1
|
Cruz APM, Nishimura FG, dos Santos VCO, Steling EG, Von Zeska Kress MR, Marins M, Fachin AL. Essential Oil-Based Soap with Clove and Oregano: A Promising Antifungal and Antibacterial Alternative against Multidrug-Resistant Microorganisms. Molecules 2024; 29:4682. [PMID: 39407610 PMCID: PMC11477625 DOI: 10.3390/molecules29194682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The transmission of microorganisms via hands is a critical factor in healthcare-associated infections (HAIs), underscoring the importance of rigorous hand hygiene. The rise of antimicrobial-resistant microorganisms, driven in part by the overuse of antibiotics in clinical medicine, presents a significant global health challenge. Antimicrobial soaps, although commonly used, may exacerbate bacterial resistance and disrupt skin microbiota, posing additional health risks and environmental hazards. Essential oils, with their broad-spectrum antimicrobial properties, offer a promising alternative. This study evaluates the antimicrobial activity of essential oils against various bacterial and fungal strains, including multidrug-resistant isolates. Using a range of in vitro and in vivo antimicrobial assays, including minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), and minimal fungicidal concentration (MFC), the essential oils were tested against a broad spectrum of pathogens. Additionally, the chemical composition of the oils was analyzed in detail using gas chromatography-mass spectrometry (CG-MS). Clove, oregano, and thyme oils demonstrated potent inhibition of all tested ATCC bacterial strains, with MIC values ranging from 3.125 to 50 μL/mL. These oils also showed significant activity against multidrug-resistant Escherichia coli and Pseudomonas aeruginosa strains. Notably, clove oil exhibited remarkable efficacy against fungal strains such as Aspergillus fumigatus and Trichophyton rubrum, with MIC values as low as 1.56 μL/mL. Synergy tests revealed that combinations of clove, oregano, and thyme oils yielded significantly lower MIC values than individual oils, indicating additive or synergistic effects. The formulation of a soap incorporating clove and oregano oils demonstrated efficacy comparable to synthetic antiseptics in vivo. These findings highlight the exceptional antimicrobial potential of essential oils, mainly clove and oregano, against resistant microorganisms, offering a viable alternative to conventional antimicrobial agents.
Collapse
Affiliation(s)
- Ana Paula Merino Cruz
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (A.P.M.C.); (F.G.N.); (V.C.O.d.S.); (M.M.)
| | - Felipe Garcia Nishimura
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (A.P.M.C.); (F.G.N.); (V.C.O.d.S.); (M.M.)
| | - Vinícius Cristian Oti dos Santos
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (A.P.M.C.); (F.G.N.); (V.C.O.d.S.); (M.M.)
| | - Eliana Guedes Steling
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040–903, Brazil; (E.G.S.); (M.R.V.Z.K.)
| | - Marcia Regina Von Zeska Kress
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040–903, Brazil; (E.G.S.); (M.R.V.Z.K.)
| | - Mozart Marins
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (A.P.M.C.); (F.G.N.); (V.C.O.d.S.); (M.M.)
| | - Ana Lucia Fachin
- Unidade de Biotecnologia, Universidade de Ribeirão Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (A.P.M.C.); (F.G.N.); (V.C.O.d.S.); (M.M.)
| |
Collapse
|
2
|
Wand ME, Sutton JM. Efflux-mediated tolerance to cationic biocides, a cause for concern? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748532 DOI: 10.1099/mic.0.001263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
AbstractWith an increase in the number of isolates resistant to multiple antibiotics, infection control has become increasingly important to help combat the spread of multi-drug-resistant pathogens. An important component of this is through the use of disinfectants and antiseptics (biocides). Antibiotic resistance has been well studied in bacteria, but little is known about potential biocide resistance genes and there have been few reported outbreaks in hospitals resulting from a breakdown in biocide effectiveness. Development of increased tolerance to biocides has been thought to be more difficult due to the mode of action of biocides which affect multiple cellular targets compared with antibiotics. Very few genes which contribute towards increased biocide tolerance have been identified. However, the majority of those that have are components or regulators of different efflux pumps or genes which modulate membrane function/modification. This review will examine the role of efflux in increased tolerance towards biocides, focusing on cationic biocides and heavy metals against Gram-negative bacteria. As many efflux pumps which are upregulated by biocide presence also contribute towards an antimicrobial resistance phenotype, the role of these efflux pumps in cross-resistance to both other biocides and antibiotics will be explored.
Collapse
Affiliation(s)
- Matthew E Wand
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - J Mark Sutton
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| |
Collapse
|
3
|
van de Lagemaat M, Stockbroekx V, Geertsema-Doornbusch GI, Dijk M, Carniello V, Woudstra W, van der Mei HC, Busscher HJ, Ren Y. A Comparison of the Adaptive Response of Staphylococcus aureus vs. Streptococcus mutans and the Development of Chlorhexidine Resistance. Front Microbiol 2022; 13:861890. [PMID: 35694293 PMCID: PMC9186159 DOI: 10.3389/fmicb.2022.861890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
Antimicrobials with nonselective antibacterial efficacy such as chlorhexidine can be effective in reducing biofilm, but bear the risk of inducing resistance in specific bacteria. In clinical practice, bacteria such as Staphylococcus aureus have been found resistant to chlorhexidine, but other bacteria, including Streptococcus mutans, have largely remained susceptible to chlorhexidine despite its widespread use in oral healthcare. Here, we aim to forward a possible reason as to why S. aureus can acquire resistance against chlorhexidine, while S. mutans remains susceptible to chlorhexidine. Measurement of surface-enhanced fluorescence indicated that chlorhexidine caused gradual, but irreversible deformation to adhering green fluorescent S. aureus due to irreparable damage to the cell wall. Concurrently, the metabolic activity of adhering staphylococci was higher than of planktonic bacteria, suggesting efflux mechanisms may have been activated upon cell wall deformation, impeding the buildup of a high chlorhexidine concentration in the cytoplasm and therewith stimulating the development of chlorhexidine resistance in S. aureus. Exposure of S. mutans to chlorhexidine caused immediate, but reversible deformation in adhering streptococci, indicative of rapid self-repair of cell wall damage done by chlorhexidine. Due to cell wall self-repair, S. mutans will be unable to effectively reduce the chlorhexidine concentration in the cytoplasm causing solidification of the cytoplasm. In line, no increased metabolic activity was observed in S. mutans during exposure to chlorhexidine. Therewith, self-repair is suicidal and prevents the development of a chlorhexidine-resistant progeny in S. mutans.
Collapse
Affiliation(s)
- Marieke van de Lagemaat
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Groningen, Netherlands
| | - Valerie Stockbroekx
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Groningen, Netherlands
| | - Gésinda I. Geertsema-Doornbusch
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| | - Melissa Dijk
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Groningen, Netherlands
| | - Vera Carniello
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| | - Willem Woudstra
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| | - Henny C. van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
- *Correspondence: Henny C. van der Mei,
| | - Henk J. Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Groningen, Netherlands
| |
Collapse
|
4
|
Zheng X, Zhang X, Zhou B, Liu S, Chen W, Chen L, Zhang Y, Liao W, Zeng W, Wu Q, Xu C, Zhou T. Clinical characteristics, tolerance mechanisms, and molecular epidemiology of reduced susceptibility to chlorhexidine among Pseudomonas aeruginosa isolated from a teaching hospital in China. Int J Antimicrob Agents 2022; 60:106605. [DOI: 10.1016/j.ijantimicag.2022.106605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 11/05/2022]
|
5
|
Zhao J, Hellwig N, Djahanschiri B, Khera R, Morgner N, Ebersberger I, Wang J, Michel H. Assembly and Functional Role of PACE Transporter PA2880 from Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0145321. [PMID: 35377188 PMCID: PMC9045395 DOI: 10.1128/spectrum.01453-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/12/2022] [Indexed: 11/20/2022] Open
Abstract
The recently identified proteobacterial antimicrobial compound efflux (PACE) transporters are multidrug transporters energized by the electrochemical gradient of protons. Here, we present the results of phylogenetic and functional studies on the PACE family transporter PA2880 from Pseudomonas aeruginosa. A phylogenetic analysis of the PACE family revealed that PA2880 and AceI from Acinetobacter baumannii are classified into evolutionarily distinct clades, although they both transport chlorhexidine. We demonstrate that PA2880 mainly exists as a dimer in solution, which is independent of pH, and its dimeric state is essential for its proper function. Electrogenicity studies revealed that the chlorhexidine/H+ antiport process is electrogenic. The function of several highly conserved residues was investigated. These findings provide further insights into the functional features of PACE family transporters, facilitating studies on their transport mechanisms. IMPORTANCE Pseudomonas aeruginosa is a pathogen that causes hospital-acquired (nosocomial) infections, such as ventilator-associated pneumonia and sepsis syndromes. Chlorhexidine diacetate is a disinfectant used for bacterial control in various environments potentially harboring P. aeruginosa. Therefore, investigation of the mechanism of the efflux of chlorhexidine mediated by PA2880, a PACE family transporter from P. aeruginosa, is of significance to combat bacterial infections. This study improves our understanding of the transport mechanism of PACE family transporters and will facilitate the effective utilization of chlorhexidine for P. aeruginosa control.
Collapse
Affiliation(s)
- Jiangfeng Zhao
- Tianjin University, School of Chemical Engineering and Technology, State Key Laboratory for Chemical Engineering, Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin, People’s Republic of China
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Nils Hellwig
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Bardya Djahanschiri
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Radhika Khera
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre Frankfurt (BIK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
| | - Jingkang Wang
- Tianjin University, School of Chemical Engineering and Technology, State Key Laboratory for Chemical Engineering, Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin, People’s Republic of China
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Huang L, Wu C, Gao H, Xu C, Dai M, Huang L, Hao H, Wang X, Cheng G. Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Antibiotics (Basel) 2022; 11:antibiotics11040520. [PMID: 35453271 PMCID: PMC9032748 DOI: 10.3390/antibiotics11040520] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Multidrug efflux pumps function at the frontline to protect bacteria against antimicrobials by decreasing the intracellular concentration of drugs. This protective barrier consists of a series of transporter proteins, which are located in the bacterial cell membrane and periplasm and remove diverse extraneous substrates, including antimicrobials, organic solvents, toxic heavy metals, etc., from bacterial cells. This review systematically and comprehensively summarizes the functions of multiple efflux pumps families and discusses their potential applications. The biological functions of efflux pumps including their promotion of multidrug resistance, biofilm formation, quorum sensing, and survival and pathogenicity of bacteria are elucidated. The potential applications of efflux pump-related genes/proteins for the detection of antibiotic residues and antimicrobial resistance are also analyzed. Last but not least, efflux pump inhibitors, especially those of plant origin, are discussed.
Collapse
|
7
|
Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. Microorganisms 2021; 9:microorganisms9122550. [PMID: 34946151 PMCID: PMC8706950 DOI: 10.3390/microorganisms9122550] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/22/2023] Open
Abstract
Disinfectants are used to reduce the concentration of pathogenic microorganisms to a safe level and help to prevent the transmission of infectious diseases. However, bacteria have a tremendous ability to respond to chemical stress caused by biocides, where overuse and improper use of disinfectants can be reflected in a reduced susceptibility of microorganisms. This review aims to describe whether mutations and thus decreased susceptibility to disinfectants occur in bacteria during disinfectant exposure. A systematic literature review following PRISMA guidelines was conducted with the databases PubMed, Science Direct and Web of Science. For the final analysis, 28 sources that remained of interest were included. Articles describing reduced susceptibility or the resistance of bacteria against seven different disinfectants were identified. The important deviation of the minimum inhibitory concentration was observed in multiple studies for disinfectants based on triclosan and chlorhexidine. A reduced susceptibility to disinfectants and potentially related problems with antibiotic resistance in clinically important bacterial strains are increasing. Since the use of disinfectants in the community is rising, it is clear that reasonable use of available and effective disinfectants is needed. It is necessary to develop and adopt strategies to control disinfectant resistance.
Collapse
|
8
|
Sobhanipoor MH, Ahmadrajabi R, Nave HH, Saffari F. Reduced Susceptibility to Biocides among Enterococci from Clinical and Non-Clinical Sources. Infect Chemother 2021; 53:696-704. [PMID: 34951531 PMCID: PMC8731243 DOI: 10.3947/ic.2021.0090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/24/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Wide use of biocidal agents such as benzalkonium chloride (BCC) and chlorhexidine digluconate (CHX) in hospitals and non-hospital environments, has raised concerns over the emergence of non-susceptible strains. Efflux pumps are of known main mechanisms in biocide tolerance which have been rarely addressed in enterococci - members of gut microbiota which can cause serious problems particularly in hospitalized patients. The purpose of this study was to investigate the susceptibility of enterococci from different sources (clinical and fecal isolates) toward BCC and CHX, and its correlation with efflux associated genes. Also, possible link between biocide tolerance and antibiotic resistance was examined. MATERIALS AND METHODS One hundred and four enterococcus isolates including clinical (n = 54) and fecal isolates (n = 50) were studied for susceptibility toward BCC, CHX, ciprofloxacin, gentamicin and vancomycin. Twelve efflux associated genes were investigated by polymerase chain reaction assay. RESULTS In clinical isolates, reduced susceptibility to CHX and resistance to gentamicin and ciprofloxacin were significantly higher than fecal isolates. Vancomycin resistance was associated with increasing minimum inhibitory concentration of CHX. Among all investigated genes, only three ones, efrA, efrB and emeA were detected which were significantly associated with reduced susceptibility to CHX and were more frequent among clinical isolates. Also, high level resistance to gentamicin was significantly associated with the presence of efrA/B as well as with reduced susceptibility to CHX. CONCLUSION As expected, reduced susceptibility to CHX, was significantly higher in clinical isolates. However, the presence of a vancomycin-resistant enterococci among fecal isolates of healthy people which showed resistance/tolerance to studied antimicrobial agents, was unexpected and highlights the need to investigate other non-hospital environments to avoid dissemination of antimicrobial resistance. Correlation between reduced susceptibility to CHX and high level resistance to gentamicin, substantiates monitoring of biocide tolerance particularly in the healthcare settings to control the establishment of antimicrobial resistant strains.
Collapse
Affiliation(s)
- Mohammad Hossein Sobhanipoor
- Department of Medical Microbiology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Ahmadrajabi
- Department of Medical Microbiology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini Nave
- Department of Medical Microbiology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Saffari
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Buxser S. Has resistance to chlorhexidine increased among clinically-relevant bacteria? A systematic review of time course and subpopulation data. PLoS One 2021; 16:e0256336. [PMID: 34411140 PMCID: PMC8376095 DOI: 10.1371/journal.pone.0256336] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/03/2021] [Indexed: 12/03/2022] Open
Abstract
Chlorhexidine (CHX) was introduced for use as an antimicrobial more than 70 years ago. CHX has been and continues to be used broadly for disinfecting surfaces in medical and food service facilities as well as directly on skin of humans and animals. Considering its widespread use over many decades, questions of resistance to CHX have been raised. Additionally, questions of possible coincident resistance to the biocide and resistance to clinically relevant antibiotics have also been raised. A number of important questions remain, including is there consistent evidence of resistance, what is the degree of resistance, especially among clinically isolated microbial strains, and what is the degree of resistance compared to the typical concentrations of the biocide used? Data for microbial species isolated over the last 70+ years were compiled to construct as complete a picture as practical regarding possible resistance, especially among species in which resistance to commonly used antibiotics has been noted to be increasing. This is a compilation and analysis of individual MIC values for CHX reported in the literature, not a compilation of the conclusions individual authors reached. The data were analyzed using straight-forward and robust statistical procedures to detect changes in susceptibility to CHX over time, i.e. linear regression. Linear regression was supplemented with the use of nonlinear least squares regression analysis to detect the presence of population parameters associated with subpopulations of microbial strains which exhibit increased resistance to CHX. Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii were all found to have an increased resistance to CHX over time with the most profound change detected in A. baumannii. Additionally, subpopulations with log-normal distributions were found consistent with the presence of a baseline subpopulation of susceptible strains and a subpopulation with increased resistance to CHX. However, the CHX-resistant subpopulations did not correlate exactly with antibiotic resistance, so details of the relationship remain to be addressed. Increased resistance over time was not detected for Escherichia coli, Enterobacter faecalis, Staphylococcus aureus, or Candida albicans, although a subpopulation with greater than baseline resistance to CHX was detected among strains of E. faecalis and C. albicans. A difference in susceptibility to CHX was also detected between methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) S. aureus strains. The levels of resistance to CHX detected were all markedly lower than concentrations routinely used in medical and food service applications. Reaching conclusions regarding the relationship between antibiotic and CHX resistance was complicated by the limited overlap between tests of CHX and antibiotic resistance for several species. The results compiled here may serve as a foundation for monitoring changes in resistance to CHX and possible relationships between the use of CHX and resistance to antibiotics commonly used in clinical medicine.
Collapse
Affiliation(s)
- Stephen Buxser
- Select Bio Consult, LLC, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
10
|
Molina Mora JA, Montero-Manso P, García-Batán R, Campos-Sánchez R, Vilar-Fernández J, García F. A first perturbome of Pseudomonas aeruginosa: Identification of core genes related to multiple perturbations by a machine learning approach. Biosystems 2021; 205:104411. [PMID: 33757842 DOI: 10.1016/j.biosystems.2021.104411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/27/2023]
Abstract
Tolerance to stress conditions is vital for organismal survival, including bacteria under specific environmental conditions, antibiotics, and other perturbations. Some studies have described common modulation and shared genes during stress response to different types of disturbances (termed as perturbome), leading to the idea of central control at the molecular level. We implemented a robust machine learning approach to identify and describe genes associated with multiple perturbations or perturbome in a Pseudomonas aeruginosa PAO1 model. Using microarray datasets from the Gene Expression Omnibus (GEO), we evaluated six approaches to rank and select genes: using two methodologies, data single partition (SP method) or multiple partitions (MP method) for training and testing datasets, we evaluated three classification algorithms (SVM Support Vector Machine, KNN K-Nearest neighbor and RF Random Forest). Gene expression patterns and topological features at the systems level were included to describe the perturbome elements. We were able to select and describe 46 core response genes associated with multiple perturbations in P. aeruginosa PAO1 and it can be considered a first report of the P. aeruginosa perturbome. Molecular annotations, patterns in expression levels, and topological features in molecular networks revealed biological functions of biosynthesis, binding, and metabolism, many of them related to DNA damage repair and aerobic respiration in the context of tolerance to stress. We also discuss different issues related to implemented and assessed algorithms, including data partitioning, classification approaches, and metrics. Altogether, this work offers a different and robust framework to select genes using a machine learning approach.
Collapse
Affiliation(s)
- Jose Arturo Molina Mora
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| | | | - Raquel García-Batán
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| | - Rebeca Campos-Sánchez
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San José, Costa Rica.
| | | | - Fernando García
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| |
Collapse
|
11
|
Merchel Piovesan Pereira B, Wang X, Tagkopoulos I. Short- and Long-Term Transcriptomic Responses of Escherichia coli to Biocides: a Systems Analysis. Appl Environ Microbiol 2020; 86:e00708-20. [PMID: 32385082 PMCID: PMC7357472 DOI: 10.1128/aem.00708-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/01/2020] [Indexed: 12/01/2022] Open
Abstract
The mechanisms of the bacterial response to biocides are poorly understood, despite their broad application. To identify the genetic basis and pathways implicated in the biocide stress response, we exposed Escherichia coli populations to 10 ubiquitous biocides. By comparing the transcriptional responses between a short-term exposure (30 min) and a long-term exposure (8 to 12 h) to biocide stress, we established the common gene and pathway clusters that are implicated in general and biocide-specific stress responses. Our analysis revealed a temporal choreography, starting from the upregulation of chaperones to the subsequent repression of motility and chemotaxis pathways and the induction of an anaerobic pool of enzymes and biofilm regulators. A systematic analysis of the transcriptional data identified a zur-regulated gene cluster to be highly active in the stress response against sodium hypochlorite and peracetic acid, presenting a link between the biocide stress response and zinc homeostasis. Susceptibility assays with knockout mutants further validated our findings and provide clear targets for downstream investigation of the implicated mechanisms of action.IMPORTANCE Antiseptics and disinfectant products are of great importance to control and eliminate pathogens, especially in settings such as hospitals and the food industry. Such products are widely distributed and frequently poorly regulated. Occasional outbreaks have been associated with microbes resistant to such compounds, and researchers have indicated potential cross-resistance with antibiotics. Despite that, there are many gaps in knowledge about the bacterial stress response and the mechanisms of microbial resistance to antiseptics and disinfectants. We investigated the stress response of the bacterium Escherichia coli to 10 common disinfectant and antiseptic chemicals to shed light on the potential mechanisms of tolerance to such compounds.
Collapse
Affiliation(s)
- Beatriz Merchel Piovesan Pereira
- Microbiology Graduate Group, University of California, Davis, California, USA
- Genome Center, University of California, Davis, California, USA
| | - Xiaokang Wang
- Genome Center, University of California, Davis, California, USA
- Biomedical Engineering Graduate Group, University of California, Davis, California, USA
| | - Ilias Tagkopoulos
- Genome Center, University of California, Davis, California, USA
- Department of Computer Science, University of California, Davis, California, USA
| |
Collapse
|
12
|
Wen X, Huang J, Cao J, Xu J, Mi J, Wang Y, Ma B, Zou Y, Liao X, Liang JB, Wu Y. Heterologous expression of the tetracycline resistance gene tetX to enhance degradability and safety in doxycycline degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110214. [PMID: 31968275 DOI: 10.1016/j.ecoenv.2020.110214] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Microbial remediation has the potential to inexpensively yet effectively decontaminate and restore contaminated environments, but the virulence of pathogens and risk of resistance gene transmission by microorganisms during antibiotic removal often limit its implementation. Here, a cloned tetX gene with clear evolutionary history was expressed to explore doxycycline (DOX) degradation and resistance variation during the degradation process. Phylogenetic analysis of tetX genes showed high similarity with those of pathogenic bacteria, such as Riemerella sp. and Acinetobacter sp. Successful tetX expression was performed in Escherichia coli and confirmed by SDS-PAGE and Western blot. Our results showed that 95.0 ± 1.0% of the DOX (50 mg/L) was degraded by the recombinant strain (ETD-1 with tetX) within 48 h, which was significantly higher than that for the control (38.9 ± 8.7%) and the empty plasmid bacteria (8.8 ± 5.1%) (P < 0.05). The tetX gene products in ETD-1 cell extracts also exhibited an efficient DOX degradation ability, with a degradation rate of 80.5 ± 1.2% at 168 h. Furthermore, there was no significant proliferation of the tetX resistance gene during DOX degradation (P > 0.05). The efficient and safe DOX-degrading capacity of the recombinant strain ETD-1 makes it valuable and promising for antibiotic removal in the environment.
Collapse
Affiliation(s)
- Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jielan Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Junchao Cao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jiangran Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Enterprise Lab of Healthy Animal Husbandry and Environment Control, Yunfu, Xinxing, 527400, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Enterprise Lab of Healthy Animal Husbandry and Environment Control, Yunfu, Xinxing, 527400, China
| | - Baohua Ma
- Nanhai Office of Foshan Customs House, Foshan, 528200, China
| | - Yongde Zou
- Nanhai Office of Foshan Customs House, Foshan, 528200, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Enterprise Lab of Healthy Animal Husbandry and Environment Control, Yunfu, Xinxing, 527400, China
| | - Juan Boo Liang
- Laboratory of Animal Production, Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Enterprise Lab of Healthy Animal Husbandry and Environment Control, Yunfu, Xinxing, 527400, China.
| |
Collapse
|
13
|
Polymeric Composites with Silver (I) Cyanoximates Inhibit Biofilm Formation of Gram-Positive and Gram-Negative Bacteria. Polymers (Basel) 2019; 11:polym11061018. [PMID: 31181853 PMCID: PMC6631325 DOI: 10.3390/polym11061018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022] Open
Abstract
Biofilms are surface-associated microbial communities known for their increased resistance to antimicrobials and host factors. This resistance introduces a critical clinical challenge, particularly in cases associated with implants increasing the predisposition for bacterial infections. Preventing such infections requires the development of novel antimicrobials or compounds that enhance bactericidal effect of currently available antibiotics. We have synthesized and characterized twelve novel silver(I) cyanoximates designated as Ag(ACO), Ag(BCO), Ag(CCO), Ag(ECO), Ag(PiCO), Ag(PICO) (yellow and red polymorphs), Ag(BIHCO), Ag(BIMCO), Ag(BOCO), Ag(BTCO), Ag(MCO) and Ag(PiPCO). The compounds exhibit a remarkable resistance to high intensity visible light, UV radiation and heat and have poor solubility in water. All these compounds can be well incorporated into the light-curable acrylate polymeric composites that are currently used as dental fillers or adhesives of indwelling medical devices. A range of dry weight % from 0.5 to 5.0 of the compounds was tested in this study. To study the potential of these compounds in preventing planktonic and biofilm growth of bacteria, we selected two human pathogens (Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus) and Gram-positive environmental isolate Bacillus aryabhattai. Both planktonic and biofilm growth was abolished completely in the presence of 0.5% to 5% of the compounds. The most efficient inhibition was shown by Ag(PiCO), Ag(BIHCO) and Ag(BTCO). The inhibition of biofilm growth by Ag(PiCO)-yellow was confirmed by scanning electron microscopy (SEM). Application of Ag(BTCO) and Ag(PiCO)-red in combination with tobramycin, the antibiotic commonly used to treat P. aeruginosa infections, showed a significant synergistic effect. Finally, the inhibitory effect lasted for at least 120 h in P. aeruginosa and 36 h in S. aureus and B. aryabhattai. Overall, several silver(I) cyanoximates complexes efficiently prevent biofilm development of both Gram-negative and Gram-positive bacteria and present a particularly significant potential for applications against P. aeruginosa infections.
Collapse
|
14
|
Hashemi MM, Holden BS, Coburn J, Taylor MF, Weber S, Hilton B, Zaugg AL, McEwan C, Carson R, Andersen JL, Price JC, Deng S, Savage PB. Proteomic Analysis of Resistance of Gram-Negative Bacteria to Chlorhexidine and Impacts on Susceptibility to Colistin, Antimicrobial Peptides, and Ceragenins. Front Microbiol 2019; 10:210. [PMID: 30833936 PMCID: PMC6388577 DOI: 10.3389/fmicb.2019.00210] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022] Open
Abstract
Use of chlorhexidine in clinical settings has led to concerns that repeated exposure of bacteria to sub-lethal doses of chlorhexidine might result in chlorhexidine resistance and cross resistance with other cationic antimicrobials including colistin, endogenous antimicrobial peptides (AMPs) and their mimics, ceragenins. We have previously shown that colistin-resistant Gram-negative bacteria remain susceptible to AMPs and ceragenins. Here, we investigated the potential for cross resistance between chlorhexidine, colistin, AMPs and ceragenins by serial exposure of standard strains of Gram-negative bacteria to chlorhexidine to generate resistant populations of organisms. Furthermore, we performed a proteomics study on the chlorhexidine-resistant strains and compared them to the wild-type strains to find the pathways by which bacteria develop resistance to chlorhexidine. Serial exposure of Gram-negative bacteria to chlorhexidine resulted in four- to eight-fold increases in minimum inhibitory concentrations (MICs). Chlorhexidine-resistant organisms showed decreased susceptibility to colistin (8- to 32-fold increases in MICs) despite not being exposed to colistin. In contrast, chlorhexidine-resistant organisms had the same MICs as the original strains when tested with representative AMPs (LL-37 and magainin I) and ceragenins (CSA-44 and CSA-131). These results imply that there may be a connection between the emergence of highly colistin-resistant Gram-negative pathogens and the prevalence of chlorhexidine usage. Yet, use of chlorhexidine may not impact innate immune defenses (e.g., AMPs) and their mimics (e.g., ceragenins). Here, we also show that chlorhexidine resistance is associated with upregulation of proteins involved in the assembly of LPS for outer membrane biogenesis and virulence factors in Pseudomonas aeruginosa. Additionally, resistance to chlorhexidine resulted in elevated expression levels of proteins associated with chaperones, efflux pumps, flagella and cell metabolism. This study provides a comprehensive overview of the evolutionary proteomic changes in P. aeruginosa following exposure to chlorhexidine and colistin. These results have important clinical implications considering the continuous application of chlorhexidine in hospitals that could influence the emergence of colistin-resistant strains.
Collapse
Affiliation(s)
- Marjan M Hashemi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Brett S Holden
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Jordan Coburn
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Maddison F Taylor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Scott Weber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Brian Hilton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Aaron L Zaugg
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Colten McEwan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Richard Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Shenglou Deng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| |
Collapse
|
15
|
Azevedo FCR, Vaz ICD, Barbosa FAR, Magalhães SMS. Toxicological effects of ciprofloxacin and chlorhexidine on growth and chlorophyll a synthesis of freshwater cyanobacteria. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000217661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
16
|
Humayoun SB, Hiott LM, Gupta SK, Barrett JB, Woodley TA, Johnston JJ, Jackson CR, Frye JG. An assay for determining the susceptibility of Salmonella isolates to commercial and household biocides. PLoS One 2018; 13:e0209072. [PMID: 30571686 PMCID: PMC6301668 DOI: 10.1371/journal.pone.0209072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
Poultry and meat products contaminated with Salmonella enterica are a major cause of foodborne illness in the United States. The food industries use a wide variety of antimicrobial interventions to reduce bacterial contamination. However, little is known about Salmonella susceptibility to these compounds and some studies have shown a concerning link between biocide resistance and antibiotic resistance. To investigate this, a 96 well panel of 17 common household and commercially used biocides was designed to determine the minimum inhibitory concentrations (MIC) of these compounds for Salmonella. The panel contained two-fold serial dilutions of chemicals including Dodecyltrimethylammonium chloride (DC), Benzalkonium chloride (BKC), Cetylpyridinium chloride (CPC), Hexadecyltrimethylammonium bromide (HB), Hexadecyltrimethylammonium chloride (HC), Acetic acid (AA), Lactic acid (LA), Citric acid (CA), Peroxyacetic acid (PXA), Acidified sodium chlorite (ASC), Sodium hypochlorite (SHB), 1,3 dibromo, 5,5 dimethylhydantoin (DBH), Chlorhexidine (CHX), Sodium metasilicate (SM), Trisodium phosphate (TSP), Arsenite (ARI), and Arsenate (ARA). The assay was used to test the susceptibility of 88 multidrug resistant (MDR) Salmonella isolates from animal sources. Bacteria are defined as multidrug resistant (MDR) if it exhibited non-susceptibility to at least one agent in three or more antimicrobial categories. The concentration of biocide at which ≥50% of the isolates could not grow was designated as the minimum inhibitory concentration or MIC50 and was used as the breakpoint in this study. The MIC50 (μg ml-1) for the tested MDR Salmonella was 256 for DC, 40 for BKC, 80 for CPC. HB and HC, 1,640 for AA, 5664 for LA, 3,156 for CA, 880 for PXA, 320 for ASC, 3.0 for CHX, 1,248 for DBH, 3,152 (6%) for SHB, 60,320 for SM, 37,712 for TSP, 56 for ARI and 832 for ARA. A few isolates were not susceptible at the MIC50 breakpoint to some chemicals indicating possible resistance. Isolates with MICs of two 2-fold dilutions above the MIC50 were considered resistant. Biocides for which resistant isolates were detected included CPC (n = 1 isolate), HB (1), CA (18), ASC (7), CHX (22), ARA (16), and ARI (4). There was no correlation detected between the biocide susceptibility of Salmonella isolates and antibiotic resistance. This assay can determine the MICs of bacteria to 17 biocides in a single test and will be useful in evaluating the efficacy of biocides and to detect the development of resistance to them.
Collapse
Affiliation(s)
- Shaheen B. Humayoun
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - Lari M. Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - Sushim K. Gupta
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - John B. Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - Tiffanie A. Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - John J. Johnston
- United States Department of Agriculture, Food Safety and Inspection Service, Fort Collins, CO, United States of America
| | - Charlene R. Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - Jonathan G. Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| |
Collapse
|
17
|
Hassan KA, Liu Q, Elbourne LDH, Ahmad I, Sharples D, Naidu V, Chan CL, Li L, Harborne SPD, Pokhrel A, Postis VLG, Goldman A, Henderson PJF, Paulsen IT. Pacing across the membrane: the novel PACE family of efflux pumps is widespread in Gram-negative pathogens. Res Microbiol 2018; 169:450-454. [PMID: 29409983 PMCID: PMC6195760 DOI: 10.1016/j.resmic.2018.01.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/27/2017] [Accepted: 01/08/2018] [Indexed: 01/28/2023]
Abstract
The proteobacterial antimicrobial compound efflux (PACE) family of transport proteins was only recently described. PACE family transport proteins can confer resistance to a range of biocides used as disinfectants and antiseptics, and are encoded by many important Gram-negative human pathogens. However, we are only just beginning to appreciate the range of functions and the mechanism(s) of transport operating in these proteins. Genes encoding PACE family proteins are typically conserved in the core genomes of bacterial species rather than on recently acquired mobile genetic elements, suggesting that they confer important core functions in addition to biocide resistance. Three-dimensional structural information is not yet available for PACE family proteins. However, PACE proteins have several very highly conserved amino acid sequence motifs that are likely to be important for substrate transport. PACE proteins also display strong amino acid sequence conservation between their N— and C-terminal halves, suggesting that they evolved by duplication of an ancestral protein comprised of two transmembrane helices. In light of their drug resistance functions in Gram-negative pathogens, PACE proteins should be the subject of detailed future investigation.
Collapse
Affiliation(s)
- Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia; School of BioMedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Department of Chemistry and Biomolecular Science, Macquarie University, North Ryde, NSW, Australia.
| | - Qi Liu
- Department of Chemistry and Biomolecular Science, Macquarie University, North Ryde, NSW, Australia
| | - Liam D H Elbourne
- Department of Chemistry and Biomolecular Science, Macquarie University, North Ryde, NSW, Australia
| | - Irshad Ahmad
- School of BioMedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - David Sharples
- School of BioMedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Varsha Naidu
- Department of Chemistry and Biomolecular Science, Macquarie University, North Ryde, NSW, Australia
| | - Chak Lam Chan
- School of BioMedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Liping Li
- Department of Chemistry and Biomolecular Science, Macquarie University, North Ryde, NSW, Australia
| | - Steven P D Harborne
- School of BioMedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Alaska Pokhrel
- Department of Chemistry and Biomolecular Science, Macquarie University, North Ryde, NSW, Australia
| | - Vincent L G Postis
- School of BioMedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Biomedicine Research Group, Faculty of Health and Social Sciences, Leeds Beckett University, Leeds, UK
| | - Adrian Goldman
- School of BioMedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Division of Biochemistry, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Peter J F Henderson
- School of BioMedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Science, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
18
|
Inducible microbial osmotic responses enable enhanced biosorption capability of cyanobacteria. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Wand ME. Bacterial Resistance to Hospital Disinfection. MODELING THE TRANSMISSION AND PREVENTION OF INFECTIOUS DISEASE 2017. [DOI: 10.1007/978-3-319-60616-3_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Proteomic Analyses of Chlorhexidine Tolerance Mechanisms in Delftia acidovorans Biofilms. mSphere 2016; 1:mSphere00017-15. [PMID: 27303691 PMCID: PMC4863599 DOI: 10.1128/msphere.00017-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/04/2015] [Indexed: 01/02/2023] Open
Abstract
Protein expression and fatty acid profiles of biofilm cells of chlorhexidine-tolerant Delftia acidovorans (MIC = 15 µg/ml) and its chlorhexidine-susceptible mutant (MIC = 1 µg/ml) were investigated. The chlorhexidine-susceptible mutant (MT51) was derived from the parental strain (WT15) using Tn5 transposon mutagenesis. The disrupted gene was identified as tolQ, a component of the tolQRAB gene cluster known to be involved in outer membrane stability. Proteomic responses of biofilm cells were compared by differential in-gel electrophoresis following exposure to chlorhexidine at sub-MIC (10 µg/ml) and above-MIC (30 µg/ml) concentrations. Numerous changes in protein abundance were observed in biofilm cells following chlorhexidine exposure, suggesting that molecular changes occurred during adaptation to chlorhexidine. Forty proteins showing significant differences (≥1.5-fold; P < 0.05) were identified by mass spectrometry and were associated with various functions, including amino acid and lipid biosynthesis, protein translation, energy metabolism, and stress-related functions (e.g., GroEL, aspartyl/glutamyl-tRNA amidotransferase, elongation factor Tu, Clp protease, and hydroxymyristoyl-ACP dehydratase). Several proteins involved in fatty acid synthesis were affected by chlorhexidine, in agreement with fatty acid analysis, wherein chlorhexidine-induced shifts in the fatty acid profile were observed in the chlorhexidine-tolerant cells, primarily the cyclic fatty acids. Transmission electron microscopy revealed more prominent changes in the cell envelope of chlorhexidine-susceptible MT51 cells. This study suggests that multiple mechanisms involving both the cell envelope (and likely TolQ) and panmetabolic regulation play roles in chlorhexidine tolerance in D. acidovorans. IMPORTANCE Delftia acidovorans has been associated with a number of serious infections, including bacteremia, empyema, bacterial endocarditis, and ocular and urinary tract infections. It has also been linked with a variety of surface-associated nosocomial infections. Biofilm-forming antimicrobial-resistant D. acidovorans strains have also been isolated, including ones displaying resistance to the common broad-spectrum agent chlorhexidine. The mechanisms of chlorhexidine resistance in D. acidovorans are not known; hence, a chlorhexidine-susceptible mutant of the tolerant wild-type strain was obtained using transposon mutagenesis, and the proteome and ultrastructural changes of both strains were compared under chlorhexidine challenge.
Collapse
|
21
|
Hassan KA, Elbourne LDH, Li L, Gamage HKAH, Liu Q, Jackson SM, Sharples D, Kolstø AB, Henderson PJF, Paulsen IT. An ace up their sleeve: a transcriptomic approach exposes the AceI efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens. Front Microbiol 2015; 6:333. [PMID: 25954261 PMCID: PMC4406071 DOI: 10.3389/fmicb.2015.00333] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/02/2015] [Indexed: 01/02/2023] Open
Abstract
The era of antibiotics as a cure-all for bacterial infections appears to be coming to an end. The emergence of multidrug resistance in many hospital-associated pathogens has resulted in “superbugs” that are effectively untreatable. Multidrug efflux pumps are well known mediators of bacterial drug resistance. Genome sequencing efforts have highlighted an abundance of putative efflux pump genes in bacteria. However, it is not clear how many of these pumps play a role in antimicrobial resistance. Efflux pump genes that participate in drug resistance can be under tight regulatory control and expressed only in response to substrates. Consequently, changes in gene expression following antimicrobial shock may be used to identify efflux pumps that mediate antimicrobial resistance. Using this approach we have characterized several novel efflux pumps in bacteria. In one example we recently identified the Acinetobacterchlorhexidine efflux protein (AceI) efflux pump in Acinetobacter. AceI is a prototype for a novel family of multidrug efflux pumps conserved in many proteobacterial lineages. The discovery of this family raises the possibility that additional undiscovered intrinsic resistance proteins may be encoded in the core genomes of pathogenic bacteria.
Collapse
Affiliation(s)
- Karl A Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia
| | - Liam D H Elbourne
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia
| | - Liping Li
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia
| | - Hasinika K A H Gamage
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia
| | - Qi Liu
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia
| | - Scott M Jackson
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds Leeds, UK
| | - David Sharples
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds Leeds, UK
| | - Anne-Brit Kolstø
- Laboratory for Microbial Dynamics, Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo Oslo, Norway
| | - Peter J F Henderson
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds Leeds, UK
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia
| |
Collapse
|
22
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1005] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
23
|
Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio 2015; 6:mBio.01982-14. [PMID: 25670776 PMCID: PMC4337561 DOI: 10.1128/mbio.01982-14] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (Acinetobacter chlorhexidine efflux) protein from Acinetobacter baumannii that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavine. We conducted fluorimetric transport assays using the AceI homolog from Vibrio parahaemolyticus and confirmed that resistance to both proflavine and acriflavine was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins. Bacterial multidrug efflux pumps are an important class of resistance determinants that can be found in every bacterial genome sequenced to date. These transport proteins have important protective functions for the bacterial cell but are a significant problem in the clinical setting, since a single efflux system can mediate resistance to many structurally and mechanistically diverse antibiotics and biocides. In this study, we demonstrate that proteins related to the Acinetobacter baumannii AceI transporter are a new class of multidrug efflux systems which are very common in Proteobacteria: the proteobacterial antimicrobial compound efflux (PACE) family. This is the first new family of multidrug efflux pumps to be described in 15 years.
Collapse
|
24
|
Hemamalini R, Khare S. A proteomic approach to understand the role of the outer membrane porins in the organic solvent-tolerance of Pseudomonas aeruginosa PseA. PLoS One 2014; 9:e103788. [PMID: 25089526 PMCID: PMC4121210 DOI: 10.1371/journal.pone.0103788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/07/2014] [Indexed: 01/09/2023] Open
Abstract
Solvent-tolerant microbes have the unique ability to thrive in presence of organic solvents. The present study describes the effect of increasing hydrophobicity (log Pow values) of organic solvents on the outer membrane proteome of the solvent-tolerant Pseudomonas aeruginosa PseA cells. The cells were grown in a medium containing 33% (v/v) alkanes of increasing log Pow values. The outer membrane proteins were extracted by alkaline extraction from the late log phase cells and changes in the protein expression were studied by 2-D gel electrophoresis. Seven protein spots showed significant differential expression in the solvent exposed cells. The tryptic digest of the differentially regulated proteins were identified by LC-ESI MS/MS. The identity of these proteins matched with porins OprD, OprE, OprF, OprH, Opr86, LPS assembly protein and A-type flagellin. The reported pI values of these proteins were in the range of 4.94-8.67 and the molecular weights were in the range of 19.5-104.5 kDa. The results suggest significant down-regulation of the A-type flagellin, OprF and OprD and up-regulation of OprE, OprH, Opr86 and LPS assembly protein in presence of organic solvents. OprF and OprD are implicated in antibiotic uptake and outer membrane stability, whereas A-type flagellin confers motility and chemotaxis. Up-regulated OprE is an anaerobically-induced porin while Opr86 is responsible for transport of small molecules and assembly of the outer membrane proteins. Differential regulation of the above porins clearly indicates their role in adaptation to solvent exposure.
Collapse
Affiliation(s)
- R. Hemamalini
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
| | - Sunil Khare
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
- * E-mail:
| |
Collapse
|
25
|
Condell O, Power KA, Händler K, Finn S, Sheridan A, Sergeant K, Renaut J, Burgess CM, Hinton JCD, Nally JE, Fanning S. Comparative analysis of Salmonella susceptibility and tolerance to the biocide chlorhexidine identifies a complex cellular defense network. Front Microbiol 2014; 5:373. [PMID: 25136333 PMCID: PMC4117984 DOI: 10.3389/fmicb.2014.00373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/03/2014] [Indexed: 12/04/2022] Open
Abstract
Chlorhexidine is one of the most widely used biocides in health and agricultural settings as well as in the modern food industry. It is a cationic biocide of the biguanide class. Details of its mechanism of action are largely unknown. The frequent use of chlorhexidine has been questioned recently, amidst concerns that an overuse of this compound may select for bacteria displaying an altered susceptibility to antimicrobials, including clinically important anti-bacterial agents. We generated a Salmonella enterica serovar Typhimurium isolate (ST24(CHX)) that exhibited a high-level tolerant phenotype to chlorhexidine, following several rounds of in vitro selection, using sub-lethal concentrations of the biocide. This mutant showed altered suceptibility to a panel of clinically important antimicrobial compounds. Here we describe a genomic, transcriptomic, proteomic, and phenotypic analysis of the chlorhexidine tolerant S. Typhimurium compared with its isogenic sensitive progenitor. Results from this study describe a chlorhexidine defense network that functions in both the reference chlorhexidine sensitive isolate and the tolerant mutant. The defense network involved multiple cell targets including those associated with the synthesis and modification of the cell wall, the SOS response, virulence, and a shift in cellular metabolism toward anoxic pathways, some of which were regulated by CreB and Fur. In addition, results indicated that chlorhexidine tolerance was associated with more extensive modifications of the same cellular processes involved in this proposed network, as well as a divergent defense response involving the up-regulation of additional targets such as the flagellar apparatus and an altered cellular phosphate metabolism. These data show that sub-lethal concentrations of chlorhexidine induce distinct changes in exposed Salmonella, and our findings provide insights into the mechanisms of action and tolerance to this biocidal agent.
Collapse
Affiliation(s)
- Orla Condell
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College DublinBelfield, Dublin, Ireland
- European Program for Public Health Microbiology Training, European Centre for Disease Prevention and ControlStockholm, Sweden
| | - Karen A. Power
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College DublinBelfield, Dublin, Ireland
| | - Kristian Händler
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College DublinDublin, Ireland
| | - Sarah Finn
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College DublinBelfield, Dublin, Ireland
| | - Aine Sheridan
- Food Safety Department, Teagasc Food Research CentreAshtown, Dublin, Ireland
| | - Kjell Sergeant
- Department of Environment and Agrobiotechnologies (EVA), Centre de Recherche Public-Gabriel LippmannBelvaux, Luxembourg
| | - Jenny Renaut
- Department of Environment and Agrobiotechnologies (EVA), Centre de Recherche Public-Gabriel LippmannBelvaux, Luxembourg
| | | | - Jay C. D. Hinton
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College DublinDublin, Ireland
- Institute of Integrative Biology, University of LiverpoolLiverpool, UK
| | - Jarlath E. Nally
- School of Veterinary Medicine, University College DublinBelfield, Dublin, Ireland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College DublinBelfield, Dublin, Ireland
- Institute for Global Food Security, Queen's University BelfastBelfast, Northern Ireland
| |
Collapse
|
26
|
Antibacterial activity of THAM Trisphenylguanide against methicillin-resistant Staphylococcus aureus. PLoS One 2014; 9:e97742. [PMID: 24840307 PMCID: PMC4026384 DOI: 10.1371/journal.pone.0097742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 04/24/2014] [Indexed: 11/19/2022] Open
Abstract
This study investigated the potential antibacterial activity of three series of compounds synthesized from 12 linear and branched polyamines with 2–8 amino groups, which were substituted to produce the corresponding guanides, biguanides, or phenylguanides, against Acinetobacter baumannii, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Antibacterial activity was measured for each compound by determining the minimum inhibitory concentration against the bacteria, and the toxicity towards mammalian cells was determined. The most effective compound, THAM trisphenylguanide, was studied in time-to-kill and cytoplasmic leakage assays against methicillin-resistant Staphylococcus aureus (MRSA, USA300) in comparison to chlorhexidine. Preliminary toxicity and MRSA challenge studies in mice were also conducted on this compound. THAM trisphenylguanide showed significant antibacterial activity (MIC ∼1 mg/L) and selectivity against MRSA relative to all the other bacteria examined. In time-to-kill assays it showed increased antimicrobial activity against MRSA versus chlorhexidine. It induced leakage of cytoplasmic content at concentrations that did not reduce cell viability, suggesting the mechanism of action may involve membrane disruption. Using an intraperitoneal mouse model of invasive MRSA disease, THAM trisphenylguanide reduced bacterial burden locally and in deeper tissues. This study has identified a novel guanide compound with selective microbicidal activity against Staphylococcus aureus, including a methicillin-resistant (MRSA) strain.
Collapse
|
27
|
Morita Y, Tomida J, Kawamura Y. Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol 2014; 4:422. [PMID: 24409175 PMCID: PMC3884212 DOI: 10.3389/fmicb.2013.00422] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/24/2013] [Indexed: 11/29/2022] Open
Abstract
Infections caused by Pseudomonas aeruginosa often are hard to treat; inappropriate chemotherapy readily selects multidrug-resistant P. aeruginosa. This organism can be exposed to a wide range of concentrations of antimicrobials during treatment; learning more about the responses of P. aeruginosa to antimicrobials is therefore important. We review here responses of the bacterium P. aeruginosa upon exposure to antimicrobials at levels below the inhibitory concentration. Carbapenems (e.g., imipenem) have been shown to induce the formation of thicker and more robust biofilms, while fluoroquinolones (e.g., ciprofloxacin) and aminoglycosides (e.g., tobramycin) have been shown to induce biofilm formation. Ciprofloxacin also has been demonstrated to enhance the frequency of mutation to carbapenem resistance. Conversely, although macrolides (e.g., azithromycin) typically are not effective against P. aeruginosa because of the pseudomonal outer-membrane impermeability and efflux, macrolides do lead to a reduction in virulence factor production. Similarly, tetracycline is not very effective against this organism, but is known to induce the type-III secretion system and consequently enhance cytotoxicity of P. aeruginosain vivo. Of special note are the effects of antibacterials and disinfectants on pseudomonal efflux systems. Sub-inhibitory concentrations of protein synthesis inhibitors (aminoglycosides, tetracycline, chloramphenicol, etc.) induce the MexXY multidrug efflux system. This response is known to be mediated by interference with the translation of the leader peptide PA5471.1, with consequent effects on expression of the PA5471 gene product. Additionally, induction of the MexCD-OprJ multidrug efflux system is observed upon exposure to sub-inhibitory concentrations of disinfectants such as chlorhexidine and benzalkonium. This response is known to be dependent upon the AlgU stress response factor. Altogether, these biological responses of P. aeruginosa provide useful clues for the improvement and optimization of chemotherapy in order to appropriately treat pseudomonal infections while minimizing the emergence of resistance.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya Japan
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya Japan
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya Japan
| |
Collapse
|
28
|
Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proc Natl Acad Sci U S A 2013; 110:20254-9. [PMID: 24277845 DOI: 10.1073/pnas.1317052110] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chlorhexidine is widely used as an antiseptic or disinfectant in both hospital and community settings. A number of bacterial species display resistance to this membrane-active biocide. We examined the transcriptomic response of a representative nosocomial human pathogen, Acinetobacter baumannii, to chlorhexidine to identify the primary chlorhexidine resistance elements. The most highly up-regulated genes encoded components of a major multidrug efflux system, AdeAB. The next most highly overexpressed gene under chlorhexidine stress was annotated as encoding a hypothetical protein, named here as AceI. Orthologs of the aceI gene are conserved within the genomes of a broad range of proteobacterial species. Expression of aceI or its orthologs from several other γ- or β-proteobacterial species in Escherichia coli resulted in significant increases in resistance to chlorhexidine. Additionally, disruption of the aceI ortholog in Acinetobacter baylyi rendered it more susceptible to chlorhexidine. The AceI protein was localized to the membrane after overexpression in E. coli. This protein was purified, and binding assays demonstrated direct and specific interactions between AceI and chlorhexidine. Transport assays using [(14)C]-chlorhexidine determined that AceI was able to mediate the energy-dependent efflux of chlorhexidine. An E15Q AceI mutant with a mutation in a conserved acidic residue, although unable to mediate chlorhexidine resistance and transport, was still able to bind chlorhexidine. Taken together, these data are consistent with AceI being an active chlorhexidine efflux protein and the founding member of a family of bacterial drug efflux transporters.
Collapse
|
29
|
Ouberai M, El Garch F, Bussiere A, Riou M, Alsteens D, Lins L, Baussanne I, Dufrêne YF, Brasseur R, Decout JL, Mingeot-Leclercq MP. The Pseudomonas aeruginosa membranes: A target for a new amphiphilic aminoglycoside derivative? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1716-27. [DOI: 10.1016/j.bbamem.2011.01.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/05/2011] [Accepted: 01/23/2011] [Indexed: 12/31/2022]
|
30
|
Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms. Antimicrob Agents Chemother 2011; 55:1912-9. [PMID: 21357299 DOI: 10.1128/aac.01571-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The high tolerance of biofilm-grown Burkholderia cepacia complex bacteria against antimicrobial agents presents considerable problems for the treatment of infected cystic fibrosis patients and the implementation of infection control guidelines. In the present study, we analyzed the tolerance of planktonic and sessile Burkholderia cenocepacia J2315 cultures and examined the transcriptional response of sessile cells to treatment with chlorhexidine. At low (0.0005%) and high (0.05%) concentrations, chlorhexidine had a similar effect on both populations, but at intermediate concentrations (0.015%) the antimicrobial activity was more pronounced in planktonic cultures. The exposure of sessile cells to chlorhexidine resulted in an upregulation of the transcription of 469 (6.56%) and the downregulation of 257 (3.59%) protein-coding genes. A major group of upregulated genes in the treated biofilms encoded membrane-related and regulatory proteins. In addition, several genes coding for drug resistance determinants also were upregulated. The phenotypic analysis of RND (resistance-nodulation-division) efflux pump mutants suggests the presence of lifestyle-specific chlorhexidine tolerance mechanisms; efflux system RND-4 (BCAL2820-BCAL2822) was more responsible for chlorhexidine tolerance in planktonic cells, while other systems (RND-3 [BCAL1672-BCAL1676] and RND-9 [BCAM1945-BCAM1947]) were linked to resistance in sessile cells. After sessile cell exposure, multiple genes encoding chemotaxis and motility-related proteins were upregulated in concert with the downregulation of an adhesin-encoding gene (BCAM2143), suggesting that sessile cells tried to escape the biofilm. We also observed the differential expression of 19 genes carrying putative small RNA molecules, indicating a novel role for these regulatory elements in chlorhexidine tolerance.
Collapse
|