1
|
Zhu Z, Bian Y, Zhang X, Zeng R, Yang B. Evaluation of formation and proportion of secondary structure in γ-polyglutamic acid by terahertz time-domain spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120940. [PMID: 35093819 DOI: 10.1016/j.saa.2022.120940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The study of secondary structure is essential for understanding peptides and proteins. Here, we measured the terahertz (THz) spectra of γ-polyglutamic acid (γ-PGA) dominated by α-helix and random coil (RC) respectively. The α-helix has two absorption peaks in the THz region, but no absorption peak is observed in the RC conformation. We believe this is because the hydrogen bonding effect leads to a higher orientation in the helix-dominated γ-PGA. At lower pH, the absorption intensity of γ-PGA increases with the induction time. Similar changes were obtained in the Fourier infrared spectroscopy (FTIR). Through the correlation analysis of THz and IR spectroscopy, it is found that the characteristic peak at 1.2 THz can be used as a sensitive indicator of the intermediate conformation of the α-helical structure. In addition, the transformation of α-helix-RC conformation is related to the peak intensity at 1.99 THz (R2 = 0.991), which preliminarily indicates that terahertz time-domain spectroscopy (THz-TDS) has the potential to become a new effective method for characterizing and evaluating secondary structure.
Collapse
Affiliation(s)
- Zhenqi Zhu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yujing Bian
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xun Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ruonan Zeng
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bin Yang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Batys P, Morga M, Bonarek P, Sammalkorpi M. pH-Induced Changes in Polypeptide Conformation: Force-Field Comparison with Experimental Validation. J Phys Chem B 2020; 124:2961-2972. [PMID: 32182068 PMCID: PMC7590956 DOI: 10.1021/acs.jpcb.0c01475] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Microsecond-long all-atom molecular dynamics (MD) simulations, circular dichroism, laser Doppler velocimetry, and dynamic light-scattering techniques have been used to investigate pH-induced changes in the secondary structure, charge, and conformation of poly l-lysine (PLL) and poly l-glutamic acid (PGA). The employed combination of the experimental methods reveals for both PLL and PGA a narrow pH range at which they are charged enough to form stable colloidal suspensions, maintaining their α-helix content above 60%; an elevated charge state of the peptides required for colloidal stability promotes the peptide solvation as a random coil. To obtain a more microscopic view on the conformations and to verify the modeling performance, peptide secondary structure and conformations rising in MD simulations are also examined using three different force fields, i.e., OPLS-AA, CHARMM27, and AMBER99SB*-ILDNP. Ramachandran plots reveal that in the examined setup the α-helix content is systematically overestimated in CHARMM27, while OPLS-AA overestimates the β-sheet fraction at lower ionization degrees. At high ionization degrees, the OPLS-AA force-field-predicted secondary structure fractions match the experimentally measured distribution most closely. However, the pH-induced changes in PLL and PGA secondary structure are reasonably captured only by the AMBER99SB*-ILDNP force field, with the exception of the fully charged PGA in which the α-helix content is overestimated. The comparison to simulations results shows that the examined force fields involve significant deviations in their predictions for charged homopolypeptides. The detailed mapping of secondary structure dependency on pH for the polypeptides, especially finding the stable colloidal α-helical regime for both examined peptides, has significant potential for practical applications of the charged homopolypeptides. The findings raise attention especially to the pH fine tuning as an underappreciated control factor in surface modification and self-assembly.
Collapse
Affiliation(s)
- Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Maria Morga
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Piotr Bonarek
- Department
of Physical Biochemistry, Faculty of Biochemistry, Biophysics and
Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science and Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
3
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
4
|
Shimato T, Kasahara K, Higo J, Takahashi T. Effects of number of parallel runs and frequency of bias-strength replacement in generalized ensemble molecular dynamics simulations. PEERJ PHYSICAL CHEMISTRY 2019. [DOI: 10.7717/peerj-pchem.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background
The generalized ensemble approach with the molecular dynamics (MD) method has been widely utilized. This approach usually has two features. (i) A bias potential, whose strength is replaced during a simulation, is applied. (ii) Sampling can be performed by many parallel runs of simulations. Although the frequency of the bias-strength replacement and the number of parallel runs can be adjusted, the effects of these settings on the resultant ensemble remain unclear.
Method
In this study, we performed multicanonical MD simulations for a foldable mini-protein (Trp-cage) and two unstructured peptides (8- and 20-residue poly-glutamic acids) with various settings.
Results
As a result, running many short simulations yielded robust results for the Trp-cage model. Regarding the frequency of the bias-potential replacement, although using a high frequency enhanced the traversals in the potential energy space, it did not promote conformational changes in all the systems.
Collapse
Affiliation(s)
- Takuya Shimato
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Junichi Higo
- Graduate School of Simulation Studies, University of Hyogo, Kobe, Hyogo, Japan
| | - Takuya Takahashi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
5
|
Rimmerman D, Leshchev D, Hsu DJ, Hong J, Abraham B, Henning R, Kosheleva I, Chen LX. Revealing Fast Structural Dynamics in pH-Responsive Peptides with Time-Resolved X-ray Scattering. J Phys Chem B 2019; 123:2016-2021. [PMID: 30763085 PMCID: PMC6533112 DOI: 10.1021/acs.jpcb.9b00072] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many biomaterials can adapt to changes in the local biological environment (such as pH, temperature, or ionic composition) in order to regulate function or deliver a payload. Such adaptation to environmental perturbation is typically a hierarchical process that begins with a response at a local structural level and then propagates to supramolecular and macromolecular scales. Understanding fast structural dynamics that occur upon perturbation is important for rational design of functional biomaterials. However, few nanosecond time-resolved methods can probe both intra- and intermolecular scales simultaneously with a high structural resolution. Here, we utilize time-resolved X-ray scattering to probe nanosecond to microsecond structural dynamics of poly-l-glutamic acid undergoing protonation via a pH jump initiated by photoexcitation of a photoacid. Our results provide insights into the protonation-induced hierarchical changes in packing of peptide chains, formation of a helical structure, and the associated collapse of the peptide chain.
Collapse
Affiliation(s)
- Dolev Rimmerman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Darren J. Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiyun Hong
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Baxter Abraham
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Lin X. Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
6
|
Acharyya A, Ge Y, Wu H, DeGrado WF, Voelz VA, Gai F. Exposing the Nucleation Site in α-Helix Folding: A Joint Experimental and Simulation Study. J Phys Chem B 2019; 123:1797-1807. [PMID: 30694671 DOI: 10.1021/acs.jpcb.8b12220] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the fundamental events in protein folding is α-helix formation, which involves sequential development of a series of helical hydrogen bonds between the backbone C═O group of residues i and the -NH group of residues i + 4. While we now know a great deal about α-helix folding dynamics, a key question that remains to be answered is where the productive helical nucleation event occurs. Statistically, a helical nucleus (or the first helical hydrogen-bond) can form anywhere within the peptide sequence in question; however, the one that leads to productive folding may only form at a preferred location. This consideration is based on the fact that the α-helical structure is inherently asymmetric, due to the specific alignment of the helical hydrogen bonds. While this hypothesis is plausible, validating it is challenging because there is not an experimental observable that can be used to directly pinpoint the location of the productive nucleation process. Therefore, in this study we combine several techniques, including peptide cross-linking, laser-induced temperature-jump infrared spectroscopy, and molecular dynamics simulations, to tackle this challenge. Taken together, our experimental and simulation results support an α-helix folding mechanism wherein the productive nucleus is formed at the N-terminus, which propagates toward the C-terminal end of the peptide to yield the folded structure. In addition, our results show that incorporation of a cross-linker can lead to formation of differently folded conformations, underscoring the need for all-atom simulations to quantitatively assess the proposed cross-linking design.
Collapse
Affiliation(s)
- Arusha Acharyya
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Yunhui Ge
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Haifan Wu
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Vincent A Voelz
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Feng Gai
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
7
|
Ogasawara N, Kasahara K, Iwai R, Takahashi T. Unfolding of α-helical 20-residue poly-glutamic acid analyzed by multiple runs of canonical molecular dynamics simulations. PeerJ 2018; 6:e4769. [PMID: 29780670 PMCID: PMC5958886 DOI: 10.7717/peerj.4769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/24/2018] [Indexed: 11/20/2022] Open
Abstract
Elucidating the molecular mechanism of helix-coil transitions of short peptides is a long-standing conundrum in physical chemistry. Although the helix-coil transitions of poly-glutamic acid (PGA) have been extensively studied, the molecular details of its unfolding process still remain unclear. We performed all-atom canonical molecular dynamics simulations for a 20-residue PGA, over a total of 19 μs, in order to investigate its helix-unfolding processes in atomic resolution. Among the 28 simulations, starting with the α-helical conformation, all showed an unfolding process triggered by the unwinding of terminal residues, rather than by kinking and unwinding of the middle region of the chain. The helix-coil-helix conformation which is speculated by the previous experiments was not observed. Upon comparison between the N- and C-termini, the latter tended to be unstable and easily unfolded. While the probabilities of helix elongation were almost the same among the N-terminal, middle, and C-terminal regions of the chain, unwinding of the helix was enriched at the C-terminal region. The turn and 310-helix conformations were kinetic intermediates in the formation and deformation of α-helix, consistent with the previous computational studies for Ala-based peptides.
Collapse
Affiliation(s)
- Naoki Ogasawara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ryosuke Iwai
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takuya Takahashi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
8
|
Popp A, Scheerer D, Heck B, Hauser K. Biomolecular dynamics studied with IR-spectroscopy using quantum cascade lasers combined with nanosecond perturbation techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 181:192-199. [PMID: 28364666 DOI: 10.1016/j.saa.2017.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
Early events of protein folding can be studied with fast perturbation techniques triggering non-equilibrium relaxation dynamics. A nanosecond laser-excited pH-jump or temperature-jump (T-jump) was applied to initiate helix folding or unfolding of poly-l-glutamic acid (PGA). PGA is a homopolypeptide with titratable carboxyl side-chains whose protonation degree determines the PGA conformation. A pH-jump was realized by the photochemical release of protons and induces PGA folding due to protonation of the side-chains. Otherwise, the helical conformation can be unfolded by a T-jump. We operated under conditions where PGA does not aggregate and temperature and pH are the regulatory properties of its conformation. The experiments were performed in such a manner that the folding/unfolding jump proceeded to the same PGA conformation. We quantified the increase/decrease in helicity induced by the pH-/T-jump and demonstrated that the T-jump results in a relatively small change in helical content in contrast to the pH-jump. This is caused by the strong pH-dependence of the PGA conformation. The conformational changes were detected by time-resolved single wavelength IR-spectroscopy using quantum cascade lasers (QCL). We could independently observe the kinetics for α-helix folding and unfolding in PGA by using different perturbation techniques and demonstrate the high sensitivity of time-resolved IR-spectroscopy to study protein folding mechanisms.
Collapse
Affiliation(s)
- Alexander Popp
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - David Scheerer
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Benjamin Heck
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
9
|
Lin CW, Gai F. Microscopic nucleation and propagation rates of an alanine-based α-helix. Phys Chem Chem Phys 2017; 19:5028-5036. [PMID: 28165082 PMCID: PMC5359971 DOI: 10.1039/c6cp08924k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An infrared temperature-jump (T-jump) study by Huang et al. (Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 2788-2793) showed that the conformational relaxation kinetics of an alanine-based α-helical peptide depend not only on the final temperature (Tf) but also on the initial temperature (Ti) when Tf is fixed. Their finding indicates that the folding free energy landscape of this peptide is non-two-state like, allowing for the population of conformational ensembles with different helical lengths and relaxation times in the temperature range of the experiment. Because α-helix folding involves two fundamental events, nucleation and propagation, the results of Huang et al. thus present a unique opportunity to determine their rate constants - a long-sought goal in the study of the helix-coil transition dynamics. Herein, we capitalize on this notion and develop a coarse-grained kinetic model to globally fit the thermal unfolding curve and T-jump kinetic traces of this peptide. Using this strategy, we are able to explicitly determine the microscopic rate constants of the kinetic steps encountered in the nucleation and propagation processes. Our results reveal that the time taken to form one α-helical turn (i.e., an α-helical segment with one helical hydrogen bond) is about 315 ns, whereas the time taken to elongate this nucleus by one residue (or backbone unit) is 5.9 ns, depending on the position of the residue.
Collapse
Affiliation(s)
- Chun-Wei Lin
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, USA.
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
10
|
Hu J, Joshi M, Elioff M. Direct observation of fluorescent complex formation of acridinium-anilide-thiophene triad with poly-l-glutamic acid. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Amino acid modified hyperbranched poly(ethylene imine) with disaccharide decoration as anionic core–shell architecture: Influence of the pH and molecular architecture on solution behaviour. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Liu H, Xiao Y, Xu H, Guan Y, Zhang J, Lang M. Reversible thermo-sensitivity induced from varying the hydrogen bonding between the side residues of rationally designed polypeptides. Chem Commun (Camb) 2015; 51:10174-7. [PMID: 26012903 DOI: 10.1039/c5cc03017j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rationally designed polypeptides with similar molecular structures but varying patterns of hydrogen bonding between the side groups have been synthesized and demonstrated to possess distinct solubility and thermal behaviors. Further balancing the ratio of both isopropylamine and ethylenediamine side groups endows the random copolymer with reversible thermo-sensitivity.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | | | | | | | | | | |
Collapse
|
13
|
de Miguel L, Popa I, Noiray M, Caudron E, Arpinati L, Desmaele D, Cebrián-Torrejón G, Doménech-Carbó A, Ponchel G. Osteotropic Polypeptide Nanoparticles with Dual hydroxyapatite Binding Properties and Controlled Cisplatin Delivery. Pharm Res 2014; 32:1794-803. [DOI: 10.1007/s11095-014-1576-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022]
|
14
|
Qin ZJ, Shimizu A, Li J, Ikeguchi M, Shinjo M, Kihara H. α-helix formation rate of oligopeptides at subzero temperatures. Biophysics (Nagoya-shi) 2014; 10:9-13. [PMID: 27493493 PMCID: PMC4629656 DOI: 10.2142/biophysics.10.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/24/2014] [Indexed: 12/01/2022] Open
Abstract
In 1999, Clarke et al. ((1999) Proc. Natl. Acad. Sci. USA 96, 7232–7237) reported that the nucleation rate of α-helix of oligopeptide AK16 is as slow as 60 ms. In the present study, we measured the nucleation rate of oligopeptide, C17 (DLTDDIMCVKKILDKVG, corresponding to α-helical region of 84th to 100th amino acids of bovine α-lactalbumin) using the same method as Clarke et al. We found only initial bursts of the increase of α-helices at temperatures higher than −50°C in the presence of 70% methanol. The result with AK16 was the same as Clarke et al. reported. We also found that the folding rate of polyglutamic acid is too fast to be detected by the stopped-flow apparatus at 4°C. These results demonstrate that the α-helix formation rates in C17, AK16 and polyglutamic acid are shorter than the dead time of the stopped-flow apparatus (6 ms).
Collapse
Affiliation(s)
- Zhi-Jie Qin
- Department of Physics, Kansai Medical University, 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan
| | - Akio Shimizu
- Department of Environmental Engineering for Symbiosis, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Jinsong Li
- Department of Physics, Kansai Medical University, 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan
| | - Masamichi Ikeguchi
- Department of Bioinformatics, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Masaji Shinjo
- Department of Physics, Kansai Medical University, 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan
| | - Hiroshi Kihara
- Department of Physics, Kansai Medical University, 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
15
|
|
16
|
|
17
|
Sawai H, Yamanaka M, Sugimoto H, Shiro Y, Aono S. Structural basis for the transcriptional regulation of heme homeostasis in Lactococcus lactis. J Biol Chem 2012; 287:30755-68. [PMID: 22798069 DOI: 10.1074/jbc.m112.370916] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although heme is a crucial element for many biological processes including respiration, heme homeostasis should be regulated strictly due to the cytotoxicity of free heme molecules. Numerous lactic acid bacteria, including Lactococcus lactis, acquire heme molecules exogenously to establish an aerobic respiratory chain. A heme efflux system plays an important role for heme homeostasis to avoid cytotoxicity of acquired free heme, but its regulatory mechanism is not clear. Here, we report that the transcriptional regulator heme-regulated transporter regulator (HrtR) senses and binds a heme molecule as its physiological effector to regulate the expression of the heme-efflux system responsible for heme homeostasis in L. lactis. To elucidate the molecular mechanisms of how HrtR senses a heme molecule and regulates gene expression for the heme efflux system, we determined the crystal structures of the apo-HrtR·DNA complex, apo-HrtR, and holo-HrtR at a resolution of 2.0, 3.1, and 1.9 Å, respectively. These structures revealed that HrtR is a member of the TetR family of transcriptional regulators. The residue pair Arg-46 and Tyr-50 plays a crucial role for specific DNA binding through hydrogen bonding and a CH-π interaction with the DNA bases. HrtR adopts a unique mechanism for its functional regulation upon heme sensing. Heme binding to HrtR causes a coil-to-helix transition of the α4 helix in the heme-sensing domain, which triggers a structural change of HrtR, causing it to dissociate from the target DNA for derepression of the genes encoding the heme efflux system. HrtR uses a unique heme-sensing motif with bis-His (His-72 and His-149) ligation to the heme, which is essential for the coil-to-helix transition of the α4 helix upon heme sensing.
Collapse
Affiliation(s)
- Hitomi Sawai
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | | | | | | | | |
Collapse
|
18
|
Mendonça L, Hache F. Nanosecond T-jump experiment in poly(glutamic acid): a circular dichroism study. Int J Mol Sci 2012; 13:2239-2248. [PMID: 22408450 PMCID: PMC3292019 DOI: 10.3390/ijms13022239] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/02/2012] [Accepted: 02/13/2012] [Indexed: 11/16/2022] Open
Abstract
Poly(glutamic acid) has been studied with a nanosecond T-jump experiment. A new experimental set-up based on the frequency-quadrupling of an 82 MHz Titanium-Sapphire laser allows rapid CD measurements to be performed. Combining time-resolved absorption and circular dichroism at 204 and 220 nm, we are able to measure precisely the unfolding relaxation time as well as the helical fraction evolution. We show that only CD at 220 nm is relevant to observe the unfolding of an alpha helix whereas no change is observed for CD at 204 nm. Conversely, both absorptions yield information on the dynamics of the process.
Collapse
Affiliation(s)
| | - François Hache
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-169-33-50-39; Fax: +33-169-33-50-84
| |
Collapse
|
19
|
Stability and folding dynamics of polyglutamic acid. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:673-85. [PMID: 21274709 DOI: 10.1007/s00249-011-0673-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/21/2010] [Accepted: 12/31/2010] [Indexed: 10/18/2022]
Abstract
The thermal stability and folding dynamics of polyglutamic acid were studied by equilibrium circular dichroism (CD), Fourier-transform infrared (FTIR), and time-resolved temperature-jump infrared (IR) spectroscopy. Polyglutamic acid (PGA) forms α-helical peptides in aqueous solution and is an ideal model system to study the helix-coil transition. Melting curves were monitored with CD and FTIR as a function of pD. At low pD, PGA aggregates at temperatures above 323 K, whereas at pD >5, unfolding and refolding are reversible. At pD 5.4, a helix-coil transition occurs with a transition temperature T(m) of 307 K. At slightly higher pD of 6.2, the peptide conformation is already in a coil structure and only small conformational changes occur upon heating. We determined the equilibrium constant for the reversible helix-coil transition at pD 5.4. The dynamics of this transition was measured at single IR wavelengths after a nanosecond laser-excited temperature jump of ∆T ~ 10 K. Relaxation constants decreased with increasing peptide temperature. Folding and unfolding rates as well as activation energies were extracted based on a two-state model. Our study shows how equilibrium and time-resolved infrared spectroscopic data can be combined to characterize a structural transition and to analyze folding mechanisms.
Collapse
|
20
|
Fedorov MV, Goodman JM, Schumm S. To Switch or Not To Switch: The Effects of Potassium and Sodium Ions on α-Poly-l-glutamate Conformations in Aqueous Solutions. J Am Chem Soc 2009; 131:10854-6. [DOI: 10.1021/ja9030374] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maxim V. Fedorov
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D04103 Leipzig, Germany, Department of Chemistry, Unilever Centre for Molecular Science Informatics, Lensfield Road, Cambridge CB2 1EW, U.K., and Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| | - Jonathan M. Goodman
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D04103 Leipzig, Germany, Department of Chemistry, Unilever Centre for Molecular Science Informatics, Lensfield Road, Cambridge CB2 1EW, U.K., and Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| | - Stephan Schumm
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D04103 Leipzig, Germany, Department of Chemistry, Unilever Centre for Molecular Science Informatics, Lensfield Road, Cambridge CB2 1EW, U.K., and Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| |
Collapse
|
21
|
Yoshiike Y, Minai R, Matsuo Y, Chen YR, Kimura T, Takashima A. Amyloid oligomer conformation in a group of natively folded proteins. PLoS One 2008; 3:e3235. [PMID: 18800165 PMCID: PMC2528939 DOI: 10.1371/journal.pone.0003235] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 08/25/2008] [Indexed: 01/08/2023] Open
Abstract
Recent in vitro and in vivo studies suggest that destabilized proteins with defective folding induce aggregation and toxicity in protein-misfolding diseases. One such unstable protein state is called amyloid oligomer, a precursor of fully aggregated forms of amyloid. Detection of various amyloid oligomers with A11, an anti-amyloid oligomer conformation-specific antibody, revealed that the amyloid oligomer represents a generic conformation and suggested that toxic beta-aggregation processes possess a common mechanism. By using A11 antibody as a probe in combination with mass spectrometric analysis, we identified GroEL in bacterial lysates as a protein that may potentially have an amyloid oligomer conformation. Surprisingly, A11 reacted not only with purified GroEL but also with several purified heat shock proteins, including human Hsp27, 40, 70, 90; yeast Hsp104; and bovine Hsc70. The native folds of A11-reactive proteins in purified samples were characterized by their anti-beta-aggregation activity in terms of both functionality and in contrast to the beta-aggregation promoting activity of misfolded pathogenic amyloid oligomers. The conformation-dependent binding of A11 with natively folded Hsp27 was supported by the concurrent loss of A11 reactivity and anti-beta-aggregation activity of heat-treated Hsp27 samples. Moreover, we observed consistent anti-beta-aggregation activity not only by chaperones containing an amyloid oligomer conformation but also by several A11-immunoreactive non-chaperone proteins. From these results, we suggest that the amyloid oligomer conformation is present in a group of natively folded proteins. The inhibitory effects of A11 antibody on both GroEL/ES-assisted luciferase refolding and Hsp70-mediated decelerated nucleation of Abeta aggregation suggested that the A11-binding sites on these chaperones might be functionally important. Finally, we employed a computational approach to uncover possible A11-binding sites on these targets. Since the beta-sheet edge was a common structural motif having the most similar physicochemical properties in the A11-reactive proteins we analyzed, we propose that the beta-sheet edge in some natively folded amyloid oligomers is designed positively to prevent beta aggregation.
Collapse
Affiliation(s)
- Yuji Yoshiike
- Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Ryoichi Minai
- Computational Proteomics Team, RIKEN Genomics Sciences Center, Tsurumi-ku, Yokohama, Japan
| | - Yo Matsuo
- Computational Proteomics Team, RIKEN Genomics Sciences Center, Tsurumi-ku, Yokohama, Japan
| | - Yun-Ru Chen
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tetsuya Kimura
- Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
- * E-mail:
| |
Collapse
|
22
|
Dehydration of main-chain amides in the final folding step of single-chain monellin revealed by time-resolved infrared spectroscopy. Proc Natl Acad Sci U S A 2008; 105:13391-6. [PMID: 18757727 DOI: 10.1073/pnas.0801316105] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinetic IR spectroscopy was used to reveal beta-sheet formation and water expulsion in the folding of single-chain monellin (SMN) composed of a five-stranded beta-sheet and an alpha-helix. The time-resolved IR spectra between 100 mus and 10 s were analyzed based on two consecutive intermediates, I(1) and I(2), appearing within 100 mus and with a time constant of approximately 100 ms, respectively. The initial unfolded state showed broad amide I' corresponded to a fluctuating conformation. In contrast, I(1) possessed a feature at 1,636 cm(-1) for solvated helix and weak features assignable to turns, demonstrating the rapid formation of helix and turns. I(2) possessed a line for solvated helix at 1,637 cm(-1) and major and minor lines for beta-sheet at 1,625 and 1,680 cm(-1), respectively. The splitting of the major and minor lines is smaller than that of the native state, implying an incomplete formation of the beta-sheet. Furthermore, both major and minor lines demonstrated a low-frequency shift compared to those of the native state, which was interpreted to be caused by hydration of the C O group in the beta-sheet. Together with the identification of solvated helix, the core domain of I(2) was interpreted as being hydrated. Finally, slow conversion of the water-penetrated core of I(2) to the dehydrated core of the native state was observed. We propose that both the expulsion of water, hydrogen-bonded to main-chain amides, and the completion of the secondary structure formation contribute to the energetic barrier of the rate-limiting step in SMN folding.
Collapse
|
23
|
Sinha KK, Udgaonkar JB. Barrierless evolution of structure during the submillisecond refolding reaction of a small protein. Proc Natl Acad Sci U S A 2008; 105:7998-8003. [PMID: 18523007 PMCID: PMC2430349 DOI: 10.1073/pnas.0803193105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Indexed: 11/18/2022] Open
Abstract
To determine whether a protein folding reaction can occur in the absence of a dominant barrier is crucial for understanding its complexity. Here direct ultrafast kinetic measurements have been used to study the initial submillisecond (sub-ms) folding reaction of the small protein barstar. The cooperativity of the initial folding reaction has been explored by using two probes: fluorescence resonance energy transfer, through which the contraction of two intramolecular distances is measured, and the binding of 8-anilino-1-naphthalene sulfonic acid, through which the formation of hydrophobic clusters is monitored. A fast chain contraction is shown to precede the formation of hydrophobic clusters, indicating that the sub-ms folding reaction is not cooperative. The observed rate constant of the sub-ms folding reaction monitored by 8-anilino-1-naphthalene sulfonic acid fluorescence has been found to be the same in stabilizing conditions (low urea concentrations), in which specific structure is formed, and in marginally stabilizing conditions (higher urea concentrations), where virtually no structure is formed in the product of the sub-ms folding reaction. The observation that the folding rate is independent of the folding conditions suggests that the initial folding reaction occurs in the absence of a dominant free energy barrier. These results provide kinetic evidence that the formation of specific structure need not be slowed down by any significant free energy barrier during the course of a very fast protein folding reaction.
Collapse
Affiliation(s)
- Kalyan K. Sinha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
24
|
Serrano P, Johnson MA, Almeida MS, Horst R, Herrmann T, Joseph JS, Neuman BW, Subramanian V, Saikatendu KS, Buchmeier MJ, Stevens RC, Kuhn P, Wüthrich K. Nuclear magnetic resonance structure of the N-terminal domain of nonstructural protein 3 from the severe acute respiratory syndrome coronavirus. J Virol 2007; 81:12049-60. [PMID: 17728234 PMCID: PMC2168779 DOI: 10.1128/jvi.00969-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This paper describes the structure determination of nsp3a, the N-terminal domain of the severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 3. nsp3a exhibits a ubiquitin-like globular fold of residues 1 to 112 and a flexibly extended glutamic acid-rich domain of residues 113 to 183. In addition to the four beta-strands and two alpha-helices that are common to ubiquitin-like folds, the globular domain of nsp3a contains two short helices representing a feature that has not previously been observed in these proteins. Nuclear magnetic resonance chemical shift perturbations showed that these unique structural elements are involved in interactions with single-stranded RNA. Structural similarities with proteins involved in various cell-signaling pathways indicate possible roles of nsp3a in viral infection and persistence.
Collapse
Affiliation(s)
- Pedro Serrano
- Department of Molecular Biology, MB-44, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nishiguchi S, Goto Y, Takahashi S. Solvation and desolvation dynamics in apomyoglobin folding monitored by time-resolved infrared spectroscopy. J Mol Biol 2007; 373:491-502. [PMID: 17850819 DOI: 10.1016/j.jmb.2007.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/21/2007] [Accepted: 08/01/2007] [Indexed: 11/29/2022]
Abstract
Solvation and desolvation dynamics around helices during the kinetic folding process of apomyoglobin (apoMb) were investigated by using time-resolved infrared (IR) spectroscopy based on continuous-flow rapid mixing devices and an IR microscope. The folding of apoMb can be described by the collapse and search mechanism, in which the initial collapse occurring within several hundreds of microseconds is followed by the search for the correct secondary and tertiary structures. The time-resolved IR measurements showed a significant increase in solvated helix possessing a component of amide I' at 1633 cm(-1) within 100 mus after initiating the folding by a pD jump from pD2.2 to 6.0. In contrast, there was a minor increase in buried helices having amide I' at 1652 cm(-1) in this time domain. The observations demonstrate that the initially collapsed conformation of apoMb possesses a large amount of solvated helices, and suggest that much water is retained inside the collapsed domain. The contents of solvated and buried helices decrease and increase, respectively, in the time domain after the collapse, showing that the stepwise desolvation around helices is associated with the conformational search process. Interestingly, the largest changes in solvated and buried helices were observed at the final rate-limiting step of the apoMb folding. The persistence of the solvated helix until the final stage of apoMb folding suggests that the dissociation of hydrogen bonds between water and main-chain amides contributes to the energy barrier in the rate-determining step of the folding.
Collapse
Affiliation(s)
- Shingo Nishiguchi
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
26
|
Morozov AN, Lin SH. Modeling of folding and unfolding mechanisms in alanine-based alpha-helical polypeptides. J Phys Chem B 2007; 110:20555-61. [PMID: 17034243 DOI: 10.1021/jp061781e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
alpha-Helix formation is known to be opposed by the entropy loss due to the folding and favored by the energy of molecular interactions. However, the underlying mechanism of these factors is still being discussed. Here we have used the experimental and calculation data for short alanine-based peptides embedded in water to model the mechanism of helix folding and unfolding and to calculate microscopically the free energy factors of alanine in the frame of helix coil conformational integrals. Classical helix-coil transition theories take into account the interactions in a peptide chain only if the i, i + 3 peptide bond participates in hydrogen bonding. But quantum mechanical calculations showed that interactions of the i, i + 2 peptide bond play an important role in helix folding too. We also included the short-range repulsive interactions due to molecular steric clashes and the end effects due to polar/hydrogen-bonding interactions at the N and C termini. The helix and coil regions of peptide conformational space were defined using an experimental steric criterion for hydrogen bonding. Arginine helix propensity was discussed and estimated. Monte Carlo numerical simulations of thermodynamics and kinetics for the 21 amino acid alpha-helical polypeptide Ac-A5(AAARA)3A-NMe were carried out and found to be in an agreement with the experimental results.
Collapse
Affiliation(s)
- Alexander N Morozov
- Institute of Atomic and Molecular Sciences, Academia Sinica, PO Box 23-166, Taipei, Taiwan, Republic of China.
| | | |
Collapse
|
27
|
Glinel K, Déjugnat C, Prevot M, Schöler B, Schönhoff M, Klitzing RV. Responsive polyelectrolyte multilayers. Colloids Surf A Physicochem Eng Asp 2007. [DOI: 10.1016/j.colsurfa.2007.02.052] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Inoue K, Baden N, Terazima M. Diffusion coefficient and the secondary structure of poly-L-glutamic acid in aqueous solution. J Phys Chem B 2007; 109:22623-8. [PMID: 16853945 DOI: 10.1021/jp052897y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diffusion coefficients (D) of poly-L-glutamic acid (PLG) at various pHs are investigated by the laser-induced transient-grating method with a new photoreactive probe molecule. The pH dependence of D is compared with that of the helical content of PLG measured by circular dichroism. It is found that the pH dependences of both quantities are very similar. Since the frictions of the translational diffusion of charged and protonated carboxyl groups are found to be similar each other, it is concluded that the conformation of the main polymer chain is the main factor in determining the diffusion process; in other words, the alpha-helix conformation makes the molecular diffusion faster. This result indicates that the conformational change of a protein can be detected by monitoring the diffusion coefficient.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
29
|
Joshi A, Saraph A, Poon V, Mogridge J, Kane RS. Synthesis of potent inhibitors of anthrax toxin based on poly-L-glutamic acid. Bioconjug Chem 2007; 17:1265-9. [PMID: 16984137 PMCID: PMC2698798 DOI: 10.1021/bc060042y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis of biodegradable polyvalent inhibitors of anthrax toxin based on poly-L-glutamic acid (PLGA). These biocompatible polyvalent inhibitors are at least 4 orders of magnitude more potent than the corresponding monovalent peptides in vitro and are comparable in potency to polyacrylamide-based inhibitors of anthrax toxin assembly. We have elucidated the influence of peptide density on inhibitory potency and demonstrated that these inhibitory potencies are limited by kinetics, with even higher activities seen when the inhibitors are preincubated with the heptameric receptor-binding subunit of anthrax toxin prior to exposure to cells. These polyvalent inhibitors are also effective at neutralizing anthrax toxin in vivo and represent attractive leads for designing biocompatible anthrax therapeutics.
Collapse
Affiliation(s)
- Amit Joshi
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | |
Collapse
|
30
|
Finke JM, Jennings PA, Lee JC, Onuchic JN, Winkler JR. Equilibrium unfolding of the poly(glutamic acid)20 helix. Biopolymers 2007; 86:193-211. [PMID: 17370320 DOI: 10.1002/bip.20719] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The equilibrium structural ensemble of a 20-residue polyglutamic acid peptide (E(20)) was studied with FRET, circular dichroism, and molecular dynamics (MD) simulations. A FRET donor, o-aminobenzamide, and acceptor, 3-nitrotyrosine, were introduced at the N- and C-termini, respectively. Circular dichroism, steady state FRET, and time-resolved FRET measurements were employed to characterize the fraction helix and end-to-end distance under different pH conditions: pH 4 (60% alpha-helix), pH 6 (0% alpha-helix), and pH 9 (0% alpha-helix). At pH 4, the end-to-end distance was measured at 24 A and determined to be considerably less than the 31 A predicted for an alpha-helix of the same length. At pH 6 and 9, the end-to-end distance was measured at > 31 and 39 A respectively, both which are determined to be considerably greater than the 27 A predicted for a freely jointed random coil of the same length. To better understand the physical forces underlying the unusual helix-coil transition in this peptide, three theoretical MD models of E(20) were constructed: (1) a pure alpha-helix, (2) an alpha-helix with equivalent attractive intramolecular contacts, and (3) a weak alpha-helix with termini-weighted intramolecular contacts ("sticky ends"). Using MD simulations, the bent helix structure calculated from Model 3 was found to be the closest in agreement with the experimental data.
Collapse
Affiliation(s)
- John M Finke
- Department of Chemistry, Oakland University, Rochester, MI 48309-4477, USA.
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Heinrich Roder
- Basic Science Division, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, USA.
| | | | | |
Collapse
|
32
|
Nonequilibrium protein folding dynamics: laser-induced pH-jump studies of the helix–coil transition. Chem Phys 2006. [DOI: 10.1016/j.chemphys.2005.08.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Joyce J, Cook J, Chabot D, Hepler R, Shoop W, Xu Q, Stambaugh T, Aste-Amezaga M, Wang S, Indrawati L, Bruner M, Friedlander A, Keller P, Caulfield M. Immunogenicity and Protective Efficacy of Bacillus anthracis Poly-γ-d-glutamic Acid Capsule Covalently Coupled to a Protein Carrier Using a Novel Triazine-based Conjugation Strategy. J Biol Chem 2006; 281:4831-43. [PMID: 16293624 DOI: 10.1074/jbc.m509432200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The capsular polypeptide of Bacillus anthracis is composed of a unique polyglutamic acid polymer in which D-glutamate monomers are joined by gamma-peptidyl bonds. The capsule is poorly immunogenic, and efforts at exploiting the polymer for vaccine development have focused on increasing its inherent immunogenicity through chemical coupling to immune-stimulating protein carriers. The usual strategy has employed carbodiimide-based condensing reagents for activation of free alpha-carboxyl groups, despite reports that this chemistry may lead to chain scission. We have purified the high molecular mass capsule to >95% homogeneity and have demonstrated that the polymer contains >99% poly-gamma-D-glutamic acid. The predominant structure of the polymer as assessed by circular dichroism and multiangle laser light scattering was unordered at near-neutral pH. We investigated the effects of various activation chemistries, and we demonstrated that carbodiimide treatment under aqueous conditions results in significant cleavage of the gamma-peptidyl bond, whereas scission is significantly reduced in nonaqueous polar solvents, although undesired side chain modification was still observed. An activation chemistry was developed using the triazine-based reagent 4-(4,6-dimethoxy (1,3,5)triazin-2-yl)-4-methylmorpholinium chloride, which allowed for controlled and reproducible derivatization of alpha-carbonyls. In a two-pot reaction scheme, activated capsule was derivatized with a sulfhydryl-reactive heterobifunctional moiety and was subsequently coupled to thiolated carrier protein. This conjugate elicited very high capsule-specific immune titers in mice. More importantly, mice immunized with conjugated capsule exhibited good protection against lethal challenge from a virulent B. anthracis strain in two models of infection. We also showed, for the first time, that treatment of capsule with carbodiimide significantly reduced recognition by capsule-specific antisera concurrent with the reagent-induced reduction of polymer mass. The data suggested that for vaccine development, maintenance of the high mass of the polymer may be important.
Collapse
Affiliation(s)
- Joseph Joyce
- Department of Vaccine and Biologics Research, Laboratory of Science and Investigative Toxicology and Bioprocess and Bioanalytical Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shintaku M, Matsuura K, Yoshioka S, Takahashi S, Ishimori K, Morishima I. Absence of a detectable intermediate in the compound I formation of horseradish peroxidase at ambient temperature. J Biol Chem 2005; 280:40934-8. [PMID: 16221678 DOI: 10.1074/jbc.m503472200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A microsecond-resolved absorption spectrometer was developed to investigate the elementary steps in hydrogen peroxide (H(2)O(2)) activation reaction of horseradish peroxidase (HRP) at ambient temperature. The kinetic absorption spectra of HRP upon the mixing with various concentrations of H(2)O(2) (0.5-3 mm) were monitored in the time range from 50 to 300 mus. The time-resolved spectra in the Soret region possessed isosbestic points that were close to those between the resting state and compound I. The kinetic changes in the Soret absorbance could be well fitted by a single exponential function. Accordingly, no distinct spectrum of the putative intermediate between the resting state and compound I was identified. These results were consistent with the proposal that the O-O bond activation in heme peroxidases is promoted by the imidazolium form of the distal histidine that exists only transiently. It was estimated that the rate constant for the breakage of the O-O bond in H(2)O(2) by HRP is significantly faster than 1 x 10(4) s(-1).
Collapse
Affiliation(s)
- Masato Shintaku
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Burgess BR, Schuck P, Garboczi DN. Dissection of merozoite surface protein 3, a representative of a family of Plasmodium falciparum surface proteins, reveals an oligomeric and highly elongated molecule. J Biol Chem 2005; 280:37236-45. [PMID: 16135515 DOI: 10.1074/jbc.m506753200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vaccination with the merozoite surface protein 3 (MSP3) of Plasmodium falciparum protects against infection in primates and is under development as a vaccine against malaria in humans. MSP3 is secreted and associates with the parasite membrane but lacks a predicted transmembrane domain or a glycosylphosphatidylinositol anchor. Its role in the invasion of red blood cells is unclear. To study MSP3, we produced recombinant full-length protein and found by size exclusion chromatography that the apparent size of MSP3 was much larger than predicted from its sequence. To investigate this, we used several biophysical techniques to characterize the full-length molecule and four smaller polypeptides. The MSP3 polypeptides contain a large amount of alpha-helix and random coil secondary structure as measured by circular dichroism spectroscopy. The full-length MSP3 forms highly elongated dimers and tetramers as revealed by chemical cross-linking and analytical ultracentrifugation. The dimer is formed through a leucine zipper-like domain located between residues 306 and 362 at the C terminus. Two dimers interact through their C termini to form a tetramer with an apparent association constant of 3 mum. Sedimentation velocity experiments determined that the MSP3 molecules are highly extended in solution (some with f/f(0) > 2). These data, in light of the recent discoveries of three other Plasmodium proteins containing very similar C-terminal sequences, suggest that the members of this newly identified family may adopt highly extended and oligomeric novel structures capable of interacting with a red blood cell at relatively long distances.
Collapse
Affiliation(s)
- Brandt R Burgess
- Structural Biology Section, Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | |
Collapse
|
36
|
Kimura T, Akiyama S, Uzawa T, Ishimori K, Morishima I, Fujisawa T, Takahashi S. Specifically collapsed intermediate in the early stage of the folding of ribonuclease A. J Mol Biol 2005; 350:349-62. [PMID: 15935376 DOI: 10.1016/j.jmb.2005.04.074] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 11/21/2022]
Abstract
Nature of the burst-phase signals of protein folding has been the subject of much debate as to whether the signals represent the formation of early intermediates or the non-specific collapse of unfolded polypeptides. To distinguish the two possibilities, the submillisecond folding dynamics of ribonuclease A (RNase A) was examined, and compared with those of the disulfide bond-ruptured analog of RNase A (r-RNase A). The circular dichroism measurements on RNase A showed the burst-phase signal within 320 micros after the initiation of the folding reaction, which was identical to that observed for r-RNase A. In contrast, the burst phase increase in the extrinsic fluorescence from 1-anilino-8-naphthalene sulfonate (ANS) was observed for RNase A but not for r-RNase A. The kinetic titration experiment of the ANS fluorescence intensity showed the presence of a specific binding site for ANS in the fast-refolding component of RNase A. The small-angle X-ray scattering measurements at approximately 22 ms after initiating the folding reaction demonstrated that the burst phase conformations of the medium and slow-refolding components of RNase A were distinctly smaller than that of r-RNase A. These results indicated the difference in the burst phase conformations of RNase A and r-RNase A. Since r-RNase A is denatured in the physiological solution condition, the burst-phase signal of RNase A was interpreted as the formation of the folding intermediate with specific conformations.
Collapse
Affiliation(s)
- Tetsunari Kimura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Kimura T, Uzawa T, Ishimori K, Morishima I, Takahashi S, Konno T, Akiyama S, Fujisawa T. Specific collapse followed by slow hydrogen-bond formation of beta-sheet in the folding of single-chain monellin. Proc Natl Acad Sci U S A 2005; 102:2748-53. [PMID: 15710881 PMCID: PMC549438 DOI: 10.1073/pnas.0407982102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Characterization of the conformational landscapes for proteins with different secondary structures is important in elucidating the mechanism of protein folding. The folding trajectory of single-chain monellin composed of a five-stranded beta-sheet and a helix was investigated by using a pH-jump from the alkaline unfolded to native state. The kinetic changes in the secondary structures and in the overall size and shape were measured by circular dichroism spectroscopy and small-angle x-ray scattering, respectively. The formation of the tertiary structure was monitored by intrinsic and extrinsic fluorescence. A significant collapse was observed within 300 micros after the pH-jump, leading to the intermediate with a small amount of secondary and tertiary structures but with an overall oblate shape. Subsequently, the stepwise formation of secondary and tertiary structures was detected. The current observation was consistent with the theoretical prediction that a more significant collapse precedes the formation of secondary structures in the folding of beta-sheet proteins than that of helical proteins [Shea, J. E., Onuchic, J. N. & Brooks, C. L., III (2002) Proc. Natl. Acad. Sci. USA 99, 16064-16068]. Furthermore, it was implied that the initial collapse was promoted by the formation of some specific structural elements, such as tight turns, to form the oblate shape.
Collapse
Affiliation(s)
- Tetsunari Kimura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sorin EJ, Pande VS. Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophys J 2005; 88:2472-93. [PMID: 15665128 PMCID: PMC1305346 DOI: 10.1529/biophysj.104.051938] [Citation(s) in RCA: 555] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ensemble folding of two 21-residue alpha-helical peptides has been studied using all-atom simulations under several variants of the AMBER potential in explicit solvent using a global distributed computing network. Our extensive sampling, orders of magnitude greater than the experimental folding time, results in complete convergence to ensemble equilibrium. This allows for a quantitative assessment of these potentials, including a new variant of the AMBER-99 force field, denoted AMBER-99 phi, which shows improved agreement with experimental kinetic and thermodynamic measurements. From bulk analysis of the simulated AMBER-99 phi equilibrium, we find that the folding landscape is pseudo-two-state, with complexity arising from the broad, shallow character of the "native" and "unfolded" regions of the phase space. Each of these macrostates allows for configurational diffusion among a diverse ensemble of conformational microstates with greatly varying helical content and molecular size. Indeed, the observed structural dynamics are better represented as a conformational diffusion than as a simple exponential process, and equilibrium transition rates spanning several orders of magnitude are reported. After multiple nucleation steps, on average, helix formation proceeds via a kinetic "alignment" phase in which two or more short, low-entropy helical segments form a more ideal, single-helix structure.
Collapse
Affiliation(s)
- Eric J Sorin
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | |
Collapse
|
39
|
Horinaka JI, Nakura H, Maeda S. In situ measurement of circular dichroism of DNA adsorbing onto a solid surface. ACTA ACUST UNITED AC 2004; 61:349-57. [DOI: 10.1016/j.jbbm.2004.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 07/19/2004] [Indexed: 11/29/2022]
|
40
|
Wang KJ, Lai P, Li SS. High resolution high-performance liquid chromatography separation of polyglutamic acids. Anal Biochem 2004; 332:199-201. [PMID: 15301968 DOI: 10.1016/j.ab.2004.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Indexed: 10/26/2022]
Affiliation(s)
- Kong-jiang Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun road, Beijing 100101, China.
| | | | | |
Collapse
|
41
|
Abstract
A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions.
Collapse
Affiliation(s)
- Chartchai Krittanai
- Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Phutthamonthon 4 Road, Salaya, Nakhonpathom 73170, Thailand.
| | | |
Collapse
|