1
|
Fernandes RA, Yadav SS, Moharana S. Stereoselective convergent total synthesis of oxylipins. Org Biomol Chem 2024; 22:5835-5842. [PMID: 38957082 DOI: 10.1039/d4ob00282b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
We synthesized stereoselectively four stereoisomers of oxylipins (1a-d) by a convergent approach based on chiral catalysis. The synthetic approach involved sequential assembly of two key fragments - ene-diol and allyl alcohol - for an intended convergent cross-metathesis reaction to join these fragments. The key steps include Sharpless kinetic resolution, asymmetric dihydroxylation and Grubbs cross-metathesis. The characterization of the synthesized oxylipins revealed spectroscopic data that were consistent with previously reported values.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Sandhya S Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Sanjita Moharana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
2
|
Kawade G, Kurata M, Matsuki Y, Fukuda S, Onishi I, Kinowaki Y, Watabe S, Ishibashi S, Ikeda M, Yamamoto M, Ohashi K, Kitagawa M, Yamamoto K. Mediation of Ferroptosis Suppressor Protein 1 Expression via 4-Hydroxy-2-Nonenal Accumulation Contributes to Acquisition of Resistance to Apoptosis and Ferroptosis in Diffuse Large B-Cell Lymphoma. J Transl Med 2024; 104:102027. [PMID: 38311062 DOI: 10.1016/j.labinv.2024.102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. New therapeutic strategies are needed for the treatment of refractory DLBCL. 4-Hydroxy-2-nonenal (4-HNE) is a cytotoxic lipid peroxidation marker, which alters intracellular signaling and induces genetic mutations. Lipid peroxidation is associated with nonapoptotic cell death, called ferroptosis. However, the relationship between 4-HNE accumulation and feroptotic regulators in DLBCL has not been fully evaluated. Here, we aimed to evaluate the accumulation of lipid peroxide and the expression of ferroptosis suppressor protein 1 (FSP1) in DLBCL using immunohistochemistry. We found a significant increase in the expression of FSP1 in cases with nuclear 4-HNE accumulation (P = .021). Both nuclear and cytoplasmic 4-HNE accumulation and FSP1 positivity were independent predictors of worse prognosis. In vitro exposure to 4-HNE resulted in its concentration- and time-dependent intracellular accumulation and increased expression of FSP1. Furthermore, short-term (0.25 and 1.0 μM) or long-term (0.25 μM) exposure to 4-HNE induced resistance to not only apoptosis but also ferroptosis. Taken together, regulation of FSP1 through 4-HNE accumulation may attenuate resistance to cell death in treatment-resistant DLBCL and might help develop novel therapeutic strategies for refractory DLBCL.
Collapse
Affiliation(s)
- Genji Kawade
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Matsuki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Fukuda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiori Watabe
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahide Yamamoto
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
3
|
Fernandes RA, Choudhary P, Khatun GN. Chiral Pool Meets Chiral Catalysis: Eight-Step Convergent Total Synthesis of Anticancer Natural Lipid Mycalol. J Org Chem 2023; 88:17389-17397. [PMID: 38008913 DOI: 10.1021/acs.joc.3c02201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
An exemplary blend of chiral pool with chiral catalysis is exhibited in an eight-step (longest) convergent asymmetric total synthesis of mycalol, which is a promising anticancer natural lipid from a marine source. The polyhydroxy lipid is constructed by using four blocks, and two of which are derived from the chiral pool (d-mannitol and d-gluconolactone) and the other two by chiral catalysis (Sharpless epoxidation and Keck allylation). Alkylation and metathesis were used to knit the blocks in an excellent display of a modular convergent eight-step synthesis. The modular excess will enable rapid analogue generation as revealed by the convenient synthesis of 4-epi-mycalol similarly in an eight-step sequence.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Priyanka Choudhary
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Gulenur N Khatun
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
4
|
Eyberg J, Ringenberg M, Richert C. Caging of a Strongly Pairing Fluorescent Thymidine Analog with Soft Nucleophiles. Chemistry 2023; 29:e202203289. [PMID: 36395348 PMCID: PMC10107337 DOI: 10.1002/chem.202203289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Controlling the pairing strength of nucleobases in DNA through reactions with compounds found inside the cell is a formidable challenge. Here we report how a thiazolyl substituent turns a strongly pairing ethynylpyridone C-nucleoside into a reactive residue in oligonucleotides. The thiazolyl-bearing pyridone reacts with soft nucleophiles, such as glutathione, but not with hard nucleophiles like hydroxide or carbonate. The addition products pair much more weakly with adenine in a complementary strand than the starting material, and also change their fluorescence. This makes oligonucleotides containing the new deoxynucleoside interesting for controlled release. Due to its reactivity toward N, P, S, and Se-nucleophiles, and the visual signal accompanying chemical conversion, the fluorescent nucleotide reported here may also have applications in chemical biology, sensing and diagnostics.
Collapse
Affiliation(s)
- Juri Eyberg
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Mark Ringenberg
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
5
|
Caballero MP, Carrascosa F, Cruz‐Martínez F, Castro‐Osma JA, Rodríguez AM, North M, Lara‐Sánchez A, Tejeda J. [4‐(2‐Hydroxyphenyl)imidazolium Salts as Organocatalysts for Cycloaddition of Isocyanates and Epoxides to Yield Oxazolidin‐2‐ones. ChemistrySelect 2022. [DOI: 10.1002/slct.202103977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- María P. Caballero
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - Fernando Carrascosa
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - Felipe Cruz‐Martínez
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - José A. Castro‐Osma
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Farmacia 02071 -Albacete Spain
| | - Ana M. Rodríguez
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - Michael North
- Green Chemistry Centre of Excellence Department of Chemistry The University of York Heslington York YO10 5DD UK
| | - Agustín Lara‐Sánchez
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| | - Juan Tejeda
- Departamento de Química Inorgánica Orgíaca y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas 13071-Ciudad Real Spain
| |
Collapse
|
6
|
Hellenthal KEM, Brabenec L, Gross ER, Wagner NM. TRP Channels as Sensors of Aldehyde and Oxidative Stress. Biomolecules 2021; 11:biom11101401. [PMID: 34680034 PMCID: PMC8533644 DOI: 10.3390/biom11101401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
The transient receptor potential (TRP) cation channel superfamily comprises more than 50 channels that play crucial roles in physiological processes. TRP channels are responsive to several exogenous and endogenous biomolecules, with aldehydes emerging as a TRP channel trigger contributing to a cellular cascade that can lead to disease pathophysiology. The body is not only exposed to exogenous aldehydes via tobacco products or alcoholic beverages, but also to endogenous aldehydes triggered by lipid peroxidation. In response to lipid peroxidation from inflammation or organ injury, polyunsaturated fatty acids undergo lipid peroxidation to aldehydes, such as 4-hydroxynonenal. Reactive aldehydes activate TRP channels via aldehyde-induced protein adducts, leading to the release of pro-inflammatory mediators driving the pathophysiology caused by cellular injury, including inflammatory pain and organ reperfusion injury. Recent studies have outlined how aldehyde dehydrogenase 2 protects against aldehyde toxicity through the clearance of toxic aldehydes, indicating that targeting the endogenous aldehyde metabolism may represent a novel treatment strategy. An addition approach can involve targeting specific TRP channel regions to limit the triggering of a cellular cascade induced by aldehydes. In this review, we provide a comprehensive summary of aldehydes, TRP channels, and their interactions, as well as their role in pathological conditions and the different therapeutical treatment options.
Collapse
Affiliation(s)
- Katharina E. M. Hellenthal
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
| | - Laura Brabenec
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
| | - Eric R. Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Nana-Maria Wagner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
- Correspondence: ; Tel.: +49-251-83-46837
| |
Collapse
|
7
|
Spasić S, Nikolić-Kokić A, Miletić S, Oreščanin-Dušić Z, Spasić MB, Blagojević D, Stević Z. Edaravone May Prevent Ferroptosis in ALS. Curr Drug Targets 2021; 21:776-780. [PMID: 32077821 DOI: 10.2174/1389450121666200220123305] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Radicava™ (Edaravone) was approved the Food and Drug Administration (FDA) as a new treatment for amyotrophic lateral sclerosis (ALS). Edaravone is a synthetic antioxidant that specifically targets oxidative damage interacting with lipid radicals in the cell. In ALS disease the multiple cell types are involved in devastating loss of motor neurons. Mutations and biochemical changes in various cell types jointly contribute to motor neuron death, disease onset, and disease progression. The overall mechanism of neurodegeneration in ALS is still not completely understood. Dying motor neurons have been reported to exhibit features of apoptosis. However, non-apoptotic features of dying motor neurons have also been reported such as ferroptosis. The role of Edaravone in the prevention of ferroptosis in parallel with other therapeutic approaches to ALS therapy is discussed.
Collapse
Affiliation(s)
- Snežana Spasić
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Nikolić-Kokić
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Srđan Miletić
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zorana Oreščanin-Dušić
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mihajlo B Spasić
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Duško Blagojević
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zorica Stević
- Clinic of Neurology, Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Synthesis of multifunctional 4-hydroxymethyl 2-oxazolidinones from glycidyl carbamate derivatives catalyzed by bicyclic guanidine. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Housh K, Jha JS, Haldar T, Amin SBM, Islam T, Wallace A, Gomina A, Guo X, Nel C, Wyatt JW, Gates KS. Formation and repair of unavoidable, endogenous interstrand cross-links in cellular DNA. DNA Repair (Amst) 2021; 98:103029. [PMID: 33385969 PMCID: PMC8882318 DOI: 10.1016/j.dnarep.2020.103029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Genome integrity is essential for life and, as a result, DNA repair systems evolved to remove unavoidable DNA lesions from cellular DNA. Many forms of life possess the capacity to remove interstrand DNA cross-links (ICLs) from their genome but the identity of the naturally-occurring, endogenous substrates that drove the evolution and retention of these DNA repair systems across a wide range of life forms remains uncertain. In this review, we describe more than a dozen chemical processes by which endogenous ICLs plausibly can be introduced into cellular DNA. The majority involve DNA degradation processes that introduce aldehyde residues into the double helix or reactions of DNA with endogenous low molecular weight aldehyde metabolites. A smaller number of the cross-linking processes involve reactions of DNA radicals generated by oxidation.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jay S Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Saosan Binth Md Amin
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Tanhaul Islam
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Amanda Wallace
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Anuoluwapo Gomina
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Xu Guo
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Jesse W Wyatt
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Kent S Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States; University of Missouri, Department of Biochemistry, Columbia, MO 65211, United States.
| |
Collapse
|
10
|
Toda Y, Tanaka S, Gomyou S, Kikuchi A, Suga H. 4-Hydroxymethyl-substituted oxazolidinone synthesis by tetraarylphosphonium salt-catalyzed reactions of glycidols with isocyanates. Chem Commun (Camb) 2019; 55:5761-5764. [DOI: 10.1039/c9cc01983a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A tetraarylphosphonium catalyst enables efficient coupling reactions between glycidols and isocyanates to afford 4-hydroxymethyl-substituted oxazolidinones.
Collapse
Affiliation(s)
- Yasunori Toda
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| | - Shoya Tanaka
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| | - Shuto Gomyou
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| | - Ayaka Kikuchi
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| | - Hiroyuki Suga
- Department of Materials Chemistry
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| |
Collapse
|
11
|
Price NE, Li L, Gates KS, Wang Y. Replication and repair of a reduced 2΄-deoxyguanosine-abasic site interstrand cross-link in human cells. Nucleic Acids Res 2017; 45:6486-6493. [PMID: 28431012 PMCID: PMC5499640 DOI: 10.1093/nar/gkx266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/13/2017] [Indexed: 02/02/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites, or abasic sites, which are a common type of endogenous DNA damage, can forge interstrand DNA–DNA cross-links via reaction with the exocyclic amino group on a nearby 2΄-deoxyguanosine or 2΄-deoxyadenosine in the opposite strand. Here, we utilized a shuttle vector method to examine the efficiency and fidelity with which a reduced dG–AP cross-link-containing plasmid was replicated in cultured human cells. Our results showed that the cross-link constituted strong impediments to DNA replication in HEK293T cells, with the bypass efficiencies for the dG- and AP-containing strands being 40% and 20%, respectively. While depletion of polymerase (Pol) η did not perturb the bypass efficiency of the lesion, the bypass efficiency was markedly reduced (to 1–10%) in the isogenic cells deficient in Pol κ, Pol ι or Pol ζ, suggesting the mutual involvement of multiple translesion synthesis polymerases in bypassing the lesion. Additionally, replication of the cross-linked AP residue in HEK293T cells was moderately error-prone, inducing a total of ∼26% single-nucleobase substitutions at the lesion site, whereas replication past the cross-linked dG component occurred at a mutation frequency of ∼8%. Together, our results provided important insights into the effects of an AP-derived interstrand cross-link on the efficiency and accuracy of DNA replication in human cells.
Collapse
Affiliation(s)
- Nathan E Price
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Lin Li
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| |
Collapse
|
12
|
Guéraud F. 4-Hydroxynonenal metabolites and adducts in pre-carcinogenic conditions and cancer. Free Radic Biol Med 2017; 111:196-208. [PMID: 28065782 DOI: 10.1016/j.freeradbiomed.2016.12.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
Abstract
4-hydroxy-2-nonenal (HNE) is an amazing reactive compound, originating from lipid peroxidation within cells but also in food and considered as a "second messenger" of oxidative stress. Due to its chemical features, HNE is able to make covalent links with DNA, proteins and lipids. The aim of this review is to give a comprehensive summary of the chemical properties of HNE and of the consequences of its reactivity in relation to cancer development. The formation of exocyclic etheno-and propano-adducts and genotoxic effects are addressed. The adduction to cellular proteins and the repercussions on the regulation of cell signaling pathways involved in cancer development are reviewed, notably on the Nrf2/Keap1/ARE pathway. The metabolic pathways leading to the inactivation/elimination or, on the contrary, to the bioactivation of HNE are considered. A special focus is given on the link between HNE and colorectal cancer development, due to its occurrence in foodstuffs and in the digestive lumen, during digestion.
Collapse
Affiliation(s)
- Françoise Guéraud
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
13
|
Eckl PM, Bresgen N. Genotoxicity of lipid oxidation compounds. Free Radic Biol Med 2017; 111:244-252. [PMID: 28167130 DOI: 10.1016/j.freeradbiomed.2017.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022]
Abstract
Lipid peroxidation, the oxidative degradation of membrane lipids by reactive oxygen species generates a large variety of breakdown products such as alkanes, aldehydes, ketones, alcohols, furans and others. Due to their reactivity aldehydes (alkanals, 2-alkenals, 2,4-alkadienals, 4-hydroxyalkenals) received a lot of attention, in particular because they can diffuse from the site of formation and interact with proteins and nucleic acids thus acting as second toxic messengers. The major aldehydic peroxidation product of membrane lipids is 4-hydroxynonenal (HNE). Since HNE and other 4-hydroxyalkenals are strong alkylating agents they have therefore been considered to be the biologically most important peroxidation products. Although initially research focused on the toxicological potential of these compounds it is now well known that they play also a crucial role in cell signaling under physiological and pathophysiological conditions. Thus, it is obvious that the biological effects will be determined by the intracellular concentrations which can trigger adaptation, DNA damage and cell death. This review will not cover all these aspects but will concentrate on the genotoxic properties of selected lipid oxidation products important in the context of pathophysiological developments together with a chapter on epigenetic modifications.
Collapse
Affiliation(s)
- Peter M Eckl
- Department of Cell Biology and Physiology, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria.
| | - Nikolaus Bresgen
- Department of Cell Biology and Physiology, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
| |
Collapse
|
14
|
Gentile F, Arcaro A, Pizzimenti S, Daga M, Cetrangolo GP, Dianzani C, Lepore A, Graf M, Ames PRJ, Barrera G. DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity. AIMS GENETICS 2017; 4:103-137. [PMID: 31435505 PMCID: PMC6690246 DOI: 10.3934/genet.2017.2.103] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity.
Collapse
Affiliation(s)
- Fabrizio Gentile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Alessia Arcaro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Martina Daga
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | | | - Chiara Dianzani
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Alessio Lepore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Maria Graf
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Paul R. J. Ames
- CEDOC, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal, and Department of Haematology, Dumfries Royal Infirmary, Dumfries, Scotland, UK
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
15
|
Vilanova B, Fernández D, Casasnovas R, Pomar AM, Alvarez-Idaboy JR, Hernández-Haro N, Grand A, Adrover M, Donoso J, Frau J, Muñoz F, Ortega-Castro J. Formation mechanism of glyoxal-DNA adduct, a DNA cross-link precursor. Int J Biol Macromol 2017; 98:664-675. [PMID: 28192135 DOI: 10.1016/j.ijbiomac.2017.01.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/08/2023]
Abstract
DNA nucleobases undergo non-enzymatic glycation to nucleobase adducts which can play important roles in vivo. In this work, we conducted a comprehensive experimental and theoretical kinetic study of the mechanisms of formation of glyoxal-guanine adducts over a wide pH range in order to elucidate the molecular basis for the glycation process. Also, we performed molecular dynamics simulations to investigate how open or cyclic glyoxal-guanine adducts can cause structural changes in an oligonucleotide model. A thermodynamic study of other glycating agents including methylglyoxal, acrolein, crotonaldehyde, 4-hydroxynonenal and 3-deoxyglucosone revealed that, at neutral pH, cyclic adducts were more stable than open adducts; at basic pH, however, the open adducts of 3-deoxyglucosone, methylglyoxal and glyoxal were more stable than their cyclic counterparts. This result can be ascribed to the ability of the adducts to cross-link DNA. The new insights may contribute to improve our understanding of the connection between glycation and DNA cross-linking.
Collapse
Affiliation(s)
- B Vilanova
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain.
| | - D Fernández
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - R Casasnovas
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - A M Pomar
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - J R Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | | | - A Grand
- Univ. Greboble Alpes, INAC-SCIB, F-38000 Grenoble, France; CEA, INAC-SyMMES, F-38000 Grenoble, France; Universidad Autónoma de Chile, Carlos Antúnez 1920, 7500566, Providencia, Santiago de, Chile
| | - M Adrover
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - J Donoso
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - J Frau
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - F Muñoz
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - J Ortega-Castro
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| |
Collapse
|
16
|
Jang H, Shin I, Lee D, Kim H, Kim D. Stereoselective Substrate-Controlled Asymmetric Syntheses of both 2,5-cis
- and 2,5-trans
-Tetrahydrofuranoid Oxylipids: Stereodivergent Intramolecular Amide Enolate Alkylation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongjun Jang
- College of Pharmacy; Ajou University; Suwon 16499 Korea
| | - Iljin Shin
- College of Pharmacy; Ajou University; Suwon 16499 Korea
| | - Dongjoo Lee
- College of Pharmacy; Ajou University; Suwon 16499 Korea
| | - Hyoungsu Kim
- College of Pharmacy; Ajou University; Suwon 16499 Korea
| | - Deukjoon Kim
- College of Pharmacy; Seoul National University; Seoul 08826 Korea
| |
Collapse
|
17
|
Jang H, Shin I, Lee D, Kim H, Kim D. Stereoselective Substrate-Controlled Asymmetric Syntheses of both 2,5-cis
- and 2,5-trans
-Tetrahydrofuranoid Oxylipids: Stereodivergent Intramolecular Amide Enolate Alkylation. Angew Chem Int Ed Engl 2016; 55:6497-501. [DOI: 10.1002/anie.201600637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Hongjun Jang
- College of Pharmacy; Ajou University; Suwon 16499 Korea
| | - Iljin Shin
- College of Pharmacy; Ajou University; Suwon 16499 Korea
| | - Dongjoo Lee
- College of Pharmacy; Ajou University; Suwon 16499 Korea
| | - Hyoungsu Kim
- College of Pharmacy; Ajou University; Suwon 16499 Korea
| | - Deukjoon Kim
- College of Pharmacy; Seoul National University; Seoul 08826 Korea
| |
Collapse
|
18
|
Duxin JP, Walter JC. What is the DNA repair defect underlying Fanconi anemia? Curr Opin Cell Biol 2015; 37:49-60. [PMID: 26512453 PMCID: PMC4688103 DOI: 10.1016/j.ceb.2015.09.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Fanconi anemia (FA) is a rare human genetic disease characterized by bone marrow failure, cancer predisposition, and genomic instability. It has been known for many years that FA patient-derived cells are exquisitely sensitive to DNA interstrand cross-linking agents such as cisplatin and mitomycin C. On this basis, it was widely assumed that failure to repair endogenous interstrand cross-links (ICLs) causes FA, although the endogenous mutagen that generates these lesions remained elusive. Recent genetic evidence now suggests that endogenous aldehydes are the driving force behind FA. Importantly, aldehydes cause a variety of DNA lesions, including ICLs and DNA protein cross-links (DPCs), re-kindling the debate about which DNA lesions cause FA. In this review, we discuss new developments in our understanding of DPC and ICL repair, and how these findings bear on the question of which DNA lesion underlies FA.
Collapse
Affiliation(s)
- Julien P Duxin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute.
| |
Collapse
|
19
|
Schaur RJ, Siems W, Bresgen N, Eckl PM. 4-Hydroxy-nonenal-A Bioactive Lipid Peroxidation Product. Biomolecules 2015; 5:2247-337. [PMID: 26437435 PMCID: PMC4693237 DOI: 10.3390/biom5042247] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 12/23/2022] Open
Abstract
This review on recent research advances of the lipid peroxidation product 4-hydroxy-nonenal (HNE) has four major topics: I. the formation of HNE in various organs and tissues, II. the diverse biochemical reactions with Michael adduct formation as the most prominent one, III. the endogenous targets of HNE, primarily peptides and proteins (here the mechanisms of covalent adduct formation are described and the (patho-) physiological consequences discussed), and IV. the metabolism of HNE leading to a great number of degradation products, some of which are excreted in urine and may serve as non-invasive biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Rudolf J Schaur
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 33a, 8010 Graz, Austria.
| | - Werner Siems
- Institute for Medical Education, KortexMed GmbH, Hindenburgring 12a, 38667 Bad Harzburg, Germany.
| | - Nikolaus Bresgen
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
20
|
|
21
|
Seetharamsingh B, Rajamohanan PR, Reddy DS. Total synthesis and structural revision of mycalol, an anticancer natural product from the marine source. Org Lett 2015; 17:1652-5. [PMID: 25763453 DOI: 10.1021/acs.orglett.5b00345] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The total synthesis of an anticancer (anaplastic thyroid) natural lipid mycalol has been accomplished for the first time. Synthesis of originally proposed structure necessitated the revision of structure in which the position of acetate group moved from C20 to C19 and a change in stereochemistry of the glycerol unit.
Collapse
Affiliation(s)
- B Seetharamsingh
- †Division of Organic Chemistry and ‡Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - P R Rajamohanan
- †Division of Organic Chemistry and ‡Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - D Srinivasa Reddy
- †Division of Organic Chemistry and ‡Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
22
|
Wang P, Qin J, Yuan D, Wang Y, Yao Y. Synthesis of Oxazolidinones from Epoxides and Isocyanates Catalyzed by Rare-Earth-Metal Complexes. ChemCatChem 2015. [DOI: 10.1002/cctc.201403015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Fu Y, Nath RG, Dyba M, Cruz IM, Pondicherry SR, Fernandez A, Schultz CL, Yang P, Pan J, Desai D, Krzeminski J, Amin S, Christov PP, Hara Y, Chung FL. In vivo detection of a novel endogenous etheno-DNA adduct derived from arachidonic acid and the effects of antioxidants on its formation. Free Radic Biol Med 2014; 73:12-20. [PMID: 24816294 PMCID: PMC4114339 DOI: 10.1016/j.freeradbiomed.2014.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 02/07/2023]
Abstract
Previous studies showed that 7-(1',2'-dihydroxyheptyl)-substituted etheno DNA adducts are products of reactions with the epoxide of (E)-4-hydroxy-2-nonenal, an oxidation product of ω-6 polyunsaturated fatty acids (PUFAs). In this work, we report the detection of 7-(1',2'-dihydroxyheptyl)-1,N(6)-ethenodeoxyadenosine (DHHedA) in rodent and human tissues by two independent methods: a (32)P-postlabeling/HPLC method and an isotope dilution liquid chromatography-electrospray ionization-tandem mass spectrometry method, demonstrating for the first time that DHHedA is a background DNA lesion in vivo. We showed that DHHedA can be formed upon incubation of arachidonic acid with deoxyadenosine, supporting the notion that ω-6 PUFAs are the endogenous source of DHHedA formation. Because cyclic adducts are derived from the oxidation of PUFAs, we subsequently examined the effects of antioxidants, α-lipoic acid, Polyphenon E, and vitamin E, on the formation of DHHedA and γ-hydroxy-1,N(2)-propanodeoxyguanosine (γ-OHPdG), a widely studied acrolein-derived adduct arising from oxidized PUFAs, in the livers of Long Evans Cinnamon (LEC) rats. LEC rats are afflicted with elevated lipid peroxidation and prone to the development of hepatocellular carcinomas. The results showed that although the survival of LEC rats was increased significantly by α-lipoic acid, none of the antioxidants inhibited the formation of DHHedA, and only Polyphenon E decreased the formation of γ-OHPdG. In contrast, vitamin E caused a significant increase in the formation of both γ-OHPdG and DHHedA in the livers of LEC rats.
Collapse
Affiliation(s)
- Ying Fu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20057
| | - Raghu G Nath
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20057
| | - Marcin Dyba
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20057
| | - Idalia M Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20057
| | - Sharanya R Pondicherry
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20057
| | - Aileen Fernandez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20057
| | - Casey L Schultz
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas 77054
| | - Peiying Yang
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas 77054
| | - Jishen Pan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20057
| | - Dhimant Desai
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Jacek Krzeminski
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Plamen P Christov
- Department of Chemistry, Vanderbilt University, VU Station B 351822, Nashville, TN 37235
| | | | - Fung-Lung Chung
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20057
| |
Collapse
|
24
|
Beattie C, North M. VanadiumV(salen) catalysed synthesis of oxazolidinones from epoxides and isocyanates. RSC Adv 2014. [DOI: 10.1039/c4ra04427d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The combination of a vanadiumV(salen) complex V+O(salen) EtOSO3− and tetrabutylammonium bromide forms a highly active catalyst system for the reaction between epoxides and isocyanates leading to oxazolidinones.
Collapse
Affiliation(s)
| | - Michael North
- Green Chemistry Centre of Excellence
- Department of Chemistry
- The University of York
- York, UK
- School of Chemistry
| |
Collapse
|
25
|
Choudhury S, Dyba M, Pan J, Roy R, Chung FL. Repair kinetics of acrolein- and (E)-4-hydroxy-2-nonenal-derived DNA adducts in human colon cell extracts. Mutat Res 2013; 751-752:15-23. [PMID: 24113140 DOI: 10.1016/j.mrfmmm.2013.09.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/30/2013] [Accepted: 09/20/2013] [Indexed: 11/15/2022]
Abstract
ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) play a role in the pathogenesis of colon cancer. Upon oxidation, PUFAs generate α,β-unsaturated aldehydes or enals, such as acrolein (Acr) and (E)-4-hydroxy-2-nonenal (HNE), which can form cyclic adducts of deoxyguanosine (Acr-dG and HNE-dG, respectively) in DNA. Both Acr-dG and HNE-dG adducts have been detected in human and animal tissues and are potentially mutagenic and carcinogenic. In vivo levels of Acr-dG in DNA are at least two orders of magnitude higher than those of HNE-dG. In addition to the facile reaction with Acr, the higher levels of Acr-dG than HNE-dG in vivo may be due to a lower rate of repair. Previous studies have shown that HNE-dG adducts are repaired by the NER pathway (Choudhury et al. [42]). We hypothesize that Acr-dG adducts are repaired at a slower rate than HNE-dG and that HNE-dG in DNA may influence the repair of Acr-dG. In this study, using a DNA repair synthesis assay and a LC-MS/MS method, we showed that Acr-dG in a plasmid DNA is repaired by NER proteins, but it is repaired at a much slower rate than HNE-dG in human colon cell extracts, and the slow repair of Acr-dG is likely due to poor recognition/excision of the lesions in DNA. Furthermore, using a plasmid DNA containing both adducts we found the repair of Acr-dG is significantly inhibited by HNE-dG, however, the repair of HNE-dG is not much affected by Acr-dG. This study demonstrates that the NER repair efficiencies of the two major structurally-related in vivo cyclic DNA adducts from lipid oxidation vary greatly. More importantly, the repair of Acr-dG can be significantly retarded by the presence of HNE-dG in DNA. Therefore, this study provides a mechanistic explanation for the higher levels of Acr-dG than HNE-dG observed in tissue DNA.
Collapse
Affiliation(s)
- Sujata Choudhury
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
26
|
Christov PP, Hawkins EK, Kett NR, Rizzo CJ. Simplified synthesis of individual stereoisomers of the 4-hydroxynonenal adducts of deoxyguanosine. Tetrahedron Lett 2013; 54:4289-4291. [PMID: 23935223 DOI: 10.1016/j.tetlet.2013.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously reported the synthesis of the 1,N2-deoxyguanosine adducts of 4-hydroxynonenal, an important product of lipid peroxidation, which involved the nucleophilic aromatic substitution reaction of an O6-protected-2-fluoroinosine with 4-amino-1,2,5-trihydroxydecanal followed by periodate oxidation of the vicinal diol.3 An improved synthesis of the amino triols has been developed. The syn and anti diasteromers of a key intermediate, 4-nitro-5-hydroxy-1-decene, were synthesized by a Henry reaction and separated; each diastereomer was further separated into individual enantiomers by chiral supercritical fluid chromatography. Of note, dihydroxylation of the terminal olefin under conventional conditions with catalytic OsO4 and a tertiary amine oxide as the stoichiometric oxidant led to scrambling of stereochemistry at C4. The scrambling was not observed when t-butylhydroperoxide was used as the oxidant.
Collapse
Affiliation(s)
- Plamen P Christov
- Vanderbilt Institute of Chemical Biology Synthesis Core, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
27
|
Baronsky T, Beattie C, Harrington RW, Irfan R, North M, Osende JG, Young C. Bimetallic Aluminum(salen) Catalyzed Synthesis of Oxazolidinones from Epoxides and Isocyanates. ACS Catal 2013. [DOI: 10.1021/cs4001046] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thilo Baronsky
- School of
Chemistry and University Research Centre in Catalysis and Intensified
Processing, Newcastle University, Bedson
Building, Newcastle upon Tyne, NE1 7RU, U.K
| | - Christopher Beattie
- School of
Chemistry and University Research Centre in Catalysis and Intensified
Processing, Newcastle University, Bedson
Building, Newcastle upon Tyne, NE1 7RU, U.K
| | - Ross W. Harrington
- School of
Chemistry and University Research Centre in Catalysis and Intensified
Processing, Newcastle University, Bedson
Building, Newcastle upon Tyne, NE1 7RU, U.K
| | - Reyhan Irfan
- School of
Chemistry and University Research Centre in Catalysis and Intensified
Processing, Newcastle University, Bedson
Building, Newcastle upon Tyne, NE1 7RU, U.K
| | - Michael North
- School of
Chemistry and University Research Centre in Catalysis and Intensified
Processing, Newcastle University, Bedson
Building, Newcastle upon Tyne, NE1 7RU, U.K
| | - Javier G. Osende
- School of
Chemistry and University Research Centre in Catalysis and Intensified
Processing, Newcastle University, Bedson
Building, Newcastle upon Tyne, NE1 7RU, U.K
| | - Carl Young
- School of
Chemistry and University Research Centre in Catalysis and Intensified
Processing, Newcastle University, Bedson
Building, Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
28
|
Banerjee S, Christov P, Kozekova A, Rizzo CJ, Egli M, Stone MP. Replication bypass of the trans-4-Hydroxynonenal-derived (6S,8R,11S)-1,N(2)-deoxyguanosine DNA adduct by the sulfolobus solfataricus DNA polymerase IV. Chem Res Toxicol 2012; 25:422-35. [PMID: 22313351 PMCID: PMC3285121 DOI: 10.1021/tx200460j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
trans-4-Hydroxynonenal (HNE) is the major peroxidation product of ω-6 polyunsaturated fatty acids in vivo. Michael addition of the N(2)-amino group of dGuo to HNE followed by ring closure of N1 onto the aldehyde results in four diastereomeric 1,N(2)-dGuo (1,N(2)-HNE-dGuo) adducts. The (6S,8R,11S)-HNE-1,N(2)-dGuo adduct was incorporated into the 18-mer templates 5'-d(TCATXGAATCCTTCCCCC)-3' and d(TCACXGAATCCTTCCCCC)-3', where X = (6S,8R,11S)-HNE-1,N(2)-dGuo adduct. These differed in the identity of the template 5'-neighbor base, which was either Thy or Cyt, respectively. Each of these templates was annealed with either a 13-mer primer 5'-d(GGGGGAAGGATTC)-3' or a 14-mer primer 5'-d(GGGGGAAGGATTCC)-3'. The addition of dNTPs to the 13-mer primer allowed analysis of dNTP insertion opposite to the (6S,8R,11S)-HNE-1,N(2)-dGuo adduct, whereas the 14-mer primer allowed analysis of dNTP extension past a primed (6S,8R,11S)-HNE-1,N(2)-dGuo:dCyd pair. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) belongs to the Y-family of error-prone polymerases. Replication bypass studies in vitro reveal that this polymerase inserted dNTPs opposite the (6S,8R,11S)-HNE-1,N(2)-dGuo adduct in a sequence-specific manner. If the template 5'-neighbor base was dCyt, the polymerase inserted primarily dGTP, whereas if the template 5'-neighbor base was dThy, the polymerase inserted primarily dATP. The latter event would predict low levels of Gua → Thy mutations during replication bypass when the template 5'-neighbor base is dThy. When presented with a primed (6S,8R,11S)-HNE-1,N(2)-dGuo:dCyd pair, the polymerase conducted full-length primer extension. Structures for ternary (Dpo4-DNA-dNTP) complexes with all four template-primers were obtained. For the 18-mer:13-mer template-primers in which the polymerase was confronted with the (6S,8R,11S)-HNE-1,N(2)-dGuo adduct, the (6S,8R,11S)-1,N(2)-dGuo lesion remained in the ring-closed conformation at the active site. The incoming dNTP, either dGTP or dATP, was positioned with Watson-Crick pairing opposite the template 5'-neighbor base, dCyt or dThy, respectively. In contrast, for the 18-mer:14-mer template-primers with a primed (6S,8R,11S)-HNE-1,N(2)-dGuo:dCyd pair, ring opening of the adduct to the corresponding N(2)-dGuo aldehyde species occurred. This allowed Watson-Crick base pairing at the (6S,8R,11S)-HNE-1,N(2)-dGuo:dCyd pair.
Collapse
|
29
|
Berquist BR, Wilson DM. Pathways for repairing and tolerating the spectrum of oxidative DNA lesions. Cancer Lett 2012; 327:61-72. [PMID: 22353689 DOI: 10.1016/j.canlet.2012.02.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/26/2012] [Accepted: 02/01/2012] [Indexed: 01/03/2023]
Abstract
Reactive oxygen species (ROS) arise from both endogenous and exogenous sources. These reactive molecules possess the ability to damage both the DNA nucleobases and the sugar phosphate backbone, leading to a wide spectrum of lesions, including non-bulky (8-oxoguanine and formamidopyrimidine) and bulky (cyclopurine and etheno adducts) base modifications, abasic sites, non-conventional single-strand breaks, protein-DNA adducts, and intra/interstrand DNA crosslinks. Unrepaired oxidative DNA damage can result in bypass mutagenesis during genome copying or gene expression, or blockage of the essential cellular processes of DNA replication or transcription. Such outcomes underlie numerous pathologies, including, but not limited to, carcinogenesis and neurodegeneration, as well as the aging process. Cells have adapted and evolved defense systems against the deleterious effects of ROS, and specifically devote a number of cellular DNA repair and tolerance pathways to combat oxidative DNA damage. Defects in these protective pathways trigger hereditary human diseases that exhibit increased cancer incidence, developmental defects, neurological abnormalities, and/or premature aging. We review herein classic and atypical oxidative DNA lesions, outcomes of encountering these damages during DNA replication and transcription, and the consequences of losing the ability to repair the different forms of oxidative DNA damage. We particularly focus on the hereditary human diseases Xeroderma Pigmentosum, Cockayne Syndrome and Fanconi Anemia, which may involve defects in the efficient repair of oxidative modifications to chromosomal DNA.
Collapse
Affiliation(s)
- Brian R Berquist
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, 77843, United States
| | | |
Collapse
|
30
|
Harris CM, Stec DF, Christov PP, Kozekov ID, Rizzo CJ, Harris TM. Deoxyguanosine forms a bis-adduct with E,E-muconaldehyde, an oxidative metabolite of benzene: implications for the carcinogenicity of benzene. Chem Res Toxicol 2011; 24:1944-56. [PMID: 21972945 PMCID: PMC3408037 DOI: 10.1021/tx2002838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Benzene is employed in large quantities in the chemical industry and is an ubiquitous contaminant in the environment. There is strong epidemiological evidence that benzene exposure induces hematopoietic malignancies, especially acute myeloid leukemia, in humans, but the chemical mechanisms remain obscure. E,E-Muconaldehyde is one of the products of metabolic oxidation of benzene. This paper explores the proposition that E,E-muconaldehyde is capable of forming Gua-Gua cross-links. If formed in DNA, the replication and repair of such cross-links might introduce structural defects that could be the origin of the carcinogenicity. We have investigated the reaction of E,E-muconaldehyde with dGuo and found that the reaction yields two pairs of interconverting diastereomers of a novel heptacyclic bis-adduct having a spiro ring system linking the two Gua residues. The structures of the four diastereomers have been established by NMR spectroscopy and their absolute configurations by comparison of CD spectra with those of model compounds having known configurations. The final two steps in the formation of the bis-nucleoside (5-ring → 6-ring → 7-ring) have significant reversibility, which is the basis for the observed epimerization. The 6-ring precursor was trapped from the equilibrating mixture by reduction with NaBH(4). The anti relationship of the two Gua residues in the heptacyclic bis-adduct precludes it from being formed in B DNA, but the 6-ring precursor could readily be accommodated as an interchain or intrachain cross-link. It should be possible to form similar cross-links of dCyt, dAdo, the ε-amino group of lysine, the imidazole NH of histidine, and N termini of peptides with the dGuo-muconaldehyde monoadduct.
Collapse
Affiliation(s)
| | - Donald F. Stec
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| | | | - Ivan D. Kozekov
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| | - Carmelo J. Rizzo
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| | - Thomas M. Harris
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
31
|
Huang H, Wang H, Kozekova A, Rizzo CJ, Stone MP. Formation of a N2-dG:N2-dG carbinolamine DNA cross-link by the trans-4-hydroxynonenal-derived (6S,8R,11S) 1,N2-dG adduct. J Am Chem Soc 2011; 133:16101-10. [PMID: 21916419 PMCID: PMC3187658 DOI: 10.1021/ja205145q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Michael addition of trans-4-hydroxynonenal (HNE) to deoxyguanosine yields diastereomeric 1,N2-dG adducts in DNA. When placed opposite dC in the 5′-CpG-3′ sequence, the (6S,8R,11S) diastereomer forms a N2-dG:N2-dG interstrand cross-link [Wang, H.; Kozekov, I. D.; Harris, T. M.; Rizzo, C. J. J. Am. Chem. Soc.2003, 125, 5687–5700]. We refined its structure in 5′-d(G1C2T3A4G5C6X7A8G9T10C11C12)-3′·5′-d(G13G14A15C16T17C18Y19C20T21A22G23C24)-3′ [X7 is the dG adjacent to the C6 carbon of the cross-link or the α-carbon of the (6S,8R,11S) 1,N2-dG adduct, and Y19 is the dG adjacent to the C8 carbon of the cross-link or the γ-carbon of the HNE-derived (6S,8R,11S) 1,N2-dG adduct; the cross-link is in the 5′-CpG-3′ sequence]. Introduction of 13C at the C8 carbon of the cross-link revealed one 13C8→H8 correlation, indicating that the cross-link existed predominantly as a carbinolamine linkage. The H8 proton exhibited NOEs to Y19 H1′, C20 H1′, and C20 H4′, orienting it toward the complementary strand, consistent with the (6S,8R,11S) configuration. An NOE was also observed between the HNE H11 proton and Y19 H1′, orienting the former toward the complementary strand. Imine and pyrimidopurinone linkages were excluded by observation of the Y19N2H and X7 N1H protons, respectively. A strong H8→H11 NOE and no 3J(13C→H) coupling for the 13C8–O–C11–H11 eliminated the tetrahydrofuran species derived from the (6S,8R,11S) 1,N2-dG adduct. The (6S,8R,11S) carbinolamine linkage and the HNE side chain were located in the minor groove. The X7N2 and Y19N2 atoms were in the gauche conformation with respect to the linkage, maintaining Watson–Crick hydrogen bonds at the cross-linked base pairs. A solvated molecular dynamics simulation indicated that the anti conformation of the hydroxyl group with respect to C6 of the tether minimized steric interaction and predicted hydrogen bonds involving O8H with C20O2 of the 5′-neighbor base pair G5·C20 and O11H with C18O2 of X7·C18. These may, in part, explain the stability of this cross-link and the stereochemical preference for the (6S,8R,11S) configuration.
Collapse
Affiliation(s)
- Hai Huang
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | | | | | | | | |
Collapse
|
32
|
Stone MP, Huang H, Brown KL, Shanmugam G. Chemistry and structural biology of DNA damage and biological consequences. Chem Biodivers 2011; 8:1571-615. [PMID: 21922653 PMCID: PMC3714022 DOI: 10.1002/cbdv.201100033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The formation of adducts by the reaction of chemicals with DNA is a critical step for the initiation of carcinogenesis. The structural analysis of various DNA adducts reveals that conformational and chemical rearrangements and interconversions are a common theme. Conformational changes are modulated both by the nature of adduct and the base sequences neighboring the lesion sites. Equilibria between conformational states may modulate both DNA repair and error-prone replication past these adducts. Likewise, chemical rearrangements of initially formed DNA adducts are also modulated both by the nature of adducts and the base sequences neighboring the lesion sites. In this review, we focus on DNA damage caused by a number of environmental and endogenous agents, and biological consequences.
Collapse
Affiliation(s)
- Michael P Stone
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | |
Collapse
|
33
|
Huang H, Wang H, Voehler MW, Kozekova A, Rizzo CJ, McCullough AK, Lloyd RS, Stone MP. γ-Hydroxy-1,N2-propano-2'-deoxyguanosine DNA adduct conjugates the N-terminal amine of the KWKK peptide via a carbinolamine linkage. Chem Res Toxicol 2011; 24:1123-33. [PMID: 21561113 PMCID: PMC3138414 DOI: 10.1021/tx200113n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine adduct (γ-OH-PdG) was introduced into 5'-d(GCTAGCXAGTCC)-3'·5'-d(GGACTCGCTAGC)-3' (X = γ-OH-PdG). In the presence of excess peptide KWKK, (13)C isotope-edited NMR revealed the formation of two spectroscopically distinct DNA-KWKK conjugates. These involved the reaction of the KWKK N-terminal amino group with the N(2)-dG propylaldehyde tautomer of the γ-OH-PdG lesion. The guanine N1 base imino resonance at the site of conjugation was observed in isotope-edited (15)N NMR experiments, suggesting that the conjugated guanine was inserted into the duplex and that the guanine imino proton was protected from exchange with water. The conjugates could be reduced in the presence of NaCNBH(3), suggesting that they existed, in part, as imine (Schiff base) linkages. However, (13)C isotope-edited NMR failed to detect the imine linkages, suggesting that these KWKK conjugates existed predominantly as diastereomeric carbinolamines, in equilibrium with trace amounts of the imines. The structures of the diastereomeric DNA-KWKK conjugates were predicted from potential energy minimization of model structures derived from the refined structure of the fully reduced cross-link [ Huang, H., Kozekov, I. D., Kozekova, A., Rizzo, C. J., McCullough, A., Lloyd, R. S., and Stone, M. P. ( 2010 ) Biochemistry , 49 , 6155 -6164 ]. Molecular dynamics calculations carried out in explicit solvent suggested that the conjugate bearing the S-carbinolamine linkage was the major species due to its potential for intramolecular hydrogen bonding. These carbinolamine DNA-KWKK conjugates thermally stabilized duplex DNA. However, the DNA-KWKK conjugates were chemically reversible and dissociated when the DNA was denatured. In this 5'-CpX-3' sequence, the DNA-KWKK conjugates slowly converted to interstrand N(2)-dG:N(2)-dG DNA cross-links and ring-opened γ-OH-PdG derivatives over a period of weeks.
Collapse
Affiliation(s)
- Hai Huang
- Department of Chemistry, Center in Molecular Toxicology, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat Res 2011; 711:13-27. [PMID: 21419140 DOI: 10.1016/j.mrfmmm.2011.03.006] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 12/16/2022]
Abstract
DNA damage plays a major role in various pathophysiological conditions including carcinogenesis, aging, inflammation, diabetes and neurodegenerative diseases. Oxidative stress and cell processes such as lipid peroxidation and glycation induce the formation of highly reactive endogenous aldehydes that react directly with DNA, form aldehyde-derived DNA adducts and lead to DNA damage. In occasion of persistent conditions that influence the formation and accumulation of aldehyde-derived DNA adducts the resulting unrepaired DNA damage causes deregulation of cell homeostasis and thus significantly contributes to disease phenotype. Some of the most highly reactive aldehydes produced endogenously are 4-hydroxy-2-nonenal, malondialdehyde, acrolein, crotonaldehyde and methylglyoxal. The mutagenic and carcinogenic effects associated with the elevated levels of these reactive aldehydes, especially, under conditions of stress, are attributed to their capability of causing directly modification of DNA bases or yielding promutagenic exocyclic adducts. In this review, we discuss the current knowledge on DNA damage induced by endogenously produced reactive aldehydes in relation to the pathophysiology of human diseases.
Collapse
|
35
|
Petrova KV, Stec DF, Voehler M, Rizzo CJ. Synthesis of the four stereoisomers of 2,3-epoxy-4-hydroxynonanal and their reactivity with deoxyguanosine. Org Biomol Chem 2011; 9:1960-71. [PMID: 21258716 DOI: 10.1039/c0ob00546k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
2,3-Epoxy-4-hydroxynonanal (EHN) is a potential product of lipid peroxidation that gives rise to genotoxic etheno adducts. We have synthesized all four stereoisomers of EHN and individually reacted them with 2'-deoxyguanosine. In addition to 1,N(2)-etheno-2'-deoxyguanosine, 12 stereoisomeric products were isolated and characterized by (1)H NMR and circular dichroism spectroscopy. The stereochemical assignments were consistent with selective NOE spectra, vicinal coupling constants, and molecular mechanics calculations. Reversed-phase HPLC conditions were developed that could separate most of the adduct mixture.
Collapse
Affiliation(s)
- Katya V Petrova
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt University, VU Station B 351822, Nashville, Tennessee, 37235-1822, USA
| | | | | | | |
Collapse
|
36
|
Kozekov ID, Turesky RJ, Alas GR, Harris CM, Harris TM, Rizzo CJ. Formation of deoxyguanosine cross-links from calf thymus DNA treated with acrolein and 4-hydroxy-2-nonenal. Chem Res Toxicol 2010; 23:1701-13. [PMID: 20964440 PMCID: PMC2990652 DOI: 10.1021/tx100179g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acrolein (AC) and 4-hydroxy-2-nonenal (HNE) are endogenous bis-electrophiles that arise from the oxidation of polyunsaturated fatty acids. AC is also found in high concentrations in cigarette smoke and automobile exhaust. These reactive α,β-unsaturated aldehyde (enal) covalently modify nucleic acids, to form exocyclic adducts, where the three-carbon hydroxypropano unit bridges the N1 and N(2) positions of deoxyguanosine (dG). The bifunctional nature of these enals allows them to undergo reaction with a second nucleophilic group and form DNA cross-links. These cross-linked enal adducts are likely to contribute to the genotoxic effects of both AC and HNE. We have developed a sensitive mass spectrometric method to detect cross-linked adducts of these enals in calf thymus DNA (CT DNA) treated with AC or HNE. The AC and HNE cross-linked adducts were measured by the stable isotope dilution method, employing a linear quadrupole ion trap mass spectrometer and consecutive reaction monitoring at the MS(3) or MS(4) scan stage. The lower limit of quantification of the cross-linked adducts is ∼1 adduct per 10(8) DNA bases, when 50 μg of DNA is assayed. The cross-linked adducts occur at levels that are ∼1-2% of the levels of the monomeric 1,N(2)-dG adducts in CT DNA treated with either enal.
Collapse
Affiliation(s)
- Ivan D. Kozekov
- Departments of Chemistry and Biochemistry, and Center in Molecular Toxicology, Vanderbilt, University, Nashville, TN 37235-1822
| | - Robert J. Turesky
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | - Guillermo R. Alas
- Departments of Chemistry and Biochemistry, and Center in Molecular Toxicology, Vanderbilt, University, Nashville, TN 37235-1822
| | - Constance M. Harris
- Departments of Chemistry and Biochemistry, and Center in Molecular Toxicology, Vanderbilt, University, Nashville, TN 37235-1822
| | - Thomas M. Harris
- Departments of Chemistry and Biochemistry, and Center in Molecular Toxicology, Vanderbilt, University, Nashville, TN 37235-1822
| | - Carmelo J. Rizzo
- Departments of Chemistry and Biochemistry, and Center in Molecular Toxicology, Vanderbilt, University, Nashville, TN 37235-1822
| |
Collapse
|
37
|
Huang H, Kozekov ID, Kozekova A, Wang H, Lloyd RS, Rizzo CJ, Stone MP. DNA cross-link induced by trans-4-hydroxynonenal. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:625-34. [PMID: 20577992 PMCID: PMC3140422 DOI: 10.1002/em.20599] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Trans-4-Hydroxynonenal (HNE) is a peroxidation product of omega-6 polyunsaturated fatty acids. Michael addition of HNE to deoxyguanosine yields four diastereomeric 1,N(2)-dG adducts. The adduct of (6S,8R,11S) stereochemistry forms interstrand N(2)-dG:N(2)-dG cross-links in the 5'-CpG-3' sequence. It has been compared with the (6R,8S,11R) adduct, incorporated into 5'-d(GCTAGCXAGTCC)-3' . 5'-d(GGACTCGCTAGC)-3', containing the 5'-CpG-3' sequence (X = HNE-dG). Both adducts rearrange in DNA to N(2)-dG aldehydes. These aldehydes exist in equilibrium with diastereomeric cyclic hemiacetals, in which the latter predominate at equilibrium. These cyclic hemiacetals mask the aldehydes, explaining why DNA cross-linking is slow compared to related 1,N(2)-dG adducts formed by acrolein and crotonaldehyde. Both the (6S,8R,11S) and (6R,8S,11R) cyclic hemiacetals are located within the minor groove. However, the (6S,8R,11S) cyclic hemiacetal orients in the 5'-direction, while the (6R,8S,11R) cyclic hemiacetal orients in the 3'-direction. The conformations of the diastereomeric N(2)-dG aldehydes, which are the reactive species involved in DNA cross-link formation, have been calculated using molecular mechanics methods. The (6S,8R,11S) aldehyde orients in the 5'-direction, while the (6R,8S,11R) aldehyde orients in the 3'-direction. This suggests a kinetic basis to explain, in part, why the (6S,8R,11S) HNE adduct forms interchain cross-links in the 5'-CpG-3' sequence, whereas (6R,8S,11R) HNE adduct does not. The presence of these cross-links in vivo is anticipated to interfere with DNA replication and transcription, thereby contributing to the etiology of human disease.
Collapse
Affiliation(s)
- Hai Huang
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Ivan D. Kozekov
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Albena Kozekova
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Hao Wang
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - R. Stephen Lloyd
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098
| | - Carmelo J. Rizzo
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Michael P. Stone
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
38
|
Egami H, Oguma T, Katsuki T. Oxidation Catalysis of Nb(salan) Complexes: Asymmetric Epoxidation of Allylic Alcohols Using Aqueous Hydrogen Peroxide as an Oxidant. J Am Chem Soc 2010; 132:5886-95. [DOI: 10.1021/ja100795k] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiromichi Egami
- Department of Chemistry, Faculty of Science, Graduate School, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Takuya Oguma
- Department of Chemistry, Faculty of Science, Graduate School, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Tsutomu Katsuki
- Department of Chemistry, Faculty of Science, Graduate School, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
39
|
Huang H, Dooley PA, Harris CM, Harris TM, Stone MP. Differential base stacking interactions induced by trimethylene interstrand DNA cross-links in the 5'-CpG-3' and 5'-GpC-3' sequence contexts. Chem Res Toxicol 2010; 22:1810-6. [PMID: 19916525 PMCID: PMC2778138 DOI: 10.1021/tx900225c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Synthetically derived trimethylene interstrand DNA cross-links have been used as surrogates for the native cross-links that arise from the 1,N2-deoxyguanosine adducts derived from α,β-unsaturated aldehydes. The native enal-mediated cross-linking occurs in the 5′-CpG-3′ sequence context but not in the 5′-GpC-3′ sequence context. The ability of the native enal-derived 1,N2-dG adducts to induce interstrand DNA cross-links in the 5′-CpG-3′ sequence as opposed to the 5′-GpC-3′ sequence is attributed to the destabilization of the DNA duplex in the latter sequence context. Here, we report higher accuracy solution structures of the synthetically derived trimethylene cross-links, which are refined from NMR data with the AMBER force field. When the synthetic trimethylene cross-links are placed into either the 5′-CpG-3′ or the 5′-GpC-3′ sequence contexts, the DNA duplex maintains B-DNA geometry with structural perturbations confined to the cross-linked base pairs. Watson−Crick hydrogen bonding is conserved throughout the duplexes. Although different from canonical B-DNA stacking, the cross-linked and the neighbor base pairs stack in the 5′-CpG-3′ sequence. In contrast, the stacking at the cross-linked base pairs in the 5′-GpC-3′ sequence is greatly perturbed. The π-stacking interactions between the cross-linked and the neighbor base pairs are reduced. This is consistent with remarkable chemical shift perturbations of the C5 H5 and H6 nucleobase protons that shifted downfield by 0.4−0.5 ppm. In contrast, these chemical shift perturbations in the 5′-CpG-3′ sequence are not remarkable, consistent with the stacked structure. The differential stacking of the base pairs at the cross-linking region probably explains the difference in stabilities of the trimethylene cross-links in the 5′-CpG-3′ and 5′-GpC-3′ sequence contexts and might, in turn, account for the sequence selectivity of the interstrand cross-link formation induced by the native enal-derived 1,N2-dG adducts.
Collapse
Affiliation(s)
- Hai Huang
- Department of Chemistry, Center in Molecular Toxicology, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
40
|
Huang H, Kim HY, Kozekov ID, Cho YJ, Wang H, Kozekova A, Harris TH, Rizzo CJ, Stone MP. Stereospecific formation of the (R)-gamma-hydroxytrimethylene interstrand N2-dG:N2-dG cross-link arising from the gamma-OH-1,N2-propano-2'-deoxyguanosine adduct in the 5'-CpG-3' DNA sequence. J Am Chem Soc 2009; 131:8416-24. [PMID: 19530727 PMCID: PMC2753404 DOI: 10.1021/ja809543j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acrolein reacts with dG to form hydroxylated 1,N(2)-propanodeoxyguanosine (OH-PdG) adducts. Most abundant are the epimeric 3-(2-deoxy-beta-D-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2a] purin-10(3H)-ones, commonly referred to as the gamma-OH-PdG adducts. When placed complementary to deoxycytosine in duplex DNA, these undergo rearrangement to the N(2)-(3-oxopropyl)-dG aldehyde. The latter forms diastereomeric interstrand N(2)-dG:N(2)-dG cross-links in the 5'-CpG-3' sequence. Here we report the structure of the stereochemically favored (R)-gamma-hydroxytrimethylene N(2)-dG:N(2)-dG interstrand DNA cross-link in 5'-d(G(1)C(2)T(3)A(4)G(5)C(6)X(7)A(8)G(9)T(10)C(11)C(12))-3' x 5'-d(G(13)G(14)A(15)C(16)T(17)C(18)Y(19)C(20)T(21)A(22)G(23)C(24))-3' (X(7) is the dG linked to the alpha-carbon of the carbinolamine linkage, and Y(19) is the dG linked to the gamma-carbon of the carbinolamine linkage; the cross-link is in the 5'-CpG-3' sequence). The structure was characterized using isotope-edited (15)N nuclear Overhauser enhancement spectroscopy heteronuclear single quantum correlation (NOESY-HSQC) NMR, in which the exocyclic amines at X(7) or Y(19) were (15)N-labeled. Analyses of NOE intensities involving Y(19) N(2)H indicated that the (R)-gamma-hydroxytrimethylene linkage was the major cross-link species, constituting 80-90% of the cross-link. The X(7) and Y(19) imino resonances were observed at 65 degrees C. Additionally, for the 5'-neighbor base pair G(5) x C(20), the G(5) imino resonance remained sharp at 55 degrees C but broadened at 65 degrees C. In contrast, for the 3'-neighbor A(8) x T(17) base pair, the T(17) imino resonance was severely broadened at 55 degrees C. Structural refinement using NOE distance restraints obtained from isotope-edited (15)N NOESY-HSQC data indicated that the (R)-gamma-hydroxytrimethylene linkage maintained the C(6) x Y(19) and X(7) x C(18) base pairs with minimal structural perturbations. The (R)-gamma-hydroxytrimethylene linkage was located in the minor groove. The X(7) N(2) and Y(19) N(2) atoms were in the gauche conformation with respect to the linkage, which maintained Watson-Crick hydrogen bonding of the cross-linked base pairs. The anti conformation of the hydroxyl group with respect to C(alpha) of the tether minimized steric interaction and, more importantly, allowed the formation of a hydrogen bond between the hydroxyl group and C(20) O(2) located in the 5'-neighboring base pair G(5) x C(20). The formation of this hydrogen bond may, in part, explain the thermal stability of this carbinolamine interstrand cross-link and the stereochemical preference for the (R) configuration of the cross-link.
Collapse
Affiliation(s)
- Hai Huang
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Hye-Young Kim
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Ivan D. Kozekov
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Young-Jin Cho
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Hao Wang
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Albena Kozekova
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Thomas H. Harris
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Carmelo J. Rizzo
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Michael P. Stone
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
41
|
Minko IG, Kozekov ID, Harris TM, Rizzo CJ, Lloyd RS, Stone MP. Chemistry and biology of DNA containing 1,N(2)-deoxyguanosine adducts of the alpha,beta-unsaturated aldehydes acrolein, crotonaldehyde, and 4-hydroxynonenal. Chem Res Toxicol 2009; 22:759-78. [PMID: 19397281 PMCID: PMC2685875 DOI: 10.1021/tx9000489] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Indexed: 11/28/2022]
Abstract
The alpha,beta-unsaturated aldehydes (enals) acrolein, crotonaldehyde, and trans-4-hydroxynonenal (4-HNE) are products of endogenous lipid peroxidation, arising as a consequence of oxidative stress. The addition of enals to dG involves Michael addition of the N(2)-amine to give N(2)-(3-oxopropyl)-dG adducts, followed by reversible cyclization of N1 with the aldehyde, yielding 1,N(2)-dG exocyclic products. The 1,N(2)-dG exocyclic adducts from acrolein, crotonaldehyde, and 4-HNE exist in human and rodent DNA. The enal-induced 1,N(2)-dG lesions are repaired by the nucleotide excision repair pathway in both Escherichia coli and mammalian cells. Oligodeoxynucleotides containing structurally defined 1,N(2)-dG adducts of acrolein, crotonaldehyde, and 4-HNE were synthesized via a postsynthetic modification strategy. Site-specific mutagenesis of enal adducts has been carried out in E. coli and various mammalian cells. In all cases, the predominant mutations observed are G-->T transversions, but these adducts are not strongly miscoding. When placed into duplex DNA opposite dC, the 1,N(2)-dG exocyclic lesions undergo ring opening to the corresponding N(2)-(3-oxopropyl)-dG derivatives. Significantly, this places a reactive aldehyde in the minor groove of DNA, and the adducted base possesses a modestly perturbed Watson-Crick face. Replication bypass studies in vitro indicate that DNA synthesis past the ring-opened lesions can be catalyzed by pol eta, pol iota, and pol kappa. It also can be accomplished by a combination of Rev1 and pol zeta acting sequentially. However, efficient nucleotide insertion opposite the 1,N(2)-dG ring-closed adducts can be carried out only by pol iota and Rev1, two DNA polymerases that do not rely on the Watson-Crick pairing to recognize the template base. The N(2)-(3-oxopropyl)-dG adducts can undergo further chemistry, forming interstrand DNA cross-links in the 5'-CpG-3' sequence, intrastrand DNA cross-links, or DNA-protein conjugates. NMR and mass spectrometric analyses indicate that the DNA interstand cross-links contain a mixture of carbinolamine and Schiff base, with the carbinolamine forms of the linkages predominating in duplex DNA. The reduced derivatives of the enal-mediated N(2)-dG:N(2)-dG interstrand cross-links can be processed in mammalian cells by a mechanism not requiring homologous recombination. Mutations are rarely generated during processing of these cross-links. In contrast, the reduced acrolein-mediated N(2)-dG peptide conjugates can be more mutagenic than the corresponding monoadduct. DNA polymerases of the DinB family, pol IV in E. coli and pol kappa in human, are implicated in error-free bypass of model acrolein-mediated N(2)-dG secondary adducts, the interstrand cross-links, and the peptide conjugates.
Collapse
Affiliation(s)
| | | | | | - Carmelo J. Rizzo
- To whom correspondence should be addressed. (C.J.R.) Tel: 615-322-6100. Fax: 615-343-1234. E-mail: . (R.S.L.) Tel: 503-494-9957. Fax: 503-494-6831. E-mail: . (M.P.S.) Tel: 615-322-2589. Fax: 615-322-7591. E-mail:
| | - R. Stephen Lloyd
- To whom correspondence should be addressed. (C.J.R.) Tel: 615-322-6100. Fax: 615-343-1234. E-mail: . (R.S.L.) Tel: 503-494-9957. Fax: 503-494-6831. E-mail: . (M.P.S.) Tel: 615-322-2589. Fax: 615-322-7591. E-mail:
| | - Michael P. Stone
- To whom correspondence should be addressed. (C.J.R.) Tel: 615-322-6100. Fax: 615-343-1234. E-mail: . (R.S.L.) Tel: 503-494-9957. Fax: 503-494-6831. E-mail: . (M.P.S.) Tel: 615-322-2589. Fax: 615-322-7591. E-mail:
| |
Collapse
|
42
|
Huang H, Wang H, Lloyd RS, Rizzo CJ, Stone MP. Conformational interconversion of the trans-4-hydroxynonenal-derived (6S,8R,11S) 1,N(2)-deoxyguanosine adduct when mismatched with deoxyadenosine in DNA. Chem Res Toxicol 2009; 22:187-200. [PMID: 19053179 PMCID: PMC2645987 DOI: 10.1021/tx800320m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The (6S,8R,11S) 1,N(2)-HNE-dGuo adduct of trans-4-hydroxynonenal (HNE) was incorporated into the duplex 5'-d(GCTAGCXAGTCC)-3'.5'-d(GGACTAGCTAGC)-3' [X = (6S,8R,11S) HNE-dG], in which the lesion was mismatched opposite dAdo. The (6S,8R,11S) adduct maintained the ring-closed 1,N(2)-HNE-dG structure. This was in contrast to when this adduct was correctly paired with dCyd, conditions under which it underwent ring opening and rearrangement to diastereomeric minor groove cyclic hemiacetals [ Huang , H. , Wang , H. , Qi , N. , Lloyd , R. S. , Harris , T. M. , Rizzo , C. J. , and Stone , M. P. ( 2008 ) J. Am. Chem. Soc. 130 , 10898 - 10906 ]. The (6S,8R,11S) adduct exhibited a syn/anti conformational equilibrium about the glycosyl bond. The syn conformation was predominant in acidic solution. Structural analysis of the syn conformation revealed that X(7) formed a distorted base pair with the complementary protonated A(18). The HNE moiety was located in the major groove. Structural perturbations were observed at the neighbor C(6).G(19) and A(8).T(17) base pairs. At basic pH, the anti conformation of X(7) was the major species. The 1,N(2)-HNE-dG intercalated and displaced the complementary A(18) in the 5'-direction, resulting in a bulge at the X(7).A(18) base pair. The HNE aliphatic chain was oriented toward the minor groove. The Watson-Crick hydrogen bonding of the neighboring A(8).T(17) base pair was also disrupted.
Collapse
Affiliation(s)
- Hai Huang
- Department of Chemistry, Center in Molecular Toxicology, Center for Structural Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Hao Wang
- Department of Chemistry, Center in Molecular Toxicology, Center for Structural Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - R. Stephen Lloyd
- Center for Research in Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L606, Portland, Oregon 97239-3098
| | - Carmelo J. Rizzo
- Department of Chemistry, Center in Molecular Toxicology, Center for Structural Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Michael P. Stone
- Department of Chemistry, Center in Molecular Toxicology, Center for Structural Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
43
|
Huang H, Wang H, Qi N, Lloyd RS, Rizzo CJ, Stone MP. The stereochemistry of trans-4-hydroxynonenal-derived exocyclic 1,N2-2'-deoxyguanosine adducts modulates formation of interstrand cross-links in the 5'-CpG-3' sequence. Biochemistry 2008; 47:11457-72. [PMID: 18847226 PMCID: PMC2646759 DOI: 10.1021/bi8011143] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/07/2008] [Indexed: 12/14/2022]
Abstract
The trans-4-hydroxynonenal (HNE)-derived exocyclic 1, N(2)-dG adduct with (6S,8R,11S) stereochemistry forms interstrand N(2)-dG-N(2)-dG cross-links in the 5'-CpG-3' DNA sequence context, but the corresponding adduct possessing (6R,8S,11R) stereochemistry does not. Both exist primarily as diastereomeric cyclic hemiacetals when placed into duplex DNA [Huang, H., Wang, H., Qi, N., Kozekova, A., Rizzo, C. J., and Stone, M. P. (2008) J. Am. Chem. Soc. 130, 10898-10906]. To explore the structural basis for this difference, the HNE-derived diastereomeric (6S,8R,11S) and (6R,8S,11R) cyclic hemiacetals were examined with respect to conformation when incorporated into 5'-d(GCTAGC XAGTCC)-3' x 5'-d(GGACTCGCTAGC)-3', containing the 5'-CpX-3' sequence [X = (6S,8R,11S)- or (6R,8S,11R)-HNE-dG]. At neutral pH, both adducts exhibited minimal structural perturbations to the DNA duplex that were localized to the site of the adduction at X(7) x C(18) and its neighboring base pair, A(8) x T(17). Both the (6S,8R,11S) and (6R,8S,11R) cyclic hemiacetals were located within the minor groove of the duplex. However, the respective orientations of the two cyclic hemiacetals within the minor groove were dependent upon (6S) versus (6R) stereochemistry. The (6S,8R,11S) cyclic hemiacetal was oriented in the 5'-direction, while the (6R,8S,11R) cyclic hemiacetal was oriented in the 3'-direction. These cyclic hemiacetals effectively mask the reactive aldehydes necessary for initiation of interstrand cross-link formation. From the refined structures of the two cyclic hemiacetals, the conformations of the corresponding diastereomeric aldehydes were predicted, using molecular mechanics calculations. Potential energy minimizations of the duplexes containing the two diastereomeric aldehydes predicted that the (6S,8R,11S) aldehyde was oriented in the 5'-direction while the (6R,8S,11R) aldehyde was oriented in the 3'-direction. These stereochemical differences in orientation suggest a kinetic basis that explains, in part, why the (6S,8R,11S) stereoisomer forms interchain cross-links in the 5'-CpG-3' sequence whereas the (6R,8S,11R) stereoisomer does not.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael P. Stone
- To whom correspondence should be addressed. E-mail: . Phone: (615) 322-2589. Fax: (615) 322-7591
| |
Collapse
|
44
|
Sayre LM, Lin D, Yuan Q, Zhu X, Tang X. Protein Adducts Generated from Products of Lipid Oxidation: Focus on HNE and ONE. Drug Metab Rev 2008; 38:651-75. [PMID: 17145694 DOI: 10.1080/03602530600959508] [Citation(s) in RCA: 469] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Modification of proteins in conditions of oxidative stress can contribute to protein dysfunction or tissue damage and disease progression. Bifunctional, most often alpha,beta-unsaturated carbonyl compounds such as 4-hydroxy-2-nonenal (HNE), 4-oxo-2-nonenal (ONE), and acrolein, generated from oxidation of polyunsaturated fatty acids (PUFAs), readily bind to protein nucleophiles. Modification by bifunctional aldehydes can also lead to intramolecular or intermolecular protein crosslinking. Model studies are revealing the structure of adducts that can then be more readily identified in mass spectrometric studies on proteins exposed to the various pure aldehydes or to peroxidized PUFAs. Although simple Michael and Schiff base adducts are often formed initially, only some of these adducts, such as the HNE- and ONE-derived Michael adducts on Cys and His residues, are found to survive the conditions of proteolysis and HPLC-MS analysis. Reversibly formed adducts, such as the HNE-Lys Michael adduct, can be found on proteolytic peptides only if a NaBH4-reduction step is used prior to proteolysis. Initial adducts can evolve by tautomerization, oxidation, cyclization, dehydration, and sometimes condensation with a second aldehyde molecule (the same or different), to give stable advanced lipoxidation end products (ALEs) that can be found by mass spectrometry. These include the HNE-Lys-derived 2-pentylpyrrole, the ONE-Lys-derived 4-ketoamide, the ONE-derived His-Lys pyrrole crosslink, and a Lys-derived 3-formyl-4-pentylpyrrole that results from combined action of ONE and acrolein. Michael adducts of alpha,beta-unsaturated aldehydes such as HNE and ONE can be derivatized by 2,4-dinitrophenylhydrazine (DNPH) and can thus constitute significant DNPH-detectable protein-bound carbonyl activity that serves as a key indicator of oxidative stress in tissues. It appears that lipid oxidation is a more important contributor to such activity than metal-catalyzed oxidation of protein side-chains.
Collapse
Affiliation(s)
- Lawrence M Sayre
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
45
|
Huang H, Wang H, Qi N, Kozekova A, Rizzo CJ, Stone MP. Rearrangement of the (6S,8R,11S) and (6R,8S,11R) exocyclic 1,N2-deoxyguanosine adducts of trans-4-hydroxynonenal to N2-deoxyguanosine cyclic hemiacetal adducts when placed complementary to cytosine in duplex DNA. J Am Chem Soc 2008; 130:10898-906. [PMID: 18661996 PMCID: PMC2646763 DOI: 10.1021/ja801824b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Indexed: 12/15/2022]
Abstract
trans-4-Hydroxynonenal (HNE) is a peroxidation product of omega-6 polyunsaturated fatty acids. The Michael addition of deoxyguanosine to HNE yields four diastereomeric exocyclic 1,N(2)-dG adducts. The corresponding acrolein- and crotonaldehyde-derived exocyclic 1,N(2)-dG adducts undergo ring-opening to N(2)-dG aldehydes, placing the aldehyde functionalities into the minor groove of DNA. The acrolein- and the 6R-crotonaldehyde-derived exocyclic 1,N(2)-dG adducts form interstrand N(2)-dG:N(2)-dG cross-links in the 5'-CpG-3' sequence context. Only the HNE-derived exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry forms interstrand N(2)-dG:N(2)-dG cross-links in the 5'-CpG-3' sequence context. Moreover, as compared to the exocyclic 1,N(2)-dG adducts of acrolein and crotonaldehyde, the cross-linking reaction is slow (Wang, H.; Kozekov, I. D.; Harris, T. M.; Rizzo, C. J. J. Am. Chem. Soc. 2003, 125, 5687-5700). Accordingly, the chemistry of the HNE-derived exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry has been compared with that of the (6R,8S,11R) adduct, when incorporated into 5'-d(GCTAGCXAGTCC)-3'.5'-d(GGACTCGCTAGC)-3', containing the 5'-CpG-3' sequence (X = HNE-dG). When placed complementary to dC in this duplex, both adducts open to the corresponding N(2)-dG aldehydic rearrangement products, suggesting that the formation of the interstrand cross-link by the exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry, and the lack of cross-link formation by the exocyclic 1,N(2)-dG adduct of (6R,8S,11R) stereochemistry, is not attributable to inability to undergo ring-opening to the aldehydes in duplex DNA. Instead, these aldehydic rearrangement products exist in equilibrium with stereoisomeric cyclic hemiacetals. The latter are the predominant species present at equilibrium. The trans configuration of the HNE H6 and H8 protons is preferred. The presence of these cyclic hemiacetals in duplex DNA is significant as they mask the aldehyde species necessary for interstrand cross-link formation.
Collapse
Affiliation(s)
- Hai Huang
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Hao Wang
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Nan Qi
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Albena Kozekova
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Carmelo J. Rizzo
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Michael P. Stone
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
46
|
Stone MP, Cho YJ, Huang H, Kim HY, Kozekov ID, Kozekova A, Wang H, Minko IG, Lloyd RS, Harris TM, Rizzo CJ. Interstrand DNA cross-links induced by alpha,beta-unsaturated aldehydes derived from lipid peroxidation and environmental sources. Acc Chem Res 2008; 41:793-804. [PMID: 18500830 PMCID: PMC2785109 DOI: 10.1021/ar700246x] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significant levels of the 1, N(2)-gamma-hydroxypropano-dG adducts of the alpha,beta-unsaturated aldehydes acrolein, crotonaldehyde, and 4-hydroxy-2E-nonenal (HNE) have been identified in human DNA, arising from both exogenous and endogenous exposures. They yield interstrand DNA cross-links between guanines in the neighboring C.G and G.C base pairs located in 5'-CpG-3' sequences, as a result of opening of the 1,N(2)-gamma-hydroxypropano-dG adducts to form reactive aldehydes that are positioned within the minor groove of duplex DNA. Using a combination of chemical, spectroscopic, and computational methods, we have elucidated the chemistry of cross-link formation in duplex DNA. NMR spectroscopy revealed that, at equilibrium, the acrolein and crotonaldehyde cross-links consist primarily of interstrand carbinolamine linkages between the exocyclic amines of the two guanines located in the neighboring C.G and G.C base pairs located in 5'-CpG-3' sequences, that maintain the Watson-Crick hydrogen bonding of the cross-linked base pairs. The ability of crotonaldehyde and HNE to form interstrand cross-links depends upon their common relative stereochemistry at the C6 position of the 1,N(2)-gamma-hydroxypropano-dG adduct. The stereochemistry at this center modulates the orientation of the reactive aldehyde within the minor groove of the double-stranded DNA, either facilitating or hindering the cross-linking reactions; it also affects the stabilities of the resulting diastereoisomeric cross-links. The presence of these cross-links in vivo is anticipated to interfere with DNA replication and transcription, thereby contributing to the etiology of human disease. Reduced derivatives of these cross-links are useful tools for studying their biological processing.
Collapse
Affiliation(s)
- Michael P Stone
- Department of Chemistry, Center in Molecular Toxicology, and Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Delaney JC, Essigmann JM. Biological properties of single chemical-DNA adducts: a twenty year perspective. Chem Res Toxicol 2008; 21:232-52. [PMID: 18072751 PMCID: PMC2821157 DOI: 10.1021/tx700292a] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The genome and its nucleotide precursor pool are under sustained attack by radiation, reactive oxygen and nitrogen species, chemical carcinogens, hydrolytic reactions, and certain drugs. As a result, a large and heterogeneous population of damaged nucleotides forms in all cells. Some of the lesions are repaired, but for those that remain, there can be serious biological consequences. For example, lesions that form in DNA can lead to altered gene expression, mutation, and death. This perspective examines systems developed over the past 20 years to study the biological properties of single DNA lesions.
Collapse
Affiliation(s)
- James C. Delaney
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - John M. Essigmann
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
48
|
Affiliation(s)
- Lawrence M. Sayre
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| | - George Perry
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Mark A. Smith
- Departments of Chemistry, Pathology, and Environmental Health Sciences, Case Western Reserve University, Cleveland, Ohio 44106, and College of Sciences, University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
49
|
Wang H, Kozekov ID, Kozekova A, Tamura P, Marnett LJ, Harris TM, Rizzo CJ. Site-specific synthesis of oligonucleotides containing malondialdehyde adducts of deoxyguanosine and deoxyadenosine via a postsynthetic modification strategy. Chem Res Toxicol 2006; 19:1467-74. [PMID: 17112234 PMCID: PMC2441645 DOI: 10.1021/tx060137o] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Malondialdehyde (MDA) and its reactive equivalent, base propenal, are products of oxidative damage to lipids and DNA, respectively; they are mutagenic in bacterial and mammalian systems, and MDA is carcinogenic in rats. MDA adducts of deoxyguanosine (M1dG), deoxyadenosine (OPdA), and deoxycytidine (OPdC) have been characterized. We have developed site-specific syntheses of M1dG and OPdA adducted oligonucleotides that rely on a postsynthetic modification strategy. This work provides an alternative route to the M1dG adducted oligonucleotide and, to date, the only viable strategy for the site-specific synthesis of OPdA-modified oligonucleotides. The stability of the modified oligonucleotides was examined by UV thermal melting studies (Tm). In contrast to the M1dG adduct, OPdA caused very little change in the Tm.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carmelo J. Rizzo
- * To whom correspondence should be addressed: Department of Chemistry, Vanderbilt University, VU Station B 351822, Nashville, TN 37235-1822. Phone: 615-322-6100, FAX: 615-343-1234. e-mail:
| |
Collapse
|
50
|
Wolfle WT, Johnson RE, Minko IG, Lloyd RS, Prakash S, Prakash L. Replication past a trans-4-hydroxynonenal minor-groove adduct by the sequential action of human DNA polymerases iota and kappa. Mol Cell Biol 2006; 26:381-6. [PMID: 16354708 PMCID: PMC1317639 DOI: 10.1128/mcb.26.1.381-386.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The X-ray crystal structure of human DNA polymerase iota (Poliota) has shown that it differs from all known Pols in its dependence upon Hoogsteen base pairing for synthesizing DNA. Hoogsteen base pairing provides an elegant mechanism for synthesizing DNA opposite minor-groove adducts that present a severe block to synthesis by replicative DNA polymerases. Germane to this problem, a variety of DNA adducts form at the N2 minor-groove position of guanine. Previously, we have shown that proficient and error-free replication through the gamma-HOPdG (gamma-hydroxy-1,N2-propano-2'-deoxyguanosine) adduct, which is formed from the reaction of acrolein with the N2 of guanine, is mediated by the sequential action of human Poliota and Polkappa, in which Poliota incorporates the nucleotide opposite the lesion site and Polkappa carries out the subsequent extension reaction. To test the general applicability of these observations to other adducts formed at the N2 position of guanine, here we examine the proficiency of human Poliota and Polkappa to synthesize past stereoisomers of trans-4-hydroxy-2-nonenal-deoxyguanosine (HNE-dG). Even though HNE- and acrolein-modified dGs share common structural features, due to their increased size and other structural differences, HNE adducts are potentially more blocking for replication than gamma-HOPdG. We show here that the sequential action of Poliota and Polkappa promotes efficient and error-free synthesis through the HNE-dG adducts, in which Poliota incorporates the nucleotide opposite the lesion site and Polkappa performs the extension reaction.
Collapse
Affiliation(s)
- William T Wolfle
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061, USA
| | | | | | | | | | | |
Collapse
|