse
|
19
|
Yang L, Yu B, Liu H, Ji X, Xiao C, Cao M, Fu J, Zhang Q, Hu L, Yin Y, Shi J, Jiang G. Foraging behavior and sea ice-dependent factors affecting the bioaccumulation of mercury in Antarctic coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169557. [PMID: 38141978 DOI: 10.1016/j.scitotenv.2023.169557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
To elucidate the potential risks of the toxic pollutant mercury (Hg) in polar waters, the study of accumulated Hg in fish is compelling for understanding the cycling and fate of Hg on a regional scale in Antarctica. Herein, the Hg isotopic compositions of Antarctic cod Notothenia coriiceps were assessed in skeletal muscle, liver, and heart tissues to distinguish the differences in Hg accumulation in isolated coastal environments of the eastern (Chinese Zhongshan Station, ZSS) and the antipode western Antarctica (Chinese Great Wall Station, GWS), which are separated by over 4000 km. Differences in odd mass-independent isotope fractionation (odd-MIF) and mass-dependent fractionation (MDF) across fish tissues were reflection of the specific accumulation of methylmercury (MeHg) and inorganic Hg (iHg) with different isotopic fingerprints. Internal metabolism including hepatic detoxification and processes related to heart may also contribute to MDF. Regional heterogeneity in iHg end-members further provided evidence that bioaccumulated Hg origins can be largely influenced by polar water circumstances and foraging behavior. Sea ice was hypothesized to play critical roles in both the release of Hg with negative odd-MIF derived from photoreduction of Hg2+ on its surface and the impediment of photochemical transformation of Hg in water layers. Overall, the multitissue isotopic compositions in local fish species and prime drivers of the heterogeneous Hg cycling and bioaccumulation patterns presented here enable a comprehensive understanding of Hg biogeochemical cycling in polar coastal waters.
Collapse
Affiliation(s)
- Lin Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Yu
- National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Hongwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomeng Ji
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cailing Xiao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Kim YG, Kwon SY, Washburn SJ, Brooks SC, Yoon JW, Besnard L. Reconsidering mercury sources and exposure pathways to bivalves: Insights from mercury stable isotopes. WATER RESEARCH 2024; 248:120843. [PMID: 37976947 DOI: 10.1016/j.watres.2023.120843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Identifying mercury (Hg) sources and exposure pathways to bivalves, particularly in relation to sediment, is important for expanding the utility of bivalves as a monitoring organism for sediment quality. Here we use Hg isotope ratios to decipher Hg sources accumulated into bivalves by conducting field studies and in situ experiments. In the first part of this study, we characterized Hg isotope ratios in individual geochemical fractions of riverine sediment, contaminated by liquid Hg in South Korea (Hyeongsan River; HS). Asian clams (Corbicula fluminea) were then deployed at the contaminated sites to evaluate the isotopic turnover. Over the two-month period, the isotope ratios of the clams shifted toward the labile/exchangeable Hg pools (F1, F2 fractions) of the sediment. Conversely, in the control site where sediment Hg is low, we observed similar Hg isotope ratios between Asian clams and the samples of precipitation and dissolved phase of water column. In East Fork Poplar Creek, (Oak Ridge) U.S., Asian clams also displayed similar Hg isotope ratios with the dissolved phase of water column, which have undergone substantial in-stream processing or input from Hg-contaminated groundwater from the hyporheic zones and riparian tributary during high hydrologic flow seasons. Our study demonstrates that the dissolved Hg phases within the water column, whether originating via sediment diffusion or derived externally, act as the primary source and exposure pathways to bivalves. The results of our study also shed new light to the prior Hg isotope measurement in bivalves collected from estuarine, lake, and coastal systems, which showed significant isotopic deviation from bulk sediment. The fact that bivalves are sensitive to in situ and external dissolved Hg phases provides additional insight into the existing biomonitoring program, which uses bivalves as a bioindicator for sediment quality.
Collapse
Affiliation(s)
- Young Gwang Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon 21983, Republic of Korea.
| | - Spencer J Washburn
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States
| | - Scott C Brooks
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, United States
| | - Ji Won Yoon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Lucien Besnard
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| |
Collapse
|
21
|
Armstrong G, Janssen SE, Poulin BA, Tate MT, Krabbenhoft DP, Hurley JP. Competition between Dissolved Organic Matter and Freshwater Plankton Control Methylmercury Isotope Fractionation during Uptake and Photochemical Demethylation. ACS EARTH & SPACE CHEMISTRY 2023; 7:2382-2392. [PMID: 38148993 PMCID: PMC10749477 DOI: 10.1021/acsearthspacechem.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023]
Abstract
Isotope fractionation related to photochemical reactions and planktonic uptake at the base of the food web is a major uncertainty in the biological application of mercury (Hg) stable isotopes. In freshwater systems, it is unclear how competitive interactions among methylmercury (MeHg), dissolved organic matter (DOM), and phytoplankton govern the magnitude of mass-dependent and mass-independent fractionation. This study investigated how DOM alters rates of planktonic MeHg uptake and photodegradation and corresponding Hg isotope fractionation in the presence of freshwater phytoplankton species, Raphidocelis subcapitata. Outdoor sunlight exposure experiments utilizing R. subcapitata were performed in the presence of different DOM samples using environmentally relevant ratios of MeHg-DOM thiol groups. The extent of Δ199Hg in phytoplankton incubations (2.99‰ St. Louis River HPOA, 1.88‰ Lake Erie HPOA) was lower compared to paired abiotic control experiments (4.29 and 2.86‰, respectively) after ∼30 h of irradiation, resulting from cell shading or other limiting factors reducing the extent of photodemethylation. Although the Δ199Hg/Δ201Hg ratio was uniform across experiments (∼1.4), Δ199Hg/δ202Hg slopes varied dramatically (from -0.96 to 15.4) across incubations with R. subcapitata and DOM. In addition, no evidence of Hg isotope fractionation was observed within R. subcapitata cells. This study provides a refined examination of Hg isotope fractionation markers for key processes occurring in the lower food web prior to bioaccumulation, critical for accurately accounting for the photochemical processing of Hg isotopes across a wide spectrum of freshwater systems.
Collapse
Affiliation(s)
- Grace
J. Armstrong
- U.S.
Geological Survey Upper Midwest Water Science Center, Madison, Wisconsin 53726, United States
- Environmental
Chemistry and Technology Program, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sarah E. Janssen
- U.S.
Geological Survey Upper Midwest Water Science Center, Madison, Wisconsin 53726, United States
| | - Brett A. Poulin
- Department
of Environmental Toxicology, University
of California Davis, Davis, California 95616 United States
| | - Michael T. Tate
- U.S.
Geological Survey Upper Midwest Water Science Center, Madison, Wisconsin 53726, United States
| | - David P. Krabbenhoft
- U.S.
Geological Survey Upper Midwest Water Science Center, Madison, Wisconsin 53726, United States
| | - James P. Hurley
- Environmental
Chemistry and Technology Program, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- University
of Wisconsin Aquatic Sciences Center, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Xu Z, Luo K, Lu Q, Shang L, Tian J, Lu Z, Li Q, Chen Z, Qiu G. The mercury flow through a terrestrial songbird food chain in subtropical pine forest: Elucidated by Bayesian isotope mixing model and stable mercury isotopes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132263. [PMID: 37573826 DOI: 10.1016/j.jhazmat.2023.132263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
In order to comprehend the transfer of inorganic mercury (IHg) and methylmercury (MeHg) within food chains in terrestrial pine forests, we collected samples of Great Tit nestlings, common invertebrates, plants, and soil in a subtropical pine forest and used Bayesian isotope mixing model analysis, Hg daily intake, and stable Hg isotopes to elucidate the flow of MeHg and IHg in these food chains. Results indicate that caterpillars and cockroaches are the predominant prey items for nestlings, accounting for a combined contribution of 81.5%. Furthermore, caterpillars, cockroaches, and spiders were found to contribute the most (∼80%) of both IHg and MeHg that dietary accumulated in nestlings. The provisoned invertebrates tend to supply more IHg and diluting the proportion of MeHg as total Hg (MeHg%). Notably, nestling feathers displayed the highest Δ199Hg values but a relatively lower MeHg%, suggesting an imbalanced incorporation of Hg from maternal transfer and dietary accumulation during the nestling stage. This study highlights the efficacy of nestlings as indicators for identifying Hg sources and transfers in avian species and food chains. However, caution must be exercised when using Hg isotope compositions in growing feathers, and the contribution of maternally transferred Hg should not be ignored.
Collapse
Affiliation(s)
- Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong 676200, China
| | - Qinhui Lu
- The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jing Tian
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong 676200, China
| | - Qiuhua Li
- Guizhou Key Laboratory for Mountainous Environmental Information and Ecological Protection, Guizhou Normal University, Guiyang 550001, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
23
|
Xu Z, Lu Q, Xu X, Liang L, Abeysinghe KS, Chen Z, Qiu G. Aquatic methylmercury is a significant subsidy for terrestrial songbirds: Evidence from the odd mass-independent fractionation of mercury isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163217. [PMID: 37011675 DOI: 10.1016/j.scitotenv.2023.163217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/27/2023]
Abstract
In contrast to aquatic food chains, knowledge of the origins and transfer of mercury (Hg) and methylmercury (MeHg) in terrestrial food chains is relatively limited, especially in songbirds. We collected soil, rice plants, aquatic and terrestrial invertebrates, small wild fish, and resident songbird feathers from an Hg-contaminated rice paddy ecosystem for an analysis of stable Hg isotopes to clarify the sources of Hg and its transfer in songbirds and their prey. Significant mass-dependent fractionation (MDF, δ202Hg), but no mass-independent fractionation (MIF, ∆199Hg) occurred in the trophic transfers in terrestrial food chains. Piscivorous, granivorous, and frugivorous songbirds and aquatic invertebrates were all characterized by elevated Δ199Hg values. The estimated MeHg isotopic compositions obtained using linear fitting and a binary mixing model explained both the terrestrial and aquatic origins of MeHg in the terrestrial food chains. We found that MeHg from aquatic habitats is an important subsidy for terrestrial songbirds, even those that feed mainly on seeds, fruits, or cereals. The results show that MIF of the MeHg isotope is a reliable tool to reveal MeHg sources in songbirds. Because the MeHg isotopic compositions was calculated with a binary mixing model or directly estimated from the high proportions of MeHg, compound-specific isotope analysis of Hg would be more useful for the interpretation of the Hg sources, and is highly recommended for future studies.
Collapse
Affiliation(s)
- Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qinhui Lu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; The Key Laboratory of Environment Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xiaohang Xu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Kasun S Abeysinghe
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
24
|
Zhou Z, Wang H, Li Y. Mercury stable isotopes in the ocean: Analytical methods, cycling, and application as tracers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162485. [PMID: 36858226 DOI: 10.1016/j.scitotenv.2023.162485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) has seven stable isotopes that can be utilized to trace the sources of Hg and evaluate the importance of transport and transformation processes in the cycling of Hg in the environment. The ocean is an integral part of the Earth and plays an important role in the global mercury cycle. However, there is a lack of a systematic review of Hg stable isotopes in marine environments. This review is divided into four sections: a) advances in Hg stable isotope analysis, b) the isotope ratios of Hg in various marine environmental matrices (seawater, sediment, and organisms), c) processes governing stable Hg isotope ratios in the ocean, and d) application of Hg stable isotopes to understand biotic uptake and migration. Mercury isotopes have provided much useful information on marine Hg cycling that cannot be given by Hg concentrations alone. This includes (i) sources of Hg in coastal or estuarine environments, (ii) transformation pathways and mechanisms of different forms of Hg in marine environments, (iii) trophic levels and feeding guilds of marine fish, and (iv) migration/habitat changes of marine fish. With the improvement of methods for seawater Hg isotope analysis (especially species-specific methods) and the measurement of Hg isotope fractionation during natural biogeochemical processes in the ocean, Hg stable isotopes will advance our understanding of the marine Hg cycle in the future, e.g., mercury exchange at the sea-atmosphere interface and seawater-sediment interface, contributions of different water masses to Hg in the ocean, fractionation mechanisms of Hg and MeHg transformation in seawater.
Collapse
Affiliation(s)
- Zhengwen Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Huiling Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
25
|
Yuan J, Liu Y, Chen S, Peng X, Li YF, Li S, Zhang R, Zheng W, Chen J, Sun R, Heimbürger-Boavida LE. Mercury Isotopes in Deep-Sea Epibenthic Biota Suggest Limited Hg Transfer from Photosynthetic to Chemosynthetic Food Webs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6550-6562. [PMID: 37042785 DOI: 10.1021/acs.est.3c01276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Deep oceans receive mercury (Hg) from upper oceans, sediment diagenesis, and submarine volcanism; meanwhile, sinking particles shuttle Hg to marine sediments. Recent studies showed that Hg in the trench fauna mostly originated from monomethylmercury (MMHg) of the upper marine photosynthetic food webs. Yet, Hg sources in the deep-sea chemosynthetic food webs are still uncertain. Here, we report Hg concentrations and stable isotopic compositions of indigenous biota living at hydrothermal fields of the Indian Ocean Ridge and a cold seep of the South China Sea along with hydrothermal sulfide deposits. We find that Hg is highly enriched in hydrothermal sulfides, which correlated with varying Hg concentrations in inhabited biota. Both the hydrothermal and cold seep biota have small fractions (<10%) of Hg as MMHg and slightly positive Δ199Hg values. These Δ199Hg values are slightly higher than those in near-field sulfides but are 1 order of magnitude lower than the trench counterparts. We suggest that deep-sea chemosynthetic food webs mainly assimilate Hg from ambient seawater/sediments and hydrothermal fluids formed by percolated seawater through magmatic/mantle rocks. The MMHg transfer from photosynthetic to chemosynthetic food webs is likely limited. The contrasting Hg sources between chemosynthetic and trench food webs highlight Hg isotopes as promising tools to trace the deep-sea Hg biogeochemical cycle.
Collapse
Affiliation(s)
- Jingjing Yuan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Yi Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Shun Chen
- Deep Sea Science Division, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, 572000 Sanya, Hainan, China
| | - Xiaotong Peng
- Deep Sea Science Division, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, 572000 Sanya, Hainan, China
| | - Yu-Feng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
| | - Songjing Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Rui Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Wang Zheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Jiubin Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Ruoyu Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| |
Collapse
|
26
|
Zhang J, Li C, Tang W, Wu M, Chen M, He H, Lei P, Zhong H. Mercury in wetlands over 60 years: Research progress and emerging trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161862. [PMID: 36716881 DOI: 10.1016/j.scitotenv.2023.161862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Wetlands are considered the hotspots for mercury (Hg) biogeochemistry, garnering global attention. Therefore, it is important to review the research progress in this field and predict future frontiers. To achieve that, we conducted a literature analysis by collecting 15,813 publications about Hg in wetlands from the Web of Science Core Collection. The focus of wetland Hg research has changed dramatically over time: 1) In the initial stage (i.e., 1959-1990), research mainly focused on investigating the sources and contents of Hg in wetland environments and fish. 2) For the next 20 years (i.e., 1991-2010), Hg transformation (e.g., Hg reduction and methylation) and environmental factors that affect Hg bioaccumulation have attracted extensive attention. 3) In the recent years of 2011-2022, hot topics in Hg study include microbial Hg methylators, Hg bioavailability, methylmercury (MeHg) demethylation, Hg stable isotope, and Hg cycling in paddy fields. Finally, we put forward future research priorities, i.e., 1) clarifying the primary factors controlling MeHg production, 2) uncovering the MeHg demethylation process, 3) elucidating MeHg bioaccumulation process to better predict its risk, and 4) recognizing the role of wetlands in Hg circulation. This research shows a comprehensive knowledge map for wetland Hg research and suggests avenues for future studies.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenli Tang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mingying Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Pei Lei
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Science Program (EnLS), Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
27
|
Wang B, Yang S, Li P, Qin C, Wang C, Ali MU, Yin R, Maurice L, Point D, Sonke JE, Zhang L, Feng X. Trace mercury migration and human exposure in typical mercury-emission areas by compound-specific stable isotope analysis. ENVIRONMENT INTERNATIONAL 2023; 174:107891. [PMID: 36963155 DOI: 10.1016/j.envint.2023.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic mercury (Hg) emissions have increased significantly since the Industrial Revolution, resulting in severe health impacts to humans. The consumptions of fish and rice were primary human methylmercury (MeHg) exposure pathways in Asia. However, the lifecycle from anthropogenic Hg emissions to human MeHg exposure is not fully understood. In this study, a recently developed approach, termed MeHg Compound-Specific Isotope Analysis (CSIA), was employed to track lifecycle of Hg in four typical Hg-emission areas. Distinct Δ199Hg of MeHg and inorganic Hg (IHg) were observed among rice, fish and hair. The Δ199Hg of MeHg averaged at 0.07 ± 0.15 ‰, 0.80 ± 0.55 ‰ and 0.43 ± 0.29 ‰ in rice, fish and hair, respectively, while those of IHg averaged at - 0.08 ± 0.24 ‰, 0.85 ± 0.43 ‰ and - 0.28 ± 0.68 ‰. In paddy ecosystem, Δ199Hg of MeHg in rice showed slightly positive shifts (∼0.2 ‰) from those of IHg, and comparable Δ199Hg of IHg between rice grain and raw/processed materials (coal, Hg ore, gold ore and sphalerite) were observed. Simultaneously, it was proved that IHg in fish muscle was partially derived from in vivo demethylation of MeHg. By a binary model, we estimated the relative contributions of rice consumption to human MeHg exposure to be 84 ± 14 %, 58 ± 26 %, 52 ± 20 % and 34 ± 15 % on average in Hg mining area, gold mining area, zinc smelting area and coal-fired power plant area, respectively, and positive shifts of δ202HgMeHg from fish/rice to human hair occurred during human metabolic processes. Therefore, the CSIA approach can be an effective tool for tracking Hg biogeochemical cycle and human exposure, from which new scientific knowledge can be generated to support Hg pollution control policies and to protect human health.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Health Management Center, the Affiliated Hospital of Guizhou Medical University, Guiyang 550009, China
| | - Shaochen Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Chongyang Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chuan Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Laurence Maurice
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, 31400, Toulouse, France
| | - David Point
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, 31400, Toulouse, France
| | - Jeroen E Sonke
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, 31400, Toulouse, France
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
28
|
Crowther ER, Demers JD, Blum JD, Brooks SC, Johnson MW. Coupling of nitric acid digestion and anion-exchange resin separation for the determination of methylmercury isotopic composition within organisms. Anal Bioanal Chem 2023; 415:759-774. [PMID: 36472636 DOI: 10.1007/s00216-022-04468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Isotope ratios of methylmercury (MeHg) within organisms can be used to identify sources of MeHg that have accumulated in food webs, but these isotopic compositions are masked in organisms at lower trophic levels by the presence of inorganic mercury (iHg). To facilitate measurement of MeHg isotope ratios in organisms, we developed a method of extracting and isolating MeHg from fish and aquatic invertebrates for compound-specific isotopic analysis involving nitric acid digestion, batch anion-exchange resin separation, and pre-concentration by purge and trap. Recovery of MeHg was quantified after each step in the procedure, and the average cumulative recovery of MeHg was 93.4 ± 2.9% (1 SD, n = 28) for biological reference materials and natural biota samples and 96.9 ± 1.8% (1 SD, n = 5) for aqueous MeHgCl standards. The amount of iHg impurities was also quantified after each step, and the average MeHg purity was 97.8 ± 4.3% (1 SD, n = 28) across all reference materials and natural biota samples after the final separation step. Measured MeHg isotopic compositions of reference materials agreed with literature values obtained using other MeHg separation techniques, and MeHg isotope ratios of aqueous standards, reference materials, and natural biota samples were reproducible. On average, the reproducibility associated with reference material process replicates (2 SD) was 0.10‰ for δ202MeHg and 0.04‰ for Δ199MeHg. This new method provides a streamlined, reliable technique that utilizes a single sample aliquot for MeHg concentration and isotopic analysis. This promotes a tight coupling between MeHg concentration, %MeHg, and Hg isotopic composition, which may be especially beneficial for studying complex food webs with multiple isotopically distinct sources of iHg and/or MeHg.
Collapse
Affiliation(s)
- Elizabeth R Crowther
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave., Ann Arbor, MI, 48109-1005, USA.
| | - Jason D Demers
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave., Ann Arbor, MI, 48109-1005, USA
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 8 College Rd., Durham, NH, 03824-2600, USA
| | - Joel D Blum
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave., Ann Arbor, MI, 48109-1005, USA
| | - Scott C Brooks
- Environmental Science Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831-6038, USA
| | - Marcus W Johnson
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave., Ann Arbor, MI, 48109-1005, USA
| |
Collapse
|
29
|
Zhang L, Yin Y, Li Y, Cai Y. Mercury isotope fractionation during methylmercury transport and transformation: A review focusing on analytical method, fractionation characteristics, and its application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156558. [PMID: 35710002 DOI: 10.1016/j.scitotenv.2022.156558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Methylmercury (MeHg), a potent neurotoxin, can be formed, migrated and transformed in environmental compartments, accompanying with unique mass-dependent and mass-independent fractionation of mercury (Hg). These Hg isotope fractionation signals have great potential to probe the transformation and transport of MeHg in aquatic environments. However, the majority of studies to date have focused on total Hg isotopic composition, with less attention to the isotopic fractionation of MeHg due to technical difficulties in analysis, which severely hinders the understanding of MeHg isotopic fractionation and its applications. This review a) evaluates the reported analytical methods for Hg isotopic composition of MeHg, including online and offline measurement techniques; b) summarizes the extent and characteristics of Hg isotopic fractionation during MeHg transport and transformation, focusing on methylation, demethylation, trophic transfer and internal metabolism; and c) briefly discusses several applications of MeHg isotopic fractionation signatures in estimating the extent of photodemethylation, tracing the source of Hg species, and diagnosing reaction mechanisms. Additionally, the existing problems and future directions in MeHg isotope fractionation are highlighted to improve the analytical protocol for Hg isotope fractionation and deepen our understanding of Hg isotope fractionation in the biogeochemical cycling of MeHg.
Collapse
Affiliation(s)
- Lian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yong Cai
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
30
|
Combining of C, N and specific Hg stable isotopes to track bioaccumulation of monomethylmercury in coastal and freshwater seafood. Food Chem 2022; 401:134202. [PMID: 36122489 DOI: 10.1016/j.foodchem.2022.134202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022]
Abstract
Human exposure to monomethylmercury (MMHg) through seafood consumption is a global concern. This study investigates the potential sources and processes of MMHg in seafood of coastal and freshwater areas through combing of δ13C, δ15N, and specific Hg (including MMHg and inorganic Hg (IHg)) isotopes. The results showed that δ13C and δ15N values exhibit different patterns in coastal and freshwater species. Δ199HgMMHg/δ202HgMMHg values suggested that coastal and freshwater seafood undergo similar aqueous MMHg photodegradation processes. The Δ199HgMMHg values could distinguish that, coastal fish absorb MMHg from water column whereas coastal shellfish absorb MMHg mainly from sediment. The positive values of Δ199HgIHg in seafood could reflect in vivo MMHg demethylation and IHg reabsorption. Positive correlation between δ15N and Δ199HgIHg indicated that aquatic organisms in various trophic levels may have different MMHg demethylation efficiency. We proposed that combining of multiple isotopes can provide overall profiles on aquatic MMHg biogeochemical cycle and bioaccumulation.
Collapse
|
31
|
Yang YH, Kwon SY, Tsui MTK, Motta LC, Washburn SJ, Park J, Kim MS, Shin KH. Ecological Traits of Fish for Mercury Biomonitoring: Insights from Compound-Specific Nitrogen and Stable Mercury Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10808-10817. [PMID: 35852377 DOI: 10.1021/acs.est.2c02532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We coupled compound-specific isotopic analyses of nitrogen (N) in amino acids (δ15NGlu, δ15NPhe) and mercury stable isotopes (δ202Hg, Δ199Hg) to quantify ecological traits governing the concentration, variability, and source of Hg in largemouth bass (LB) and pike gudgeon (PG) across four rivers, South Korea. PG displayed uniform Hg concentration (56-137 ng/g), trophic position (TPcorrected; 2.6-3.0, n = 9), and N isotopes in the source amino acid (δ15NPhe; 7-13‰), consistent with their specialist feeding on benthic insects. LB showed wide ranges in Hg concentration (45-693 ng/g), TPcorrected (2.8-3.8, n = 14), and δ15NPhe (1.3-16‰), reflecting their opportunistic feeding behavior. Hg sources assessed using Hg isotopes reveal low and uniform Δ199Hg in PG (0.20-0.49‰), similar to Δ199Hg reported in sediments. LB displayed site-specific δ202Hg (-0.61 to -0.04‰) and Δ199Hg (0.53-1.09‰). At the Yeongsan River, LB displayed elevated Δ199Hg and low δ15NPhe, consistent with Hg and N sourced from the atmosphere. LB at the Geum River displayed low Δ199Hg and high δ15NPhe, both similar to the isotope values of anthropogenic sources. Our results suggest that a specialist fish (PG) with consistent ecological traits and Hg concentration is an effective bioindicator species for Hg. When accounting for Hg sources, however, LB better captures site-specific Hg sources.
Collapse
Affiliation(s)
- Yo Han Yang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon 21983, South Korea
| | - Martin Tsz-Ki Tsui
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, South Block, Science Centre, Shatin, Hong Kong SAR 999077, China
| | - Laura C Motta
- Department of Chemistry, State University of New York at Buffalo, 312 Natural Sciences Complex, Buffalo, New York 14260-3000, United States
| | - Spencer J Washburn
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Jaeseon Park
- Environmental Measurement & Analysis Center, National Institute of Environmental Research, 42 Hwangyong-Ro, Seo-Gu, Incheon 22689, South Korea
| | - Min-Seob Kim
- Environmental Measurement & Analysis Center, National Institute of Environmental Research, 42 Hwangyong-Ro, Seo-Gu, Incheon 22689, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, 55 Hanyangdaehak-Ro, Sangnok-Gu, Ansan 15588, South Korea
| |
Collapse
|
32
|
Li ML, Gillies EJ, Briner R, Hoover CA, Sora KJ, Loseto LL, Walters WJ, Cheung WWL, Giang A. Investigating the dynamics of methylmercury bioaccumulation in the Beaufort Sea shelf food web: a modeling perspective. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1010-1025. [PMID: 35748915 DOI: 10.1039/d2em00108j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High levels of methylmercury (MeHg) have been reported in Arctic marine biota, posing health risks to wildlife and human beings. Although MeHg concentrations of some Arctic species have been monitored for decades, the key environmental and ecological factors driving temporal trends of MeHg are largely unclear. We develop an ecosystem-based MeHg bioaccumulation model for the Beaufort Sea shelf (BSS) using the Ecotracer module of Ecopath with Ecosim, and apply the model to explore how MeHg toxicokinetics and food web trophodynamics affect bioaccumulation in the BSS food web. We show that a food web model with complex trophodynamics and relatively simple MeHg model parametrization can capture the observed biomagnification pattern of the BSS. While both benthic and pelagic production are important for transferring MeHg to fish and marine mammals, simulations suggest that benthic organisms are primarily responsible for driving the high trophic magnification factor in the BSS. We illustrate ways of combining empirical observations and modelling experiments to generate hypotheses about factors affecting food web bioaccumulation, including the MeHg elimination rate, trophodynamics, and species migration behavior. The results indicate that population dynamics rather than MeHg elimination may determine population-wide concentrations for fish and lower trophic level organisms, and cause large differences in concentrations between species at similar trophic levels. This research presents a new tool and lays the groundwork for future research to assess the pathways of global environmental changes in MeHg bioaccumulation in Arctic ecosystems in the past and the future.
Collapse
Affiliation(s)
- Mi-Ling Li
- School of Marine Science and Policy, University of Delaware, Newark, DE, USA.
- Institute for Resources, Environment & Sustainability, University of British Columbia, Vancouver, BC, Canada.
| | - Emma J Gillies
- Institute for Resources, Environment & Sustainability, University of British Columbia, Vancouver, BC, Canada.
| | - Renea Briner
- School of Marine Science and Policy, University of Delaware, Newark, DE, USA.
| | - Carie A Hoover
- Marine Affairs Program, Dalhousie University, Halifax, NS, Canada
| | - Kristen J Sora
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Lisa L Loseto
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
- Centre for Earth Observation Science, Department Environment and Geography, Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, MB, Canada
| | - William J Walters
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, University Park, PA, USA
| | - William W L Cheung
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Amanda Giang
- Institute for Resources, Environment & Sustainability, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
33
|
Li ML, Kwon SY, Poulin BA, Tsui MTK, Motta LC, Cho M. Internal Dynamics and Metabolism of Mercury in Biota: A Review of Insights from Mercury Stable Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9182-9195. [PMID: 35723432 PMCID: PMC9261262 DOI: 10.1021/acs.est.1c08631] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Monitoring mercury (Hg) levels in biota is considered an important objective for the effectiveness evaluation of the Minamata Convention. While many studies have characterized Hg levels in organisms at multiple spatiotemporal scales, concentration analyses alone often cannot provide sufficient information on the Hg exposure sources and internal processes occurring within biota. Here, we review the decadal scientific progress of using Hg isotopes to understand internal processes that modify the speciation, transport, and fate of Hg within biota. Mercury stable isotopes have emerged as a powerful tool for assessing Hg sources and biogeochemical processes in natural environments. A better understanding of the tissue location and internal mechanisms leading to Hg isotope change is key to assessing its use for biomonitoring. We synthesize the current understanding and uncertainties of internal processes leading to Hg isotope fractionation in a variety of biota, in a sequence of better to less studied organisms (i.e., birds, marine mammals, humans, fish, plankton, and invertebrates). This review discusses the opportunities and challenges of using certain forms of biota for Hg source monitoring and the need to further elucidate the physiological mechanisms that control the accumulation, distribution, and toxicity of Hg in biota by coupling new techniques with Hg stable isotopes.
Collapse
Affiliation(s)
- Mi-Ling Li
- School
of Marine Science and Policy, University
of Delaware, 201 Robinson Hall, Newark, Delaware 19716, United
States
| | - Sae Yun Kwon
- Division
of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro,
Nam-Gu, Pohang 37673, South Korea
- Institute
for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon 21983, South Korea
| | - Brett A. Poulin
- Department
of Environmental Toxicology, University
of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Martin Tsz-Ki Tsui
- School
of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, China
| | - Laura C. Motta
- Department
of Chemistry, University at Buffalo, 359 Natural Sciences Complex, Buffalo, New York 14260-3000, United States
| | - Moonkyoung Cho
- Division
of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro,
Nam-Gu, Pohang 37673, South Korea
| |
Collapse
|
34
|
Huang S, Jiang R, Song Q, Zhao Y, Lv S, Zhang Y, Huo Y, Chen Y. The Hg behaviors in mangrove ecosystems revealed by Hg stable isotopes: a case study of Maowei mangrove. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25349-25359. [PMID: 34843054 DOI: 10.1007/s11356-021-17744-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
As one of the most productive marine ecosystems in the tropics and subtropics, mangroves are an important part of the global mercury (Hg) cycling. The environmental processes and effects of Hg in mangroves are complex and affect human Hg exposure, and it is crucial to understand Hg behaviors in the mangrove ecosystem. However, clarifying Hg behaviors in the mangrove ecosystem remains difficult because of an insufficient understanding of the dominant pathways. In this study, measurements of mercury (Hg) concentration and isotope ratios in sediment and plant tissues from a mangrove wetland were used to investigate Hg isotope fractionation in mangrove plants and sediments. Spatial patterns in Hg concentration and isotope signatures indicate that Hg re-emission in the sediment was suppressed by mangrove plants. The ratio of Δ199Hg/Δ201Hg was 0.93 for all sediments, indicating that Hg mass-independent fractionation in the mangrove ecosystem was primarily affected by photoreduction, while the ratios of Δ199Hg/Δ201Hg and Δ199Hg/δ202Hg for plant tissues suggested that natural organic matter reduction of Hg(II) was occurred in the plants. The distinct positive Δ199Hg values found in mangrove plants were supposed to be the results of the unique physiological characteristics of mangroves. The exterior Hg sources from atmosphere and seawater emphasize the role of mangrove ecosystems in the global Hg biogeochemistry. Our study highlights the distinct Hg isotope signatures in the mangrove from that in forests and indicates unique Hg behaviors in the mangrove ecosystem.
Collapse
Affiliation(s)
- Shuyuan Huang
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Ronggen Jiang
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
| | - Qingyong Song
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Yuhan Zhao
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Supeng Lv
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
| | - Yuanbiao Zhang
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China.
| | - Yunlong Huo
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
| | - Yaojin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
35
|
Jung S, Kwon SY, Li ML, Yin R, Park J. Elucidating sources of mercury in the west coast of Korea and the Chinese marginal seas using mercury stable isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152598. [PMID: 34958842 DOI: 10.1016/j.scitotenv.2021.152598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Nearshore systems play an important role as mercury (Hg) sources to the open ocean and to human health via fish consumption. The nearshore system along East Asia is of particular concern given the rapid industrialization, which contributes to significant anthropogenic Hg emissions and releases. We used Hg stable isotopes to characterize Hg sources in the sediment and fish along the west coast of Korea, located at the northeast of the East China Sea. The Hg isotope ratios of the west coast sediments (δ202Hg; -0.89 to -0.27‰, Δ199Hg; -0.04 to 0.14‰) were statistically similar with other nearshore sediments (δ202Hg; -0.99 to -0.30‰, Δ199Hg; -0.04 to 0.19‰) and overlapped with the industrial Hg source end-member (δ202Hg; -0.5‰, Δ199Hg; 0.01‰) estimated from the Chinese marginal seas. Using a ternary mixing model, we estimated that industrial Hg sources contribute 83-97% in the west coast of Korea, and riverine and atmospheric Hg sources play minor roles in the Korean west coast and the Chinese marginal seas. The comparison between Hg isotope ratios of the sediment and nearshore fish revealed that the fish in the most west coast sites are exposed to MeHg produced in the sediment. At a few southwest coast sites, external MeHg produced in rivers and the open ocean water column appears to be more important as a source in fish. This is supported by much higher δ202Hg (0.74‰; similar to oceanic fish) and lower δ202Hg (-0.71‰; similar to riverine sources) compared to fish collected from other west coast sites influenced by sedimentary MeHg. The substantial Hg contributions from industrial activities suggest the national policies regulating anthropogenic Hg releases can directly mitigate human Hg exposure originating via local fish consumption. This study contributes to the growing regional and global inventories of Hg fluxes and sources exported into coastal oceans.
Collapse
Affiliation(s)
- Saebom Jung
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon 21983, South Korea.
| | - Mi-Ling Li
- School of Marine Science and Policy, University of Delaware, 201 Robinson Hall, Newark, DE 19716, USA
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 West Lincheng Road, Guiyang, Guizhou 550081, China
| | - Jaeseon Park
- Environmental Measurement & Analysis Center, National Institute of Environmental Research, 42 Hwangyong-Ro, Seo-Gu, Incheon 22689, South Korea
| |
Collapse
|
36
|
Sun L, Chen W, Yuan D, Zhou L, Lu C, Zheng Y. Distribution and Transformation of Mercury in Subtropical Wild-Caught Seafood from the Southern Taiwan Strait. Biol Trace Elem Res 2022; 200:855-867. [PMID: 33792858 DOI: 10.1007/s12011-021-02695-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Wild-caught seafood contains significant amounts of mercury. Investigating the mercury accumulation levels in wild-caught seafood and analyzing its migration and transformation are of great value for assessing the health risks of mercury intake and for the tracking of mercury sources. We determined the concentrations and stable mercury isotopic compositions (δ202Hg, Δ199Hg, Δ200Hg, and Δ201Hg) of 104 muscle samples collected from 38 species of seafood typically harvested from the Taiwan Shallow Fishing Ground (TSFG), Southern Taiwan Strait. Overall, the concentrations of total mercury (THg) and methylmercury (MeHg) ranged from 11 to 479 ng/g (dry weight, dw) and 10 to 363 ng/g (dw), respectively, and were below the threshold value established by the USEPA and the Chinese government. Demersal and near-benthic species accumulated more mercury than pelagic or mesopelagic species. The characteristics of mercury isotopes in wild-caught marine species differed in terms of vertical and horizontal distribution. Considering the known peripheral land sources of mercury (Δ199Hg ≈ 0), the mercury in seafood from the TSFG (Δ199Hg > 0) did not originate from anthropogenic emissions. The ratio of Δ199Hg and Δ201Hg (1.18 ± 0.03) suggested that the photoreduction of Hg (II) and the photo-degradation of MeHg equally contributed to mass-independent fractionation. Based on the values of Δ199Hg/δ202Hg (1.18 ± 0.03), about 67% of the mercury in seawater had undergone microbial demethylation prior to methylation and entering the seafood. Additionally, the vertical distribution of Δ200Hg in seafood from different water depths implies that mercury input was in part caused by atmospheric deposition. Our results provide detailed information on the sources of mercury and its transfer in the food web in offshore fishing grounds.
Collapse
Affiliation(s)
- Lumin Sun
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Education Department of Fujian, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, China.
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen, 361105, China.
| | - Weijia Chen
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Education Department of Fujian, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, China
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen, 361105, China
| | - Dongxing Yuan
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen, 361105, China
| | - Liang Zhou
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Education Department of Fujian, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, China
| | - Changyi Lu
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Education Department of Fujian, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, China
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen, 361105, China
| | - Yingjie Zheng
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Education Department of Fujian, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, China
| |
Collapse
|
37
|
Araújo DF, Knoery J, Briant N, Vigier N, Ponzevera E. "Non-traditional" stable isotopes applied to the study of trace metal contaminants in anthropized marine environments. MARINE POLLUTION BULLETIN 2022; 175:113398. [PMID: 35114550 DOI: 10.1016/j.marpolbul.2022.113398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The advent of Multicollector ICP-MS inaugurated the analysis of new metal isotope systems, the so-called "non-traditional" isotopes. They are now available tools to study geochemical and ecotoxicological aspects of marine metal contamination and hence, to push the frontiers of our knowledge. However, such applications are still in their infancy, and an accessible state-of-the-art describing main applications, obstacles, gaps, and directions for further development was missing from the literature. This paper fills this gap and aims to encourage the marine scientific community to explore the contributions of this newly available information for the fields of chemical risk assessment, biomonitoring, and trophic transfer of metal contaminants. In the current "Anthropocene" epoch, metal contamination will continue to threaten marine aquatic ecosystems, and "non-traditional" isotopes can be a valuable tool to detect human-induced changes across time-space involving metal contaminants, and their interaction with marine biota.
Collapse
Affiliation(s)
| | | | | | - Nathalie Vigier
- Laboratoire d'Océanographie de Villefranche sur Mer (LOV), IMEV, CNRS, Sorbonne Université, France
| | | |
Collapse
|
38
|
Wang T, Obrist D. Inorganic and methylated mercury dynamics in estuarine water of a salt marsh in Massachusetts, USA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118657. [PMID: 34890749 DOI: 10.1016/j.envpol.2021.118657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/06/2021] [Accepted: 12/06/2021] [Indexed: 05/26/2023]
Abstract
Salt marsh estuaries serve as sources and sinks for nutrients and elements to and from estuarine water, which enhances and alleviates watershed fluxes to the coastal ocean. We assessed sources and sinks of mercury in the intertidal Plum Island Sound estuary in Massachusetts, the largest salt marsh estuary of New England, using 25-km spatial water sampling transects. Across all seasons, dissolved (FHg) and total (THg) mercury concentrations in estuarine water were highest and strongly enhanced in upper marshes (1.31 ± 0.20 ng L-1 and 6.56 ± 3.70 ng L-1, respectively), compared to riverine Hg concentrations (0.86 ± 0.17 ng L-1 and 0.88 ± 0.34 ng L-1, respectively). Mercury concentrations declined from upper to lower marshes and were lowest in ocean water (0.38 ± 0.10 ng L-1 and 0.56 ± 0.25 ng L-1, respectively). Conservative mixing models using river and ocean water as endmembers indicated that internal estuarine Hg sources strongly enhanced estuarine water Hg concentrations. For FHg, internal estuarine Hg contributions were estimated at 26 g yr-1 which enhanced Hg loads from riverine sources to the ocean by 44%. For THg, internal sources amounted to 251 g yr-1 and exceeded riverine sources six-fold. Proposed sources for internal estuarine mercury contributions include atmospheric deposition to the large estuarine surface area and sediment re-mobilization, although sediment Hg concentrations were low (average 23 ± 2 μg kg-1) typical of uncontaminated sediments. Soil mercury concentrations under vegetation, however, were ten times higher (average 200 ± 225 μg kg-1) than in intertidal sediments suggesting that high soil Hg accumulation might drive lateral export of Hg to the ocean. Spatial transects of methylated Hg (MeHg) showed no concentration enhancements in estuarine water and no indication of internal MeHg sources or formation. Initial mass balance considerations suggest that atmospheric deposition may either be in similar magnitude, or possibly exceed lateral tidal export which would be consistent with strong Hg accumulation observed in salt marsh soils sequestering Hg from current and past atmospheric deposition.
Collapse
Affiliation(s)
- Ting Wang
- Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| | - Daniel Obrist
- Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
39
|
Renedo M, Point D, Sonke JE, Lorrain A, Demarcq H, Graco M, Grados D, Gutiérrez D, Médieu A, Munaron JM, Pietri A, Colas F, Tremblay Y, Roy A, Bertrand A, Bertrand SL. ENSO Climate Forcing of the Marine Mercury Cycle in the Peruvian Upwelling Zone Does Not Affect Methylmercury Levels of Marine Avian Top Predators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15754-15765. [PMID: 34797644 DOI: 10.1021/acs.est.1c03861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Climate change is expected to affect marine mercury (Hg) biogeochemistry and biomagnification. Recent modeling work suggested that ocean warming increases methylmercury (MeHg) levels in fish. Here, we studied the influence of El Niño Southern Oscillations (ENSO) on Hg concentrations and stable isotopes in time series of seabird blood from the Peruvian upwelling and oxygen minimum zone. Between 2009 and 2016, La Niña (2011) and El Niño conditions (2015-2016) were accompanied by sea surface temperature anomalies up to 3 °C, oxycline depth change (20-100 m), and strong primary production gradients. Seabird Hg levels were stable and did not co-vary significantly with oceanographic parameters, nor with anchovy biomass, the primary dietary source to seabirds (90%). In contrast, seabird Δ199Hg, proxy for marine photochemical MeHg breakdown, and δ15N showed strong interannual variability (up to 0.8 and 3‰, respectively) and sharply decreased during El Niño. We suggest that lower Δ199Hg during El Niño represents reduced MeHg photodegradation due to the deepening of the oxycline. This process was balanced by equally reduced Hg methylation due to reduced productivity, carbon export, and remineralization. The non-dependence of seabird MeHg levels on strong ENSO variability suggests that marine predator MeHg levels may not be as sensitive to climate change as is currently thought.
Collapse
Affiliation(s)
- Marina Renedo
- Géosciences Environnement Toulouse (GET)-Institut de Recherche pour le Développement (IRD), CNRS, Université de Toulouse, 14 Avenue Edouard Belin, Toulouse 31400, France
| | - David Point
- Géosciences Environnement Toulouse (GET)-Institut de Recherche pour le Développement (IRD), CNRS, Université de Toulouse, 14 Avenue Edouard Belin, Toulouse 31400, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse (GET)-Institut de Recherche pour le Développement (IRD), CNRS, Université de Toulouse, 14 Avenue Edouard Belin, Toulouse 31400, France
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané F-29280 France
| | - Hervé Demarcq
- IRD, MARBEC (Univ. Montpellier, CNRS, Ifremer, IRD), Sète 34203, France
| | - Michelle Graco
- Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle, Callao 07021, Peru
| | - Daniel Grados
- Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle, Callao 07021, Peru
| | - Dimitri Gutiérrez
- Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle, Callao 07021, Peru
| | - Anaïs Médieu
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané F-29280 France
| | | | - Alice Pietri
- Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle, Callao 07021, Peru
| | - François Colas
- LOCEAN IPSL (IRD/CNRS/SU/MNHN), 4 Place Jussieu, Paris 75252, France
| | - Yann Tremblay
- IRD, MARBEC (Univ. Montpellier, CNRS, Ifremer, IRD), Sète 34203, France
| | - Amédée Roy
- IRD, MARBEC (Univ. Montpellier, CNRS, Ifremer, IRD), Sète 34203, France
| | - Arnaud Bertrand
- IRD, MARBEC (Univ. Montpellier, CNRS, Ifremer, IRD), Sète 34203, France
| | | |
Collapse
|
40
|
Jung S, Kwon SY, Hong Y, Yin R, Motta LC. Isotope investigation of mercury sources in a creek impacted by multiple anthropogenic activities. CHEMOSPHERE 2021; 282:130947. [PMID: 34119733 DOI: 10.1016/j.chemosphere.2021.130947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
To investigate mercury (Hg) sources responsible for contamination at Gumu Creek in South Korea, Hg concentration (THg) and Hg isotope ratios were measured in the soil and sediment of Gumu Creek and the samples from a hazardous waste landfill (HWL). The THg ranged between 0.29-327 mg kg-1 and 9.5-414 mg kg-1 in the soil and sediment, respectively, reflecting heterogeneous distribution and elevated levels across the entire Gumu Creek. Without the soil with the lowest THg (0.30 ± 0.01 mg kg-1, n = 3), the δ202Hg (-0.83 to -0.18‰) and Δ199Hg (-0.24 to 0.01‰) of the sediment and soil of Gumu Creek were within the ranges of the HWL samples (δ202Hg; -1.29 to -0.38‰, Δ199Hg; -0.31 to 0.01‰). The comparison with the literature reporting sediment Hg isotope ratios impacted by various anthropogenic Hg sources revealed a presence of diverse Hg sources at Gumu Creek, including commercial liquid Hg, phenyl-Hg, and fly ash, consistent with the types of waste deposited within the HWL. Using commercial liquid Hg, fly ash, and the soil with the lowest THg as end-members, the ternary mixing model yielded 25-88% and 12-57% contributions from commercial liquid Hg and fly ash to the Gumu Creek sediment, respectively. The results of our study suggest that Hg isotope ratios are an effective tool for screening potential Hg sources at sites where the distribution of Hg is heterogeneous and multiple anthropogenic activities exist.
Collapse
Affiliation(s)
- Saebom Jung
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon, 21983, South Korea.
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University, 2511 Sejong-Ro, Sejong City, 30019, South Korea
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China
| | - Laura C Motta
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| |
Collapse
|
41
|
Yang S, Wang B, Qin C, Yin R, Li P, Liu J, Point D, Maurice L, Sonke JE, Zhang L, Feng X. Compound-Specific Stable Isotope Analysis Provides New Insights for Tracking Human Monomethylmercury Exposure Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12493-12503. [PMID: 34468125 DOI: 10.1021/acs.est.1c01771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Monomethylmercury (MMHg) exposure can induce adverse neurodevelopmental effects in humans and is a global environmental health concern. Human exposure to MMHg occurs predominately through the consumption of fishery foods and rice in Asia, but it is challenging to quantify these two exposure sources. Here, we innovatively utilized MMHg compound-specific stable isotope analyses (MMHg-CSIA) of the hair to quantify the human MMHg sources in coastal and inland areas, where fishery foods and rice are routinely consumed. Our data showed that the fishery foods and rice end members had distinct Δ199HgMMHg values in both coastal and inland areas. The Δ199HgMMHg values of the human hair were comparable to those of fishery foods but not those of rice. Positive shifts in the δ202HgMMHg values of the hair from diet were observed in the study areas. Additionally, significant differences in δ202Hg versus Δ199Hg were detected between MMHg and inorganic Hg (IHg) in the human hair but not in fishery foods and rice. A binary mixing model was developed to estimate the human MMHg exposures from fishery foods and rice using Δ199HgMMHg data. The model results suggested that human MMHg exposures were dominated (>80%) by fishery food consumption and were less affected by rice consumption in both the coastal and inland areas. This study demonstrated that the MMHg-CSIA method can provide unique information for tracking human MMHg exposure sources by excluding the deviations from dietary surveys, individual MMHg absorption/demethylation efficiencies, and the confounding effects of IHg.
Collapse
Affiliation(s)
- Shaochen Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chongyang Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - David Point
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, Toulouse 31400, France
| | - Laurence Maurice
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, Toulouse 31400, France
| | - Jeroen E Sonke
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, Toulouse 31400, France
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| |
Collapse
|
42
|
Zhang Z, Chen L, Cheng M, Liu M, Wang X. Biotransport of mercury and human methylmercury exposure through crabs in China - A life cycle-based analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125684. [PMID: 33765564 DOI: 10.1016/j.jhazmat.2021.125684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/28/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Exposure to methylmercury (MeHg) has various toxic effects on humans. The evaluation of human MeHg exposure has previously focused on fish consumption. However, in this study, we found that MeHg levels in domestic crabs in China were also relatively high (range: 50-1400 ng/g, dry weight). The high MeHg levels in crabs and their high consumption do not match the risk assessment of MeHg, indicating an underestimated exposure risk, especially in MeHg-sensitive groups such as pregnant women. The annual crab MeHg content output in China was estimated to be 30 ± 27 kg. A total of 6.8% of the country's land area contributes 71% of the MeHg output. However, 66% of the output is redistributed to non-crab-producing regions via interregional food trade, posing risks to the population on a national scale. The daily intake of MeHg from crabs could easily exceed the reference dose (0.1 µg/kg of body weight per day) suggested by the United States Environmental Protection Agency with consideration of coexposure from fish, rice, and other food sources. We suggest that future MeHg exposure analysis includes crab MeHg as a coexposure pathway to estimate the dietary MeHg limit accurately and emphasize the influence of interregional food trade on MeHg exposure.
Collapse
Affiliation(s)
- Zhihao Zhang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Long Chen
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Menghan Cheng
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Maodian Liu
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA.
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
43
|
Pinzone M, Cransveld A, Tessier E, Bérail S, Schnitzler J, Das K, Amouroux D. Contamination levels and habitat use influence Hg accumulation and stable isotope ratios in the European seabass Dicentrarchus labrax. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:117008. [PMID: 33813195 DOI: 10.1016/j.envpol.2021.117008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Hg accumulation in marine organisms depends strongly on in situ water or sediment biogeochemistry and levels of Hg pollution. To predict the rates of Hg exposure in human communities, it is important to understand Hg assimilation and processing within commercially harvested marine fish, like the European seabass Dicentrarchus labrax. Previously, values of Δ199Hg and δ202Hg in muscle tissue successfully discriminated between seven populations of European seabass. In the present study, a multi-tissue approach was developed to assess the underlying processes behind such discrimination. We determined total Hg content (THg), the proportion of monomethyl-Hg (%MeHg), and Hg isotopic composition (e.g. Δ199Hg and δ202Hg) in seabass liver. We compared this to the previously published data on muscle tissue and local anthropogenic Hg inputs. The first important finding of this study showed an increase of both %MeHg and δ202Hg values in muscle compared to liver in all populations, suggesting the occurrence of internal MeHg demethylation in seabass. This is the first evidence of such a process occurring in this species. Values for mass-dependent (MDF, δ202Hg) and mass-independent (MIF, Δ199Hg) isotopic fractionation in liver and muscle accorded with data observed in estuarine fish (MDF, 0-1‰ and MIF, 0-0.7‰). Black Sea seabass stood out from other regions, presenting higher MIF values (≈1.5‰) in muscle and very low MDF (≈-1‰) in liver. This second finding suggests that under low Hg bioaccumulation, Hg isotopic composition may allow the detection of a shift in the habitat use of juvenile fish, such as for first-year Black Sea seabass. Our study supports the multi-tissue approach as a valid tool for refining the analysis of Hg sourcing and metabolism in a marine fish. The study's major outcome indicates that Hg levels of pollution and fish foraging location are the main factors influencing Hg species accumulation and isotopic fractionation in the organisms.
Collapse
Affiliation(s)
- Marianna Pinzone
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège, B6c Allée du 6 Août, 4000, Liège, Belgium
| | - Alice Cransveld
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège, B6c Allée du 6 Août, 4000, Liège, Belgium
| | - Emmanuel Tessier
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (IPREM), Technopôle Helioparc, 2 Avenue Pierre Angot, 64053, Pau Cedex 09, France
| | - Sylvain Bérail
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (IPREM), Technopôle Helioparc, 2 Avenue Pierre Angot, 64053, Pau Cedex 09, France
| | - Joseph Schnitzler
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège, B6c Allée du 6 Août, 4000, Liège, Belgium; Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine of Hannover, Foundation, Werftstraße 6, 25761, Büsum, Schleswig-Holstein, Germany
| | - Krishna Das
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège, B6c Allée du 6 Août, 4000, Liège, Belgium.
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (IPREM), Technopôle Helioparc, 2 Avenue Pierre Angot, 64053, Pau Cedex 09, France
| |
Collapse
|
44
|
Li YJ, Lin Q, Zhang ZH, Wei TB, Shi B, Yao H, Zhang YM. In situ formation of Hg 2+-coordinated fluorescent nanoparticles through a supramolecular polymer network used for efficient Hg 2+ sensing and separation. NANOSCALE 2021; 13:9172-9176. [PMID: 33982740 DOI: 10.1039/d1nr01599k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There have been many new methods for synthesizing novel nanomaterials with unique functions. Herein, a novel strategy to form fluorescent nanoparticles in situ has been developed, and it can be applied to efficiently sense Hg2+ in living cells and also separate Hg2+ from water.
Collapse
Affiliation(s)
- Ying-Jie Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qi Lin
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Zheng-Hua Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Tai-Bao Wei
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Bingbing Shi
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Hong Yao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - You-Ming Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| |
Collapse
|
45
|
Janssen SE, Tate MT, Krabbenhoft DP, DeWild JF, Ogorek JM, Babiarz CL, Sowers AD, Tuttle PL. The influence of legacy contamination on the transport and bioaccumulation of mercury within the Mobile River Basin. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124097. [PMID: 33022526 DOI: 10.1016/j.jhazmat.2020.124097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/28/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Past industrial use and subsequent release of mercury (Hg) into the environment have resulted in severe cases of legacy contamination that still influence contemporary Hg levels in biota. While the bioaccumulation of legacy Hg is commonly assessed via concentration measurements within fish tissue, this practice becomes difficult in regions of high productivity and methylmercury (MeHg) production, like the Mobile River Basin, Alabama in the southeastern United States. This study applied Hg stable isotope tracers to distinguish legacy Hg from regional deposition sources in sediments, waters, and fish within the Mobile River. Sediments and waters displayed differences in δ202Hg between industrial and background sites, which corresponded to drastic differences in Hg concentration. Sites that were affected by legacy Hg, as defined by δ202Hg, produced largemouth bass with lower MeHg content (59-70%) than those captured in the main rivers (>85%). Direct measurements of Hg isotopes and mathematical estimates of MeHg isotope pools in fish displayed similar distinctions between legacy and watershed sources as observed in other matrices. These results indicate that legacy Hg can accumulate directly into fish tissue as the inorganic species and may also be available for methylation within contaminated zones decades after the initial release.
Collapse
Affiliation(s)
- Sarah E Janssen
- U.S. Geological Survey Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA.
| | - Michael T Tate
- U.S. Geological Survey Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - David P Krabbenhoft
- U.S. Geological Survey Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - John F DeWild
- U.S. Geological Survey Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - Jacob M Ogorek
- U.S. Geological Survey Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - Christopher L Babiarz
- U.S. Geological Survey Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - Anthony D Sowers
- U.S. Fish and Wildlife Service, Georgia Ecological Services Office, 4980 Wildlife Dr., Townsend, GA 31331, USA
| | - Peter L Tuttle
- U.S. Fish and Wildlife Service, Deepwater Horizon Gulf Restoration Office, 341 Greeno Road, Fairhope, AL 36532, USA
| |
Collapse
|
46
|
Janssen SE, Patnode KA, Pluta BR, Krabbenhoft DP. Insights into Mercury Source Identification and Bioaccumulation Using Stable Isotope Approaches in the Hannibal Pool of the Ohio River, USA. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:233-242. [PMID: 32633881 PMCID: PMC8043245 DOI: 10.1002/ieam.4308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/03/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Mercury contamination in river systems due to historic and current Hg releases is a persistent concern for both wildlife and human health. In larger rivers, like the Ohio River, USA, it is difficult to directly link Hg discharges to bioaccumulation due to the existence of multiple industrial Hg sources as well as the varied dietary and migratory habits of biota. To better understand how industrial effluent influences the cycling and bioaccumulation of Hg within the Ohio River, Hg stable isotope analysis was applied to various nonbiological and biological media. High Hg concentrations in suspended particulate matter suggest this vector was the largest contributor of Hg to the water column, and distinct Hg source signatures were observed in effluent particulates from different industrial processes, such as chlor-alkali activity (δ202 Hg = -0.52‰) and coal power plant discharge (δ202 Hg = -1.39‰). Despite this distinction, average sediments (δ202 Hg = -1.00 ± 0.23‰) showed intermediate isotopic signatures that suggest the accumulation of a mixed Hg source driven by multiple industrial discharges. Biota in the system were shown to have a conserved range of δ202 Hg and estimation approaches related these signatures back to particulate matter within Hannibal Pool. Mussels were found to conserve Hg isotopes signatures independently of food web drivers and served as ideal water column indicators of bioaccumulated Hg sources. This study highlights the complexity of Hg cycling within an industrialized river and shows that an isotope tracer approach can provide insight to water column sources of Hg. Integr Environ Assess Manag 2021;17:233-242. Published 2020. This article is a US Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Sarah E Janssen
- United States Geological Survey, Upper Midwest Water Science Center, Middleton, Wisconsin
| | | | - Bruce R Pluta
- United States Environmental Protection Agency, Hazardous Site Cleanup Division, Philadelphia, Pennsylvania
| | - David P Krabbenhoft
- United States Geological Survey, Upper Midwest Water Science Center, Middleton, Wisconsin
| |
Collapse
|
47
|
Lee BJ, Kwon SY, Yin R, Li M, Jung S, Lim SH, Lee JH, Kim KW, Kim KD, Jang JW. Internal dynamics of inorganic and methylmercury in a marine fish: Insights from mercury stable isotopes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115588. [PMID: 33254601 DOI: 10.1016/j.envpol.2020.115588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 05/12/2023]
Abstract
Mercury isotope ratios in fish tissues have been used to infer sources and biogeochemical processes of mercury in aquatic ecosystems. More experimental studies are however needed to understand the internal dynamics of mercury isotopes and to further assess the feasibility of using fish mercury isotope ratios as a monitoring tool. We exposed Olive flounder (Paralichthys olivaceus) to food pellets spiked with varying concentrations (400, 1600 ng/g) of methylmercury (MeHg) and inorganic mercury (IHg) for 10 weeks. Total mercury (THg), MeHg concentrations, and mercury isotope ratios (δ202Hg, Δ199Hg, Δ200Hg) were measured in the muscle, liver, kidney, and intestine of fish. Fish fed mercury unamended food pellets and MeHg amended food pellets showed absence of internal δ202Hg and Δ199Hg fractionation in all tissue type. For fish fed IHg food pellets, the δ202Hg and Δ199Hg values of intestine equilibrated to those of the IHg food pellets. Kidney, muscle, and liver exhibited varying degrees of isotopic mixing toward the IHg food pellets, consistent with the degree of IHg bioaccumulation. Liver showed additional positive δ202Hg shifts (∼0.63‰) from the binary mixing line between the unamended food pellets and IHg food pellets, which we attribute to redistribution or biliary excretion of liver IHg with a lower δ202Hg to other tissues. Significant δ202Hg fractionation in the liver and incomplete isotopic equilibration in the muscle indicate that these tissues may not be suitable for source monitoring at sites heavily polluted by IHg. Instead, fish intestine appears to be a more suitable proxy for identifying IHg sources. The results from our study are essential for determining the appropriate fish tissues for monitoring environmental sources of IHg and MeHg.
Collapse
Affiliation(s)
- Bong Joo Lee
- Aquafeed Research Center, National Institute of Fisheries Science, 2600 Haean-Ro, Nam Gu, Pohang, 37517, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam Gu, Pohang, 37673, South Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon, 21983, South Korea.
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Miling Li
- School of Marine Science and Policy, University of Delaware, 261 S. College Avenue, Newark, DE, 19716, USA
| | - Saebom Jung
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam Gu, Pohang, 37673, South Korea
| | - Seung Hyeon Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam Gu, Pohang, 37673, South Korea
| | - Ju Hyeon Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam Gu, Pohang, 37673, South Korea
| | - Kang Woong Kim
- Aquaculture Management Division, National Institute of Fisheries Science, 216 Gijanghaean-Ro, Gijang-Gun, Busan, 4608, South Korea
| | - Kyoung Duck Kim
- Aquaculture Management Division, National Institute of Fisheries Science, 216 Gijanghaean-Ro, Gijang-Gun, Busan, 4608, South Korea
| | - Ji Won Jang
- Aquafeed Research Center, National Institute of Fisheries Science, 2600 Haean-Ro, Nam Gu, Pohang, 37517, South Korea
| |
Collapse
|
48
|
Abstract
Mercury is a globally distributed neurotoxic pollutant that can be biomagnified in marine fish to levels that are harmful for consumption by humans and other animals. The degree to which mercury has infiltrated the oceans yields important information on the biogeochemistry of mercury and its expected effects on fisheries during changing mercury emissions scenarios. Mercury isotope measurement of biota from deep-sea trenches was used to demonstrate that surface-ocean-derived mercury has infiltrated the deepest locations in the oceans. It was found that when fish living in the surface ocean die and their carcasses sink (along with marine particles), they transfer large amounts of mercury to the trench foodwebs leading to high concentrations of mercury in trench biota. Mercury isotopic compositions of amphipods and snailfish from deep-sea trenches reveal information on the sources and transformations of mercury in the deep oceans. Evidence for methyl-mercury subjected to photochemical degradation in the photic zone is provided by odd-mass independent isotope values (Δ199Hg) in amphipods from the Kermadec Trench, which average 1.57‰ (±0.14, n = 12, SD), and amphipods from the Mariana Trench, which average 1.49‰ (±0.28, n = 13). These values are close to the average value of 1.48‰ (±0.34, n = 10) for methyl-mercury in fish that feed at ∼500-m depth in the central Pacific Ocean. Evidence for variable contributions of mercury from rainfall is provided by even-mass independent isotope values (Δ200Hg) in amphipods that average 0.03‰ (±0.02, n = 12) for the Kermadec and 0.07‰ (±0.01, n = 13) for the Mariana Trench compared to the rainfall average of 0.13 (±0.05, n = 8) in the central Pacific. Mass-dependent isotope values (δ202Hg) are elevated in amphipods from the Kermadec Trench (0.91 ±0.22‰, n = 12) compared to the Mariana Trench (0.26 ±0.23‰, n = 13), suggesting a higher level of microbial demethylation of the methyl-mercury pool before incorporation into the base of the foodweb. Our study suggests that mercury in the marine foodweb at ∼500 m, which is predominantly anthropogenic, is transported to deep-sea trenches primarily in carrion, and then incorporated into hadal (6,000-11,000-m) food webs. Anthropogenic Hg added to the surface ocean is, therefore, expected to be rapidly transported to the deepest reaches of the oceans.
Collapse
|
49
|
Bonsignore M, Manta DS, Barsanti M, Conte F, Delbono I, Horvat M, Quinci EM, Schirone A, Shlyapnikov Y, Sprovieri M. Mercury isotope signatures in sediments and marine organisms as tracers of historical industrial pollution. CHEMOSPHERE 2020; 258:127435. [PMID: 32947671 DOI: 10.1016/j.chemosphere.2020.127435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Isotopic composition of mercury (Hg) in marine organisms and sediment cores was used to identify sources and reconstruct historical trends of contamination in the coastal-marine area of Rosignano Solvay (Italy), affected by Hg pollution from a chlor-alkali plant on the near land. Sediments show a wide range of Hg concentration and Hg isotope signatures. Particularly, coupled Hg concentration and δ202Hg values trace inputs from different sources. The two depth-profiles clearly indicate three distinct periods: "pre-industrial" (before 1941), "industrial" (between 1941 and 2007) and "post-industrial" (after 2007) ages. This is also corroborated by sediment chronology, using 210Pb dating method, validated through 137Cs. Marine organisms are characterized by Hg isotope signatures comparable to "post-industrial" surface sediments. Notably, specimens of Mullus spp. evidence isotope composition comparable to the "industrial" sediments, thus suggesting a still active role of those sediments as source of Hg for the benthic fish compartment. The small amount of MIF and the Δ199Hg/Δ201Hg ratio recorded in organisms are reasonably consistent with limited processes of MMHg demethylation in the water column.
Collapse
Affiliation(s)
- Maria Bonsignore
- IAS-CNR - National Research Council of Italy IAS - Institute of Anthropic Impacts and Sustainability in marine environment, Capo Granitola, Italy.
| | - Daniela Salvagio Manta
- IAS-CNR - National Research Council of Italy IAS - Institute of Anthropic Impacts and Sustainability in marine environment, Lungomare Cristoforo Colombo 452, 90149 Palermo, Italy
| | - Mattia Barsanti
- ENEA - Italian National Agency for new technologies, energy and sustainable economic development, SSPT - Department for Sustainability of Production and Territorial Systems, La Spezia, Italy
| | - Fabio Conte
- ENEA - Italian National Agency for new technologies, energy and sustainable economic development, SSPT - Department for Sustainability of Production and Territorial Systems, La Spezia, Italy
| | - Ivana Delbono
- ENEA - Italian National Agency for new technologies, energy and sustainable economic development, SSPT - Department for Sustainability of Production and Territorial Systems, La Spezia, Italy
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Enza Maria Quinci
- IAS-CNR - National Research Council of Italy IAS - Institute of Anthropic Impacts and Sustainability in marine environment, Capo Granitola, Italy
| | - Antonio Schirone
- ENEA - Italian National Agency for new technologies, energy and sustainable economic development, SSPT - Department for Sustainability of Production and Territorial Systems, La Spezia, Italy
| | | | - Mario Sprovieri
- IAS-CNR - National Research Council of Italy IAS - Institute of Anthropic Impacts and Sustainability in marine environment, Capo Granitola, Italy
| |
Collapse
|
50
|
Li P, Yin R, Du B, Qin C, Li B, Chan HM, Feng X. Kinetics and metabolism of mercury in rats fed with mercury contaminated rice using mass balance and mercury isotope approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139687. [PMID: 32485364 DOI: 10.1016/j.scitotenv.2020.139687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Consumption of mercury (Hg) contaminated rice can be a major environmental health issue but the toxicokinetics is not well known. Hg isotopes have been shown to be good tracers in studying Hg exposure and metabolic processes. We established a Hg mass balance and Hg isotope model in rats fed with Hg contaminated rice (THg 51.3 ng/g; MeHg 25 ng/g) for 90 days to investigate Hg toxicokinetics. Overall 80% of feeding THg was recovered in rat body and excrement, while the excrement accounted for 55% of total observed THg in rats. Feces were the main route of Hg elimination in rats, while urinary excretion was negligible. However, only 32% of utilized MeHg was recovered in rats, indicating significant demethylation of MeHg in rat body. Positive net fractionations of δ202Hg (relative to the feeding rice) were observed in hair and blood samples (1.21‰ and 1.25‰, respectively), which have similar trend with the results obtained in human hair study, exhibiting higher δ202Hg values (2‰- 3‰) than consumed fish and rice. Most importantly, we observed negative net fractionations in feces (-0.44‰), which confirmed the missed Hg with negative δ202Hg signal. We concluded that mass balance and Hg isotope are useful tools for quantifying toxicokinetics of Hg. Demethylation of MeHg in the intestine were the important detoxification process in rat body characterizing with negative net Hg fractionations in feces.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Buyun Du
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chongyang Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Baixiang Li
- Department of Toxicology, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| |
Collapse
|