1
|
Zhang M, Fu XP, Li SQ, Wang WW, Ma D, Jia CJ. CO-Tolerant Pt 1-MoO x/Mo 2N Catalyst for Efficient Activation of C-H and O-H Bonds toward Alcohol Dehydrogenation. J Am Chem Soc 2025; 147:12491-12502. [PMID: 40195650 DOI: 10.1021/jacs.4c17409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Excessively strong adsorption of CO onto a Pt-based catalyst results in the poisoning effect during numerous CO-containing catalysis reactions, including the dehydrogenation process of alcohols. Traditional strategies via modifying the electronic state of Pt atoms are beneficial for weakening CO adsorption; however, they are normally detrimental to C-H cracking, thereby degrading catalytic efficiency toward alcohol dehydrogenation reaction. In this work, we present a synergistic function of Pt1 single atoms and heterostructured MoOx/Mo2N for efficiently dehydrogenating alcohols, allowing high CO resistance along with excellent capacity for C-H and O-H activation. This conjunction renders electron transfer via a strong Pt-MoOx/Mo2N interaction and thus induces the low 5d occupancy of Pt sites, enabling the facile CO desorption, which thereby boosts the efficiency of entire reaction cycles. Based on in situ structural characterizations and isotopic labeling analysis, we found that the spontaneously formed thin MoOx-Ov layer enables the barrierless breakage of O-H bonds even at as low as room temperature, which further energetically facilitates C-H cracking on interfacial Pt1 sites. Therefore, this strategy can be applied to fabricate CO-tolerant Pt-based catalysts toward numerous CO-containing reactions without compromising reactivity by coupling the advantages of single-atom and defective support materials.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xin-Pu Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shan-Qing Li
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ding Ma
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100874, China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
2
|
Liu J, Rama RJ, Cordero-Lanzac T, Safy MEA, Franke R, Nova A. Outer-Sphere CO Release Mechanism in the Methanol-to-Syngas Reaction Catalyzed by a Ru-PNP Pincer Complex. ACS Catal 2025; 15:5113-5122. [PMID: 40144677 PMCID: PMC11934088 DOI: 10.1021/acscatal.4c06818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025]
Abstract
Methanol can be used as a surrogate molecule for CO and H2 in the synthesis of a large variety of chemicals. In this work, the mechanism for the methanol-to-syngas reaction catalyzed by a Ru-PNP complex was studied using density functional theory. In the proposed mechanism, the CO is directly released from the methyl formate intermediate, forming a Ru-OCH3 species. The preference for this pathway compared to others proposed in literature was supported by a microkinetic model constructed from the computed Gibbs free energies and coupled to a liquid-vapor batch reactor describing the gas phase composition. After including energy corrections of ≤6 kcal mol-1 to three organic intermediates and CO, our model could reproduce the experimental CO and H2 turnover numbers over the time previously reported. Further, this model was used to evaluate the influence of solvent polarity and methanol concentration on the formation of products and catalyst resting states. These results suggest that in methanol, CO formation is limited by the organic reaction thermodynamics, whereas in toluene, it is limited by Ru-CO formation. Overall, this work shows the potential of microkinetic models to benchmark reaction mechanisms and computational methods and provide the relevant information required for catalyst design.
Collapse
Affiliation(s)
- Jiali Liu
- Evonik Oxeno
GmbH & Co. KG, Paul-Baumann-Str.
1, Marl 45772, Germany
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, Bochum 44780, Germany
| | - Raquel J. Rama
- Center for
Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Tomás Cordero-Lanzac
- Center for
Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Mohamed E. A. Safy
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo N-0315, Norway
| | - Robert Franke
- Evonik Oxeno
GmbH & Co. KG, Paul-Baumann-Str.
1, Marl 45772, Germany
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, Bochum 44780, Germany
| | - Ainara Nova
- Center for
Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, Oslo 0315, Norway
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo N-0315, Norway
| |
Collapse
|
3
|
Liu C, Qin X, Yu C, Guo Y, Zhang Z. Probing the adsorption configuration of methanol at a charged air/aqueous interface using nonlinear spectroscopy. Phys Chem Chem Phys 2024; 26:14336-14344. [PMID: 38699833 DOI: 10.1039/d3cp06317h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Investigating the effects of electrolyte ions on the adsorption configuration of methanol at a charged interface is important for studying the interface structure of electrolyte solutions and the oxidation mechanism of methanol in fuel cells. This study uses sum frequency generation (SFG) and heterodyne-detected second harmonic generation (HD-SHG) to investigate the adsorption configuration of methanol at the air/aqueous interface of 0.1 M NaClO4 solution, 0.1 M HClO4 solution and pure water. The results elucidate that the ion effect in the electrolyte solution affects the interface's charged state and the methanol's adsorption conformation at the interface. The negatively charged surface of the 0.1 M NaClO4 solution and the positively charged surface of the 0.1 M HClO4 solution arise from the corresponding specific ionic effects of the electrolyte solution. The orientation angle of methyl with respect to the surface normal is 43.4° ± 0.1° at the 0.1 M NaClO4 solution surface and 21.5° ± 0.2° at the 0.1 M HClO4 solution surface. Examining these adsorption configurations in detail, we find that at the negatively charged surface the inclined orientation angle (43.4°) of methanol favors the hydroxymethyl production by breaking the C-H bond, while at the positively charged surface the upright orientation angle (21.5°) of methanol promotes the methoxy formation by breaking the O-H bond. These findings not only illuminate the intricate ion effects on small organic molecules but also contribute to a molecular-level comprehension of the oxidation mechanism of methanol at electrode interfaces.
Collapse
Affiliation(s)
- Caihe Liu
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xujin Qin
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Changhui Yu
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Guo
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhang
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
He P, Zhu H, Sun Q, Li M, Liu D, Li R, Lu X, Zhao W, Chi Y, Ren H, Guo W. Density Functional Theory Study of Methanol Steam Reforming on Pt 3Sn(111) and the Promotion Effect of a Surface Hydroxy Group. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:318. [PMID: 38334589 PMCID: PMC10857296 DOI: 10.3390/nano14030318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Methanol steam reforming (MSR) is studied on a Pt3Sn surface using the density functional theory (DFT). An MSR network is mapped out, including several reaction pathways. The main pathway proposed is CH3OH + OH → CH3O → CH2O → CH2O + OH → CH2OOH → CHOOH → COOH → COOH + OH → CO2 + H2O. The adsorption strengths of CH3OH, CH2O, CHOOH, H2O and CO2 are relatively weak, while other intermediates are strongly adsorbed on Pt3Sn(111). H2O decomposition to OH is the rate-determining step on Pt3Sn(111). The promotion effect of the OH group is remarkable on the conversions of CH3OH, CH2O and trans-COOH. In particular, the activation barriers of the O-H bond cleavage (e.g., CH3OH → CH3O and trans-COOH → CO2) decrease substantially by ~1 eV because of the involvement of OH. Compared with the case of MSR on Pt(111), the generation of OH from H2O decomposition is more competitive on Pt3Sn(111), and the presence of abundant OH facilitates the combination of CO with OH to generate COOH, which accounts for the improved CO tolerance of the PtSn alloy over pure Pt.
Collapse
Affiliation(s)
- Ping He
- College of Science, China University of Petroleum (East China), Qingdao 266580, China;
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (D.L.); (R.L.); (X.L.); (W.Z.); (Y.C.); (H.R.)
| | - Houyu Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (D.L.); (R.L.); (X.L.); (W.Z.); (Y.C.); (H.R.)
| | - Qianyao Sun
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China; (Q.S.); (M.L.)
| | - Ming Li
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China; (Q.S.); (M.L.)
| | - Dongyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (D.L.); (R.L.); (X.L.); (W.Z.); (Y.C.); (H.R.)
| | - Rui Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (D.L.); (R.L.); (X.L.); (W.Z.); (Y.C.); (H.R.)
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (D.L.); (R.L.); (X.L.); (W.Z.); (Y.C.); (H.R.)
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (D.L.); (R.L.); (X.L.); (W.Z.); (Y.C.); (H.R.)
| | - Yuhua Chi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (D.L.); (R.L.); (X.L.); (W.Z.); (Y.C.); (H.R.)
| | - Hao Ren
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (D.L.); (R.L.); (X.L.); (W.Z.); (Y.C.); (H.R.)
| | - Wenyue Guo
- College of Science, China University of Petroleum (East China), Qingdao 266580, China;
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (D.L.); (R.L.); (X.L.); (W.Z.); (Y.C.); (H.R.)
| |
Collapse
|
5
|
Wang X, Li D, Gao Z, Guo Y, Zhang H, Ma D. The Nature of Interfacial Catalysis over Pt/NiAl 2O 4 for Hydrogen Production from Methanol Reforming Reaction. J Am Chem Soc 2023; 145:905-918. [PMID: 36577140 DOI: 10.1021/jacs.2c09437] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reforming of methanol is one of the most favorable chemical processes for on-board H2 production, which alleviates the limitation of H2 storage and transportation. The most important catalytic systems for methanol reacting with water are interfacial catalysts including metal/metal oxide and metal/carbide. Nevertheless, the assessment on the reaction mechanism and active sites of these interfacial catalysts are still controversial. In this work, by spectroscopic, kinetic, and isotopic investigations, we established a compact cascade reaction model (ca. the Langmuir-Hinshelwood model) to describe the methanol and water activation over Pt/NiAl2O4. We show here that reforming of methanol experiences methanol dehydrogenation followed by water-gas shift reaction (WGS), in which two separated kinetically relevant steps have been identified, that is, C-H bond rupture within methoxyl adsorbed on interface sites and O-H bond rupture within OlH (Ol: oxygen-filled surface vacancy), respectively. In addition, these two reactions were primarily determined by the most abundant surface intermediates, which were methoxyl and CO species adsorbed on NiAl2O4 and Pt, respectively. More importantly, the excellent reaction performance benefits from the following bidirectional spillover of methoxyl and CO species since the interface and the vacancies on the support were considered as the real active component in methanol dehydrogenation and the WGS reaction, respectively. These findings provide deep insight into the reaction process as well as the active component during catalysis, which may guide the design of new catalytic systems.
Collapse
Affiliation(s)
- Xiuyi Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300350, People's Republic of China
| | - Didi Li
- Shanghai Key Laboratory of Functional Materials Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Zirui Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Hongbo Zhang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300350, People's Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
6
|
Theoretical insight into hydrogen production from methanol steam reforming on Pt(111). MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Heterogeneous Transition-Metal Catalyst for Fine Chemical Synthesis Hydrogen Auto-transfer Reaction. Top Catal 2022. [DOI: 10.1007/s11244-022-01694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Selivanova AV, Aydakov EE, Saraev AA, Kaichev VV. Low Temperature Multilayer Adsorption of Methanol and Ethanol on Platinum. APPLIED SPECTROSCOPY 2022; 76:660-666. [PMID: 35188409 DOI: 10.1177/00037028221085637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adsorption of methanol and ethanol on the clean Pt (111) surface was studied at temperatures between 80 and 130 K using polarization-modulation infrared reflection absorption spectroscopy (PM-IRRAS). It was shown that adsorption of methanol at 80 K leads to the formation of amorphous solid methanol, and fast crystallization of the amorphous phase occurs upon warming at 100 K. Vapor deposition of methanol at 100 K directly leads to the formation of well-crystallized layers of solid methanol. According to PM-IRRAS, these crystalline layers consist of chains of hydrogen-bonded methanol molecules lying in a plane oriented close to the normal to the platinum surface. Adsorbed methanol is removed completely from platinum after heating to 120 K. Vapor deposition of ethanol at 80 K also leads to the formation of amorphous solid ethanol. However, subsequent warming does not lead to ordering of the adsorption layers, and at 130 K, ethanol is also completely desorbed.
Collapse
Affiliation(s)
| | - Egor E Aydakov
- 104675Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russian Federation
| | - Andrey A Saraev
- 104675Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russian Federation
| | - Vasily V Kaichev
- 104675Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|
9
|
Ou L. Theoretical insights into effect of surface composition of Pt-Ru bimetallic catalysts on CH 3OH oxidation: mechanistic considerations. J Mol Model 2022; 28:149. [PMID: 35552840 DOI: 10.1007/s00894-022-05150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
A deeper mechanistic understanding on CH3OH oxidation on Pt-Ru alloys with different Ru surface compositions is provided by DFT-based theoretical studies in this paper. The present results show that alloying and surface compositions of Ru can change CH3OH oxidation pathway and activity. The optimal surface composition of Ru is speculated to be ca. 50% since the higher Ru surface composition can lead to formation of carbonaceous species that can poison surface. Our present calculated Ru surface composition of ca. 50% exhibits excellent consistency with experimental studies. The origin of enhanced catalytic activity of Pt-Ru alloys is determined. The significantly decreased surface work functions after alloying suggest more electrons are transferred into adsorbates. The calculated lower electrode potentials after alloying imply that lower overpotentials are required for CH3OH oxidation. The excellent consistency with experimental study on decreased onset potentials after alloying further confirms accuracy of our present calculated results. It is hoped that a systematic understanding of the atomic- and molecular-level processes on CH3OH oxidation mechanisms on Pt-Ru alloys will result in the ultimate goal of the explanation of origin of enhanced electrocatalytic activity and design of improved Pt-based alloy electrocatalysts for DMFCs.
Collapse
Affiliation(s)
- Lihui Ou
- Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecologic Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China.
| |
Collapse
|
10
|
Laletina SS, Mamatkulov M, Shor AM, Shor EA, Kaichev VV, Yudanov IV. Size and structure effects on platinum nanocatalysts: theoretical insights from methanol dehydrogenation. NANOSCALE 2022; 14:4145-4155. [PMID: 35187555 DOI: 10.1039/d1nr07947f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methanol dehydrogenation on Pt nanoparticles was studied as a model reaction with the focus on size and structure effects employing the density functional theory approach. The effect of cluster morphology is manifested by the higher adsorption energy of COHx intermediates on vertexes and edges of model nanoparticles compared to closely packed terraces. Moreover, due to the size effect, the adsorption sites of Pt79 nanoparticles (1.2 nm in diameter) exhibit considerably higher adsorption activity than the same sites of Pt201 (1.7 nm). Thus, particles with a size of about 1 nm are shown to be more active due to the superposition of two effects: (i) a higher surface fraction of low-coordinated adsorption sites and (ii) higher activity of these sites compared to particles with a size of about 2 nm.
Collapse
Affiliation(s)
- Svetlana S Laletina
- Institute of Chemistry and Chemical Technology (ICCT) of the Siberian Branch of the Russian Academy of Sciences (SB RAS), Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia.
- Boreskov Institute of Catalysis SB RAS, Novosibirsk, 630090, Russia.
| | | | - Aleksey M Shor
- Institute of Chemistry and Chemical Technology (ICCT) of the Siberian Branch of the Russian Academy of Sciences (SB RAS), Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia.
| | - Elena A Shor
- Institute of Chemistry and Chemical Technology (ICCT) of the Siberian Branch of the Russian Academy of Sciences (SB RAS), Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia.
| | - Vasily V Kaichev
- Boreskov Institute of Catalysis SB RAS, Novosibirsk, 630090, Russia.
| | - Ilya V Yudanov
- Boreskov Institute of Catalysis SB RAS, Novosibirsk, 630090, Russia.
- Institute of Solid State Chemistry and Mechanochemistry (ISSCM) SB RAS, Novosibirsk, 630128, Russia
| |
Collapse
|
11
|
Su HY, Sun K, Gu XK, Wang SS, Zhu J, Li WX, Sun C, Calle-Vallejo F. Finding Key Factors for Efficient Water and Methanol Activation at Metals, Oxides, MXenes, and Metal/Oxide Interfaces. ACS Catal 2022; 12:1237-1246. [PMID: 35096469 PMCID: PMC8788388 DOI: 10.1021/acscatal.1c03405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/24/2021] [Indexed: 11/28/2022]
Abstract
![]()
Activating
water
and methanol is crucial in numerous catalytic,
electrocatalytic, and photocatalytic reactions. Despite extensive
research, the optimal active sites for water/methanol activation are
yet to be unequivocally elucidated. Here, we combine transition-state
searches and electronic charge analyses on various structurally different
materials to identify two features of favorable O–H bond cleavage
in H2O, CH3OH, and hydroxyl: (1) low barriers
appear when the charge of H moieties remains approximately constant
during the dissociation process, as observed on metal oxides, MXenes,
and metal/oxide interfaces. Such favorable kinetics is closely related
to adsorbate/substrate hydrogen bonding and is enhanced by nearly
linear O–H–O angles and short O–H distances.
(2) Fast dissociation is observed when the rotation of O–H
bonds is facile, which is favored by weak adsorbate binding and effective
orbital overlap. Interestingly, we find that the two features are
energetically proportional. Finally, we find conspicuous differences
between H2O/CH3OH and OH activation, which hints
toward the use of carefully engineered interfaces.
Collapse
Affiliation(s)
- Hai-Yan Su
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Keju Sun
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, 438 Hebei Avenue, Qinhuangdao 066004, China
| | - Xiang-Kui Gu
- Department of Chemical Physics, College of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
| | - Sha-Sha Wang
- Department of Chemical Physics, College of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
| | - Jing Zhu
- Department of Chemical Physics, College of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Xue Li
- Department of Chemical Physics, College of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
| | - Chenghua Sun
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Federico Calle-Vallejo
- Department of Materials Science and Chemical Physics & Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Mekazni DS, Arán-Ais RM, Ferre-Vilaplana A, Herrero E. Why Methanol Electro-oxidation on Platinum in Water Takes Place Only in the Presence of Adsorbed OH. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dalila S. Mekazni
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Rosa M. Arán-Ais
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Adolfo Ferre-Vilaplana
- Instituto Tecnológico de Informática, Ciudad Politécnica de la Innovación, Camino de Vera s/n, E-46022 Valencia, Spain
- Departamento de Sistemas Informáticos y Computación, Escuela Politécnica Superior de Alcoy, Universidad Politécnica de Valencia, Plaza Ferrándiz y Carbonell s/n, E-03801 Alcoy, Spain
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
13
|
Tawfik SA, Tran H, Spencer MJS. Improving sensing of formaldehyde using ZnO nanostructures with surface-adsorbed oxygen. NANOSCALE ADVANCES 2022; 4:546-561. [PMID: 36132703 PMCID: PMC9417844 DOI: 10.1039/d1na00804h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 06/16/2023]
Abstract
Detection of pollutant gases, such as formaldehyde (HCHO), in our homes and surrounding environment is of high importance for our health and safety. The effect of surface defects and specifically pre-adsorbed oxygen on the gas sensing reaction of HCHO with ZnO nanostructures is largely unknown. Using density functional theory, nonequilibrium Green's function method and ab initio molecular dynamics (AIMD) simulations, we show that the presence of surface oxygen has two key roles in the sensitivity of ZnO towards HCHO: (1) it leads to the presence of charge trap states, which vanish upon the adsorption of HCHO, and (2) it facilitates the dissociative chemisorption of HCHO on the surface. Our ground state and AIMD calculations show that multiple reaction products are produced, which eventually lead to cleaning the surface from the adsorbed species, and hence enhancing the recyclability of the surface. We not only confirm the reaction proposed by experiment, but show that the presence of surface oxygen facilitates other surface reactions as well. Our work provides insights into the gas-surface reaction mechanism of ZnO-nanostructure based gas sensors, not provided before by experiment.
Collapse
Affiliation(s)
| | - Hang Tran
- School of Science, RMIT University GPO Box 2476 Melbourne Victoria 3001 Australia
| | - Michelle J S Spencer
- ARC Centre of Excellence in Low-Energy Electronics Technologies, School of Science, RMIT University GPO Box 2476 Melbourne Victoria 3001 Australia
- School of Science, RMIT University GPO Box 2476 Melbourne Victoria 3001 Australia
| |
Collapse
|
14
|
Phan TT, Dao LTT, Giang LPT, Nguyen MT, Nguyen HMT. Mechanistic insights into the dehydrogenation of formaldehyde, formic acid and methanol using the Pt 4 cluster as a promising catalyst. J Mol Graph Model 2021; 111:108096. [PMID: 34875503 DOI: 10.1016/j.jmgm.2021.108096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
Reaction mechanisms of the dehydrogenation of formaldehyde, formic acid and methanol on the Pt4 cluster were computationally investigated using density functional theory (DFT) with the B3LYP functional in the conjunction with the aug-cc-pVTZ basis sets for H, C and O atoms, and the cc-pVDZ-PP basis set for Pt. Herein, the key mechanistic aspects of three possible pathways of the dehydrogenation of these compounds are summarized. The results indicate that the formation of H2 and CO or CO2 molecules is more energetically favorable than the generation of H and H2O, HCHO products. Generally, the formation of H2 molecule in the presence of catalysts is more favorable than the direct decomposition of either HCHO, HCOOH or CH3OH molecule. The use of Pt4 catalyst significantly reduces the energy barriers for C-H and O-H bond cleavage of all three compounds to 14, 9 and 12 kcal/mol, respectively. The decomposition of HCOOH is found to be the most energetically favorable. In addition, the mechanistic insights of the reactions confirm the reduction of the energy barriers of the gas-phase dehydrogenation by 67-82 kcal/mol and bring it to the values smaller than 14 kcal/mol in the presence of the Pt4 catalysts.
Collapse
Affiliation(s)
- Thuy Thi Phan
- Faculty of Chemistry, Vinh University, Vinh, Viet Nam
| | - Linh Thao Thi Dao
- Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, Hanoi, Viet Nam
| | - Ly Phương Thi Giang
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Mo Thi Nguyen
- Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, Hanoi, Viet Nam
| | - Hue Minh Thi Nguyen
- Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, Hanoi, Viet Nam.
| |
Collapse
|
15
|
Sugiyama K, Saita K, Maeda S. A reaction route network for methanol decomposition on a Pt(111) surface. J Comput Chem 2021; 42:2163-2169. [PMID: 34432314 DOI: 10.1002/jcc.26746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/17/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022]
Abstract
A reaction route network for the decomposition reaction of methanol on a Pt(111) surface was constructed by using the artificial force-induced reaction (AFIR) method, which can search for reaction paths automatically and systematically. Then, the network was kinetically analyzed by applying the rate constant matrix contraction (RCMC) method. Specifically, the time hierarchy of the network, the time evolution of the population initially given to CH3 OH to the other species on the network, and the most favorable route from CH3 OH to major and minor products were investigated by the RCMC method. Consistently to previous studies, the major product on the network was CO+4H, and the most favorable route proceeded through the following steps: CH3 OH → CH2 OH+H → HCOH+2H → HCO+3H → CO+4H. Furthermore, paths to byproducts found on the network and their kinetic importance were discussed. The present procedure combining AFIR and RCMC was thus successful in explaining the title reaction without using any information on its product or the reaction mechanism.
Collapse
Affiliation(s)
- Kanami Sugiyama
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Kenichiro Saita
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Satoshi Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.,Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Japan.,JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Pérez-Martínez L, Machado de los Toyos LM, Shibuya JJT, Cuesta A. Methanol Dehydrogenation on Pt Electrodes: Active Sites and Role of Adsorbed Spectators Revealed through Time-Resolved ATR-SEIRAS. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laura Pérez-Martínez
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K
| | | | - Jani J. T. Shibuya
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K
| | - Angel Cuesta
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K
| |
Collapse
|
17
|
Wang T, Sha J, Sabbe M, Sautet P, Pera-Titus M, Michel C. Identification of active catalysts for the acceptorless dehydrogenation of alcohols to carbonyls. Nat Commun 2021; 12:5100. [PMID: 34429417 PMCID: PMC8385104 DOI: 10.1038/s41467-021-25214-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/20/2021] [Indexed: 11/12/2022] Open
Abstract
Acceptorless dehydrogenation into carbonyls and molecular hydrogen is an attractive strategy to valorize (biobased) alcohols. Using 2-octanol dehydrogenation as benchmark reaction in a continuous reactor, a library of metal-supported catalysts is tested to validate the predictive level of catalytic activity for combined DFT and micro-kinetic modeling. Based on a series of transition metals, scaling relations are determined as a function of two descriptors, i.e. the surface binding energies of atomic carbon and oxygen. Then, a volcano-shape relation based on both descriptors is derived, paving the way to further optimization of active catalysts. Evaluation of 294 diluted alloys but also a series of carbides and nitrides with the volcano map identified 12 promising candidates with potentially improved activity for alcohol dehydrogenation, which provides useful guidance for experimental catalyst design. Further screening identifies β-Mo2N and γ-Mo2N exposing mostly (001) and (100) facets as potential candidates for alcohol dehydrogenation.
Collapse
Affiliation(s)
- Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.
| | - Jin Sha
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS - Solvay, Shanghai, China
| | - Maarten Sabbe
- Department of Materials, Textiles and Chemical Engineering, Ghent University, Zwijnaarde, Belgium
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Marc Pera-Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS - Solvay, Shanghai, China.
| | - Carine Michel
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon, France.
| |
Collapse
|
18
|
Wang QY, Wang CY, Tong YC, Xu XJ, Bai QL, Li SB. The catalytic activity of Pt nCu m (n = 1-3, m = 0-2) clusters for methanol dehydrogenation to CO. J Mol Model 2021; 27:215. [PMID: 34196847 DOI: 10.1007/s00894-021-04836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
A large number of experiments show that PtCu catalyst has a good catalytic effect on methanol decomposition. Therefore, density functional theory (DFT) was used to further study the dehydrogenation of methanol catalyzed by PtnCum (n = 1-3, m = 0-2). The energy diagrams of O-adsorption path and H-adsorption path were drawn. By calculation, the Pt is the active site of the whole reaction process, and the barrier energy of the rate-determining step is 11.09 kcal mol-1 by Pt2Cu, which is lower than that of Pt3 and PtCu2. However, the complete dehydrogenation product of methanol, CO, is easier to dissociate from PtCu2 clusters than from Pt3 and Pt2Cu clusters. Therefore, Cu doping can improve the catalytic activity and anti-CO toxicity of Pt to a certain extent.
Collapse
Affiliation(s)
- Qing-Yun Wang
- College of Chemistry and Chemical Engineering, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, 734000, People's Republic of China.
| | - Chun-Yan Wang
- College of Chemistry and Chemical Engineering, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, 734000, People's Republic of China
| | - Yong-Chun Tong
- College of Chemistry and Chemical Engineering, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, 734000, People's Republic of China
| | - Xin-Jian Xu
- College of Chemistry and Chemical Engineering, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, 734000, People's Republic of China
| | - Qing-Ling Bai
- College of Chemistry and Chemical Engineering, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, 734000, People's Republic of China
| | - Shou-Bo Li
- College of Chemistry and Chemical Engineering, Key laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye, 734000, People's Republic of China
| |
Collapse
|
19
|
Luo M, Liu C, Peera SG, Liang T. Atomic level N-coordinated Fe dual-metal embedded in graphene: An efficient double atoms catalyst for CO oxidation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Abstract
The design of heterogeneous catalysts relies on understanding the fundamental surface kinetics that controls catalyst performance, and microkinetic modeling is a tool that can help the researcher in streamlining the process of catalyst design. Microkinetic modeling is used to identify critical reaction intermediates and rate-determining elementary reactions, thereby providing vital information for designing an improved catalyst. In this review, we summarize general procedures for developing microkinetic models using reaction kinetics parameters obtained from experimental data, theoretical correlations, and quantum chemical calculations. We examine the methods required to ensure the thermodynamic consistency of the microkinetic model. We describe procedures required for parameter adjustments to account for the heterogeneity of the catalyst and the inherent errors in parameter estimation. We discuss the analysis of microkinetic models to determine the rate-determining reactions using the degree of rate control and reversibility of each elementary reaction. We introduce incorporation of Brønsted-Evans-Polanyi relations and scaling relations in microkinetic models and the effects of these relations on catalytic performance and formation of volcano curves are discussed. We review the analysis of reaction schemes in terms of the maximum rate of elementary reactions, and we outline a procedure to identify kinetically significant transition states and adsorbed intermediates. We explore the application of generalized rate expressions for the prediction of optimal binding energies of important surface intermediates and to estimate the extent of potential rate improvement. We also explore the application of microkinetic modeling in homogeneous catalysis, electro-catalysis, and transient reaction kinetics. We conclude by highlighting the challenges and opportunities in the application of microkinetic modeling for catalyst design.
Collapse
Affiliation(s)
- Ali Hussain Motagamwala
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - James A Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Kammert JD, Chemburkar A, Miyake N, Neurock M, Davis RJ. Reaction Kinetics and Mechanism for the Catalytic Reduction of Propionic Acid over Supported ReO x Promoted by Pd. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- James D. Kammert
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| | - Ashwin Chemburkar
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455-0132, United States
| | - Naomi Miyake
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| | - Matthew Neurock
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455-0132, United States
| | - Robert J. Davis
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| |
Collapse
|
22
|
Dixit GK, Kumar M, Katiyar A, Jansen APJ, van Bavel AP, Agrawal R, Shenai PM, Srinivasan V. Unraveling the activity of iron carbide clusters embedded in silica for thermocatalytic conversion of methane. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01229k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the detailed mechanism of direct nonoxidative CH4 conversion on iron carbide clusters embedded in silica, revealing that the FeC3 sites generated in situ from FeC2 are mainly responsible for CH4 conversion to CH3 and H2.
Collapse
Affiliation(s)
- Gopal K. Dixit
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Manish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Ankita Katiyar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | | | | | - Ravi Agrawal
- Shell India Markets Pvt. Ltd., Bengaluru, Karnataka 562149, India
| | | | - Varadharajan Srinivasan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
23
|
Qi Z, Chen L, Zhang S, Su J, Somorjai GA. Mechanism of Methanol Decomposition over Single-Site Pt1/CeO2 Catalyst: A DRIFTS Study. J Am Chem Soc 2020; 143:60-64. [DOI: 10.1021/jacs.0c10728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Gabor A. Somorjai
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Luo M, Liang Z, Liu C, Liu M, Qi X, Chen M, Yang H, Liang T. Theoretical Calculation of Different Reaction Mechanisms for CO Oxidation on MnN 3-Doped Graphene. ACS OMEGA 2020; 5:21203-21210. [PMID: 32875256 PMCID: PMC7450635 DOI: 10.1021/acsomega.0c02930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
In recent decades, great expectation has always been placed on catalysts that can convert toxic CO into CO2 under mild conditions. The catalytic mechanism of CO oxidation by Mn-coordinated N-doped graphene with a single vacancy (MnN3-SV) and a double vacancy (MnN3-DV) was studied by density functional theory (DFT) calculations. Molecular dynamics simulations showed that CO2 on MnN3-SV could not be desorbed from the substrate and MnN3-SV was not suitable for use as a CO oxidation catalyst. MnN3-DV was more suitable for CO oxidation (COOR) and from the electronic structure it was found that the Mn atom was the main active site, which was the reaction site for CO oxidation. At temperatures of 0 and 298.15 K, CO oxidation on MnN3-DV via the Langmuir-Hinshelwood (LH) mechanism was the best reaction pathway. The rate-determining step using MnN3-DV as the catalyst for CO oxidation through the LH mechanism was O2 + CO → OOCO, and the energy barrier was 0.861 eV at 298.15 K. MnN3-DV was suitable as a catalyst for CO oxidation in terms of both thermodynamics and kinetics. This study provides a comprehensive understanding of the various reaction mechanisms of CO oxidation on MnN3-DV, which is conducive to guiding the development and design of efficient catalysts for CO oxidation.
Collapse
|
25
|
Zhao J, Shi R, Li Z, Zhou C, Zhang T. How to make use of methanol in green catalytic hydrogen production? NANO SELECT 2020. [DOI: 10.1002/nano.202000010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsChinese Academy of SciencesTechnical Institute of Physics and Chemistry Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsChinese Academy of SciencesTechnical Institute of Physics and Chemistry Beijing 100190 China
| | - Zhenhua Li
- College of ChemistryCentral China Normal University Wuhan 430079 China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsChinese Academy of SciencesTechnical Institute of Physics and Chemistry Beijing 100190 China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsChinese Academy of SciencesTechnical Institute of Physics and Chemistry Beijing 100190 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
26
|
Wang H, Xu D, Guan E, Wang L, Zhang J, Wang C, Wang S, Xu H, Meng X, Yang B, Gates BC, Xiao FS. Atomically Dispersed Ru on Manganese Oxide Catalyst Boosts Oxidative Cyanation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00485] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hai Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dongyang Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Erjia Guan
- Department of Chemical Engineering, University of California, Davis California 95616, United States
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Zhang
- Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chengtao Wang
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Sai Wang
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Hua Xu
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Xiangju Meng
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis California 95616, United States
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
- Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
27
|
Wella SA, Hamamoto Y, Iskandar F, Suprijadi, Morikawa Y, Hamada I. Atomic and molecular adsorption on single platinum atom at the graphene edge: A density functional theory study. J Chem Phys 2020; 152:104707. [PMID: 32171202 DOI: 10.1063/5.0002902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present a density functional theory study of atomic and molecular adsorption on a single Pt atom deposited at the edges of graphene. We investigate geometric and electronic structures of atoms (H, C, N, and O) and molecules (O2, CO, OH, NO, H2O, and OOH) on a variety of Pt deposited graphene edges and compare the adsorption states with those on a Pt(111) surface and on a Pt single atom. Furthermore, using the calculated adsorption energy and simple kinetic models, the catalytic activities of a Pt single-atom catalyst for the oxygen reduction reaction and CO oxidation are discussed.
Collapse
Affiliation(s)
- Sasfan Arman Wella
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuji Hamamoto
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ferry Iskandar
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Suprijadi
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Yoshitada Morikawa
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ikutaro Hamada
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Xie Y, Li C, Razek SA, Fang J, Dimitrov N. Synthesis of Nanoporous Au−Cu−Pt Alloy as a Superior Catalyst for the Methanol Oxidation Reaction. ChemElectroChem 2020. [DOI: 10.1002/celc.201901932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yunxiang Xie
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
| | - Can Li
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
| | - Sara A Razek
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
| | - Jiye Fang
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
| | - Nikolay Dimitrov
- Department of Chemistry State University of New York at Binghamton Binghamton NY 13902 USA
| |
Collapse
|
29
|
Gao J, Mao M, Li P, Liu R, Song H, Sun K, Zhang S. Segmentation and Re-encapsulation of Porous PtCu Nanoparticles by Generated Carbon Shell for Enhanced Ethylene Glycol Oxidation and Oxygen-Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6298-6308. [PMID: 31927902 DOI: 10.1021/acsami.9b20504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hierarchical porous carbon-encapsulated ultrasmall PtCu (UsPtCu@C) nanoparticles (NPs) were constructed based on segmentation and re-encapsulation of porous PtCu NPs by using glucose as a green biomass carbon source. The synergistic electronic effect from the bimetallic elements can enhance the catalytic activity by adjusting the surface electronic structure of Pt. Most importantly, the generated porous carbon shell provided a large contact surface area, excellent electrical conductivity, and structural stability, and the ultrasmall PtCu NPs exhibited an increased electrochemical performance compared with their PtCu matrix because of the exposure of more catalytically active centers. This synergistic relationship between the components resulted in enhanced catalytic activity and better stability of the obtained UsPtCu@C for ethylene glycol oxidation reaction and the oxygen-reduction reaction in alkaline electrolyte, which was higher than the PtCu NPs and commercial Pt/C (20 wt % Pt on Vulcan XC-72). The electrochemically active surface areas of the UsPtCu@C, PtCu NPs, and commercial Pt/C were calculated to be approximately 230.2, 32.8, and 64.0 m2/gPt, respectively; the mass activity of the UsPtCu@C for the ethylene glycol oxidation reaction was 8.5 A/mgPt, which was 14.2 and 8.5 times that of PtCu NPs and commercial Pt/C, respectively. The specific activity of UsPtCu@C was 3.7 mA/cmpt2, which was 2.1 and 2.3 times that of PtCu NPs and commercial Pt/C, respectively. The onset potential (Eon-set) of UsPtCu@C for the oxygen-reduction reaction was 0.96 V (vs reversible hydrogen electrode, RHE), which was 110 and 60 mV higher than PtCu and commercial Pt/C, respectively. The half-wave potentials (E1/2) of UsPtCu@C, PtCu, and Pt/C were 0.88, 0.56, and 0.82 V (vs RHE), respectively, which indicated that the UsPtCu@C catalyst had an excellent bifunctional electrocatalytic activity.
Collapse
Affiliation(s)
- Juanjuan Gao
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
- School of Chemistry and Chemical Engineering , Yancheng Institute of Technology , Yancheng 224051 , P. R. China
| | - Mengxi Mao
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Peiwen Li
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Rumeng Liu
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Haiou Song
- School of Environment , Nanjing Normal University , Nanjing 210097 , P. R. China
| | - Kuan Sun
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering , Chongqing University , Chongqing 400044 , P. R. China
| | - Shupeng Zhang
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| |
Collapse
|
30
|
Luo M, Liang Z, Chen M, Liu C, Qi X, Peera SG, Liu J, Liang T. Theoretical investigation on catalytic mechanisms of oxygen reduction and carbon monoxide oxidation on the MnN x system. NEW J CHEM 2020. [DOI: 10.1039/d0nj03756g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Integrating all structures of the MnNx system, MnN4 shows the best ORR and COOR catalytic performance.
Collapse
Affiliation(s)
- Mingming Luo
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Zhao Liang
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Mingwei Chen
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Chao Liu
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
- State Key Laboratory of Metastable Materials Science and Technology
| | - Xiaopeng Qi
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Shaik Gouse Peera
- Department of Environmental Science and Engineering
- Keimyung University
- Daegu 42601
- Republic of South Korea
| | - Juan Liu
- Department of Mining and Materials Engineering
- Montreal
- Canada
| | - Tongxiang Liang
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| |
Collapse
|
31
|
Fang C, Hu J, Jiang X, Cui Z, Xu X, Bi T. Bifunctional PtCu electrocatalysts for the N 2 reduction reaction under ambient conditions and methanol oxidation. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00035c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PtCu nanoalloys were employed as bifunctional electrocatalysts in both the N2 reduction and methanol oxidation, in which the electrocatalytic activity and stability is composition dependent and highly improved compared to their counterpart.
Collapse
Affiliation(s)
- Caihong Fang
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecular-Based Materials
- Center for Nano Science and Technology
| | - Jinwu Hu
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecular-Based Materials
- Center for Nano Science and Technology
| | - Xiaomin Jiang
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecular-Based Materials
- Center for Nano Science and Technology
| | - Zhiqing Cui
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecular-Based Materials
- Center for Nano Science and Technology
| | - Xiaoxiao Xu
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecular-Based Materials
- Center for Nano Science and Technology
| | - Ting Bi
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecular-Based Materials
- Center for Nano Science and Technology
| |
Collapse
|
32
|
Zhang H, Xie S, Hu J, Wu X, Zhang Q, Cheng J, Wang Y. C–H activations of methanol and ethanol and C–C couplings into diols by zinc–indium–sulfide under visible light. Chem Commun (Camb) 2020; 56:1776-1779. [DOI: 10.1039/c9cc09205f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Use of few-layer Zn2In2S5 nanosheets as an environmentally friendly visible-light photocatalyst for directly transforming methanol to ethylene glycol with high selectivity.
Collapse
Affiliation(s)
- Haikun Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Jinyuan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Xuejiao Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| |
Collapse
|
33
|
Wu X, Jiang Y, Yan Y, Li X, Luo S, Huang J, Li J, Shen R, Yang D, Zhang H. Tuning Surface Structure of Pd 3Pb/Pt n Pb Nanocrystals for Boosting the Methanol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1902249. [PMID: 31871873 PMCID: PMC6918111 DOI: 10.1002/advs.201902249] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/29/2019] [Indexed: 05/15/2023]
Abstract
Developing an efficient Pt-based electrocatalyst with well-defined structures for the methanol oxidation reaction (MOR) is critical, however, still remains a challenge. Here, a one-pot approach is reported for the synthesis of Pd3Pb/Pt n Pb nanocubes with tunable Pt composition varying from 3.50 to 2.37 and 2.07, serving as electrocatalysts toward MOR. Their MOR activities increase in a sequence of Pd3Pb/Pt3.50Pb << Pd3Pb/Pt2.07Pb < Pd3Pb/Pt2.37Pb, which are substantially higher than that of commercial Pt/C. Specifically, Pd3Pb/Pt2.37Pb electrocatalysts achieve the highest specific (13.68 mA cm-2) and mass (8.40 A mgPt -1) activities, which are ≈8.8 and 6.8 times higher than those of commercial Pt/C, respectively. Structure characterizations show that Pd3Pb/Pt2.37Pb and Pd3Pb/Pt2.07Pb are dominated by hexagonal-structured PtPb intermetallic phase on the surface, while the surface of Pd3Pb/Pt3.50Pb is mainly composed of face-centered cubic (fcc)-structured Pt x Pb phase. As such, hexagonal-structured PtPb phase is much more active than the fcc-structured Pt x Pb one toward MOR. This demonstration is supported by density functional theory calculations, where the hexagonal-structured PtPb phase shows the lowest adsorption energy of CO. The decrease in CO adsorption energy and structural stability also endows Pd3Pb/Pt n Pb electrocatalysts with superior durability relative to commercial Pt/C.
Collapse
Affiliation(s)
- Xingqiao Wu
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Yi Jiang
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Yucong Yan
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Xiao Li
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Sai Luo
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Jingbo Huang
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Junjie Li
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Rong Shen
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials and School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
34
|
Lian X, Guo W, He B, Lin Y, Xu P, Yi H, Chen S. Comparison of O–H and C–H activation of methanol on Ni-based cluster: a DFT investigation. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1685689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xin Lian
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, People’s Republic of China
| | - Wenlong Guo
- Chongqing Key Laboratory of Green Synthesis and Applications & Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, People’s Republic of China
| | - Bai He
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, People’s Republic of China
| | - Yingxi Lin
- Chongqing Key Laboratory of Green Synthesis and Applications & Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, People’s Republic of China
| | - Peng Xu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, People’s Republic of China
| | - Huan Yi
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, People’s Republic of China
| | - Shuangkou Chen
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, People’s Republic of China
| |
Collapse
|
35
|
Chen LN, Hou KP, Liu YS, Qi ZY, Zheng Q, Lu YH, Chen JY, Chen JL, Pao CW, Wang SB, Li YB, Xie SH, Liu FD, Prendergast D, Klebanoff LE, Stavila V, Allendorf MD, Guo J, Zheng LS, Su J, Somorjai GA. Efficient Hydrogen Production from Methanol Using a Single-Site Pt 1/CeO 2 Catalyst. J Am Chem Soc 2019; 141:17995-17999. [PMID: 31647653 DOI: 10.1021/jacs.9b09431] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hydrogen is regarded as an attractive alternative energy carrier due to its high gravimetric energy density and only water production upon combustion. However, due to its low volumetric energy density, there are still some challenges in practical hydrogen storage and transportation. In the past decade, using chemical bonds of liquid organic molecules as hydrogen carriers to generate hydrogen in situ provided a feasible method to potentially solve this problem. Research efforts on liquid organic hydrogen carriers (LOHCs) seek practical carrier systems and advanced catalytic materials that have the potential to reduce costs, increase reaction rate, and provide a more efficient catalytic hydrogen generation/storage process. In this work, we used methanol as a hydrogen carrier to release hydrogen in situ with the single-site Pt1/CeO2 catalyst. Moreover, in this reaction, compared with traditional nanoparticle catalysts, the single site catalyst displays excellent hydrogen generation efficiency, 40 times higher than 2.5 nm Pt/CeO2 sample, and 800 times higher compared to 7.0 nm Pt/CeO2 sample. This in-depth study highlights the benefits of single-site catalysts and paves the way for further rational design of highly efficient catalysts for sustainable energy storage applications.
Collapse
Affiliation(s)
- Lu-Ning Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Kai-Peng Hou
- Department of Chemistry , University of California-Berkeley , Berkeley , California 94720 , United States
| | | | | | | | | | - Jia-Yu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center , Science-Based Industrial Park, Hsinchu 30076 , Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center , Science-Based Industrial Park, Hsinchu 30076 , Taiwan
| | | | - Yao-Bin Li
- Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021 , China
| | - Shao-Hua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), Nano-Science Technology Center (NSTC) , University of Central Florida , Orlando , Florida 32916 , United States
| | - Fu-Dong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), Nano-Science Technology Center (NSTC) , University of Central Florida , Orlando , Florida 32916 , United States
| | | | | | - Vitalie Stavila
- Sandia National Laboratories , Livermore , California 94551 , United States
| | - Mark D Allendorf
- Sandia National Laboratories , Livermore , California 94551 , United States
| | | | - Lan-Sun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | | | - Gabor A Somorjai
- Department of Chemistry , University of California-Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
36
|
Tian H, Rangarajan S. Predicting Adsorption Energies Using Multifidelity Data. J Chem Theory Comput 2019; 15:5588-5600. [DOI: 10.1021/acs.jctc.9b00336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Huijie Tian
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem 18015, United States
| | - Srinivas Rangarajan
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem 18015, United States
| |
Collapse
|
37
|
Thattarathody R, Sheintuch M. Product Composition and Kinetics of Methylal Decomposition on Alumina-Supported Pt, Ni, and Rh Catalysts. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rajesh Thattarathody
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Moshe Sheintuch
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
38
|
Lv J, Feng W, Yang S, Liu H, Huang X. Methanol dissociation and oxidation on single Fe atom supported on graphitic carbon nitride. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Junlan Lv
- Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational ChemistryJilin University Changchun 130023 China
| | - Wei Feng
- Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational ChemistryJilin University Changchun 130023 China
| | - Siwei Yang
- Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational ChemistryJilin University Changchun 130023 China
| | - Huiling Liu
- Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational ChemistryJilin University Changchun 130023 China
| | - Xuri Huang
- Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational ChemistryJilin University Changchun 130023 China
| |
Collapse
|
39
|
Shang MH, Zhang J, Zhang P, Yang Z, Zheng J, Haque MA, Yang W, Wei SH, Wu T. Stable Bandgap-Tunable Hybrid Perovskites with Alloyed Pb-Ba Cations for High-Performance Photovoltaic Applications. J Phys Chem Lett 2019; 10:59-66. [PMID: 30554516 DOI: 10.1021/acs.jpclett.8b03352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The intrinsic poor stability of MAPbI3 hybrid perovskites in the ambient environment remains as the major challenge for photovoltaic applications. In this work, complementary first-principles calculations and experimental characterizations reveal that metal cation alloyed perovskite (MABa xPb1- xI3) can be synthesized and exhibit substantially enhanced stability via forming stronger Ba-I bonds. The Ba-Pb alloyed perovskites remain phase-pure in ambient air for more than 15 days. Furthermore, the bandgap of MABa xPb1- xI3 is tailored in a wide window of 1.56-4.08 eV. Finally, MABa xPb1- xI3 is used as a capping layer on MAPbI3 in solar cells, resulting in significantly improved power conversion efficiency (18.9%) and long-term stability (>30 days). Overall, our results provide a simple but reliable strategy toward stable less-Pb perovskites with tailored physical properties.
Collapse
Affiliation(s)
- Ming-Hui Shang
- Institute of Material , Ningbo University of Technology , Ningbo 315016 , People's Republic of China
- Graduate School of Advanced Integration Science , Chiba University , Chiba 263-8522 , Japan
| | - Jing Zhang
- Faculty of Science , Ningbo University , Ningbo 315211 , People's Republic of China
| | - Peng Zhang
- Beijing Computational Science Research Center , 10 West Dongbeiwang Road , Haidian District, Beijing 100193 , China
| | - Zuobao Yang
- Institute of Material , Ningbo University of Technology , Ningbo 315016 , People's Republic of China
| | - Jinju Zheng
- Institute of Material , Ningbo University of Technology , Ningbo 315016 , People's Republic of China
| | - Md Azimul Haque
- Division of Physical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Weiyou Yang
- Institute of Material , Ningbo University of Technology , Ningbo 315016 , People's Republic of China
| | - Su-Huai Wei
- Beijing Computational Science Research Center , 10 West Dongbeiwang Road , Haidian District, Beijing 100193 , China
| | - Tom Wu
- School of Materials Science and Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| |
Collapse
|
40
|
Tomaschun G, Klüner T. Methanol oxidation on the Pt(321) surface: a theoretical approach on the role of surface morphology and surface coverage effects. Phys Chem Chem Phys 2019; 21:18227-18239. [DOI: 10.1039/c9cp03291f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated methanol oxidation, decomposition and carbonylation reactions on a high indexed Pt(321) surface.
Collapse
Affiliation(s)
- Gabriele Tomaschun
- Department of Chemistry
- Carl von Ossietzky University Oldenburg
- 26129 Oldenburg
- Germany
| | - Thorsten Klüner
- Department of Chemistry
- Carl von Ossietzky University Oldenburg
- 26129 Oldenburg
- Germany
| |
Collapse
|
41
|
Fang C, Zhao J, Jiang R, Wang J, Zhao G, Geng B. Engineering of Hollow PdPt Nanocrystals via Reduction Kinetic Control for Their Superior Electrocatalytic Performances. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29543-29551. [PMID: 30101581 DOI: 10.1021/acsami.8b08657] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthesis of hollow metal nanocrystals (NCs) is greatly attractive for their high active surface areas, which gives rise to excellent catalytic activity. Taking PdPt alloy nanostructure as an example, we designed a synthetic tactic for the preparation of hollow metal nanostructures by delicate control over the difference in the reduction kinetic of metal precursors. At a high reduction rate difference, the Pd layer forms from H2PdCl4 and is subsequently etched, leading to the formation of a hollow space. A solid PdPt structure is achieved when the reduction rate of Pd and Pt precursor is comparable. Obviously, the hollow space and composition are tunable as well by adjusting the reduction rate difference. More importantly, the prepared hollow PdPt nanostructures exhibit a branched outer, porous wall, and rough hollow interior. The branched outer and rough hollow interior provide the higher density of unsaturated atoms, whereas the porous wall serves as channels connecting the inner, outer, and reactive agents. Moreover, the periodic self-consistent density function theory suggests that the d-band theory density of state of the PdPt nanoalloys is upshifted in comparison to the monometallic component, which will beneficial for improvement in their catalytic performances. Electrocatalytic tests reveal that the PdPt bimetallic NCs, especially for Pt32Pd68 nanostructures, show excellent catalytic activity and stability toward methanol oxidation reaction owing to their special structures as well as compositions.
Collapse
Affiliation(s)
- Caihong Fang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , China
| | - Jun Zhao
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , China
| | - Ruibin Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Jing Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Guili Zhao
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , China
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , China
| |
Collapse
|
42
|
Adsorption of C–C Linkage-Contained Lignin Model Compound Over the Metal Surface of Catalysts: Quantum Simulation. Top Catal 2018. [DOI: 10.1007/s11244-018-1013-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Almithn A, Hibbitts D. Effects of Catalyst Model and High Adsorbate Coverages in ab Initio Studies of Alkane Hydrogenolysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abdulrahman Almithn
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - David Hibbitts
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
44
|
Rawal TB, Acharya SR, Hong S, Le D, Tang Y, Tao FF, Rahman TS. High Catalytic Activity of Pd1/ZnO(101̅0) toward Methanol Partial Oxidation: A DFT+KMC Study. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takat B. Rawal
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Shree Ram Acharya
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Sampyo Hong
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
- Division of Physical Sciences, Brewton-Parker College, Mount Vernon, Georgia 30445, United States
| | - Duy Le
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Yu Tang
- Department of Chemical and Petroleum Engineering, and Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Franklin Feng Tao
- Department of Chemical and Petroleum Engineering, and Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Talat S. Rahman
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
- Donostia International Physics Center, Donostia-San Sebastian 20018, Spain
| |
Collapse
|
45
|
Ozawa N, Chieda S, Higuchi Y, Takeguchi T, Yamauchi M, Kubo M. First-principles calculation of activity and selectivity of the partial oxidation of ethylene glycol on Fe(0 0 1), Co(0 0 0 1), and Ni(1 1 1). J Catal 2018. [DOI: 10.1016/j.jcat.2018.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Darby MT, Réocreux R, Sykes ECH, Michaelides A, Stamatakis M. Elucidating the Stability and Reactivity of Surface Intermediates on Single-Atom Alloy Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00881] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew T. Darby
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - Romain Réocreux
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - E. Charles. H. Sykes
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, Massachusetts 02155, United States
| | - Angelos Michaelides
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
47
|
Li C, Liu T, He T, Ni B, Yuan Q, Wang X. Composition-driven shape evolution to Cu-rich PtCu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction. NANOSCALE 2018; 10:4670-4674. [PMID: 29469909 DOI: 10.1039/c7nr09669k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Synergetic effects between Pt and a cheap metal, downshift of the d-band center of Pt and the shape can boost the catalytic performance of Pt-based nanocrystals. Therefore, tailoring the shape and composition within the nanoscale is the key to designing a robust electrocatalyst in electrochemical energy conversion. Here, Cu-rich PtCu octahedral alloys achieved by a composition-driven shape evolution route have been used as outstanding bifunctional electrocatalysts for both methanol oxidation (MOR) and oxygen reduction reaction (ORR) in an acid medium. When benchmarked against commercial Pt black or Pt/C, for MOR, the specific activity/mass activity on Pt34.5Cu65.5 octahedra is 4.74/7.53 times higher than that on commercial Pt black; for ORR, the specific activity/mass activity on Pt34.5Cu65.5 octahedra is 7.7/4.2 times higher than that on commercial Pt/C. After a current-time test for 3600 s, the remaining mass activity on Pt34.5Cu65.5 octahedra is 35.5 times higher than that on commercial Pt black for MOR. After undergoing 5000 cycles for ORR, the remaining mass activity on Pt34.5Cu65.5 octahedra is 4.2 times higher than that on commercial Pt/C.
Collapse
Affiliation(s)
- Chaozhong Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou province 550025, P. R. China.
| | | | | | | | | | | |
Collapse
|
48
|
In-Situ Liquid Hydrogenation of m-Chloronitrobenzene over Fe-Modified Pt/Carbon Nanotubes Catalysts. Catalysts 2018. [DOI: 10.3390/catal8020062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
49
|
Xue ZH, Han JT, Feng WJ, Yu QY, Li XH, Antonietti M, Chen JS. Tuning the Adsorption Energy of Methanol Molecules Along Ni-N-Doped Carbon Phase Boundaries by the Mott-Schottky Effect for Gas-Phase Methanol Dehydrogenation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhong-Hua Xue
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Jing-Tan Han
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Wei-Jie Feng
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Qiu-Ying Yu
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Markus Antonietti
- Department of Colloid Chemistry; Max Planck Institute of Colloids and Interfaces; Wissenschaftspark Golm Potsdam 14424 Germany
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| |
Collapse
|
50
|
Xue ZH, Han JT, Feng WJ, Yu QY, Li XH, Antonietti M, Chen JS. Tuning the Adsorption Energy of Methanol Molecules Along Ni-N-Doped Carbon Phase Boundaries by the Mott-Schottky Effect for Gas-Phase Methanol Dehydrogenation. Angew Chem Int Ed Engl 2018; 57:2697-2701. [DOI: 10.1002/anie.201713429] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Zhong-Hua Xue
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Jing-Tan Han
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Wei-Jie Feng
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Qiu-Ying Yu
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Markus Antonietti
- Department of Colloid Chemistry; Max Planck Institute of Colloids and Interfaces; Wissenschaftspark Golm Potsdam 14424 Germany
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| |
Collapse
|