1
|
Hong S, Piao J, Hu J, Liu X, Xu J, Mao H, Piao J, Piao MG. Advances in cell-penetrating peptide-based nose-to-brain drug delivery systems. Int J Pharm 2025; 678:125598. [PMID: 40300721 DOI: 10.1016/j.ijpharm.2025.125598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/01/2025] [Accepted: 04/12/2025] [Indexed: 05/01/2025]
Abstract
The incidence of brain disorders has gained worldwide attention and the presence of the blood-brain barrier prevents numerous drugs from reaching the targeted brain. The specific physiology of the nasal cavity and the brain provides the feasibility of direct nose-brain delivery, a system that bypasses the blood-brain barrier in a non-invasive manner for brain-targeted drug delivery via intracellular and extracellular mechanisms. The use of CPPs provides further feasibility for naso-brain drug delivery studies, and liposomes, nanopolymer particles, and gels modified with CPPs have demonstrated significant brain-targeting capabilities after nasal delivery. In this paper, the physiology of the nasal cavity and brain, the pathways of naso-brain delivery and the influencing factors are discussed in detail. At the same time, the introduction, classification, mechanism of action and application of CPPs in the nasal-brain delivery system are discussed in detail to provide a theoretical basis for the in-depth study of the application of CPPs in the nasal-brain delivery system.
Collapse
Affiliation(s)
- Shuai Hong
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Jinyou Piao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Junsheng Hu
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Xinyu Liu
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Jing Xu
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Heying Mao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Jingshu Piao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China.
| | - Ming Guan Piao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002 Jilin, China.
| |
Collapse
|
2
|
Setegne M, Cabral AT, Tiwari A, Shen F, Thiam HR, Dassama LMK. Engineering Cell-Specific Protein Delivery Vehicles for Erythroid Lineage Cells. ACS BIO & MED CHEM AU 2025; 5:268-282. [PMID: 40255284 PMCID: PMC12006860 DOI: 10.1021/acsbiomedchemau.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 04/22/2025]
Abstract
Biologics such as proteins, peptides, and oligonucleotides are powerful ligands to modulate challenging drug targets that lack readily accessible and "ligandable" pockets. However, the limited membrane permeance of biologics severely restricts their intracellular applications. Moreover, different cell types may exhibit varying levels of impermeability, and some delivery vehicles might be more sensitive to this variance. Erythroid lineage cells are especially challenging to deliver cargo to because of their unique cytoskeleton and the absence of endocytosis in mature erythrocytes. We recently employed a cell permeant miniature protein to deliver bioPROTACs to human umbilical cord blood derived erythroid progenitor cells (HUDEP-2) and primary hematopoietic stem (CD34+) cells (Shen et al., ACS Cent. Sci.2022, 8, 1695-1703). While successful, the low efficiency of delivery and lack of cell-type specificity limit use of bioPROTACs in vivo. In this work, we thoroughly evaluated the performance of various recently reported cell penetrating peptides (CPPs), CPP additives, bacterial toxins, and contractile injection systems for their ability to deliver cargo to erythroid precursor cells. We also explored how targeting receptors enriched on the erythroid cell surface might improve the efficiencies and specificities of these delivery vehicles. Our results reveal that certain vehicles exhibit improved efficiencies when directed to cell surface receptors while others do not benefit from this targeting strategy. Together, these findings advance our understanding of protein delivery to challenging cell types and illustrate some of the intricacies of cell-surface receptor targeting.
Collapse
Affiliation(s)
- Mekedlawit
T. Setegne
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Aidan T. Cabral
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Anushri Tiwari
- Department
of Biology, Stanford University, Stanford, California 94305, United States
| | - Fangfang Shen
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hawa Racine Thiam
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Microbiology & Immunology, Stanford
School of Medicine, Stanford, California 94305, United States
| | - Laura M. K. Dassama
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
- Department
of Microbiology & Immunology, Stanford
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
3
|
Ou L, Setegne MT, Elliot J, Shen F, Dassama LMK. Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics. Chem Rev 2025; 125:2120-2183. [PMID: 39818743 PMCID: PMC11870016 DOI: 10.1021/acs.chemrev.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
The nascent field of targeted protein degradation (TPD) could revolutionize biomedicine due to the ability of degrader molecules to selectively modulate disease-relevant proteins. A key limitation to the broad application of TPD is its dependence on small-molecule ligands to target proteins of interest. This leaves unstructured proteins or those lacking defined cavities for small-molecule binding out of the scope of many TPD technologies. The use of proteins, peptides, and nucleic acids (otherwise known as "biologics") as the protein-targeting moieties in degraders addresses this limitation. In the following sections, we provide a comprehensive and critical review of studies that have used proteins and peptides to mediate the degradation and hence the functional control of otherwise challenging disease-relevant protein targets. We describe existing platforms for protein/peptide-based ligand identification and the drug delivery systems that might be exploited for the delivery of biologic-based degraders. Throughout the Review, we underscore the successes, challenges, and opportunities of using protein-based degraders as chemical biology tools to spur discoveries, elucidate mechanisms, and act as a new therapeutic modality.
Collapse
Affiliation(s)
- Lisha Ou
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Mekedlawit T. Setegne
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Jeandele Elliot
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Fangfang Shen
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Laura M. K. Dassama
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
- Department
of Microbiology & Immunology, Stanford
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
4
|
Dueholm R, Ewald J, Zosel F, Heljo P, Premdjee B, Davies A, Buckley ST, Hovgaard L, Nielsen HM. To conjugate or not to conjugate? evaluating the potential use of cell-penetrating peptides for conjugation or complexation with oligonucleotides by surface plasmon resonance. Int J Pharm 2025; 671:125198. [PMID: 39793637 DOI: 10.1016/j.ijpharm.2025.125198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/01/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Oligonucleotides represent a class of molecules that exhibit remarkable therapeutic potential due to their unparalleled target specificity, yet they suffer from limited cellular uptake and lack of tissue selectivity. Extensive research is conducted with cell-penetrating peptides (CPPs) as delivery excipients due to their ability to translocate across cellular membranes and deliver cargo into cells. This study aims to investigate an innovative approach to rapidly, and with small amounts of compound, analyze and compare complexation of CPPs to oligonucleotides. The study applies surface plasmon resonance (SPR) to evaluate a comprehensive library of CPPs regarding their interaction with a double-stranded oligonucleotide to assess their potential as complexing molecules or whether the CPP should be chemically linked to the negatively charged oligonucleotide to ensure proximity. Specifically, a small interfering RNA (siRNA) was immobilized on a biotinylated chip, and solutions of 66 CPPs were subsequently injected to determine their binding stoichiometry with the siRNA. The most influential molecular properties of the CPPs were determined to be the positive charge-to-length ratio, the total number of positive charges, and the overall hydrophobicity of the CPP. These findings demonstrate the effectiveness and utility of SPR as a high throughput screening tool for selecting peptide/oligonucleotide pairs intended for complexation or conjugation.
Collapse
Affiliation(s)
- Rikke Dueholm
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark; Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jakob Ewald
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Franziska Zosel
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Petteri Heljo
- Global Drug Discovery, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Bhavesh Premdjee
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Alexander Davies
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Lars Hovgaard
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark.
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
5
|
Wang L, Liu X, Chen W, Sun Z. Non-targeted metabonomics reveals the effect of linalyl alcohol on Brochothrix thermophile and its potential application. Food Res Int 2025; 201:115549. [PMID: 39849689 DOI: 10.1016/j.foodres.2024.115549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/12/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Brochothrix thermophcta (B. thermophcta) is a pathogenic microorganism associated with food contamination. Linalyl alcohol, owing to its broad spectrum and exceptional antibacterial properties, is regarded as a potent natural antimicrobial agent. This is to elucidate the cellular-level mechanism of linalyl alcohol on B. thermophacta and investigate, for the first time, its regulatory effect on the metabolic pathway of B. thermophacta through metabonomics analysis. The results demonstrated that treatment with linalyl alcohol led to a reduction in bacterial metabolic capacity, while simultaneously promoting an increase in membrane fluidity through damage to the bacterial cell membrane. A total of 201 differential metabolites were identified at the metabolic level, with 50 showing significant up-regulation and 151 displaying significant down-regulation. The differential metabolites primarily participate in the tRNA cycle, amino acid metabolism, nucleotide metabolism, and aminoacyl-tRNA biosynthesis, with a particular emphasis on the significant impairment of amino acid metabolism. The application results demonstrated that linalyl alcohol exhibited a significant antibacterial effect on B. thermosphacta, as evidenced by the negligible changes observed in the color, smell, and tissue state of pork even after 8 days of treatment. In summary, linalyl alcohol exhibits multi-target and multi-pathway inhibition against B. thermosphacta, leading to disruption of cell morphology and metabolic processes. These findings provide a novel theoretical foundation for understanding the inhibitory mechanism of linalyl alcohol on B. thermosphacta, highlighting its potential as an effective alternative to food additives in the preservation industry of livestock products.
Collapse
Affiliation(s)
- Longteng Wang
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China.
| | - Xing Liu
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China.
| | - Wenxue Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China.
| | - Zhichang Sun
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China.
| |
Collapse
|
6
|
Arafiles JV, Franke J, Franz L, Gómez-González J, Kemnitz-Hassanin K, Hackenberger CPR. Cell-Surface-Retained Peptide Additives for the Cytosolic Delivery of Functional Proteins. J Am Chem Soc 2023; 145. [PMID: 37906525 PMCID: PMC10655119 DOI: 10.1021/jacs.3c05365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
The delivery of functional proteins remains a major challenge in advancing biological and pharmaceutical sciences. Herein, we describe a powerful, simple, and highly effective strategy for the intracellular delivery of functional cargoes. Previously, we demonstrated that cell-penetrating peptide (CPP) additives equipped with electrophilic thiol-reactive moieties temporarily attach to the cellular membrane, thereby facilitating the cellular uptake of protein- and antibody-CPP cargoes through direct membrane transduction at low concentrations. Now, we hypothesize that CPP-additives with an increased retention on the cellular membrane will further enhance intracellular uptake. We discovered that adding a small hydrophobic peptide sequence to an arginine-rich electrophilic CPP-additive further improved the uptake of protein-CPP conjugates, whereas larger hydrophobic anchors showed increased cytotoxicity. Cell viability and membrane integrity measurements, structure-activity relationship studies, and quantitative evaluation of protein-CPP uptake revealed important design principles for cell-surface-retained CPP-additives. These investigations allowed us to identify a nontoxic, thiol-reactive CPP-additive containing the hydrophobic ILFF sequence, which can deliver fluorescent model proteins at low micromolar concentrations. This hydrophobic CPP-additive allowed the addition of protein cargoes for intracellular delivery after initial additive incubation. Time-lapse fluorescence microscopy and membrane tension analysis of cells treated with fluorescent ILFF-CPP-additives supported the claim of increased cell surface retention and suggested that the protein-CPP cargoes enter the cell through a mechanism involving lowered cell membrane tension. Finally, we demonstrated that our newly engineered hydrophobic CPP-additive enabled the uptake of a functional macrocyclic peptidic MDM2-inhibitor and a recombinant genome editing protein. This indicates that the developed hydrophobic CPP-additive holds promise as a tool to enhance the intracellular delivery of peptide and protein cargoes.
Collapse
Affiliation(s)
- Jan Vincent
V. Arafiles
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Jonathan Franke
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin 13125, Germany
- Institut
für Chemie, Humboldt Universität
zu Berlin, Brook-Taylor-Str.
2, Berlin 12489, Germany
| | - Luise Franz
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin 13125, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Berlin 14195, Germany
| | - Jacobo Gómez-González
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Kristin Kemnitz-Hassanin
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin 13125, Germany
- Institut
für Chemie, Humboldt Universität
zu Berlin, Brook-Taylor-Str.
2, Berlin 12489, Germany
| |
Collapse
|
7
|
Graceffa V. Intracellular protein delivery: New insights into the therapeutic applications and emerging technologies. Biochimie 2023; 213:82-99. [PMID: 37209808 DOI: 10.1016/j.biochi.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The inability to cross the plasma membranes traditionally limited the therapeutic use of recombinant proteins. However, in the last two decades, novel technologies made delivering proteins inside the cells possible. This allowed researchers to unlock intracellular targets, once considered 'undruggable', bringing a new research area to emerge. Protein transfection systems display a large potential in a plethora of applications. However, their modality of action is often unclear, and cytotoxic effects are elevated, whereas experimental conditions to increase transfection efficacy and cell viability still need to be identified. Furthermore, technical complexity often limits in vivo experimentation, while challenging industrial and clinical translation. This review highlights the applications of protein transfection technologies, and then critically discuss the current methodologies and their limitations. Physical membrane perforation systems are compared to systems exploiting cellular endocytosis. Research evidence of the existence of either extracellular vesicles (EVs) or cell-penetrating peptides (CPPs)- based systems, that circumvent the endosomal systems is critically analysed. Commercial systems, novel solid-phase reverse protein transfection systems, and engineered living intracellular bacteria-based mechanisms are finally described. This review ultimately aims at finding new methodologies and possible applications of protein transfection systems, while helping the development of an evidence-based research approach.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University (ATU), Sligo, Ireland.
| |
Collapse
|
8
|
Calabretta LO, Yang J, Raines RT. N α -Methylation of arginine: Implications for cell-penetrating peptides. J Pept Sci 2023; 29:e3468. [PMID: 36494904 PMCID: PMC10073267 DOI: 10.1002/psc.3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The field of cell-penetrating peptides is dominated by the use of oligomers of arginine residues. Octanol-water partitioning in the presence of an anionic lipid is a validated proxy for cell-penetrative efficacy. Here, we add one, two, or three N-methyl groups to Ac-Arg-NH2 and examine the effects on octanol-water partitioning. In the absence of an anionic lipid, none of these arginine derivatives can be detected in the octanol layer. In the presence of sodium dodecanoate, however, increasing N-methylation correlates with increasing partitioning into octanol, which is predictive of higher cell-penetrative ability. We then evaluated fully Nα -methylated oligoarginine peptides and observed an increase in their cellular penetration compared with canonical oligoarginine peptides in some contexts. These findings indicate that a simple modification, Nα -methylation, can enhance the performance of cell-penetrating peptides.
Collapse
Affiliation(s)
| | | | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Pistono P, Huang P, Brauer DD, Francis MB. Fitness Landscape-Guided Engineering of Locally Supercharged Virus-like Particles with Enhanced Cell Uptake Properties. ACS Chem Biol 2022; 17:3367-3378. [PMID: 36378277 PMCID: PMC9764284 DOI: 10.1021/acschembio.2c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
Abstract
Protein-based nanoparticles are useful models for the study of self-assembly and attractive candidates for drug delivery. Virus-like particles (VLPs) are especially promising platforms for expanding the repertoire of therapeutics that can be delivered effectively as they can deliver many copies of a molecule per particle for each delivery event. However, their use is often limited due to poor uptake of VLPs into mammalian cells. In this study, we use the fitness landscape of the bacteriophage MS2 VLP as a guide to engineer capsid variants with positively charged surface residues to enhance their uptake into mammalian cells. By combining mutations with positive fitness scores that were likely to produce assembled capsids, we identified two key double mutants with internalization efficiencies as much as 67-fold higher than that of wtMS2. Internalization of these variants with positively charged surface residues depends on interactions with cell surface sulfated proteoglycans, and yet, they are biophysically similar to wtMS2 with low cytotoxicity and an overall negative charge. Additionally, the best-performing engineered MS2 capsids can deliver a potent anticancer small-molecule therapeutic with efficacy levels similar to antibody-drug conjugates. Through this work, we were able to establish fitness landscape-based engineering as a successful method for designing VLPs with improved cell penetration. These findings suggest that VLPs with positive surface charge could be useful in improving the delivery of small-molecule- and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Paige
E. Pistono
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Paul Huang
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Daniel D. Brauer
- Department
of Chemistry, University of California, Berkeley, California94720, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California, Berkeley, California94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| |
Collapse
|
10
|
Wang S, Li Z, Aispuro D, Guevara N, Van Valkenburgh J, Chen B, Zhou X, McCarroll MN, Ji F, Cong X, Sarkar P, Chaudhuri R, Guo Z, Perkins NP, Shao S, Sello JK, Chen K, Xue M. Hydroxyl-Rich Hydrophilic Endocytosis-Promoting Peptide with No Positive Charge. J Am Chem Soc 2022; 144:20288-20297. [PMID: 36301712 PMCID: PMC9650711 DOI: 10.1021/jacs.2c07420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Delivering cargo molecules across the plasma membrane is critical for biomedical research, and the need to develop molecularly well-defined tags that enable cargo transportation is ever-increasing. We report here a hydrophilic endocytosis-promoting peptide (EPP6) rich in hydroxyl groups with no positive charge. EPP6 can transport a wide array of small-molecule cargos into a diverse panel of animal cells. Mechanistic studies revealed that it entered the cells through a caveolin- and dynamin-dependent endocytosis pathway, mediated by the surface receptor fibrinogen C domain-containing protein 1. After endocytosis, EPP6 trafficked through early and late endosomes within 30 min. Over time, EPP6 partitioned among cytosol, lysosomes, and some long-lived compartments. It also demonstrated prominent transcytosis abilities in both in vitro and in vivo models. Our study proves that positive charge is not an indispensable feature for hydrophilic cell-penetrating peptides and provides a new category of molecularly well-defined delivery tags for biomedical applications.
Collapse
Affiliation(s)
- Siwen Wang
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhonghan Li
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Desiree Aispuro
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Nathan Guevara
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Juno Van Valkenburgh
- Department
of Radiology, Keck School of Medicine, University
of Southern California, Los Angeles, California 90033, United States
| | - Boxi Chen
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Xiaoyun Zhou
- Department
of Radiology, Keck School of Medicine, University
of Southern California, Los Angeles, California 90033, United States
| | - Matthew N. McCarroll
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94143, United States
| | - Fei Ji
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Xu Cong
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Priyanka Sarkar
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Rohit Chaudhuri
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhili Guo
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Nicole P. Perkins
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Shiqun Shao
- Department
of Chemistry, University of California, Riverside, California 92521, United States,College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Jason K. Sello
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94143, United States
| | - Kai Chen
- Department
of Radiology, Keck School of Medicine, University
of Southern California, Los Angeles, California 90033, United States,
| | - Min Xue
- Department
of Chemistry, University of California, Riverside, California 92521, United States,
| |
Collapse
|
11
|
Wu H, Zhang K, Zhang Z, Wang J, Jia P, Cong L, Li J, Duan Y, Ke F, Zhang F, Liu Z, Lu F, Wang Y, Li Z, Chang M, Zou J, Zhu K. Cell-penetrating peptide: A powerful delivery tool for DNA-free crop genome editing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111436. [PMID: 36037982 DOI: 10.1016/j.plantsci.2022.111436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/24/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Genome editing system based on the CRISPR/Cas (clustered regularly interspaced short palindromic repeats) technology is a milestone for biology. However, public concerns regarding genetically modified organisms (GMOs) and recalcitrance in the crop of choice for regeneration have limited its application. Cell-penetrating peptides (CPPs) are derived from protein transduction domains (PTDs) that can take on various cargoes across the plant wall, and membrane of target cells. Selected CPPs show mild cytotoxicity and are a suitable delivery tool for DNA-free genome editing. Moreover, CPPs may also be applied for the transient delivery of morphogenic transcription factors, also known as developmental regulators (DRs), to overcome the bottleneck of the crop of choice regeneration. In this review, we introduce a brief history of cell-penetrating peptides and discuss the practice of CPP-mediated DNA-free transfection and the prospects of this potential delivery tool for improving crop genome editing.
Collapse
Affiliation(s)
- Han Wu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China.
| | - Kuangye Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Zhipeng Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Jiaxu Wang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Pengxiang Jia
- Zhejiang Wanli University, 315100 Ningbo, Zhejiang Province, China
| | - Ling Cong
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Jia Li
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Youhou Duan
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Fulai Ke
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Fei Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Zhiqiang Liu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Feng Lu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Yanqiu Wang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Zhihua Li
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Ming Chang
- The Key Laboratory of Bio-interactions and Plant Health, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jianqiu Zou
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China.
| | - Kai Zhu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China.
| |
Collapse
|
12
|
Negi S, Hamori M, Kawahara-Nakagawa Y, Imanishi M, Kurehara M, Kitada C, Kawahito Y, Kishi K, Manabe T, Kawamura N, Kitagishi H, Mashimo M, Shibata N, Sugiura Y. Importance of two-dimensional cation clusters induced by protein folding in intrinsic intracellular membrane permeability. RSC Chem Biol 2022; 3:1076-1084. [PMID: 35975000 PMCID: PMC9347356 DOI: 10.1039/d2cb00098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
We investigated the cell penetration of Sp1 zinc finger proteins (Sp1 ZF) and the mechanism via which the total cationic charge and distribution of cationic residues on the protein surface affect intracellular trafficking. Sp1 ZFs showed intrinsic cell membrane permeability. The intracellular transfer of Sp1 ZFs other than 1F3 was dependent on the total cationic charge. Investigation of the effect of cationic residue distribution on intracellular membrane permeability revealed that the cellular uptake of unfolded Zn2+-non-coordinating Ala mutants was lower than that of the wild type. Therefore, the total cationic charge and distribution of cationic residues on the protein played crucial roles in intracellular translocation. Mutational studies revealed that the two-dimensional cation cluster on the protein surface significantly improved their cellular uptake. This study will contribute to the design of artificial cargoes that can efficiently transport target substances into cells.
Collapse
Affiliation(s)
- Shigeru Negi
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| | - Mami Hamori
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| | - Yuka Kawahara-Nakagawa
- Graduate School of Life Science, University of Hyogo 3-2-1 Kouto, Kamigori-cho Ako-gun Hyogo 678-1297 Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
| | - Miku Kurehara
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| | - Chieri Kitada
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| | - Yuri Kawahito
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| | - Kanae Kishi
- Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi Minami-ku Hiroshima 734-8553 Japan
| | - Takayuki Manabe
- Clinical Research Support Center, Asahikawa Medical University Hospital 2-1-1-1 Midorigaokahigashi Asahikawa 078-8510 Japan
| | - Nobuyuki Kawamura
- Education Center for Pharmacy, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences 265-1 Higashijima, Akiha-ku Niigata City Niigata 956-8603 Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University Kyotanabe Kyoto 610-0321 Japan
| | - Masato Mashimo
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| | - Nobuhito Shibata
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| | - Yukio Sugiura
- Faculty of Pharmaceutical Science, Doshisha Women's University, Koudo Kyotanabe Kyoto 610-0395 Japan
| |
Collapse
|
13
|
Mallick AM, Tripathi A, Mishra S, Mukherjee A, Dutta C, Chatterjee A, Sinha Roy R. Emerging Approaches for Enabling RNAi Therapeutics. Chem Asian J 2022; 17:e202200451. [PMID: 35689534 DOI: 10.1002/asia.202200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Indexed: 11/07/2022]
Abstract
RNA interference (RNAi) is a primitive evolutionary mechanism developed to escape incorporation of foreign genetic material. siRNA has been instrumental in achieving the therapeutic potential of RNAi by theoretically silencing any gene of interest in a reversible and sequence-specific manner. Extrinsically administered siRNA generally needs a delivery vehicle to span across different physiological barriers and load into the RISC complex in the cytoplasm in its functional form to show its efficacy. This review discusses the designing principles and examples of different classes of delivery vehicles that have proved to be efficient in RNAi therapeutics. We also briefly discuss the role of RNAi therapeutics in genetic and rare diseases, epigenetic modifications, immunomodulation and combination modality to inch closer in creating a personalized therapy for metastatic cancer. At the end, we present, strategies and look into the opportunities to develop efficient delivery vehicles for RNAi which can be translated into clinics.
Collapse
Affiliation(s)
- Argha M Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Asmita Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Chiranjit Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Present address:Department of Biological Sciences, NUS Environmental Research Institute (NERI), National University of Singapore (NUS), Block S2 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|
14
|
Yang Z, Lin L, Guo Z, Guo X, Tang Z, Tian H, Chen X. Synthetic Helical Polypeptide as a Gene Transfection Enhancer. Biomacromolecules 2022; 23:2867-2877. [PMID: 35678301 DOI: 10.1021/acs.biomac.2c00331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The relatively low transfection efficiency limits further application of polymeric gene carriers. It is imperative to exploit a universal and simple strategy to enhance the gene transfection efficiency of polymeric gene carriers. Herein, we prepared a cationic polypeptide poly(γ-aminoethylthiopropyl-l-glutamate) (PALG-MEA, termed PM) with a stable α-helical conformation, which can significantly improve the gene transfection efficiency of cationic polymers. PM can be integrated into polymeric gene delivery systems noncovalently through electrostatic interactions. With the assistance of PM, polymeric gene delivery systems exhibited excellent cellular uptake and endosomal escape, thereby enhancing transfection efficiency. The transfection enhancement effect of PM was applicable to a variety of cationic polymers such as polyethylenimine (PEI), poly-l-lysine (PLL), and polyamidoamine (PAMAM). The ternary gene delivery system PM/pshVEGF/PEI exhibited an excellent antitumor effect against the B16F10 tumor model. Moreover, we demonstrated that PM could also enhance the delivery of gene editing systems (sgRNA-Cas9 plasmids). This work provides a facile and effective strategy for constructing polymeric gene delivery systems with a high transfection efficiency.
Collapse
Affiliation(s)
- Zhiyu Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xiaoya Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
15
|
Tian Y, Tirrell MV, LaBelle JL. Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delivery of Nucleic Acids, Peptides, and Proteins. Adv Healthc Mater 2022; 11:e2102600. [PMID: 35285167 PMCID: PMC9232950 DOI: 10.1002/adhm.202102600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/09/2022] [Indexed: 12/19/2022]
Abstract
Biomacromolecules have long been at the leading edge of academic and pharmaceutical drug development and clinical translation. With the clinical advances of new therapeutics, such as monoclonal antibodies and nucleic acids, the array of medical applications of biomacromolecules has broadened considerably. A major on-going effort is to expand therapeutic targets within intracellular locations. Owing to their large sizes, abundant charges, and hydrogen-bond donors and acceptors, advanced delivery technologies are required to deliver biomacromolecules effectively inside cells. In this review, strategies used for the intracellular delivery of three major forms of biomacromolecules: nucleic acids, proteins, and peptides, are highlighted. An emphasis is placed on synthetic delivery approaches and the major hurdles needed to be overcome for their ultimate clinical translation.
Collapse
Affiliation(s)
- Yu Tian
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - James L. LaBelle
- Department of Pediatrics, Section of Hematology/OncologyThe University of Chicago900 E 57th StChicagoIL60637USA
| |
Collapse
|
16
|
Gupta A, Gupta S, Das U, Sinha S. Guanidinium-Functionalized Flexible Azaproline Transporter for Efficient Intracellular Delivery of Proapoptotic Peptide and PDL1 Antisense Morpholino Oligo in Human Carcinoma Cells In Vitro. Bioconjug Chem 2022; 33:907-917. [PMID: 35486710 DOI: 10.1021/acs.bioconjchem.2c00129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are structurally diverse sophisticated tools endowed with high arginine content, amphipathicity, and well-adopted suitable secondary structures. Despite its capability of breaching the lipid barriers, CPP has major limitations such as in vivo metabolic instability, poor bioavailability, and reduced endosomal escape tendency, which are yet to be improved. In this context, we first have introduced a new class of cellular transporter having a guanidinium-functionalized δ-azaproline (δ-azp)-containing peptide where the δ-azp structurally resembles the "proline" amino acid having an additional "N" at the δ-position. This non-natural peptidic backbone was found to impart proteolytic stability, as reported earlier by our group. Herein, we report the synthesis of a flexible azaproline-tetraguanidinium transporter named FAT along with a revised scalable methodology for δ-azp compared to our previously reported procedure. FAT shows a random-coil-like structure as determined by CD spectroscopy, and is hence structurally different from the polyproline PPII helix. Direct translocation is predicted to be the possible mode of the cellular entrance of FAT into CHO cells when the "Bodipy" fluorophore is covalently attached as the cargo. Simultaneously, two other macromolecular therapeutics, e.g., proapoptotic domain peptide (PAD, a 14-mer peptide) and programmed death ligand 1 (PDL1) morpholino (a 25-mer antisense oligo), were successfully conjugated with FAT and delivered into human carcinoma cells, and their efficacy was analyzed by MTT assay and western blot technique, respectively. Having obtained promising results in internalizing different types of cargos, FAT could be envisaged as a potential drug delivery agent as an alternative to natural CPPs for future application.
Collapse
Affiliation(s)
- Abhishek Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Ujjal Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
17
|
Horn JM, Obermeyer AC. Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery. Biomacromolecules 2021; 22:4883-4904. [PMID: 34855385 PMCID: PMC9310055 DOI: 10.1021/acs.biomac.1c00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-based therapeutics represent a rapidly growing segment of approved disease treatments. Successful intracellular delivery of proteins is an important precondition for expanded in vivo and in vitro applications of protein therapeutics. Direct modification of proteins and peptides for improved cytosolic translocation are a promising method of increasing delivery efficiency and expanding the viability of intracellular protein therapeutics. In this Review, we present recent advances in both synthetic and genetic protein modifications for intracellular delivery. Active endocytosis-based and passive internalization pathways are discussed, followed by a review of modification methods for improved cytosolic delivery. After establishing how proteins can be modified, general strategies for facilitating intracellular delivery, such as chemical supercharging or inclusion of cell-penetrating motifs, are covered. We then outline protein modifications that promote endosomal escape. We finally examine the delivery of two potential classes of therapeutic proteins, antibodies and associated antibody fragments, and gene editing proteins, such as cas9.
Collapse
|
18
|
Klabenkova K, Fokina A, Stetsenko D. Chemistry of Peptide-Oligonucleotide Conjugates: A Review. Molecules 2021; 26:5420. [PMID: 34500849 PMCID: PMC8434111 DOI: 10.3390/molecules26175420] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
Peptide-oligonucleotide conjugates (POCs) represent one of the increasingly successful albeit costly approaches to increasing the cellular uptake, tissue delivery, bioavailability, and, thus, overall efficiency of therapeutic nucleic acids, such as, antisense oligonucleotides and small interfering RNAs. This review puts the subject of chemical synthesis of POCs into the wider context of therapeutic oligonucleotides and the problem of nucleic acid drug delivery, cell-penetrating peptide structural types, the mechanisms of their intracellular transport, and the ways of application, which include the formation of non-covalent complexes with oligonucleotides (peptide additives) or covalent conjugation. The main strategies for the synthesis of POCs are viewed in detail, which are conceptually divided into (a) the stepwise solid-phase synthesis approach and (b) post-synthetic conjugation either in solution or on the solid phase, especially by means of various click chemistries. The relative advantages and disadvantages of both strategies are discussed and compared.
Collapse
Affiliation(s)
- Kristina Klabenkova
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Alesya Fokina
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Dmitry Stetsenko
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| |
Collapse
|
19
|
Ohgita T, Takechi-Haraya Y, Okada K, Matsui S, Takeuchi M, Saito C, Nishitsuji K, Uchimura K, Kawano R, Hasegawa K, Sakai-Kato K, Akaji K, Izutsu KI, Saito H. Enhancement of direct membrane penetration of arginine-rich peptides by polyproline II helix structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183403. [DOI: 10.1016/j.bbamem.2020.183403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
|
20
|
Affiliation(s)
- Zhiyu Yang
- Key Laboratory of Polymer Ecomaterials Chinese Academy of Sciences Changchun Institute of Applied Chemistry Changchun China
- University of Science and Technology of China Hefei China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials Chinese Academy of Sciences Changchun Institute of Applied Chemistry Changchun China
- Jilin Biomedical Polymers Engineering Laboratory Changchun China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials Chinese Academy of Sciences Changchun Institute of Applied Chemistry Changchun China
- University of Science and Technology of China Hefei China
- Jilin Biomedical Polymers Engineering Laboratory Changchun China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Chinese Academy of Sciences Changchun Institute of Applied Chemistry Changchun China
- University of Science and Technology of China Hefei China
- Jilin Biomedical Polymers Engineering Laboratory Changchun China
| |
Collapse
|
21
|
Knox SL, Steinauer A, Alpha-Cobb G, Trexler A, Rhoades E, Schepartz A. Quantification of protein delivery in live cells using fluorescence correlation spectroscopy. Methods Enzymol 2020; 641:477-505. [PMID: 32713536 DOI: 10.1016/bs.mie.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) is a quantitative single-molecule method that measures the concentration and rate of diffusion of fluorophore-tagged molecules, both large and small, in vitro and within live cells, and even within discrete cellular compartments. FCS is exceptionally well-suited to directly quantify the efficiency of intracellular protein delivery-specifically, how well different "cell-penetrating" proteins and peptides guide proteinaceous materials into the cytosol and nuclei of live mammalian cells. This article provides an overview of the procedures necessary to execute robust FCS experiments and evaluate endosomal escape efficiencies: preparation of fluorophore-tagged proteins, incubation with mammalian cells and preparation of FCS samples, setup and execution of an FCS experiment, and a detailed discussion of and custom MATLAB® script for analyzing the resulting autocorrelation curves in the context of appropriate diffusion models.
Collapse
Affiliation(s)
- Susan L Knox
- Department of Chemistry, University of California, Berkeley, CA, United States
| | - Angela Steinauer
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Garrett Alpha-Cobb
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Adam Trexler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, CA, United States; Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States.
| |
Collapse
|
22
|
Jagrosse ML, Dean DA, Rahman A, Nilsson BL. RNAi therapeutic strategies for acute respiratory distress syndrome. Transl Res 2019; 214:30-49. [PMID: 31401266 PMCID: PMC7316156 DOI: 10.1016/j.trsl.2019.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Acute respiratory distress syndrome (ARDS), replacing the clinical term acute lung injury, involves serious pathophysiological lung changes that arise from a variety of pulmonary and nonpulmonary injuries and currently has no pharmacological therapeutics. RNA interference (RNAi) has the potential to generate therapeutic effects that would increase patient survival rates from this condition. It is the purpose of this review to discuss potential targets in treating ARDS with RNAi strategies, as well as to outline the challenges of oligonucleotide delivery to the lung and tactics to circumvent these delivery barriers.
Collapse
Affiliation(s)
| | - David A Dean
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Arshad Rahman
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York.
| |
Collapse
|
23
|
Bakail M, Gaubert A, Andreani J, Moal G, Pinna G, Boyarchuk E, Gaillard MC, Courbeyrette R, Mann C, Thuret JY, Guichard B, Murciano B, Richet N, Poitou A, Frederic C, Le Du MH, Agez M, Roelants C, Gurard-Levin ZA, Almouzni G, Cherradi N, Guerois R, Ochsenbein F. Design on a Rational Basis of High-Affinity Peptides Inhibiting the Histone Chaperone ASF1. Cell Chem Biol 2019; 26:1573-1585.e10. [PMID: 31543461 DOI: 10.1016/j.chembiol.2019.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
Anti-silencing function 1 (ASF1) is a conserved H3-H4 histone chaperone involved in histone dynamics during replication, transcription, and DNA repair. Overexpressed in proliferating tissues including many tumors, ASF1 has emerged as a promising therapeutic target. Here, we combine structural, computational, and biochemical approaches to design peptides that inhibit the ASF1-histone interaction. Starting from the structure of the human ASF1-histone complex, we developed a rational design strategy combining epitope tethering and optimization of interface contacts to identify a potent peptide inhibitor with a dissociation constant of 3 nM. When introduced into cultured cells, the inhibitors impair cell proliferation, perturb cell-cycle progression, and reduce cell migration and invasion in a manner commensurate with their affinity for ASF1. Finally, we find that direct injection of the most potent ASF1 peptide inhibitor in mouse allografts reduces tumor growth. Our results open new avenues to use ASF1 inhibitors as promising leads for cancer therapy.
Collapse
Affiliation(s)
- May Bakail
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Albane Gaubert
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France
| | - Jessica Andreani
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Gwenaëlle Moal
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Guillaume Pinna
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Ekaterina Boyarchuk
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, CNRS, UMR3664, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, 75005 Paris, France
| | - Marie-Cécile Gaillard
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Regis Courbeyrette
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Carl Mann
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Jean-Yves Thuret
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Bérengère Guichard
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France
| | - Brice Murciano
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France
| | - Nicolas Richet
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France
| | - Adeline Poitou
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France
| | - Claire Frederic
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France
| | - Marie-Hélène Le Du
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Morgane Agez
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France
| | - Caroline Roelants
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, 38000 Grenoble, France; Commissariat à l'Energie Atomique, Institut de Recherche Interdisciplinaire de Grenoble, Biologie du Cancer et de l'Infection, 38000 Grenoble, France; Université Grenoble Alpes, Unité Mixte de Recherche-S1036, 38000 Grenoble, France
| | - Zachary A Gurard-Levin
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, CNRS, UMR3664, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, 75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, CNRS, UMR3664, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, 75005 Paris, France
| | - Nadia Cherradi
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, 38000 Grenoble, France; Commissariat à l'Energie Atomique, Institut de Recherche Interdisciplinaire de Grenoble, Biologie du Cancer et de l'Infection, 38000 Grenoble, France; Université Grenoble Alpes, Unité Mixte de Recherche-S1036, 38000 Grenoble, France
| | - Raphael Guerois
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Françoise Ochsenbein
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), 91191 Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
24
|
Safa N, Anderson JC, Vaithiyanathan M, Pettigrew JH, Pappas GA, Liu D, Gauthier TJ, Melvin AT. CPProtectides: Rapid uptake of well-folded β-hairpin peptides with enhanced resistance to intracellular degradation. Pept Sci (Hoboken) 2019; 111. [PMID: 31276085 DOI: 10.1002/pep2.24092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell penetrating peptides (CPPs) have emerged as powerful tools for delivering bioactive cargoes, such as biosensors or drugs to intact cells. One limitation of CPPs is their rapid degradation by intracellular proteases. β-hairpin "protectides" have previously been demonstrated to be long-lived under cytosolic conditions due to their secondary structure. The goal of this work was to demonstrate that arginine-rich β-hairpin peptides function as both protectides and as CPPs. Peptides exhibiting a β-hairpin motif were found to be rapidly internalized into cells with their uptake efficiency dependent on the number of arginine residues in the sequence. Cellular internalization of the β-hairpin peptides was compared to unstructured, scrambled sequences and to commercially available, arginine-rich CPPs. The unstructured peptides displayed greater uptake kinetics compared to the structured β-hairpin sequences; however, intracellular stability studies revealed that the β-hairpin peptides exhibited superior stability under cytosolic conditions with a 16-fold increase in peptide half-life. This study identifies a new class of long-lived CPPs that can overcome the stability limitations of peptide-based reporters or bioactive delivery mechanisms in intact cells.
Collapse
Affiliation(s)
- Nora Safa
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Jeffery C Anderson
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
| | | | - Jacob H Pettigrew
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Gavin A Pappas
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Dong Liu
- LSU AgCenter Biotechnology Lab, Louisiana State University, Baton Rouge, Louisiana
| | - Ted J Gauthier
- LSU AgCenter Biotechnology Lab, Louisiana State University, Baton Rouge, Louisiana
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
25
|
Douat C, Bornerie M, Antunes S, Guichard G, Kichler A. Hybrid Cell-Penetrating Foldamer with Superior Intracellular Delivery Properties and Serum Stability. Bioconjug Chem 2019; 30:1133-1139. [PMID: 30860823 DOI: 10.1021/acs.bioconjchem.9b00075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sequence specific molecules with high folding ability (i.e., foldamers) can be used to precisely control the distribution and projection of side chains in space and have recently been introduced as tailored systems for delivering nucleic acids into cells. Designed oligourea sequences with an amphipathic distribution of Arg- and His-type residues were shown to form tight complexes with plasmid DNA, and to effectively promote the release of DNA from the endosomes. Herein, we report the synthesis of new cell-penetrating foldamer sequences in which the foldamer segment is conjugated via a reducible disulfide bond to a ligand that binds cell-surface expressed nucleoproteins with the idea that this system could facilitate both assemblies with nucleic acids and cell entry. This new system was evaluated for delivery of DNA in several cell lines and was found to compare favorably with all comparators tested (DOTAP and b-PEI as well as a number of known cell penetrating peptides) in various cell lines and particularly in culture medium containing up to 50% of serum. These results suggest that this dual molecular platform which is long lasting and noncytotoxic could be of practical use for in vivo applications.
Collapse
Affiliation(s)
- Céline Douat
- Université de Bordeaux, CNRS, CBMN, UMR 5248 , Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , F-33607 Pessac , France.,Department Pharmazie , Ludwig-Maximilians-Universität , Butenandtstraße 5-13 , D-81377 München , Germany
| | - Mégane Bornerie
- Université de Bordeaux, CNRS, CBMN, UMR 5248 , Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , F-33607 Pessac , France
| | - Stéphanie Antunes
- Université de Bordeaux, CNRS, CBMN, UMR 5248 , Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , F-33607 Pessac , France
| | - Gilles Guichard
- Université de Bordeaux, CNRS, CBMN, UMR 5248 , Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , F-33607 Pessac , France
| | - Antoine Kichler
- Equipe 3Bio , CAMB 7199 CNRS-Univ. Strasbourg, Faculté de Pharmacie , 74 route du Rhin , F-67401 Illkirch cedex, France
| |
Collapse
|
26
|
Steinauer A, LaRochelle JR, Knox SL, Wissner RF, Berry S, Schepartz A. HOPS-dependent endosomal fusion required for efficient cytosolic delivery of therapeutic peptides and small proteins. Proc Natl Acad Sci U S A 2019; 116:512-521. [PMID: 30610181 PMCID: PMC6329960 DOI: 10.1073/pnas.1812044116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Protein therapeutics represent a significant and growing component of the modern pharmacopeia, but their potential to treat human disease is limited because most proteins fail to traffic across biological membranes. Recently, we discovered a class of cell-permeant miniature proteins (CPMPs) containing a precisely defined, penta-arginine (penta-Arg) motif that traffics readily to the cytosol and nucleus of mammalian cells with efficiencies that rival those of hydrocarbon-stapled peptides active in animals and man. Like many cell-penetrating peptides (CPPs), CPMPs enter the endocytic pathway; the difference is that CPMPs containing a penta-Arg motif are released efficiently from endosomes, while other CPPs are not. Here, we seek to understand how CPMPs traffic from endosomes into the cytosol and what factors contribute to the efficiency of endosomal release. First, using two complementary cell-based assays, we exclude endosomal rupture as the primary means of endosomal escape. Next, using an RNA interference screen, fluorescence correlation spectroscopy, and confocal imaging, we identify VPS39-a gene encoding a subunit of the homotypic fusion and protein-sorting (HOPS) complex-as a critical determinant in the trafficking of CPMPs and hydrocarbon-stapled peptides to the cytosol. Although CPMPs neither inhibit nor activate HOPS function, HOPS activity is essential to efficiently deliver CPMPs to the cytosol. CPMPs localize within the lumen of Rab7+ and Lamp1+ endosomes and their transport requires HOPS activity. Overall, our results identify Lamp1+ late endosomes and lysosomes as portals for passing proteins into the cytosol and suggest that this environment is prerequisite for endosomal escape.
Collapse
Affiliation(s)
- Angela Steinauer
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
| | - Jonathan R LaRochelle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Susan L Knox
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
| | | | - Samuel Berry
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT 06520-8107;
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
27
|
Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J. Where in the Cell Is our Cargo? Methods Currently Used To Study Intracellular Cytosolic Localisation. Chembiochem 2018; 20:488-498. [PMID: 30178574 DOI: 10.1002/cbic.201800390] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Indexed: 12/14/2022]
Abstract
The internalisation and delivery of active substances into cells is a field of growing interest for chemical biology and therapeutics. As we move from small-molecule-based drugs towards bigger cargos, such as antibodies, enzymes, nucleases or nucleic acids, the development of efficient delivery systems becomes critical for their practical application. Different strategies and synthetic carriers have been developed; these include cationic lipids, gold nanoparticles, polymers, cell-penetrating peptides (CPPs), protein surface modification etc. However, all of these methodologies still present limitations relating to the precise targeting of the different intracellular compartments and, in particular, difficulties in access to the cellular cytosol. Additionally, the precise quantification of the cellular uptake of a compound is not enough to demonstrate delivery and/or functional activity. Therefore, methods to determine cellular distributions of cargos and carriers are of critical importance for identifying the barriers that are blocking the activity. Herein we survey the different techniques that can currently be used to track and to monitor the subcellular localisation of the synthetic compounds that we deliver inside cells.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
28
|
Singh T, Murthy ASN, Yang HJ, Im J. Versatility of cell-penetrating peptides for intracellular delivery of siRNA. Drug Deliv 2018; 25:1996-2006. [PMID: 30799658 PMCID: PMC6319457 DOI: 10.1080/10717544.2018.1543366] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/05/2022] Open
Abstract
The plasma membrane is a large barrier to systemic drug delivery into cells, and it limits the efficacy of drug cargo. This issue has been overcome using cell-penetrating peptides (CPPs). CPPs are short peptides (6-30 amino acid residues) that are potentially capable of intracellular penetration to deliver drug molecules. CPPs broadened biomedical applications and provide a means to deliver a range of biologically active molecules, such as small molecules, proteins, imaging agents, and pharmaceutical nanocarriers, across the plasma membrane with high efficacy and low toxicity. This review is focused on the versatility of CPPs and advanced approaches for siRNA delivery.
Collapse
Affiliation(s)
- Tejinder Singh
- Department of Chemical Engineering, Soonchunhyang University, Asan, Republic of Korea
| | - Akula S. N. Murthy
- Department of Chemical Engineering, Soonchunhyang University, Asan, Republic of Korea
| | - Hye-Jin Yang
- Department of Chemical Engineering, Soonchunhyang University, Asan, Republic of Korea
| | - Jungkyun Im
- Department of Chemical Engineering, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
29
|
BÖHMOVÁ E, MACHOVÁ D, PECHAR M, POLA R, VENCLÍKOVÁ K, JANOUŠKOVÁ O, ETRYCH T. Cell-Penetrating Peptides: a Useful Tool for the Delivery of Various Cargoes Into Cells. Physiol Res 2018; 67:S267-S279. [DOI: 10.33549/physiolres.933975] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell-penetrating compounds are substances that enhance the cellular uptake of various molecular cargoes that do not easily cross the cellular membrane. The majority of cell-penetrating compounds described in the literature are cell-penetrating peptides (CPPs). This review summarizes the various structural types of cell-penetrating compounds, with the main focus on CPPs. The authors present a brief overview of the history of CPPs, discuss the various types of conjugation of CPPs to biologically active cargoes intended for cell internalization, examine the cell-entry mechanisms of CPPs, and report on the applications of CPPs in research and in preclinical and clinical studies.
Collapse
Affiliation(s)
- E. BÖHMOVÁ
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
30
|
Peraro L, Kritzer JA. Emerging Methods and Design Principles for Cell-Penetrant Peptides. Angew Chem Int Ed Engl 2018; 57:11868-11881. [PMID: 29740917 PMCID: PMC7184558 DOI: 10.1002/anie.201801361] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Indexed: 12/12/2022]
Abstract
Biomolecules such as antibodies, proteins, and peptides are important tools for chemical biology and leads for drug development. They have been used to inhibit a variety of extracellular proteins, but accessing intracellular proteins has been much more challenging. In this review, we discuss diverse chemical approaches that have yielded cell-penetrant peptides and identify three distinct strategies: masking backbone amides, guanidinium group patterning, and amphipathic patterning. We summarize a growing number of large data sets, which are starting to reveal more specific design guidelines for each strategy. We also discuss advantages and disadvantages of current methods for quantifying cell penetration. Finally, we provide an overview of best-odds approaches for applying these new methods and design principles to optimize cytosolic penetration for a given bioactive peptide.
Collapse
Affiliation(s)
- Leila Peraro
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, USA
| |
Collapse
|
31
|
Peraro L, Kritzer JA. Neue Methoden und Designprinzipien für zellgängige Peptide. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Leila Peraro
- Department of Chemistry Tufts University Medford Massachusetts 02155 USA
| | - Joshua A. Kritzer
- Department of Chemistry Tufts University Medford Massachusetts 02155 USA
| |
Collapse
|
32
|
Pazo M, Juanes M, Lostalé-Seijo I, Montenegro J. Oligoalanine helical callipers for cell penetration. Chem Commun (Camb) 2018; 54:6919-6922. [PMID: 29863199 DOI: 10.1039/c8cc02304b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even for short peptides that are enriched in basic amino acids, the large chemical space that can be spanned by combinations of natural amino acids hinders the rational design of cell penetrating peptides. We here report on short oligoalanine scaffolds for the fine-tuning of peptide helicity in different media and the study of cell penetrating properties. This strategy allowed the extraction of the structure/activity features required for maximal membrane interaction and cellular penetration at minimal toxicity. These results confirmed oligoalanine helical callipers as optimal scaffolds for the rational design and the identification of cell penetrating peptides.
Collapse
Affiliation(s)
- Marta Pazo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
33
|
Juanes M, Lostalé-Seijo I, Granja JR, Montenegro J. Supramolecular Recognition and Selective Protein Uptake by Peptide Hybrids. Chemistry 2018; 24:10689-10698. [DOI: 10.1002/chem.201800706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/19/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Marisa Juanes
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| |
Collapse
|
34
|
Pescina S, Ostacolo C, Gomez-Monterrey IM, Sala M, Bertamino A, Sonvico F, Padula C, Santi P, Bianchera A, Nicoli S. Cell penetrating peptides in ocular drug delivery: State of the art. J Control Release 2018; 284:84-102. [PMID: 29913221 DOI: 10.1016/j.jconrel.2018.06.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
Despite the increasing number of effective therapeutics for eye diseases, their treatment is still challenging due to the presence of effective barriers protecting eye tissues. Cell Penetrating Peptides (CPPs), synthetic and natural short amino acid sequences able to cross cellular membrane thanks to a transduction domain, have been proposed as possible enhancing strategies for ophthalmic delivery. In this review, a general description of CPPs classes, design approaches and proposed cellular uptake mechanisms will be provided to the reader as an introduction to ocular CPPs application, together with an overview of the main problems related to ocular administration. The results obtained with CPPs for the treatment of anterior and posterior segment eye diseases will be then introduced, with a focus on non-invasive or minimally invasive administration, shifting from CPPs capability to obtain intracellular delivery to their ability to cross biological barriers. The problems related to in vitro, ex vivo and in vivo models used to investigate CPPs mediated ocular delivery will be also addressed together with potential ocular toxicity issues.
Collapse
Affiliation(s)
- S Pescina
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - C Ostacolo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - I M Gomez-Monterrey
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - M Sala
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - A Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, SA, Italy
| | - F Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - C Padula
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - P Santi
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - A Bianchera
- BiopharmanetTEC, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - S Nicoli
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| |
Collapse
|
35
|
Setiawan D, Brender J, Zhang Y. Recent advances in automated protein design and its future challenges. Expert Opin Drug Discov 2018; 13:587-604. [PMID: 29695210 DOI: 10.1080/17460441.2018.1465922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Protein function is determined by protein structure which is in turn determined by the corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are understood, it should be possible to refine or even redefine the function of a protein by working backwards from the desired structure to the sequence. Automated protein design attempts to calculate the effects of mutations computationally with the goal of more radical or complex transformations than are accessible by experimental techniques. Areas covered: The authors give a brief overview of the recent methodological advances in computer-aided protein design, showing how methodological choices affect final design and how automated protein design can be used to address problems considered beyond traditional protein engineering, including the creation of novel protein scaffolds for drug development. Also, the authors address specifically the future challenges in the development of automated protein design. Expert opinion: Automated protein design holds potential as a protein engineering technique, particularly in cases where screening by combinatorial mutagenesis is problematic. Considering solubility and immunogenicity issues, automated protein design is initially more likely to make an impact as a research tool for exploring basic biology in drug discovery than in the design of protein biologics.
Collapse
Affiliation(s)
- Dani Setiawan
- a Department of Computational Medicine and Bioinformatics , University of Michigan , Ann Arbor , MI , USA
| | - Jeffrey Brender
- b Radiation Biology Branch , Center for Cancer Research, National Cancer Institute - NIH , Bethesda , MD , USA
| | - Yang Zhang
- a Department of Computational Medicine and Bioinformatics , University of Michigan , Ann Arbor , MI , USA.,c Department of Biological Chemistry , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
36
|
Wolfe J, Fadzen CM, Choo ZN, Holden RL, Yao M, Hanson GJ, Pentelute BL. Machine Learning To Predict Cell-Penetrating Peptides for Antisense Delivery. ACS CENTRAL SCIENCE 2018; 4:512-520. [PMID: 29721534 PMCID: PMC5920612 DOI: 10.1021/acscentsci.8b00098] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Indexed: 05/24/2023]
Abstract
Cell-penetrating peptides (CPPs) can facilitate the intracellular delivery of large therapeutically relevant molecules, including proteins and oligonucleotides. Although hundreds of CPP sequences are described in the literature, predicting efficacious sequences remains difficult. Here, we focus specifically on predicting CPPs for the delivery of phosphorodiamidate morpholino oligonucleotides (PMOs), a compelling type of antisense therapeutic that has recently been FDA approved for the treatment of Duchenne muscular dystrophy. Using literature CPP sequences, 64 covalent PMO-CPP conjugates were synthesized and evaluated in a fluorescence-based reporter assay for PMO activity. Significant discrepancies were observed between the sequences that performed well in this assay and the sequences that performed well when conjugated to only a small-molecule fluorophore. As a result, we envisioned that our PMO-CPP library would be a useful training set for a computational model to predict CPPs for PMO delivery. We used the PMO activity data to fit a random decision forest classifier to predict whether or not covalent attachment of a given peptide would enhance PMO activity at least 3-fold. To validate the model experimentally, seven novel sequences were generated, synthesized, and tested in the fluorescence reporter assay. All computationally predicted positive sequences were positive in the assay, and one sequence performed better than 80% of the tested literature CPPs. These results demonstrate the power of machine learning algorithms to identify peptide sequences with particular functions and illustrate the importance of tailoring a CPP sequence to the cargo of interest.
Collapse
Affiliation(s)
- Justin
M. Wolfe
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Colin M. Fadzen
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Zi-Ning Choo
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Rebecca L. Holden
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Monica Yao
- Research
Chemistry, Sarepta Therapeutics, Inc., Cambridge, Massachusetts, United States
| | - Gunnar J. Hanson
- Research
Chemistry, Sarepta Therapeutics, Inc., Cambridge, Massachusetts, United States
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Zhang WM, Zhang J, Qiao Z, Liu HY, Wu ZQ, Yin J. Facile fabrication of positively-charged helical poly(phenyl isocyanide) modified multi-stimuli-responsive nanoassembly capable of high efficiency cell-penetrating, ratiometric fluorescence imaging, and rapid intracellular drug release. Polym Chem 2018. [DOI: 10.1039/c8py00865e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High efficiency cell-penetrating helical chain functionalized polymeric micelles capable of co-delivery of cargoes and rapid release were reported.
Collapse
Affiliation(s)
- Wen-Ming Zhang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Jian Zhang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Zhu Qiao
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Huan-Ying Liu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| |
Collapse
|
38
|
Functionally Oriented Tumor Microenvironment Responsive Polymeric Nanoassembly: Engineering and Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2035-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Cell-Penetrating Peptides: Design Strategies beyond Primary Structure and Amphipathicity. Molecules 2017; 22:molecules22111929. [PMID: 29117144 PMCID: PMC6150340 DOI: 10.3390/molecules22111929] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 12/21/2022] Open
Abstract
Efficient intracellular drug delivery and target specificity are often hampered by the presence of biological barriers. Thus, compounds that efficiently cross cell membranes are the key to improving the therapeutic value and on-target specificity of non-permeable drugs. The discovery of cell-penetrating peptides (CPPs) and the early design approaches through mimicking the natural penetration domains used by viruses have led to greater efficiency of intracellular delivery. Following these nature-inspired examples, a number of rationally designed CPPs has been developed. In this review, a variety of CPP designs will be described, including linear and flexible, positively charged and often amphipathic CPPs, and more rigid versions comprising cyclic, stapled, or dimeric and/or multivalent, self-assembled peptides or peptido-mimetics. The application of distinct design strategies to known physico-chemical properties of CPPs offers the opportunity to improve their penetration efficiency and/or internalization kinetics. This led to increased design complexity of new CPPs that does not always result in greater CPP activity. Therefore, the transition of CPPs to a clinical setting remains a challenge also due to the concomitant involvement of various internalization routes and heterogeneity of cells used in the in vitro studies.
Collapse
|
40
|
Quach K, LaRochelle J, Li XH, Rhoades E, Schepartz A. Unique arginine array improves cytosolic localization of hydrocarbon-stapled peptides. Bioorg Med Chem 2017; 26:1197-1202. [PMID: 29150077 DOI: 10.1016/j.bmc.2017.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 11/19/2022]
Abstract
We have previously reported that miniature proteins containing a distinct array of 5 arginine residues on a folded α-helix - a penta-arg motif - traffic with high efficiency from endosomes into the cytosol and nucleus of mammalian cells. Here we evaluate whether a penta-arg motif can improve the intracellular trafficking of an otherwise impermeant hydrocarbon-stapled peptide, SAH-p53-4Rho. We prepared a panel of SAH-p53-4Rho variants containing penta-arg sequences with different spacings and axial arrangement and evaluated their overall uptake (as judged by flow cytometry) and their intracellular access (as determined by fluorescence correlation spectroscopy, FCS). One member of this panel reached the cytosol extremely well, matching the level achieved by SAH-p53-8Rho, a previously reported and highly permeant hydrocarbon-stapled peptide. Notably, we found no relationship between cellular uptake as judged by flow cytometry and cytosolic access as determined by FCS. This result reiterates that overall uptake and endosomal release represent fundamentally different biological processes. To determine cytosolic and/or nuclear access, one must measure concentration directly using a quantitative and non-amplified tool such as FCS. As has been observed for highly cell permeant miniature proteins such as ZF5.3, optimal penetration of hydrocarbon-stapled peptides into the cell cytosol results when the penta-arg motif is located within more (as opposed to less) structured regions.
Collapse
Affiliation(s)
- Kim Quach
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, United States
| | - Jonathan LaRochelle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8107, United States
| | - Xiao-Han Li
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, United States
| | - Elizabeth Rhoades
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8107, United States
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, United States; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8107, United States.
| |
Collapse
|
41
|
Bhosle GS, Fernandes M. (R-X-R)4
-Motif Peptides Containing Conformationally Constrained Cyclohexane-Derived Spacers: Effect on Cellular Uptake. ChemMedChem 2017; 12:1743-1747. [DOI: 10.1002/cmdc.201700498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/22/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Govind S. Bhosle
- Organic Chemistry Division; CSIR - National Chemical Laboratory (CSIR-NCL); Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research, AcSIR; CSIR-NCL Campus Pune India
| | - Moneesha Fernandes
- Organic Chemistry Division; CSIR - National Chemical Laboratory (CSIR-NCL); Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research, AcSIR; CSIR-NCL Campus Pune India
| |
Collapse
|
42
|
Tian Y, Zeng X, Li J, Jiang Y, Zhao H, Wang D, Huang X, Li Z. Achieving enhanced cell penetration of short conformationally constrained peptides through amphiphilicity tuning. Chem Sci 2017; 8:7576-7581. [PMID: 29568420 PMCID: PMC5848794 DOI: 10.1039/c7sc03614k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022] Open
Abstract
We synthesized a panel of conformationally constrained peptides with either α-helix or β-hairpin conformations. We tuned the amphiphilicity of these constrained peptides with different distributions of charged or hydrophobic residues and compared their cellular uptake efficiencies in different cell lines.
Due to their enhanced stability and cell permeability, cyclic cell-penetrating peptides have been widely used as delivery vectors for transporting cell-impermeable cargos into cells. In this study, we synthesized a panel of conformationally constrained peptides with either α-helix or β-hairpin conformations. We tuned the amphiphilicity of these constrained peptides with different distributions of charged or hydrophobic residues and compared their cellular uptake efficiencies in different cell lines. We found that the amphipathicity of these conformationally constrained peptides correlates well with their cellular uptake efficiency. We proposed that peptides with larger hydrophobic moments (HMs) have stronger binding affinities with the cell membrane which further accelerates the endocytosis process. This finding should provide an approach towards the design of more potent conformationally constrained cell-penetrating peptides for biomedical applications.
Collapse
Affiliation(s)
- Yuan Tian
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China . .,School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , 610031 , China
| | - Xiangze Zeng
- Department of Chemistry , Center of Systems Biology and Human Health , School of Science and Institute for Advance Study , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong .
| | - Jingxu Li
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Yanhong Jiang
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Hui Zhao
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Dongyuan Wang
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| | - Xuhui Huang
- Department of Chemistry , Center of Systems Biology and Human Health , School of Science and Institute for Advance Study , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong .
| | - Zigang Li
- School of Chemical Biology and Biotechnology , Shenzhen Graduate School of Peking University , Shenzhen , 518055 , China .
| |
Collapse
|
43
|
Holub JM. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents. Drug Dev Res 2017; 78:268-282. [PMID: 28799168 DOI: 10.1002/ddr.21408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin M Holub
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
44
|
Zheng N, Song Z, Yang J, Liu Y, Li F, Cheng J, Yin L. Manipulating the membrane penetration mechanism of helical polypeptides via aromatic modification for efficient gene delivery. Acta Biomater 2017; 58:146-157. [PMID: 28476586 DOI: 10.1016/j.actbio.2017.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/12/2017] [Accepted: 05/01/2017] [Indexed: 01/05/2023]
Abstract
The delivery performance of non-viral gene vectors is greatly related to their intracellular kinetics. Cationic helical polypeptides with potent membrane penetration properties and gene transfection efficiencies have been recently developed by us. However, they suffer from severe drawbacks in terms of their membrane penetration mechanisms that mainly include endocytosis and pore formation. The endocytosis mechanism leads to endosomal entrapment of gene cargos, while the charge- and helicity-induced pore formation causes appreciable cytotoxicity at high concentrations. With the attempt to overcome such critical challenges, we incorporated aromatic motifs into the design of helical polypeptides to enhance their membrane activities and more importantly, to manipulate their membrane penetration mechanisms. The aromatically modified polypeptides exhibited higher cellular internalization level than the unmodified analogue by up to 2.5 folds. Such improvement is possibly because aromatic domains promoted the polypeptides to penetrate cell membranes via direct transduction, a non-endocytosis and non-pore formation mechanism. As such, gene cargos were more efficiently delivered into cells by bypassing endocytosis and subsequently avoiding endosomal entrapment, and the material toxicity associated with excessive pore formation was also reduced. The top-performing aromatic polypeptide containing naphthyl side chains at the incorporated content of 20mol% revealed notably higher transfection efficiencies than commercial reagents in melanoma cells in vitro (by 11.7 folds) and in vivo (by 9.1 folds), and thus found potential utilities toward topical gene delivery for cancer therapy. STATEMENT OF SIGNIFICANCE Cationic helical polypeptides, as efficient gene delivery materials, suffer from severe drawbacks in terms of their membrane penetration mechanisms. The main cell penetration mechanisms involved are endocytosis and pore formation. However, the endocytosis mechanism has the limitation of endosomal entrapment of gene cargos, while the charge- and helicity-induced pore formation causes cytotoxicity at high concentrations. To address such critical issues toward the maximization of gene delivery efficiency, we incorporated aromatic domains into helical polypeptides to promote the cell membrane penetrations via direct transduction, which is a non-endocytosis and non-pore formation mechanism. The manipulation of their membrane penetration mechanisms allows gene cargos to be more efficiently delivered by bypassing endocytosis and subsequently avoiding endosomal entrapment.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W Green Street, Urbana, IL 61801, USA; State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W Green Street, Urbana, IL 61801, USA
| | - Jiandong Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| | - Yang Liu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W Green Street, Urbana, IL 61801, USA
| | - Fangfang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W Green Street, Urbana, IL 61801, USA.
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
45
|
Abstract
Bio-inspired synthetic backbones leading to foldamers can provide effective biopolymer mimics with new and improved properties in a physiological environment, and in turn could serve as useful tools to study biology and lead to practical applications in the areas of diagnostics or therapeutics. Remarkable progress has been accomplished over the past 20 years with the discovery of many potent bioactive foldamers originating from diverse backbones and targeting a whole spectrum of bio(macro)molecules such as membranes, protein surfaces, and nucleic acids. These current achievements, future opportunities, and key challenges that remain are discussed in this article.
Collapse
|
46
|
Nagel YA, Raschle PS, Wennemers H. Effect of Preorganized Charge-Display on the Cell-Penetrating Properties of Cationic Peptides. Angew Chem Int Ed Engl 2016; 56:122-126. [PMID: 27900805 DOI: 10.1002/anie.201607649] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/21/2016] [Indexed: 12/11/2022]
Abstract
The effect of preorganized versus undefined charge display on the cellular uptake of cationic cell-penetrating peptides (CPPs) was investigated by comparing conformationally well-defined guanidinylated oligoprolines with flexible oligoarginines. Flow cytometry and confocal microscopy studies with different cancer cell lines (HeLa, MCF-7, and HT-29) showed that preorganization of cationic charges in lateral distances of ≈9 Å enhanced the cellular uptake of CPPs. Binding affinity measurements revealed tighter binding of analogues of cell-surface glycans to the guanidinylated octaproline with localized charges compared to flexible octaarginine, a finding that was further correlated to the cellular uptake by studies with CHO cells deficient in glycans on the outer plasma membrane.
Collapse
Affiliation(s)
- Yvonne A Nagel
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Philipp S Raschle
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Helma Wennemers
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
47
|
Nagel YA, Raschle PS, Wennemers H. Effect of Preorganized Charge‐Display on the Cell‐Penetrating Properties of Cationic Peptides. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yvonne A. Nagel
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Philipp S. Raschle
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Helma Wennemers
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
48
|
Chen Y, Zhang ZH, Han X, Yin J, Wu ZQ. Oxidation and Acid Milieu-Disintegratable Nanovectors with Rapid Cell-Penetrating Helical Polymer Chains for Programmed Drug Release and Synergistic Chemo-Photothermal Therapy. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02063] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yu Chen
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| | - Zhi-Huang Zhang
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| | - Xin Han
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| | - Jun Yin
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| | - Zong-Quan Wu
- Department of Polymer Science
and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China
| |
Collapse
|
49
|
Shi S, Liu Y, Chen Y, Zhang Z, Ding Y, Wu Z, Yin J, Nie L. Versatile pH-response Micelles with High Cell-Penetrating Helical Diblock Copolymers for Photoacoustic Imaging Guided Synergistic Chemo-Photothermal Therapy. Am J Cancer Res 2016; 6:2170-2182. [PMID: 27924155 PMCID: PMC5135441 DOI: 10.7150/thno.16633] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/30/2016] [Indexed: 11/05/2022] Open
Abstract
With high optical absorption efficiency, near infrared (NIR) dyes have been proposed as theranostic agents for fluorescence imaging, photoacoustic imaging (PAI), and photothermal therapy (PTT). However, inherent hydrophobicity and short circulation time of small molecule hinder the further biomedical application. Herein smart amphiphilic copolymer was synthesized containing IR780/camptothecin@poly(ε-caprolactone) (IR780/CPT@PCL) as core, helical poly(phenyl isocyanide) (PPI) blocks as shell with the pH-responsive rhodamine B (RhB) moieties in the core-shell interface. With hydrophilic helical PPI coronas, these micelles present significantly enhanced cell-penetrating capacity that plays a key role in facilitating intracellular delivery of various cargos. By encapsulating CPT and IR780 molecules, the multifunctional self-assemble probe has huge potential to realize functional cooperativity and adaptability for cancer diagnosis and therapy. The in vitro and in vivo experimental results demonstrate that the pH-triggered fluorescent responsiveness and strong acoustic generation permit them efficient fluorescent and PA signal sensing for cancer diagnosis. Moreover, with 808 nm laser irradiation, the generated heat significantly improves the drug release from PCL core, leading to synergetic chemo-photothermal therapy and decreases tumor recurrence rates in mice. Overall, the biocompatible multifunctional micelles with these combined advantages can potentially be utilized for PAI guided disease diagnosis and tumor ablation.
Collapse
|
50
|
Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment. Sci Rep 2016; 6:33003. [PMID: 27609319 PMCID: PMC5016780 DOI: 10.1038/srep33003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/18/2016] [Indexed: 01/16/2023] Open
Abstract
Cell-penetrating peptides (CPP) are received a lot of attention as an intracellular delivery tool for hydrophilic molecules such as drugs, proteins, and DNAs. We designed and synthesized nona-arginine analogues 1–5 [FAM-β-Ala-(l-Arg-l-Arg-l-Pro)3-(Gly)3-NH2 (1), FAM-β-Ala-(l-Arg-l-Arg-l-ProNH2)3-(Gly)3-NH2 (2), FAM-β-Ala-(l-Arg-l-Arg-l-ProGu)3-(Gly)3-NH2 (3), FAM-β-Ala-(l-Arg)2-(l-ProGu)2-(l-Arg)4-l-ProGu-(Gly)3-NH2 (4), and FAM-β-Ala-(l-Arg)6-(l-ProGu)3-(Gly)3-NH2 (5)] containing l-proline (l-Pro) or cationic proline derivatives (l-ProNH2 and l-ProGu), and investigated their cell-penetrating abilities. Interestingly, only peptide 3 having the side-chain guanidinyl l-ProGu exhibited a secondary structural change in cellular environment. Specifically, peptide 3 formed a random structure in hydrophilic conditions, whereas it formed a helical structure under amphipathic conditions. Furthermore, during cellular permeability tests, peptide 3 demonstrated greater cell-penetrating activity than other peptides and effectively transported plasmid DNA into HeLa cells. Thus, l-ProGu-containing peptide 3 may be a useful candidate as a gene delivery carrier.
Collapse
|