1
|
Shimoyama D, Sekiya R, Inoue S, Hisano N, Tate SI, Haino T. Conformation Regulation of Trisresorcinarene Directed by Cavity Solvation. Chemistry 2024; 30:e202402922. [PMID: 39215609 DOI: 10.1002/chem.202402922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
This compound is a synthetic macrocycle comprising three pivaloyl-protected resorcinarene units connected by six pentylene chains. We conducted a conformational study using 1H-NMR, X-ray diffraction (XRD), and computational analyses. The macrocycle adopts two conformers, one open, the other closed. The ratio of the open to closed forms depended on the solvent used. Only the open form existed in [D8]toluene, both forms coexisted in [D6]benzene, and the closed form was the major conformer in [D1]chloroform. The benzene-solvated open form observed in the solid state suggests that cavity solvation by solvent molecules directs the open form. The open form was the major or only conformer in [D10]o- and [D10]m-xylene and [D12]mesitylene, whereas the closed form was the major conformer in [D6]acetone. The open and closed forms were equally populated in [D10]p-xylene, suggesting that the size, shape, and dimensions of the solvent molecules most likely influenced the conformation of the protected trisresocinarene.
Collapse
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ryo Sekiya
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Shoichiro Inoue
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Naoyuki Hisano
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shin-Ichi Tate
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
2
|
Das S, Sai Naik MB, Maliyekkal G, Maity SB, Jana A. Recent update on the electroactive oligopyrrolic macrocyclic hosts with a Bucky-ball heart. Chem Commun (Camb) 2023; 59:12972-12985. [PMID: 37828866 DOI: 10.1039/d3cc04028c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Supramolecular chemistry is a multidisciplinary research area mostly associated with the investigation of host-guest interactions within intricate three-dimensional (3D) molecular architectures held together reversibly by various non-covalent interactions. Continuous efforts to develop such kinds of complex host-guest systems with designer oligopyrrolic macrocyclic receptors are a rapidly growing research domain, which is deeply involved in applied supramolecular chemistry research. These host-guest supramolecular complexes can be constructed by combining suitable electron-rich oligopyrrolic donors (as a host) with complementary electron-poor guests (as acceptors), held together by the ionic force of attraction triggered by intermolecular charge/electron transfer (CT/ET) transitions. Some of these resulting CT/ET ensembles are potential candidates for the construction of efficient optoelectronic materials, optical sensors, molecular switches, etc. In this Feature Article we aim to focus on these supramolecular ensembles composed by size and shape complementary electroactive oligopyrrolic molecular containers, which are suitable for spherical guest (e.g., buckminsterfullerene) complexation. We also provide a "state-of-the-art" overview on plausible applications of these particular host-guest systems. Our aim is to cover only specific electron-rich tetrathiafulvalene (TTF)-based oligopyrrolic receptors, e.g., TTF-calix[4]pyrroles, TTF-cryptands, TTF-porphyrins and exTTF-porphyrin-based molecular motifs reported to date, along with a brief outlining of their "functional behaviour" in materials chemistry research.
Collapse
Affiliation(s)
- Shubhasree Das
- Applied Supramolecular Chemistry Research Laboratory, Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), Gandhinagar, Rushikonda, Visakhapatnam - 530045, Andhra Pradesh, India.
| | - M Bhargav Sai Naik
- Applied Supramolecular Chemistry Research Laboratory, Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), Gandhinagar, Rushikonda, Visakhapatnam - 530045, Andhra Pradesh, India.
| | - Godwin Maliyekkal
- Department of Chemical Sciences, IISER Mohali, Manauli - 140306, Punjab, India
| | - Shubhra Bikash Maity
- Faculty of Physical and Mathematical Sciences, Department of Chemistry, C. V. Raman Global University, Bhubaneswar - 752054, India
| | - Atanu Jana
- Applied Supramolecular Chemistry Research Laboratory, Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), Gandhinagar, Rushikonda, Visakhapatnam - 530045, Andhra Pradesh, India.
| |
Collapse
|
3
|
Yumura T, Sugimori N, Fukuura S. Theoretical understanding of stability of mechanically interlocked carbon nanotubes and their precursors. Phys Chem Chem Phys 2023; 25:7527-7539. [PMID: 36853805 DOI: 10.1039/d2cp04738a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Dispersion-corrected DFT calculations were performed on (a,a) nanotubes (a = 5-10) attached by a U-shaped functional group consisting of p-xylene-linked double 9,10-di(1,3-dithiol-2-ylidene)-9,10-dihydro anthracene terminated by CnH2n chains (n = 6, 8, and 9), and their ring-closing macrocycles containing tubes. The reactant precursors and macrocycles are denoted by UP-n-(a,a) and (a,a)@Cycle-n, respectively. We found that UP-n-(a,a) are energetically preferable relative to the dissociation limit toward a U-shaped functional group (UP-n) and a tube (initial state) due to the attractive CH-π and π-π interactions. The attractive interactions are enhanced by increasing the tube diameters and CnH2n chain lengths because UP-n structures can be easily adjusted to interact with the tubes. The stability of (a,a)@Cycle-n and related (a,b)@Cycle-n is sensitive to tube diameters due to the restriction of ring structures. When diameter differences between a Cycle-n and a tube (D-d) are larger than 5 Å, (a,a)@Cycle-n plus C2H4 are energetically preferable relative to the initial state. However, the (a,a)@Cycle-n plus C2H4 byproduct is always energetically unstable relative to UP-n-(a,a). The DFT calculations found that the energy differences were low at D-d values ranging from 7 to 8 Å, explaining the tube-diameter-selective formation of the mechanically-interlocked tubes, observed experimentally.
Collapse
Affiliation(s)
- Takashi Yumura
- Faculty of Materials Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Nobuyuki Sugimori
- Faculty of Materials Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Shuta Fukuura
- Faculty of Materials Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
4
|
Sen S, Ishiwari F, Kaur R, Ishida M, Ray D, Kikuchi K, Mori T, Bähring S, Lynch VM, Saeki A, Guldi DM, Sessler JL, Jana A. Supramolecular Recognition within a Nanosized "Buckytrap" That Exhibits Substantial Photoconductivity. J Am Chem Soc 2023; 145:1031-1039. [PMID: 36608693 DOI: 10.1021/jacs.2c10555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report here a nanosized "buckytrap", 1, constructed from two bis-zinc(II) expanded-TTF (exTTF) porphyrin subunits. Two forms, 1a and 1b, differing in the axial ligands, H2O vs tetrahydrofuran (THF), were isolated and characterized. Discrete host-guest inclusion complexes are formed upon treatment with fullerenes as inferred from a single-crystal X-ray structural analyses of 1a with C70. The fullerene is found to be encapsulated within the inner pseudohexagonal cavity of 1a. In contrast, the corresponding free-base derivative (2) was found to form infinite ball-and-socket type supramolecular organic frameworks (3D-SOFs) with fullerenes, (2•C60)n or (2•C70)n. This difference is ascribed to the fact that in 1a and 1b the axial positions are blocked by a H2O or THF ligand. Emission spectroscopic studies supported a 1:1 host-guest binding stoichiometry, allowing association constants of (2.0 ± 0.5) × 104 M-1 and (4.3 ± 0.9) × 104 M-1 to be calculated for C60 and C70, respectively. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) studies of solid films of the Zn-complex 1a revealed that the intrinsic charge carrier transport, i.e., pseudo-photoconductivity (ϕ∑μ), increases upon fullerene inclusion (e.g., ϕ∑μ = 1.53 × 10-4 cm2 V-1 s-1 for C60⊂(1a)2 and ϕ∑μ = 1.45 × 10-4 cm2 V-1 s-1 for C70⊂(1a)2 vs ϕ∑μ = 2.49 × 10-5 cm2 V-1 s-1 for 1a) at 298 K. These findings provide support for the notion that controlling the nature of self-assembly supramolecular constructs formed from exTTF-porphyrin dimers through metalation or choice of fullerene can be used to regulate key functional features, including photoconductivity.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street Stop A 5300, Austin, Texas 78712-1224, United States
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ramandeep Kaur
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Masatoshi Ishida
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Debmalya Ray
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Koichi Kikuchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Takehiko Mori
- Department of Materials Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguru-ku, Tokyo 152-8552, Japan
| | - Steffen Bähring
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street Stop A 5300, Austin, Texas 78712-1224, United States
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street Stop A 5300, Austin, Texas 78712-1224, United States
| | - Atanu Jana
- Applied Supramolecular Chemistry Research Laboratory, Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), Gandhinagar, Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India
| |
Collapse
|
5
|
Sacristán-Martín A, Miguel D, Diez-Varga A, Barbero H, Álvarez CM. From Induced-Fit Assemblies to Ternary Inclusion Complexes with Fullerenes in Corannulene-Based Molecular Tweezers. J Org Chem 2022; 87:16691-16706. [DOI: 10.1021/acs.joc.2c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Adriana Sacristán-Martín
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Daniel Miguel
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Alberto Diez-Varga
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Héctor Barbero
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Celedonio M. Álvarez
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| |
Collapse
|
6
|
López‐Moreno A, Ibáñez S, Moreno‐Da Silva S, Ruiz‐González L, Sabanés NM, Peris E, Pérez EM. Single-Walled Carbon Nanotubes Encapsulated within Metallacycles. Angew Chem Int Ed Engl 2022; 61:e202208189. [PMID: 35789180 PMCID: PMC9544689 DOI: 10.1002/anie.202208189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 12/28/2022]
Abstract
Mechanically interlocked derivatives of carbon nanotubes (MINTs) are interesting nanotube products since they show high stability without altering the carbon nanotube structure. So far, MINTs have been synthesized using ring-closing metathesis, disulfide exchange reaction, H-bonding or direct threading with macrocycles. Here, we describe the encapsulation of single-walled carbon nanotubes within a palladium-based metallosquare. The formation of MINTs was confirmed by a variety of techniques, including high-resolution transmission electron microscopy. We find the making of these MINTs is remarkably sensitive to structural variations of the metallo-assemblies. When a metallosquare with a cavity of appropriate shape and size is used, the formation of the MINT proceeds successfully by both templated clipping and direct threading. Our studies also show indications on how supramolecular coordination complexes can help expand the potential applications of MINTs.
Collapse
Affiliation(s)
| | - Susana Ibáñez
- Institute of Advanced Materials (INAM)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Jaume IAv. Vicente Sos Baynat s/n.12071CastellónSpain
| | | | - Luisa Ruiz‐González
- Departamento de Química Inorgánica and Centro Nacional de Microscopía ElectrónicaUniversidad Complutense de Madrid28040MadridSpain
| | | | - Eduardo Peris
- Institute of Advanced Materials (INAM)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Jaume IAv. Vicente Sos Baynat s/n.12071CastellónSpain
| | | |
Collapse
|
7
|
López-Moreno A, Ibáñez S, Moreno-Da Silva S, Ruiz-González L, Martín Sabanés N, Peris E, Pérez EM. Single‐Walled Carbon Nanotubes Encapsulated within Metallacycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Susana Ibáñez
- Universitat Jaume I: Universitat Jaume I Instituto de Materiales Avanzados, INAM SPAIN
| | | | | | | | - Eduardo Peris
- Universitat Jaume I: Universitat Jaume I Institute of Advanced Materials (INAM) SPAIN
| | - Emilio M. Pérez
- IMDEA Nanoscience - Faraday 9, Ciudad Universitaria de Cantoblanco 28049 Madrid SPAIN
| |
Collapse
|
8
|
Larsen ES, Ahumada G, Sultane PR, Bielawski CW. Stereoelectronically-induced allosteric binding: shape complementarity promotes positive cooperativity in fullerene/buckybowl complexes. Chem Commun (Camb) 2022; 58:6498-6501. [PMID: 35575168 DOI: 10.1039/d2cc01908f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel 2 : 1 host-guest complex forms between 8-tert-butyl-6b2-azapenta-benzo[bc,ef,hi,kl,no]corannulene (1) and C60 with positive cooperativity (α = 2.56) and high affinity (K1 × K2 = 2.8 × 106 M-2) at 25 °C. The C60 undergoes increasing shape complementarity toward 1 throughout the binding process.
Collapse
Affiliation(s)
- Eric S Larsen
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea. .,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Guillermo Ahumada
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| | - Prakash R Sultane
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea. .,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
9
|
Rothschild DA, Kopcha WP, Tran A, Zhang J, Lipke MC. Gram-scale synthesis of a covalent nanocage that preserves the redox properties of encapsulated fullerenes. Chem Sci 2022; 13:5325-5332. [PMID: 35655559 PMCID: PMC9093146 DOI: 10.1039/d2sc00445c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Discrete nanocages provide a way to solubilize, separate, and tune the properties of fullerenes, but these 3D receptors cannot usually be synthesized easily from inexpensive starting materials, limiting their utility. Herein, we describe the first fullerene-binding nanocage (Cage4+) that can be made efficiently on a gram scale. Cage4+ was prepared in up to 57% yield by the formation of pyridinium linkages between complemantary porphyrin components that are themselves readily accessible. Cage4+ binds C60 and C70 with large association constants (>108 M−1), thereby solubilizing these fullerenes in polar solvents. Fullerene association and redox-properties were subsequently investigated across multiple charge states of the host-guest complexes. Remarkably, neutral and singly reduced fullerenes bind with similar strengths, leaving their 0/1− redox couples minimally perturbed and fully reversible, whereas other hosts substantially alter the redox properties of fullerenes. Thus, C60@Cage4+ and C70@Cage4+ may be useful as solubilized fullerene derivatives that preserve the inherent electron-accepting and electron-transfer capabilities of the fullerenes. Fulleride dianions were also found to bind strongly in Cage4+, while further reduction is centered on the host, leading to lowered association of the fulleride guest in the case of C602−. This report describes the first gram-scale synthesis of a nanocage that can host fullerenes (C60 and C70). The redox properties of the fullerenes are preserved in this host, enabling characterization of complexes with fulleride anions and dianions.![]()
Collapse
Affiliation(s)
- Daniel A Rothschild
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Aaron Tran
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| |
Collapse
|
10
|
Heterospin frustration in a metal-fullerene-bonded semiconductive antiferromagnet. Nat Commun 2022; 13:495. [PMID: 35078998 PMCID: PMC8789904 DOI: 10.1038/s41467-022-28134-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022] Open
Abstract
Lithium-ion-encapsulated fullerenes (Li+@C60) are 3D superatoms with rich oxidative states. Here we show a conductive and magnetically frustrated metal–fullerene-bonded framework {[Cu4(Li@C60)(L)(py)4](NTf2)(hexane)}n (1) (L = 1,2,4,5-tetrakis(methanesulfonamido)benzene, py = pyridine, NTf2− = bis(trifluoromethane)sulfonamide anion) prepared from redox-active dinuclear metal complex Cu2(L)(py)4 and lithium-ion-encapsulated fullerene salt (Li+@C60)(NTf2−). Electron donor Cu2(L)(py)2 bonds to acceptor Li+@C60 via eight Cu‒C bonds. Cu–C bond formation stems from spontaneous charge transfer (CT) between Cu2(L)(py)4 and (Li+@C60)(NTf2−) by removing the two-terminal py molecules, yielding triplet ground state [Cu2(L)(py)2]+(Li+@C60•−), evidenced by absorption and electron paramagnetic resonance (EPR) spectra, magnetic properties and quantum chemical calculations. Moreover, Li+@C60•− radicals (S = ½) and Cu2+ ions (S = ½) interact antiferromagnetically in triangular spin lattices in the absence of long-range magnetic ordering to 1.8 K. The low-temperature heat capacity indicated that compound 1 is a potential candidate for an S = ½ quantum spin liquid (QSL). Conductive and magnetically frustrated solids may enable the development of high-performance molecule-based spintronic devices. Here the authors report a conductive and magnetically frustrated metal–fullerene-bonded framework prepared from a redox-active dinuclear copper complex and lithium ion-encapsulated fullerenes.
Collapse
|
11
|
Chaudhry MT, Ota S, Lelj F, MacLachlan MJ. Breathing Room: Restoring Free Rotation in a Schiff-Base Macrocycle through Endoperoxide Formation. Org Lett 2021; 23:9538-9542. [PMID: 34870998 DOI: 10.1021/acs.orglett.1c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macrocyclization is a popular method for preparing hosts, but it can have unintended effects, like limiting molecular free rotation to yield mixtures of inseparable isomers. We report a [3 + 3] Schiff-base macrocycle (1) with anthracene bridges. Restricted rotation about the phenyl-anthracene bonds leads 1 to exist as a mixture of conformations (1Cs and 1C3v). Macrocycle 1 was photooxidized to tris(endoperoxide) adduct 4, alleviating restricted rotation. These results were supported by spectroscopic, structural, and computational analyses.
Collapse
Affiliation(s)
- Mohammad T Chaudhry
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Seiya Ota
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Francesco Lelj
- La.M.I. and LaSCAMM INSTM Sezione Basilicata, Dipartimento di Chimica, Università della Basilicta, Via dell'Ateneo Lucano 10, Potenza 85100, Italy
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan.,Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
12
|
Dekhtiarenko M, Pascal S, Elhabiri M, Mazan V, Canevet D, Allain M, Carré V, Aubriet F, Voitenko Z, Sallé M, Siri O, Goeb S. Reversible pH-Controlled Catenation of a Benzobisimidazole-Based Tetranuclear Rectangle. Chemistry 2021; 27:15922-15927. [PMID: 34478209 DOI: 10.1002/chem.202103039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/09/2022]
Abstract
The development of methodologies to control on demand and reversibly supramolecular transformations from self-assembled metalla-structures requires the rational design of architectures able to answer to an applied stimulus. While solvent or concentration changes, light exposure or addition of a chemical have been largely explored to provide these transformations, the case of pH sensitive materials is less described. Herein, we report the first example of a pH-triggered dissociation of a coordination-driven self-assembled interlocked molecular link. It incorporates a pH sensitive benzobisimidazole-based ligand that can be selectively protonated on its bisimidazole moieties. This generates intermolecular electrostatic repulsions that reduces drastically the stability of the interlocked structure, leading to its dissociation without any sign of protonation of the pyridine moieties involved in the coordination bonds. Importantly, the dissociation process is reversible through addition of a base.
Collapse
Affiliation(s)
- Maksym Dekhtiarenko
- Univ Angers, CNRS, MOLTECH-Anjou, 2 bd Lavoisier, 49045, Angers, France.,Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska st., Kyiv, 01033, Ukraine
| | - Simon Pascal
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, 13288, Marseille cedex 09, France
| | - Mourad Elhabiri
- Université de Strasbourg, Université de Haute-Alsace, CNRS, LIMA, UMR 7042, Equipe Chimie Bioorganique et Médicinale, ECPM, 25 Rue Becquerel, 67000, Strasbourg, France
| | - Valerie Mazan
- Université de Strasbourg, Université de Haute-Alsace, CNRS, LIMA, UMR 7042, Equipe Chimie Bioorganique et Médicinale, ECPM, 25 Rue Becquerel, 67000, Strasbourg, France
| | - David Canevet
- Univ Angers, CNRS, MOLTECH-Anjou, 2 bd Lavoisier, 49045, Angers, France
| | - Magali Allain
- Univ Angers, CNRS, MOLTECH-Anjou, 2 bd Lavoisier, 49045, Angers, France
| | - Vincent Carré
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 1 Bd Arago, 57078, Metz Cedex 03, France
| | - Frédéric Aubriet
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 1 Bd Arago, 57078, Metz Cedex 03, France
| | - Zoia Voitenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska st., Kyiv, 01033, Ukraine
| | - Marc Sallé
- Univ Angers, CNRS, MOLTECH-Anjou, 2 bd Lavoisier, 49045, Angers, France
| | - Olivier Siri
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, 13288, Marseille cedex 09, France
| | - Sébastien Goeb
- Univ Angers, CNRS, MOLTECH-Anjou, 2 bd Lavoisier, 49045, Angers, France
| |
Collapse
|
13
|
Abdollahi MF, Zhao Y. Structural Tuning of Curved TTFAQ-AQ as a Redox-Active Supramolecular Partner for C 70 Fullerene. J Org Chem 2021; 86:14855-14865. [PMID: 34633192 DOI: 10.1021/acs.joc.1c01633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of saddle-shaped donor-acceptor π-systems, termed TTFAQ-AQs, were designed and synthesized. The molecular structures of TTFAQ-AQs feature a π-fused framework containing an anthraquinodimethane extended tetrathiafulvalene (TTFAQ) as the donor and an anthraquinone (AQ) unit as the acceptor. As such, TTFAQ-AQs show enhanced intramolecular charge-transfer properties, which result in amphoteric redox behavior and narrow electronic energy band gaps. Detailed structural and electronic properties were investigated by UV-vis absorption, cyclic voltammetric, and single-crystal X-ray diffraction (SCXRD) analyses. The supramolecular interactions of TTFAQ-AQs with C60 and C70 fullerenes were examined in both the solution and solid phases. Our results showed that the benzoannulated TTFAQ-AQ derivative favors interaction with C70 fullerene through complementary concave-convex interactions. Detailed energetics involved in the TTFAQ-AQ/C70 interactions were assessed by means of density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Maryam F Abdollahi
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Yuming Zhao
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| |
Collapse
|
14
|
Sacristán-Martín A, Barbero H, Ferrero S, Miguel D, García-Rodríguez R, Álvarez CM. ON/OFF metal-triggered molecular tweezers for fullerene recognition. Chem Commun (Camb) 2021; 57:11013-11016. [PMID: 34570131 DOI: 10.1039/d1cc03451k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report molecular tweezers for fullerene recognition based on 2,2'-bipyridine-bearing corannulene motifs. The syn or anti confirmation can be selected simply by Cu(I) coordination/decoordination, thus controlling the fullerene recognition capability of the system on demand and leading to the formation of effective metal-triggered ON/OFF molecular tweezers.
Collapse
Affiliation(s)
- Adriana Sacristán-Martín
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid, E47011, Spain.
| | - Héctor Barbero
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid, E47011, Spain.
| | - Sergio Ferrero
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid, E47011, Spain.
| | - Daniel Miguel
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid, E47011, Spain.
| | - Raúl García-Rodríguez
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid, E47011, Spain.
| | - Celedonio M Álvarez
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid, E47011, Spain.
| |
Collapse
|
15
|
Wang S, Li X, Zhang X, Huang P, Fang P, Wang J, Yang S, Wu K, Du P. A supramolecular polymeric heterojunction composed of an all-carbon conjugated polymer and fullerenes. Chem Sci 2021; 12:10506-10513. [PMID: 34447543 PMCID: PMC8356743 DOI: 10.1039/d1sc03410c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022] Open
Abstract
Herein, we design and synthesize a novel all-carbon supramolecular polymer host (SPh) containing conjugated macrocycles interconnected by a linear poly(para-phenylene) backbone. Applying the supramolecular host and fullerene C60 as the guest, we successfully construct a supramolecular polymeric heterojunction (SPh⊃C60). This carbon structure offers a means to explore the convex-concave π-π interactions between SPh and C60. The produced SPh was characterized by gel permeation chromatography, mass spectrometry, FTIR, Raman spectroscopy, and other spectroscopies. The polymeric segment can be directly viewed using a scanning tunneling microscope. Femtosecond transient absorption and fluorescence up-conversion measurements revealed femtosecond (≪300 fs) electron transfer from photoexcited SPh to C60, followed by nanosecond charge recombination to produce the C60 triplet excited state. The potential applications of SPh⊃C60 in electron- and hole-transport devices were also investigated, revealing that C60 incorporation enhances the charge transport properties of SPh. These results expand the scope of the synthesis and application of supramolecular polymeric heterojunctions.
Collapse
Affiliation(s)
- Shengda Wang
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC) 96 Jinzhai Road Hefei Anhui Province 230026 P. R. China +86-551-63606207
| | - Xingcheng Li
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC) 96 Jinzhai Road Hefei Anhui Province 230026 P. R. China +86-551-63606207
| | - Xinyu Zhang
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC) 96 Jinzhai Road Hefei Anhui Province 230026 P. R. China +86-551-63606207
| | - Pingsen Huang
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC) 96 Jinzhai Road Hefei Anhui Province 230026 P. R. China +86-551-63606207
| | - Pengwei Fang
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC) 96 Jinzhai Road Hefei Anhui Province 230026 P. R. China +86-551-63606207
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Shangfeng Yang
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC) 96 Jinzhai Road Hefei Anhui Province 230026 P. R. China +86-551-63606207
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 P. R. China
| | - Pingwu Du
- Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC) 96 Jinzhai Road Hefei Anhui Province 230026 P. R. China +86-551-63606207
| |
Collapse
|
16
|
Nie H, Li QH, Zhang S, Wang CM, Lin WH, Deng K, Shu LJ, Zeng QD, Wan JH. Figure-eight arylene ethynylene macrocycles: facile synthesis and specific binding behavior toward Hg 2+. Org Chem Front 2021. [DOI: 10.1039/d1qo00812a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two figure-eight arylene ethynylene macrocycles (AEMs) were synthesized from non-helical precursors and the figure-eight shape was clearly imaged by STM.
Collapse
Affiliation(s)
- Hui Nie
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Qian-Hui Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Siqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Chuan-Ming Wang
- Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai, 201208, P. R. China
| | - Wen-Hui Lin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Li-Jin Shu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Qing-Dao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Jun-Hua Wan
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| |
Collapse
|
17
|
Lu YB, Kanehashi S, Minegishi K, Wang SP, Cheng J, Ogino K, Li S. One-pot synthesis of conjugated triphenylamine macrocycles and their complexation with fullerenes. RSC Adv 2021; 11:33431-33437. [PMID: 35497513 PMCID: PMC9042278 DOI: 10.1039/d1ra06200j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 01/18/2023] Open
Abstract
Triphenylamine derivates have been utilized as building blocks in hole-transporting materials. Herein, we describe the synthesis of three octyl-derived conjugated triphenylamine macrocycles with different sizes, and a 4-(2-ethylhexyloxy)-substituted cyclic triphenylamine hexamer using a palladium-catalyzed C–N coupling reaction. These conjugated triphenylamine macrocycles not only have interesting structures, but also are capable of complexing with C60, C70 and PC61BM. Their binding stoichiometries with fullerenes were all determined to be 1 : 1 by an emission titration method. The association constants of these complexes were measured to be in the range of 0.115–1.53 × 105 M−1 depending on the cavity size of the triphenylamine macrocycles and the volume of the fullerenes. The space-charge-limited current properties of the complexes were further investigated using the fabricated ITO/PEDOT:PSS/active layer/Au devices. Cyclic triphenylamine (TPA) oligomers synthesized by C–N coupling were found to be capable of complexing with fullerenes, and the applications in optoelectronic devices were investigated by using the fabricated ITO/PEDOT:PSS/active layer/Au devices.![]()
Collapse
Affiliation(s)
- Ying-Bo Lu
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Shinji Kanehashi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Kazushi Minegishi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Shu-Ping Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Jin Cheng
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
18
|
Dekhtiarenko M, Allain M, Carré V, Aubriet F, Voitenko Z, Sallé M, Goeb S. Comparing the self-assembly processes of two redox-active exTTF-based regioisomer ligands. NEW J CHEM 2021. [DOI: 10.1039/d1nj04555e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new exTTF-based ligand was synthesized and its coordination-driven self-assembly behavior with a square planar palladium complex was compared with a previously described regioisomer.
Collapse
Affiliation(s)
- Maksym Dekhtiarenko
- Univ Angers, CNRS, MOLTECH-Anjou, 2 bd Lavoisier, F-49045 Angers, France
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska st., Kyiv 01033, Ukraine
| | - Magali Allain
- Univ Angers, CNRS, MOLTECH-Anjou, 2 bd Lavoisier, F-49045 Angers, France
| | - Vincent Carré
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 1 Bd Arago, 57078 Metz Cedex 03, France
| | - Frédéric Aubriet
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 1 Bd Arago, 57078 Metz Cedex 03, France
| | - Zoia Voitenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska st., Kyiv 01033, Ukraine
| | - Marc Sallé
- Univ Angers, CNRS, MOLTECH-Anjou, 2 bd Lavoisier, F-49045 Angers, France
| | - Sébastien Goeb
- Univ Angers, CNRS, MOLTECH-Anjou, 2 bd Lavoisier, F-49045 Angers, France
| |
Collapse
|
19
|
Balakrishna B, Menon A, Cao K, Gsänger S, Beil SB, Villalva J, Shyshov O, Martin O, Hirsch A, Meyer B, Kaiser U, Guldi DM, von Delius M. Dynamic Covalent Formation of Concave Disulfide Macrocycles Mechanically Interlocked with Single-Walled Carbon Nanotubes. Angew Chem Int Ed Engl 2020; 59:18774-18785. [PMID: 32544289 PMCID: PMC7590186 DOI: 10.1002/anie.202005081] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 02/02/2023]
Abstract
The formation of discrete macrocycles wrapped around single-walled carbon nanotubes (SWCNTs) has recently emerged as an appealing strategy to functionalize these carbon nanomaterials and modify their properties. Here, we demonstrate that the reversible disulfide exchange reaction, which proceeds under mild conditions, can install relatively large amounts of mechanically interlocked disulfide macrocycles on the one-dimensional nanotubes. Size-selective functionalization of a mixture of SWCNTs of different diameters were observed, presumably arising from error correction and the presence of relatively rigid, curved π-systems in the key building blocks. A combination of UV/Vis/NIR, Raman, photoluminescence excitation, and transient absorption spectroscopy indicated that the small (6,4)-SWCNTs were predominantly functionalized by the small macrocycles 12 , whereas the larger (6,5)-SWCNTs were an ideal match for the larger macrocycles 22 . This size selectivity, which was rationalized computationally, could prove useful for the purification of nanotube mixtures, since the disulfide macrocycles can be removed quantitatively under mild reductive conditions.
Collapse
Affiliation(s)
- Bugga Balakrishna
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Arjun Menon
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Kecheng Cao
- Electron Microscopy of Materials Science, Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sebastian Gsänger
- Interdisciplinary Center for Molecular Materials (ICMM) & Computer-Chemistry-Center (CCC), Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany
| | - Sebastian B Beil
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Julia Villalva
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Oleksandr Shyshov
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Oliver Martin
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Bernd Meyer
- Interdisciplinary Center for Molecular Materials (ICMM) & Computer-Chemistry-Center (CCC), Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany
| | - Ute Kaiser
- Electron Microscopy of Materials Science, Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
20
|
Liu YZ, Zhang JB, Yuan K. Theoretical Prediction on a Novel Reduction-Responsive Nanoring Having a Disulfide Group for Facile Encapsulation and Release of Fullerenes C 60 and C 70. ACS OMEGA 2020; 5:25400-25407. [PMID: 33043220 PMCID: PMC7542849 DOI: 10.1021/acsomega.0c03788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
In this work, a novel reduction-responsive disulfide bond-containing cycloparaphenylene nanoring molecule (DSCPP) with a pyriform shape has been designed. In addition, the interactions between the designed nanoring (host) and fullerenes C60 and C70 (guests) were investigated theoretically at the M06-2X/6-31G(d,p) and M06-L/MIDI! levels of theory. By analyzing geometric characteristics and host-guest binding energies, it is revealed that the designed DSCPP is an ideal host molecule of guests C60 and C70. DSCPP presents excellent elastic deformation during the encapsulation of C60 and C70. The high binding energies suggest that both DSCPP⊃C60 and DSCPP⊃C70 (∼92 and 118 kJ·mol-1 at the M06-2X/6-31G(d,p) level of theory) are stable host-guest complexes, and the guest C70 is more strongly encapsulated than C60 in the gas phase. The thermodynamic information indicates that the formation of the two host-guest complexes is thermodynamically spontaneous. In addition, the frontier molecular orbital (FMO) features and intermolecular weak interaction region between DSCPP and fullerenes gusts are discussed to further understand the structures and properties of the DSCPP⊃fullerene systems. Finally, the ring-opening mechanism of the DSCPP under reduction conditions is investigated.
Collapse
Affiliation(s)
- Yan-Zhi Liu
- School
of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
- Key
Laboratory for New Molecule Materials Design and Function of Gansu
Universities, Tianshui Normal University, Tianshui 741001, China
| | - Jian-Bin Zhang
- School
of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
| | - Kun Yuan
- School
of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
- Key
Laboratory for New Molecule Materials Design and Function of Gansu
Universities, Tianshui Normal University, Tianshui 741001, China
| |
Collapse
|
21
|
Balakrishna B, Menon A, Cao K, Gsänger S, Beil SB, Villalva J, Shyshov O, Martin O, Hirsch A, Meyer B, Kaiser U, Guldi DM, Delius M. Mechanische Verzahnung von einwandigen Kohlenstoffnanoröhren durch dynamisch‐kovalente Bildung von konkaven Disulfidmakrozyklen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bugga Balakrishna
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Arjun Menon
- Department Chemie und Pharmazie & Interdisziplinäres Zentrum für Molekulare Materialien Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Deutschland
| | - Kecheng Cao
- Elektronenmikroskopie der Materialwissenschaften Zentrale Einrichtung für Elektronenmikroskopie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Sebastian Gsänger
- Interdisziplinäres Zentrum für Molekulare Materialien & Computer-Chemie-Zentrum (CCC) Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstrasse 25 91052 Erlangen Deutschland
| | - Sebastian B. Beil
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Julia Villalva
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Oleksandr Shyshov
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Oliver Martin
- Department Chemie und Pharmazie & Gemeinsames Institut für Angewandte Materialien und Prozesse (ZMP) Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Deutschland
| | - Andreas Hirsch
- Department Chemie und Pharmazie & Gemeinsames Institut für Angewandte Materialien und Prozesse (ZMP) Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Deutschland
| | - Bernd Meyer
- Interdisziplinäres Zentrum für Molekulare Materialien & Computer-Chemie-Zentrum (CCC) Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstrasse 25 91052 Erlangen Deutschland
| | - Ute Kaiser
- Elektronenmikroskopie der Materialwissenschaften Zentrale Einrichtung für Elektronenmikroskopie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Dirk M. Guldi
- Department Chemie und Pharmazie & Interdisziplinäres Zentrum für Molekulare Materialien Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Deutschland
| | - Max Delius
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
22
|
Wielend D, Vera-Hidalgo M, Seelajaroen H, Sariciftci NS, Pérez EM, Whang DR. Mechanically Interlocked Carbon Nanotubes as a Stable Electrocatalytic Platform for Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32615-32621. [PMID: 32573248 PMCID: PMC7383929 DOI: 10.1021/acsami.0c06516] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/23/2020] [Indexed: 05/23/2023]
Abstract
Mechanically interlocking redox-active anthraquinone onto single-walled carbon nanotubes (AQ-MINT) gives a new and advanced example of a noncovalent architecture for an electrochemical platform. Electrochemical studies of AQ-MINT as an electrode reveal enhanced electrochemical stability in both aqueous and organic solvents compared to physisorbed AQ-based electrodes. While maintaining the electrochemical properties of the parent anthraquinone molecules, we observe a stable oxygen reduction reaction to hydrogen peroxide (H2O2). Using such AQ-MINT electrodes, 7 and 2 μmol of H2O2 are produced over 8 h under basic and neutral conditions, while the control system of SWCNTs produces 2.2 and 0.5 μmol, respectively. These results reveal the potential of this rotaxane-type immobilization approach for heterogenized electrocatalysis.
Collapse
Affiliation(s)
- Dominik Wielend
- Linz
Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Mariano Vera-Hidalgo
- IMDEA
Nanociencia, Ciudad Universitaria de Cantoblanco, c/Faraday 9, 28049 Madrid, Spain
| | - Hathaichanok Seelajaroen
- Linz
Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Niyazi Serdar Sariciftci
- Linz
Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Emilio M. Pérez
- IMDEA
Nanociencia, Ciudad Universitaria de Cantoblanco, c/Faraday 9, 28049 Madrid, Spain
| | - Dong Ryeol Whang
- Linz
Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
- Department
of Advanced Materials, Hannam University, 1646 Yuseong-Daro, Yuseong-Gu, Daejeon 34054, Republic of Korea
| |
Collapse
|
23
|
Krykun S, Dekhtiarenko M, Canevet D, Carré V, Aubriet F, Levillain E, Allain M, Voitenko Z, Sallé M, Goeb S. Metalla-Assembled Electron-Rich Tweezers: Redox-Controlled Guest Release Through Supramolecular Dimerization. Angew Chem Int Ed Engl 2020; 59:716-720. [PMID: 31670452 DOI: 10.1002/anie.201912016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Developing methodologies for on-demand control of the release of a molecular guest requires the rational design of stimuli-responsive hosts with functional cavities. While a substantial number of responsive metallacages have already been described, the case of coordination-tweezers has been less explored. Herein, we report the first example of a redox-triggered guest release from a metalla-assembled tweezer. This tweezer incorporates two redox-active panels constructed from the electron-rich 9-(1,3-dithiol-2-ylidene)fluorene unit that are facing each other. It dimerizes spontaneously in solution and the resulting interpenetrated supramolecular structure can dissociate in the presence of an electron-poor planar unit, forming a 1:1 host-guest complex. This complex dissociates upon tweezer oxidation/dimerization, offering an original redox-triggered molecular delivery pathway.
Collapse
Affiliation(s)
- Serhii Krykun
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 Bd Lavoisier, 49045, Angers Cedex, France.,Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska st., Kyiv, 01033, Ukraine
| | - Maksym Dekhtiarenko
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 Bd Lavoisier, 49045, Angers Cedex, France.,Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska st., Kyiv, 01033, Ukraine
| | - David Canevet
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 Bd Lavoisier, 49045, Angers Cedex, France
| | - Vincent Carré
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 1 Bd Arago, 57078, Metz Cedex 03, France
| | - Frédéric Aubriet
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 1 Bd Arago, 57078, Metz Cedex 03, France
| | - Eric Levillain
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 Bd Lavoisier, 49045, Angers Cedex, France
| | - Magali Allain
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 Bd Lavoisier, 49045, Angers Cedex, France
| | - Zoia Voitenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska st., Kyiv, 01033, Ukraine
| | - Marc Sallé
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 Bd Lavoisier, 49045, Angers Cedex, France
| | - Sébastien Goeb
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200, UNIV Angers, SFR MATRIX, 2 Bd Lavoisier, 49045, Angers Cedex, France
| |
Collapse
|
24
|
Krykun S, Dekhtiarenko M, Canevet D, Carré V, Aubriet F, Levillain E, Allain M, Voitenko Z, Sallé M, Goeb S. Metalla‐Assembled Electron‐Rich Tweezers: Redox‐Controlled Guest Release Through Supramolecular Dimerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Serhii Krykun
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200UNIV AngersSFR MATRIX 2 Bd Lavoisier 49045 Angers Cedex France
- Taras Shevchenko National University of Kyiv 64/13 Volodymyrska st. Kyiv 01033 Ukraine
| | - Maksym Dekhtiarenko
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200UNIV AngersSFR MATRIX 2 Bd Lavoisier 49045 Angers Cedex France
- Taras Shevchenko National University of Kyiv 64/13 Volodymyrska st. Kyiv 01033 Ukraine
| | - David Canevet
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200UNIV AngersSFR MATRIX 2 Bd Lavoisier 49045 Angers Cedex France
| | - Vincent Carré
- LCP-A2MC, FR 3624Université de Lorraine, ICPM 1 Bd Arago 57078 Metz Cedex 03 France
| | - Frédéric Aubriet
- LCP-A2MC, FR 3624Université de Lorraine, ICPM 1 Bd Arago 57078 Metz Cedex 03 France
| | - Eric Levillain
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200UNIV AngersSFR MATRIX 2 Bd Lavoisier 49045 Angers Cedex France
| | - Magali Allain
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200UNIV AngersSFR MATRIX 2 Bd Lavoisier 49045 Angers Cedex France
| | - Zoia Voitenko
- Taras Shevchenko National University of Kyiv 64/13 Volodymyrska st. Kyiv 01033 Ukraine
| | - Marc Sallé
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200UNIV AngersSFR MATRIX 2 Bd Lavoisier 49045 Angers Cedex France
| | - Sébastien Goeb
- Laboratoire MOLTECH-Anjou, UMR CNRS 6200UNIV AngersSFR MATRIX 2 Bd Lavoisier 49045 Angers Cedex France
| |
Collapse
|
25
|
Yang L, Zhang N, Han Y, Zou Y, Qiao Y, Chang D, Zhao Y, Lu X, Wu J, Liu Y. A sulfur-containing hetero-octulene: synthesis, host–guest properties, and transistor applications. Chem Commun (Camb) 2020; 56:9990-9993. [DOI: 10.1039/d0cc04289g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A heterocycloarene derivative (S-Octulene) possessing two sulfur atoms was conveniently synthesized through Bi(OTf)3-catalyzed cyclization from a macrocyclic tetramethoxyethenylated precursor.
Collapse
Affiliation(s)
- Longfei Yang
- Department of Materials Science
- Fudan University
- Shanghai 200438
- China
| | - Ning Zhang
- Department of Materials Science
- Fudan University
- Shanghai 200438
- China
| | - Yi Han
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Ya Zou
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Yanjun Qiao
- Department of Materials Science
- Fudan University
- Shanghai 200438
- China
| | - Dongdong Chang
- Department of Materials Science
- Fudan University
- Shanghai 200438
- China
| | - Yan Zhao
- Department of Materials Science
- Fudan University
- Shanghai 200438
- China
| | - Xuefeng Lu
- Department of Materials Science
- Fudan University
- Shanghai 200438
- China
| | - Jishan Wu
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Yunqi Liu
- Department of Materials Science
- Fudan University
- Shanghai 200438
- China
| |
Collapse
|
26
|
Dekhtiarenko M, Krykun S, Carré V, Aubriet F, Canevet D, Allain M, Voitenko Z, Sallé M, Goeb S. Tuning the structure and the properties of dithiafulvene metalla-assembled tweezers. Org Chem Front 2020. [DOI: 10.1039/d0qo00641f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An electroactive M2L2 metalla-macrocycle constructed through coordination driven self-assembly dimerizes upon oxidation and binds an electro-deficient substrate with a high association constant.
Collapse
Affiliation(s)
- Maksym Dekhtiarenko
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Serhii Krykun
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Vincent Carré
- LCP-A2MC
- FR 3624
- Université de Lorraine
- ICPM
- 57078 Metz Cedex 03
| | | | - David Canevet
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Magali Allain
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Zoia Voitenko
- Taras Shevchenko National University of Kyiv
- Kyiv 01033
- Ukraine
| | - Marc Sallé
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Sébastien Goeb
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| |
Collapse
|
27
|
Zhang X, Han Y, Liu G, Wang F. Macrocyclic versus acyclic preorganization in organoplatinum(II)-based host‒guest complexes. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Nakamura T, Tsukuda S, Nabeshima T. Double-Circularly Connected Saloph-Belt Macrocycles Generated from a Bis-Armed Bifunctional Monomer. J Am Chem Soc 2019; 141:6462-6467. [DOI: 10.1021/jacs.9b00171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Takashi Nakamura
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Shinnosuke Tsukuda
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tatsuya Nabeshima
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
29
|
Huang Q, Zhuang G, Jia H, Qian M, Cui S, Yang S, Du P. Photoconductive Curved-Nanographene/Fullerene Supramolecular Heterojunctions. Angew Chem Int Ed Engl 2019; 58:6244-6249. [PMID: 30843633 DOI: 10.1002/anie.201900084] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 11/06/2022]
Abstract
This study presents synthesis and characterizations of two novel curved nanographenes that strongly bind with fullerene C60 to form photoconductive heterojunctions. Films of the self-assembled curved nanographene/fullerene complexes, which served as the photoconductive layer, generated a significant photocurrent under light irradiation. Gram-scale quantities of these curved nanographenes (TCR and HCR) as the "crown" sidewalls can be incorporated into a carbon nanoring to form molecular crowns, and the molecular structure of C60 @TCR is determined by single-crystal X-ray diffraction. The UV/Vis absorption and emission spectra, and theoretical studies revealed their unique structural features and photophysical properties. Time-resolved spectroscopic results clearly suggest fast photoinduced electron transfer process in the supramolecular heterojunctions.
Collapse
Affiliation(s)
- Qiang Huang
- Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), Hefei, Hefei National Laboratory for Physical Anhui Province, 230026, P. R. China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, Zhejiang Province, 310032, P. R. China
| | - Hongxing Jia
- Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), Hefei, Hefei National Laboratory for Physical Anhui Province, 230026, P. R. China
| | - Manman Qian
- Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), Hefei, Hefei National Laboratory for Physical Anhui Province, 230026, P. R. China
| | - Shengsheng Cui
- Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), Hefei, Hefei National Laboratory for Physical Anhui Province, 230026, P. R. China
| | - Shangfeng Yang
- Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), Hefei, Hefei National Laboratory for Physical Anhui Province, 230026, P. R. China
| | - Pingwu Du
- Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China (USTC), Hefei, Hefei National Laboratory for Physical Anhui Province, 230026, P. R. China
| |
Collapse
|
30
|
Huang Q, Zhuang G, Jia H, Qian M, Cui S, Yang S, Du P. Photoconductive Curved‐Nanographene/Fullerene Supramolecular Heterojunctions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900084] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qiang Huang
- Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)University of Science and Technology of China (USTC) Hefei Hefei National Laboratory for Physical Anhui Province 230026 P. R. China
| | - Guilin Zhuang
- College of Chemical EngineeringZhejiang University of Technology 18, Chaowang Road Hangzhou Zhejiang Province 310032 P. R. China
| | - Hongxing Jia
- Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)University of Science and Technology of China (USTC) Hefei Hefei National Laboratory for Physical Anhui Province 230026 P. R. China
| | - Manman Qian
- Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)University of Science and Technology of China (USTC) Hefei Hefei National Laboratory for Physical Anhui Province 230026 P. R. China
| | - Shengsheng Cui
- Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)University of Science and Technology of China (USTC) Hefei Hefei National Laboratory for Physical Anhui Province 230026 P. R. China
| | - Shangfeng Yang
- Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)University of Science and Technology of China (USTC) Hefei Hefei National Laboratory for Physical Anhui Province 230026 P. R. China
| | - Pingwu Du
- Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and Engineering,iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)University of Science and Technology of China (USTC) Hefei Hefei National Laboratory for Physical Anhui Province 230026 P. R. China
| |
Collapse
|
31
|
Alrawashdeh AI, Zhao Y, Lagowski JB. Conformational Analysis of the Supramolecular Complexation of Diaryl-Substituted Tetrathiafulvalene Vinylogues with Fullerenes. ACS OMEGA 2019; 4:5630-5639. [PMID: 31459717 PMCID: PMC6648624 DOI: 10.1021/acsomega.9b00065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/13/2019] [Indexed: 06/10/2023]
Abstract
Tetrathiafulvalene vinylogues (TTFVs) functionalized with diaryl substituents (aryl = 1-napthyl, 9-anthryl, and 1-pyrenyl) via click chemistry have been previously synthesized and studied as tweezer-type receptors for binding with C60 and C70 fullerenes. In particular, dianthryl-TTFV exhibits unique selectivity for C70 fullerene, giving rise to effective fluorescence turn-on sensing of C70 in the presence of a large excess of C60 fullerene. This observation indicated that dianthryl-TTFV has a preferential binding affinity for C70 over C60 fullerene, but the reason for such selectivity is unclear. Aiming at addressing this issue, we herein investigated the relative conformational stability of diaryl-substituted TTFVs in complexation with C70 and C60 fullerenes. The dispersion-corrected density functional theory approximation (B3LYP-D3) was employed in our computational analysis to determine binding energies and electronic properties of these supramolecular complexes. It was found that the highest binding energies (and the lowest relative conformational energies) are in pairings when fullerenes are placed around the central TTFV moieties (such as the triazole rings). The results of electronic properties show that the dianthryl-TTFV and dipyrenyl-TTFV conformers have lower highest occupied molecular orbital-lowest unoccupied molecular orbital gaps relative to the ones obtained for dinaphthyl-TTFV, indicating that dianthryl-TTFV, and to some extend dipyrenyl-TTFV, could be good candidates for chemical sensing of fullerenes with fluorescence spectroscopy. We also investigated the effect of the solvent on the interactions of the diaryl-TTFVs with fullerenes using the polarizable continuum model. In general, the presence of a solvent decreases the diaryl-TTFV/fullerene binding energies, presumably because of the interactions of the solvent with individual fullerenes and diaryl-TTFVs.
Collapse
Affiliation(s)
- Ahmad I. Alrawashdeh
- Department
of Physics and Physical Oceanography and Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland
and Labrador, Canada A1B
3X7
| | - Yuming Zhao
- Department
of Physics and Physical Oceanography and Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland
and Labrador, Canada A1B
3X7
| | - Jolanta B. Lagowski
- Department
of Physics and Physical Oceanography and Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland
and Labrador, Canada A1B
3X7
| |
Collapse
|
32
|
Toyota S, Tsurumaki E. Exploration of Nano-Saturns: A Spectacular Sphere-Ring Supramolecular System. Chemistry 2019; 25:6878-6890. [DOI: 10.1002/chem.201900039] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/25/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Shinji Toyota
- Department of Chemistry, School of Science; Tokyo Institute of Technology; 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science; Tokyo Institute of Technology; 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
33
|
Calbo J, de Juan A, Aragó J, Villalva J, Martín N, Pérez EM, Ortí E. Understanding the affinity of bis-exTTF macrocyclic receptors towards fullerene recognition. Phys Chem Chem Phys 2019; 21:11670-11675. [DOI: 10.1039/c9cp01735f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Embracing [60]fullerene: Quantification of the C60 affinity with a new series of exTTF macrocycles allows understanding the driving forces governing the supramolecular recognition upon increasing the alkyl ether chain size. Counterintuitively, an outside-ring complexation is found as the preferred arrangement over the expected inside-ring disposition.
Collapse
Affiliation(s)
- Joaquín Calbo
- Instituto de Ciencia Molecular
- Universidad de Valencia
- Spain
| | | | - Juan Aragó
- Instituto de Ciencia Molecular
- Universidad de Valencia
- Spain
| | | | - Nazario Martín
- IMDEA-Nanociencia
- 28049 Madrid
- Spain
- Departamento de Química Orgánica I
- Facultad de Química
| | | | - Enrique Ortí
- Instituto de Ciencia Molecular
- Universidad de Valencia
- Spain
| |
Collapse
|
34
|
Sun W, Wang Y, Ma L, Zheng L, Fang W, Chen X, Jiang H. Self-Assembled Carcerand-like Cage with a Thermoregulated Selective Binding Preference for Purification of High-Purity C60 and C70. J Org Chem 2018; 83:14667-14675. [DOI: 10.1021/acs.joc.8b02674] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weidong Sun
- Key Laboratory of Theoretical and Computational Photochemistry and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ying Wang
- Key Laboratory of Theoretical and Computational Photochemistry and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lishuang Ma
- Key Laboratory of Theoretical and Computational Photochemistry and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lu Zheng
- Key Laboratory of Theoretical and Computational Photochemistry and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hua Jiang
- Key Laboratory of Theoretical and Computational Photochemistry and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
35
|
Ksenofontov AA, Bichan NG, Khodov IA, Antina EV, Berezin MB, Vyugin AI. Novel non-covalent supramolecular systems based on zinc(II) bis(dipyrromethenate)s with fullerenes. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Kawano SI, Fukushima T, Tanaka K. Specific and Oriented Encapsulation of Fullerene C70
into a Supramolecular Double-Decker Cage Composed of Shape-Persistent Macrocycles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shin-ichiro Kawano
- Department of Chemistry; Graduate School of Science; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Tomoaki Fukushima
- Department of Chemistry; Graduate School of Science; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Kentaro Tanaka
- Department of Chemistry; Graduate School of Science; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| |
Collapse
|
37
|
Kawano SI, Fukushima T, Tanaka K. Specific and Oriented Encapsulation of Fullerene C70
into a Supramolecular Double-Decker Cage Composed of Shape-Persistent Macrocycles. Angew Chem Int Ed Engl 2018; 57:14827-14831. [DOI: 10.1002/anie.201809167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Shin-ichiro Kawano
- Department of Chemistry; Graduate School of Science; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Tomoaki Fukushima
- Department of Chemistry; Graduate School of Science; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Kentaro Tanaka
- Department of Chemistry; Graduate School of Science; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| |
Collapse
|
38
|
Yang Y, Cheng K, Lu Y, Ma D, Shi D, Sun Y, Yang M, Li J, Wei J. A Polyaromatic Nano-nest for Hosting Fullerenes C 60 and C 70. Org Lett 2018; 20:2138-2142. [PMID: 29629562 DOI: 10.1021/acs.orglett.8b00306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A "Janus" type of hexa- cata-hexabenzocoronene with three triptyceno subunits fused symmetrically on the periphery of coronene has been synthesized using a covalent self-assembly strategy. The triptyceno subunits form a nanosized nest on one side of the aromatic plane with space-matching fullerenes such as C60 and C70 to afford shape-complementary supramolecular complexes. The formation of the complexes in solution was confirmed by 1H NMR and fluorescence titration. Four complexes with C60 or C70 were obtained and studied by single-crystal X-ray diffraction analysis. In the crystal structure, the host shows a proper tunability to adjust its conformation in accordance with the shape of the guest. The different stoichiometric ratios and various stacking patterns of the complexes suggest the diversity of this nonplanar polyaromatic host in complexation with fullerenes.
Collapse
Affiliation(s)
- Yihui Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Kunmu Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Yao Lu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Dandan Ma
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Donghui Shi
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Yixun Sun
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Mingyu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Jing Li
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Junfa Wei
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| |
Collapse
|
39
|
Jana A, Bähring S, Ishida M, Goeb S, Canevet D, Sallé M, Jeppesen JO, Sessler JL. Functionalised tetrathiafulvalene- (TTF-) macrocycles: recent trends in applied supramolecular chemistry. Chem Soc Rev 2018; 47:5614-5645. [DOI: 10.1039/c8cs00035b] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tetrathiafulvalene- (TTF-) based macrocyclic systems, cages and supramolecularly self-assembled 3D constructs have been extensively explored as functional materials for sensing and switching applications.
Collapse
Affiliation(s)
- Atanu Jana
- Institute for Supramolecular Chemistry and Catalysis
- Shanghai University
- Shanghai
- China
| | - Steffen Bähring
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- Odense M
- Denmark
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry
- Graduate School of Engineering and Center for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Sébastien Goeb
- Université d’Angers
- CNRS UMR 6200
- Laboratoire MOLTECH-Anjou
- 49045 Angers Cedex
- France
| | - David Canevet
- Université d’Angers
- CNRS UMR 6200
- Laboratoire MOLTECH-Anjou
- 49045 Angers Cedex
- France
| | - Marc Sallé
- Université d’Angers
- CNRS UMR 6200
- Laboratoire MOLTECH-Anjou
- 49045 Angers Cedex
- France
| | - Jan O. Jeppesen
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- Odense M
- Denmark
| | - Jonathan L. Sessler
- Institute for Supramolecular Chemistry and Catalysis
- Shanghai University
- Shanghai
- China
- Department of Chemistry
| |
Collapse
|
40
|
Zhang SQ, Liu ZY, Fu WF, Liu F, Wang CM, Sheng CQ, Wang YF, Deng K, Zeng QD, Shu LJ, Wan JH, Chen HZ, Russell TP. Donor-Acceptor Conjugated Macrocycles: Synthesis and Host-Guest Coassembly with Fullerene toward Photovoltaic Application. ACS NANO 2017; 11:11701-11713. [PMID: 29091396 DOI: 10.1021/acsnano.7b06961] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electron-rich (donor) and electron-deficient (acceptor) units to construct donor-acceptor (D-A) conjugated macrocycles were investigated to elucidate their interactions with electron-deficient fullerene. Triphenylamine and 4,7-bisthienyl-2,1,3-benzothiadiazole were alternately linked through acetylene, as the donor and acceptor units, respectively, for pentagonal 3B2A and hexagonal 4B2A macrocycles. As detected by scanning tunneling microscopy, both D-A macrocycles were found to form an interesting concentration-controlled nanoporous monolayer on highly oriented pyrolytic graphite, which could effectively capture fullerene. Significantly, the fullerene filling was cavity-size-dependent with only one C70 or PC71BM molecule accommodated by 3B2A, while two were accommodated by 4B2A. Density functional theory calculations were also utilized to gain insight into the host-guest systems and indicted that the S···π contact is responsible for stabilizing these host-guest systems. Owing to the ellipsoidal shape of C70, C70 molecules are standing or lying in molecular cavities depending on the energy optimization. For the 3B2A/PC71BM blended film, PC71BM was intercalated into the cavity formed by the macrocycle 3B2A and provided excellent power conversion efficiency despite the broad band gap (2.1 eV) of 3B2A. This study of D-A macrocycles incorporating fullerene provides insights into the interaction mechanism and electronic structure in the host-guest complexes. More importantly, this is a representative example using D-A macrocycles as a donor to match with the spherical fullerene acceptor for photovoltaic applications, which offer a good approach to achieve molecular scale p-n junctions for substantially enhanced efficiencies of organic solar cells through replacing linear polymer donors by cyclic conjugated oligomers.
Collapse
Affiliation(s)
- Si-Qi Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University , Hangzhou 310012, People's Republic of China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
| | - Zhen-Yu Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University , Hangzhou 310012, People's Republic of China
| | - Wei-Fei Fu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, People's Republic of China
| | - Feng Liu
- Department of Physics, Astronomy Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Chuan-Ming Wang
- Shanghai Research Institute of Petrochemical Technology, SINOPEC , Shanghai 201208, People's Republic of China
| | - Chun-Qi Sheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University , Hangzhou 310012, People's Republic of China
| | - Yi-Fei Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University , Hangzhou 310012, People's Republic of China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
| | - Qing-Dao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, People's Republic of China
| | - Li-Jin Shu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University , Hangzhou 310012, People's Republic of China
| | - Jun-Hua Wan
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University , Hangzhou 310012, People's Republic of China
| | - Hong-Zheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, People's Republic of China
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
41
|
Gliemann BD, Strauss V, Hitzenberger JF, Dral PO, Hampel F, Gisselbrecht JP, Drewello T, Thiel W, Guldi DM, Kivala M. Dithiafulvenyl-Extended N
-Heterotriangulenes and Their Interaction with C60
: Cooperative Fluorescence. Chemistry 2017; 23:12353-12362. [DOI: 10.1002/chem.201701625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Bettina D. Gliemann
- Department of Chemistry and Pharmacy; University of Erlangen-Nürnberg; Henkestrasse 42 91054 Erlangen Germany
| | - Volker Strauss
- Department of Chemie and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM); University of Erlangen-Nürnberg; Egerlandstrasse 3 91058 Erlangen Germany
| | - Jakob F. Hitzenberger
- Department of Chemie and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM); University of Erlangen-Nürnberg; Egerlandstrasse 3 91058 Erlangen Germany
| | - Pavlo O. Dral
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Frank Hampel
- Department of Chemistry and Pharmacy; University of Erlangen-Nürnberg; Henkestrasse 42 91054 Erlangen Germany
| | - Jean-Paul Gisselbrecht
- Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide; Institut de Chimie-LC3-UMR 7177, C.N.R.S; Université de Strasbourg, 4; rue Blaise Pascal 67000 Strasbourg France
| | - Thomas Drewello
- Department of Chemie and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM); University of Erlangen-Nürnberg; Egerlandstrasse 3 91058 Erlangen Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Dirk M. Guldi
- Department of Chemie and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM); University of Erlangen-Nürnberg; Egerlandstrasse 3 91058 Erlangen Germany
| | - Milan Kivala
- Department of Chemistry and Pharmacy; University of Erlangen-Nürnberg; Henkestrasse 42 91054 Erlangen Germany
| |
Collapse
|
42
|
Mejuto C, Escobar L, Guisado-Barrios G, Ballester P, Gusev D, Peris E. Self-Assembly of Di-N-Heterocyclic Carbene-Gold-Adorned Corannulenes on C60. Chemistry 2017; 23:10644-10651. [DOI: 10.1002/chem.201701728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Carmen Mejuto
- Institute of Advanced Materials (INAM).; Universitat Jaume I.; Av. Vicente Sos Baynat s/n. Castellón. 12071 Spain
| | - Luis Escobar
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Avgda. Països Catalans 16 43007 Tarragona Spain
| | - Gregorio Guisado-Barrios
- Institute of Advanced Materials (INAM).; Universitat Jaume I.; Av. Vicente Sos Baynat s/n. Castellón. 12071 Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Avgda. Països Catalans 16 43007 Tarragona Spain
- ICREA; Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Dmitry Gusev
- Dept. of Chemistry and Biochemistry; Wilfrid Laurier University; Waterloo Ontario N2L 3C5 Canada
| | - Eduardo Peris
- Institute of Advanced Materials (INAM).; Universitat Jaume I.; Av. Vicente Sos Baynat s/n. Castellón. 12071 Spain
| |
Collapse
|
43
|
Mondal P, Rath SP. A Tunable Cyclic Container: Guest-Induced Conformational Switching, Efficient Guest Exchange, and Selective Isolation of C70
from a Fullerene Mixture. Chem Asian J 2017; 12:1824-1835. [DOI: 10.1002/asia.201700600] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Pritam Mondal
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| | - Sankar Prasad Rath
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| |
Collapse
|
44
|
Hachem H, Vacher A, Dorcet V, Lorcy D. How the Anchoring Site on Two Extended Tetrathiafulvalenes Impacts the Electronic Communication through a Bis(acetylide)ruthenium Linker. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hadi Hachem
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, Bât. 10A, 35042 Rennes cedex, France
| | - Antoine Vacher
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, Bât. 10A, 35042 Rennes cedex, France
| | - Vincent Dorcet
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, Bât. 10A, 35042 Rennes cedex, France
| | - Dominique Lorcy
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, Bât. 10A, 35042 Rennes cedex, France
| |
Collapse
|
45
|
Lu Y, Fu ZD, Guo QH, Wang MX. O6-Corona[6]arenes with Expanded Cavities for Specific Complexation with C70. Org Lett 2017; 19:1590-1593. [PMID: 28322566 DOI: 10.1021/acs.orglett.7b00409] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yao Lu
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Zhan-Da Fu
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qing-Hui Guo
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Mei-Xiang Wang
- Key Laboratory of Bioorganic
Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Sun G, Xu J, Chen ZY, Lei E, Liu XS, Liu CG. Cooperative coupling of the Li cation and groups to amplify the charge transfer between C60 and corannulene. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Spenst P, Sieblist A, Würthner F. Perylene Bisimide Cyclophanes with High Binding Affinity for Large Planar Polycyclic Aromatic Hydrocarbons: Host-Guest Complexation versus Self-Encapsulation of Side Arms. Chemistry 2017; 23:1667-1675. [DOI: 10.1002/chem.201604875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/02/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Peter Spenst
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Andreas Sieblist
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI); Universität Würzburg, Theodor-Boveri-Weg; 97074 Würzburg Germany
| |
Collapse
|
48
|
Yang DC, Li M, Chen CF. A bis-corannulene based molecular tweezer with highly sensitive and selective complexation of C70 over C60. Chem Commun (Camb) 2017; 53:9336-9339. [DOI: 10.1039/c7cc03519e] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A corannulene-based tweezer-like receptor was conveniently synthesized, which showed highly sensitive and selective complexation of C70 over C60.
Collapse
Affiliation(s)
- Deng-Chen Yang
- CAS Key Laboratory of Molecular Recognition and Function
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Meng Li
- CAS Key Laboratory of Molecular Recognition and Function
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Chuan-Feng Chen
- CAS Key Laboratory of Molecular Recognition and Function
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
49
|
Azov VA. Recent advances in molecular recognition with tetrathiafulvalene-based receptors. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Bastien G, Dron PI, Vincent M, Canevet D, Allain M, Goeb S, Sallé M. C60 Recognition from Extended Tetrathiafulvalene Bis-acetylide Platinum(II) Complexes. Org Lett 2016; 18:5856-5859. [DOI: 10.1021/acs.orglett.6b02915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guillaume Bastien
- Laboratoire MOLTECH-Anjou, Université d’Angers, CNRS UMR 6200, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Paul I. Dron
- Laboratoire MOLTECH-Anjou, Université d’Angers, CNRS UMR 6200, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Manon Vincent
- Laboratoire MOLTECH-Anjou, Université d’Angers, CNRS UMR 6200, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - David Canevet
- Laboratoire MOLTECH-Anjou, Université d’Angers, CNRS UMR 6200, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Magali Allain
- Laboratoire MOLTECH-Anjou, Université d’Angers, CNRS UMR 6200, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Sébastien Goeb
- Laboratoire MOLTECH-Anjou, Université d’Angers, CNRS UMR 6200, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Marc Sallé
- Laboratoire MOLTECH-Anjou, Université d’Angers, CNRS UMR 6200, 2 bd Lavoisier, 49045 Angers Cedex, France
| |
Collapse
|