1
|
Nicolini M, Saitto E, Jimenez Franco RE, Cavalleri E, Galeano Alfonso AJ, Malchiodi D, Paccanaro A, Robinson PN, Casiraghi E, Valentini G. Fine-tuning of conditional Transformers improves in silico enzyme prediction and generation. Comput Struct Biotechnol J 2025; 27:1318-1334. [PMID: 40235640 PMCID: PMC11999079 DOI: 10.1016/j.csbj.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025] Open
Abstract
We introduce Finenzyme, a Protein Language Model (PLM) that employs a multifaceted learning strategy based on transfer learning from a decoder-based Transformer, conditional learning using specific functional keywords, and fine-tuning for the in silico modeling of enzymes. Our experiments show that Finenzyme significantly enhances generalist PLMs like ProGen for the in silico prediction and generation of enzymes belonging to specific Enzyme Commission (EC) categories. Our in silico experiments demonstrate that Finenzyme generated sequences can diverge from natural ones, while retaining similar predicted tertiary structure, predicted functions and the active sites of their natural counterparts. We show that embedded representations of the generated sequences obtained from the embeddings computed by both Finenzyme and ESMFold closely resemble those of natural ones, thus making them suitable for downstream tasks, including e.g. EC classification. Clustering analysis based on the primary and predicted tertiary structure of sequences reveals that the generated enzymes form clusters that largely overlap with those of natural enzymes. These overall in silico validation experiments indicate that Finenzyme effectively captures the structural and functional properties of target enzymes, and can in perspective support targeted enzyme engineering tasks.
Collapse
Affiliation(s)
- Marco Nicolini
- AnacletoLab, Dipartimento di Informatica, Universita degli Studi di Milano, Italy
| | - Emanuele Saitto
- AnacletoLab, Dipartimento di Informatica, Universita degli Studi di Milano, Italy
| | | | - Emanuele Cavalleri
- AnacletoLab, Dipartimento di Informatica, Universita degli Studi di Milano, Italy
| | | | - Dario Malchiodi
- AnacletoLab, Dipartimento di Informatica, Universita degli Studi di Milano, Italy
| | - Alberto Paccanaro
- School of Applied Mathematics (EMAp) - FGV, Rio de Janeiro, Brazil
- Department of Computer Science, Bioinformatics Centre for Systems and Synthetic Biology, Royal Holloway, University of London, United Kingdom
| | - Peter N. Robinson
- ELLIS - European Laboratory for Learning and Intelligent Systems, Milan Unit, Italy
- Berlin Institute of Health at Charite (BIH), Berlin, Germany
| | - Elena Casiraghi
- AnacletoLab, Dipartimento di Informatica, Universita degli Studi di Milano, Italy
- ELLIS - European Laboratory for Learning and Intelligent Systems, Milan Unit, Italy
| | - Giorgio Valentini
- AnacletoLab, Dipartimento di Informatica, Universita degli Studi di Milano, Italy
- ELLIS - European Laboratory for Learning and Intelligent Systems, Milan Unit, Italy
| |
Collapse
|
2
|
Hendricks L, Reinhardt CR, Green T, Kunczynski L, Roberts AJ, Miller N, Rafalin N, Kulik HJ, Groves JT, Austin RN. Fontimonas thermophila Alkane Monooxygenase (FtAlkB) Is an Alkyl Fluoride Dehalogenase. J Am Chem Soc 2025; 147:9085-9090. [PMID: 40052925 PMCID: PMC11925060 DOI: 10.1021/jacs.5c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Purified alkane monooxygenase (AlkB) from Fontimonas thermophila (FtAlkB) catalyzes the defluorination of 1-fluorooctane, producing octanal, which is partially reduced under the reaction conditions to generate 1-octanol. This reaction occurs preferentially at the monofluorinated methyl group, with only a minor amount of oxidation at the nonfluorinated end of the molecule. The dehalogenation chemistry is specific to 1-fluorooctane, as neither 1-chlorooctane or 1-bromooctane are dehalogenated to an appreciable extent. Furthermore, P. putida cells containing the structurally related AlkB (PpAlkB) along with the full set of genes required for alkane metabolism, utilize 1-fluorooctane as their sole source of carbon with growth rates comparable to those for cells grown with octane.
Collapse
Affiliation(s)
- Lauren Hendricks
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| | - Clorice R Reinhardt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tierani Green
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| | - Lily Kunczynski
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| | - August Jaunzarins Roberts
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| | - Naomi Miller
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| | - Noga Rafalin
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John T Groves
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Rachel N Austin
- Department of Chemistry, Barnard College of Columbia University, 3009 Broadway, New York, New York 10027, United States
| |
Collapse
|
3
|
Harris BA, Zhou J, Clarke BO, Leung IKH. Enzymatic Degradation of PFAS: Current Status and Ongoing Challenges. CHEMSUSCHEM 2025; 18:e202401122. [PMID: 39150407 PMCID: PMC11739852 DOI: 10.1002/cssc.202401122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/17/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are often considered the quintessential example of industrial chemical pollution - they are toxic and ubiquitous environmental contaminants that are extremely difficult to degrade. There has been a large research focus on the development of effective and renewable degradation technologies. In comparison to traditional pollutant degradation techniques, such as advanced oxidation processes and electrochemistry, degradation of PFAS using extracellular enzymes offers an eco-friendly solution as enzymes are biodegradable, recyclable and have low energy and chemical requirements. This review outlines the current understanding of extracellular enzymatic degradation of PFAS with a focus on reported results and proposed degradation mechanisms. More importantly, this review highlights limitations that hinder the application of enzymes for PFAS degradation and proposes critical future research that is needed to improve the applicability of this promising remediation strategy.
Collapse
Affiliation(s)
- Benjamin A. Harris
- School of Chemistry and Bio21 Molecular Science & Biotechnology InstituteThe University of MelbourneParkville, VIC3010Australia
- Australian Laboratory for Emerging ContaminantsSchool of ChemistryThe University of MelbourneParkville, VIC3010Australia
| | - Jinpeng Zhou
- School of Chemistry and Bio21 Molecular Science & Biotechnology InstituteThe University of MelbourneParkville, VIC3010Australia
- Australian Laboratory for Emerging ContaminantsSchool of ChemistryThe University of MelbourneParkville, VIC3010Australia
| | - Bradley O. Clarke
- Australian Laboratory for Emerging ContaminantsSchool of ChemistryThe University of MelbourneParkville, VIC3010Australia
| | - Ivanhoe K. H. Leung
- School of Chemistry and Bio21 Molecular Science & Biotechnology InstituteThe University of MelbourneParkville, VIC3010Australia
| |
Collapse
|
4
|
Wackett LP. Confronting PFAS persistence: enzymes catalyzing C-F bond cleavage. Trends Biochem Sci 2025; 50:71-83. [PMID: 39643519 DOI: 10.1016/j.tibs.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
Studies of enzymes catalyzing carbon-fluorine (C-F) bond cleavage have focused largely on a limited number of native microbial hydrolases that are reactive with the natural product fluoroacetate. Driven by widespread interest in biodegrading commercial fluorinated compounds, many of which are known as per- and polyfluorinated alkyl substances (PFAS), it is necessary to identify and engineer new enzymes. For example, some hydrolases react with -CF2- moieties, a common functionality in PFAS. Additional enzymatic C-F cleaving mechanisms catalyzed by reductases, lyases, and oxygenases have been identified via screening. Screening and evolving PFAS defluorination in bacteria is inhibited by the obligate release of toxic fluoride from C-F cleavage. Engineering greater fluoride tolerance in bacteria is a problem that must be solved in tandem with enzyme improvement.
Collapse
Affiliation(s)
- Lawrence P Wackett
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
5
|
Wackett LP, Robinson SL. A prescription for engineering PFAS biodegradation. Biochem J 2024; 481:1757-1770. [PMID: 39585294 PMCID: PMC11777429 DOI: 10.1042/bcj20240283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
Per- and polyfluorinated chemicals (PFAS) are of rising concern due to environmental persistence and emerging evidence of health risks to humans. Environmental persistence is largely attributed to a failure of microbes to degrade PFAS. PFAS recalcitrance has been proposed to result from chemistry, specifically C-F bond strength, or biology, largely negative selection from fluoride toxicity. Given natural evolution has many hurdles, this review advocates for a strategy of laboratory engineering and evolution. Enzymes identified to participate in defluorination reactions have been discovered in all Enzyme Commission classes, providing a palette for metabolic engineering. In vivo PFAS biodegradation will require multiple types of reactions and powerful fluoride mitigation mechanisms to act in concert. The necessary steps are to: (1) engineer bacteria that survive very high, unnatural levels of fluoride, (2) design, evolve, and screen for enzymes that cleave C-F bonds in a broader array of substrates, and (3) create overall physiological conditions that make for positive selective pressure with PFAS substrates.
Collapse
Affiliation(s)
- Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, 1479 Gortner Ave, St. Paul, MN, U.S.A
| | - Serina L. Robinson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| |
Collapse
|
6
|
Liao H, Pan H, Yao J, Zhu R, Bao W. Essential amino acid residues and catalytic mechanism of trans-epoxysuccinate hydrolase for production of meso-tartaric acid. Biotechnol Lett 2024; 46:739-749. [PMID: 38740717 DOI: 10.1007/s10529-024-03490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/17/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVES This study aimed to discuss the essential amino acid residues and catalytic mechanism of trans-epoxysuccinate hydrolase from Pseudomonas koreensis for the production of meso-tartaric acid. RESULTS The optimum conditions of the enzyme were 45 °C and pH 9.0, respectively. It was strongly inhibited by Zn2+, Mn2+ and SDS. Michaelis-Menten enzyme kinetics analysis gave a Km value of 3.50 mM and a kcat of 99.75 s-1, with an exceptional EE value exceeding 99.9%. Multiple sequence alignment and homology modeling revealed that the enzyme belonged to MhpC superfamily and possessed a typical α/β hydrolase folding structure. Site-directed mutagenesis indicated H34, D104, R105, R108, D128, Y147, H149, W150, Y211, and H272 were important catalytic residues. The 18O-labeling study suggested the enzyme acted via two-step catalytic mechanism. CONCLUSIONS The structure and catalytic mechanism of trans-epoxysuccinate hydrolase were first reported. Ten residues were critical for its catalysis and a two-step mechanism by an Asp-His-Asp catalytic triad was proposed.
Collapse
Affiliation(s)
- Hongxiu Liao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | | | - Jinfeng Yao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Ronglin Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Wenna Bao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, Hangzhou, 310023, China.
| |
Collapse
|
7
|
Petkowski JJ, Seager S, Bains W. Reasons why life on Earth rarely makes fluorine-containing compounds and their implications for the search for life beyond Earth. Sci Rep 2024; 14:15575. [PMID: 38971876 PMCID: PMC11227584 DOI: 10.1038/s41598-024-66265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
Life on Earth is known to rarely make fluorinated carbon compounds, as compared to other halocarbons. We quantify this rarity, based on our exhaustive natural products database curated from available literature. We build on explanations for the scarcity of fluorine chemistry in life on Earth, namely that the exclusion of the C-F bond stems from the unique physico-chemical properties of fluorine, predominantly its extreme electronegativity and strong hydration shell. We further show that the C-F bond is very hard to synthesize and when it is made by life its potential biological functions can be readily provided by alternative functional groups that are much less costly to incorporate into existing biochemistry. As a result, the overall evolutionary cost-to-benefit balance of incorporation of the C-F bond into the chemical repertoire of life is not favorable. We argue that the limitations of organofluorine chemistry are likely universal in that they do not exclusively apply to specifics of Earth's biochemistry. C-F bonds, therefore, will be rare in life beyond Earth no matter its chemical makeup.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland.
- JJ Scientific, Warsaw, Mazowieckie, Poland.
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- School of Physics & Astronomy, Cardiff University, 4 The Parade, Cardiff, CF24 3AA, UK
- Rufus Scientific, Melbourn, Royston, Herts, UK
| |
Collapse
|
8
|
Farajollahi S, Lombardo NV, Crenshaw MD, Guo HB, Doherty ME, Davison TR, Steel JJ, Almand EA, Varaljay VA, Suei-Hung C, Mirau PA, Berry RJ, Kelley-Loughnane N, Dennis PB. Defluorination of Organofluorine Compounds Using Dehalogenase Enzymes from Delftia acidovorans (D4B). ACS OMEGA 2024; 9:28546-28555. [PMID: 38973860 PMCID: PMC11223199 DOI: 10.1021/acsomega.4c02517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Organofluorine compounds have been widely used as pharmaceuticals, agricultural pesticides, and water-resistant coatings for decades; however, these compounds are recognized as environmental pollutants. The capability of microorganisms and enzymes to defluorinate organofluorine compounds is both rare and highly desirable to facilitate environmental remediation efforts. Recently, a strain of Delftia acidovorans (D4B) was identified with potential biodegradation activity toward perfluoroalkyl substances (PFAS) and other organofluorine compounds. Genomic analysis found haloacid and fluoroacetate dehalogenases as enzymes associated with Delftia acidovorans. Here, defluorination activity of these enzymes toward different fluorinated substrates was investigated after their recombinant expression and purification from E. coli. Using an electrochemical fluoride probe, 19F NMR, and mass spectrometry to monitor defluorination, we identified two dehalogenases, DeHa2 (a haloacid dehalogenase) and DeHa4 (a fluoroacetate dehalogenase), with activity toward mono- and difluoroacetate. Of the two dehalogenases, DeHa4 demonstrated a low pH optimum compared to DeHa2, which lost catalytic activity under acidic conditions. DeHa2 and DeHa4 are relatively small proteins, operate under aerobic conditions, and remain active for days in the presence of substrates. Significantly, while there have been many reports on dehalogenation of monofluoroacetate by dehalogenases, this study adds to the relatively small list of enzymes reported to carry out enzymatic defluorination of the more recalcitrant disubstituted carbon in an organofluorine compound. Thus, DeHa2 and DeHa4 represent organofluorine dehalogenases that may be used in the future to design and engineer robust defluorination agents for environmental remediation efforts.
Collapse
Affiliation(s)
- Sanaz Farajollahi
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
| | - Nina V. Lombardo
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
- UES
a BlueHalo Company, 4401
Dayton-Xenia Rd., Dayton, Ohio United States 45432-1894
| | - Michael D. Crenshaw
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
- UES
a BlueHalo Company, 4401
Dayton-Xenia Rd., Dayton, Ohio United States 45432-1894
| | - Hao-Bo Guo
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
- UES
a BlueHalo Company, 4401
Dayton-Xenia Rd., Dayton, Ohio United States 45432-1894
| | - Megan E. Doherty
- Department
of Biology, United States Air Force Academy, Colorado Springs, Colorado United States 80840-5002
| | - Tina R. Davison
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
- UES
a BlueHalo Company, 4401
Dayton-Xenia Rd., Dayton, Ohio United States 45432-1894
| | - Jordan J. Steel
- Department
of Biology, United States Air Force Academy, Colorado Springs, Colorado United States 80840-5002
| | - Erin A. Almand
- Department
of Biology, United States Air Force Academy, Colorado Springs, Colorado United States 80840-5002
| | - Vanessa A. Varaljay
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
- The
Ohio State University, Infectious Diseases
Institute, Columbus, Ohio United States 43210-1132
| | - Chia Suei-Hung
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
| | - Peter A. Mirau
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
| | - Rajiv J. Berry
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
| | - Nancy Kelley-Loughnane
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
| | - Patrick B. Dennis
- Air
Force Research Laboratory, Materials and Manufacturing Directorate, 2179 12th Street, WPAFB, Ohio United States 45433-7131
| |
Collapse
|
9
|
Stockbridge RB, Wackett LP. The link between ancient microbial fluoride resistance mechanisms and bioengineering organofluorine degradation or synthesis. Nat Commun 2024; 15:4593. [PMID: 38816380 PMCID: PMC11139923 DOI: 10.1038/s41467-024-49018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Fluorinated organic chemicals, such as per- and polyfluorinated alkyl substances (PFAS) and fluorinated pesticides, are both broadly useful and unusually long-lived. To combat problems related to the accumulation of these compounds, microbial PFAS and organofluorine degradation and biosynthesis of less-fluorinated replacement chemicals are under intense study. Both efforts are undermined by the substantial toxicity of fluoride, an anion that powerfully inhibits metabolism. Microorganisms have contended with environmental mineral fluoride over evolutionary time, evolving a suite of detoxification mechanisms. In this perspective, we synthesize emerging ideas on microbial defluorination/fluorination and fluoride resistance mechanisms and identify best approaches for bioengineering new approaches for degrading and making organofluorine compounds.
Collapse
Affiliation(s)
- Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Lawrence P Wackett
- Department of Biochemistry, Biophysics & Molecular Biology and Biotechnology Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Nieto-Domínguez M, Sako A, Enemark-Rasmussen K, Gotfredsen CH, Rago D, Nikel PI. Enzymatic synthesis of mono- and trifluorinated alanine enantiomers expands the scope of fluorine biocatalysis. Commun Chem 2024; 7:104. [PMID: 38724655 PMCID: PMC11082193 DOI: 10.1038/s42004-024-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Fluorinated amino acids serve as an entry point for establishing new-to-Nature chemistries in biological systems, and novel methods are needed for the selective synthesis of these building blocks. In this study, we focused on the enzymatic synthesis of fluorinated alanine enantiomers to expand fluorine biocatalysis. The alanine dehydrogenase from Vibrio proteolyticus and the diaminopimelate dehydrogenase from Symbiobacterium thermophilum were selected for in vitro production of (R)-3-fluoroalanine and (S)-3-fluoroalanine, respectively, using 3-fluoropyruvate as the substrate. Additionally, we discovered that an alanine racemase from Streptomyces lavendulae, originally selected for setting an alternative enzymatic cascade leading to the production of these non-canonical amino acids, had an unprecedented catalytic efficiency in β-elimination of fluorine from the monosubstituted fluoroalanine. The in vitro enzymatic cascade based on the dehydrogenases of V. proteolyticus and S. thermophilum included a cofactor recycling system, whereby a formate dehydrogenase from Pseudomonas sp. 101 (either native or engineered) coupled formate oxidation to NAD(P)H formation. Under these conditions, the reaction yields for (R)-3-fluoroalanine and (S)-3-fluoroalanine reached >85% on the fluorinated substrate and proceeded with complete enantiomeric excess. The selected dehydrogenases also catalyzed the conversion of trifluoropyruvate into trifluorinated alanine as a first-case example of fluorine biocatalysis with amino acids carrying a trifluoromethyl group.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aboubakar Sako
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
11
|
Hu M, Scott C. Toward the development of a molecular toolkit for the microbial remediation of per-and polyfluoroalkyl substances. Appl Environ Microbiol 2024; 90:e0015724. [PMID: 38477530 PMCID: PMC11022551 DOI: 10.1128/aem.00157-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated synthetic organic compounds that have been used extensively in various industries owing to their unique properties. The PFAS family encompasses diverse classes, with only a fraction being commercially relevant. These substances are found in the environment, including in water sources, soil, and wildlife, leading to human exposure and fueling concerns about potential human health impacts. Although PFAS degradation is challenging, biodegradation offers a promising, eco-friendly solution. Biodegradation has been effective for a variety of organic contaminants but is yet to be successful for PFAS due to a paucity of identified microbial species capable of transforming these compounds. Recent studies have investigated PFAS biotransformation and fluoride release; however, the number of specific microorganisms and enzymes with demonstrable activity with PFAS remains limited. This review discusses enzymes that could be used in PFAS metabolism, including haloacid dehalogenases, reductive dehalogenases, cytochromes P450, alkane and butane monooxygenases, peroxidases, laccases, desulfonases, and the mechanisms of microbial resistance to intracellular fluoride. Finally, we emphasize the potential of enzyme and microbial engineering to advance PFAS degradation strategies and provide insights for future research in this field.
Collapse
Affiliation(s)
- Miao Hu
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
12
|
Wackett LP. Evolutionary obstacles and not C-F bond strength make PFAS persistent. Microb Biotechnol 2024; 17:e14463. [PMID: 38593328 PMCID: PMC11003709 DOI: 10.1111/1751-7915.14463] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
The fate of organic matter in the environment, including anthropogenic chemicals, is largely predicated on the enzymatic capabilities of microorganisms. Microbes readily degrade, and thus recycle, most of the ~100,000 commercial chemicals used in modern society. Per- and polyfluorinated compounds (PFAS) are different. Many research papers posit that the general resistance of PFAS to microbial degradation is based in chemistry and that argument relates to the strength of the C-F bond. Here, I advance the opinion that the low biodegradability of PFAS is best formulated as a biological optimization problem, hence evolution. The framing of the problem is important. If it is framed around C-F bond strength, the major effort should focus on finding and engineering new C-F cleaving enzymes. The alternative, and preferred approach suggested here, is to focus on the directed evolution of biological systems containing known C-F cleaving systems. There are now reports of bacteria degrading and/or growing on multiply fluorinated arenes, alkenoic and alkanoic acids. The impediment to more efficient and widespread biodegradation in these systems is biological, not chemical. The rationale for this argument is made in the five sections below that follow the Introduction.
Collapse
Affiliation(s)
- Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology InstituteUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
13
|
Zhu H, Xia Y, Zhang Y, Kang Y, Ding Y, Chen R, Feng H. Distribution characteristics and transformation mechanism of per- and polyfluoroalkyl substances in drinking water sources: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169566. [PMID: 38160823 DOI: 10.1016/j.scitotenv.2023.169566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have raised significant concerns within the realm of drinking water due to their widespread presence in various water sources. This prevalence poses potential risks to human health, ecosystems, and the safety of drinking water. However, there is currently a lack of comprehensive reviews that systematically categorize the distribution characteristics and transformation mechanisms of PFASs in drinking water sources. This review aims to address this gap by concentrating on the specific sources of PFASs contamination in Chinese drinking water supplies. It seeks to elucidate the migration and transformation processes of PFASs within each source, summarize the distribution patterns of PFASs in surface and subsurface drinking water sources, and analyze how PFASs molecular structure, solubility, and sediment physicochemical parameters influence their presence in both the water phase and sediment. Furthermore, this review assesses two natural pathways for PFASs degradation, namely photolysis and biodegradation. It places particular emphasis on understanding the degradation mechanisms and the factors that affect the breakdown of PFASs by microorganisms. The ultimate goal is to provide valuable insights for the prevention and control of PFAS contamination and the assurance of drinking water quality.
Collapse
Affiliation(s)
- Heying Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Ying Kang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| | - Huajun Feng
- Ecological-Environment & Health College (EEHC), Zhejiang A & F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
14
|
Alexandrino DAM, Carvalho MF. Defluorination as the key trait to gauge the biodegradability of fluorinated pollutants in environmental microbial communities. Methods Enzymol 2024; 696:321-338. [PMID: 38658086 DOI: 10.1016/bs.mie.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Research on microbial defluorination is largely centred on controlled experiments using axenic or well defined microbial inocula. These approaches serve a relevant purpose in the field, offering fundamental biochemical and mechanistic insights on the intricacies of biological defluorination. However, they fail to account for the effective contribution of environmental microbial communities in the recycling of fluoroorganic pollutants, a highly relevant perspective from an environmental risk assessment standpoint, while also missing an important outlook on how community-wide dynamics can leverage the breakdown of C─F bonds in these recalcitrant compounds. With that in mind, this chapter provides experimental and methodological insights on the study of microbial defluorination in wild environmental communities, using this critical catabolic step as the de facto endpoint to evolve, select and cultivate microorganisms with improved defluorination performances.
Collapse
Affiliation(s)
- Diogo A M Alexandrino
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Environmental Health, School of Health, P. Porto, Porto, Portugal
| | - Maria F Carvalho
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
15
|
Dodge AG, Thoma CJ, O’Connor MR, Wackett LP. Recombinant Pseudomonas growing on non-natural fluorinated substrates shows stress but overall tolerance to cytoplasmically released fluoride anion. mBio 2024; 15:e0278523. [PMID: 38063407 PMCID: PMC10790756 DOI: 10.1128/mbio.02785-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Society uses thousands of organofluorine compounds, sometimes denoted per- and polyfluoroalkyl substances (PFAS), in hundreds of products, but recent studies have shown some to manifest human and environmental health effects. As a class, they are recalcitrant to biodegradation, partly due to the paucity of fluorinated natural products to which microbes have been exposed. Another limit to PFAS biodegradation is the intracellular toxicity of fluoride anion generated from C-F bond cleavage. The present study identified a broader substrate specificity in an enzyme originally studied for its activity on the natural product fluoroacetate. A recombinant Pseudomonas expressing this enzyme was used here as a model system to better understand the limits and effects of a high level of intracellular fluoride generation. A fluoride stress response has evolved in bacteria and has been described in Pseudomonas spp. The present study is highly relevant to organofluorine compound degradation or engineered biosynthesis in which fluoride anion is a substrate.
Collapse
Affiliation(s)
- Anthony G. Dodge
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| | - Calvin J. Thoma
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| | - Madeline R. O’Connor
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| |
Collapse
|
16
|
Wackett LP. Microwell fluoride assay screening for enzymatic defluorination. Methods Enzymol 2024; 696:65-83. [PMID: 38658089 DOI: 10.1016/bs.mie.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
There is intense interest in removing fluorinated compounds from the environment, environments are most efficiently remediated by microbial enzymes, and defluorinating enzymes are readily monitored by fluoride determination. Fluorine is the most electronegative element. Consequently, all mechanisms of enzymatic C-F bond cleavage produce fluoride anion, F-. Therefore, methods for the determination of fluoride are critical for C-F enzymology and apply to any fluorinated organic compounds, including PFAS, or per- and polyfluorinated alkyl substances. The biodegradation of most PFAS chemicals is rare or unknown. Accordingly, identifying new enzymes, or re-engineering the known defluorinases, will require rapid and sensitive methods for measuring fluoride in aqueous media. Most studies currently use ion chromatography or fluoride specific electrodes which are relatively sensitive but low throughput. The methods here describe refashioning a drinking water test to efficiently determine fluoride in enzyme and cell culture reaction mixtures. The method is based on lanthanum alizarin complexone binding of fluoride. Reworking the method to a microtiter well plate format allows detection of as little as 4 nmol of fluoride in 200 μL of assay buffer. The method is amenable to color imaging, spectrophotometric plate reading and automated liquid handling to expedite assays with thousands of enzymes and/or substrates for discovering and improving enzymatic defluorination.
Collapse
Affiliation(s)
- Lawrence P Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN, United States.
| |
Collapse
|
17
|
Khusnutdinova AN, Batyrova KA, Brown G, Fedorchuk T, Chai YS, Skarina T, Flick R, Petit AP, Savchenko A, Stogios P, Yakunin AF. Structural insights into hydrolytic defluorination of difluoroacetate by microbial fluoroacetate dehalogenases. FEBS J 2023; 290:4966-4983. [PMID: 37437000 DOI: 10.1111/febs.16903] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Fluorine forms the strongest single bond to carbon with the highest bond dissociation energy among natural products. However, fluoroacetate dehalogenases (FADs) have been shown to hydrolyze this bond in fluoroacetate under mild reaction conditions. Furthermore, two recent studies demonstrated that the FAD RPA1163 from Rhodopseudomonas palustris can also accept bulkier substrates. In this study, we explored the substrate promiscuity of microbial FADs and their ability to defluorinate polyfluorinated organic acids. Enzymatic screening of eight purified dehalogenases with reported fluoroacetate defluorination activity revealed significant hydrolytic activity against difluoroacetate in three proteins. Product analysis using liquid chromatography-mass spectrometry identified glyoxylic acid as the final product of enzymatic DFA defluorination. The crystal structures of DAR3835 from Dechloromonas aromatica and NOS0089 from Nostoc sp. were determined in the apo-state along with the DAR3835 H274N glycolyl intermediate. Structure-based site-directed mutagenesis of DAR3835 demonstrated a key role for the catalytic triad and other active site residues in the defluorination of both fluoroacetate and difluoroacetate. Computational analysis of the dimer structures of DAR3835, NOS0089, and RPA1163 indicated the presence of one substrate access tunnel in each protomer. Moreover, protein-ligand docking simulations suggested similar catalytic mechanisms for the defluorination of both fluoroacetate and difluoroacetate, with difluoroacetate being defluorinated via two consecutive defluorination reactions producing glyoxylate as the final product. Thus, our findings provide molecular insights into substrate promiscuity and catalytic mechanism of FADs, which are promising biocatalysts for applications in synthetic chemistry and bioremediation of fluorochemicals.
Collapse
Affiliation(s)
- Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
- Biological Chemistry and Drug Discovery Division, School of Life Sciences, University of Dundee, UK
| | - Khorcheska A Batyrova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Tatiana Fedorchuk
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
| | - Yao Sheng Chai
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Alain-Pierre Petit
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Biological Chemistry and Drug Discovery Division, School of Life Sciences, University of Dundee, UK
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Health Research Innovation Centre, University of Calgary, AB, Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, UK
| |
Collapse
|
18
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
19
|
Berhanu A, Mutanda I, Taolin J, Qaria MA, Yang B, Zhu D. A review of microbial degradation of per- and polyfluoroalkyl substances (PFAS): Biotransformation routes and enzymes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160010. [PMID: 36356780 DOI: 10.1016/j.scitotenv.2022.160010] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Since the 1950s, copious amounts of per- and polyfluoroalkyl substances (PFAS) (dubbed "forever chemicals") have been dumped into the environment, causing heavy contamination of soil, surface water, and groundwater sources. Humans, animals, and the environment are frequently exposed to PFAS through food, water, consumer products, as well as waste streams from PFAS-manufacturing industries. PFAS are a large group of synthetic organic fluorinated compounds with widely diverse chemical structures that are extremely resistant to microbial degradation. Their persistence, toxicity to life on earth, bioaccumulation tendencies, and adverse health and ecological effects have earned them a "top priority pollutant" designation by regulatory bodies. Despite that a number of physicochemical methods exist for PFAS treatment, they suffer from major drawbacks regarding high costs, use of high energy and incomplete mineralization (destruction of the CF bond). Consequently, microbial degradation and enzymatic treatment of PFAS are highly sought after as they offer a complete, cheaper, sustainable, and environmentally friendly alternative. In this critical review, we provide an overview of the classification, properties, and interaction of PFAS within the environment relevant to microbial degradation. We discuss latest developments in the biodegradation of PFAS by microbes, transformation routes, transformation products and degradative enzymes. Finally, we highlight the existing challenges, limitations, and prospects of bioremediation approaches in treating PFAS and proffer possible solutions and future research directions.
Collapse
Affiliation(s)
- Ashenafi Berhanu
- Biofuels Institute, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Haramaya Institute of Technology, Department of Chemical Engineering, Haramaya University, Dire Dawa, Ethiopia
| | - Ishmael Mutanda
- Biofuels Institute, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ji Taolin
- Biofuels Institute, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Majjid A Qaria
- Biofuels Institute, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Daochen Zhu
- Biofuels Institute, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
20
|
Huang D, Xu R, Sun X, Li Y, Xiao E, Xu Z, Wang Q, Gao P, Yang Z, Lin H, Sun W. Effects of perfluorooctanoic acid (PFOA) on activated sludge microbial community under aerobic and anaerobic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63379-63392. [PMID: 35459989 DOI: 10.1007/s11356-022-18841-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have received increasing attention due to their widespread presence in diverse environments including wastewater treatment plants (WWTPs) and their potential adverse health effects. Perfluorooctanoic acid (PFOA) is one of the most detected forms of PFASs in WWTPs. However, there is still a paucity of knowledge about the effect of PFASs on microorganisms of the key component of WWTP, activated sludge. In this study, lab-scale microcosm experiments were established to evaluate the influences of PFOA on activated sludge microbes under aerobic and anaerobic conditions. The diversity, structure, and microbe-microbe interaction of microbial community were determined by 16S rRNA gene amplicon sequencing and co-occurrence network analysis. After 90 days of exposure to PFOA, activated sludge microbial richness decreased under both aerobic and anaerobic conditions. Specifically, under aerobic condition, Rhodopseudomonas (mean relative abundance 3.6%), Flavobacterium (2.4%), and Ignavibacterium (6.6%) were enriched in PFOA-spiked activated sludge compared with that in the unspiked sludge (2.6%, 0.1%, and 1.9%, respectively). By contrast, after 90 days of exposure to PFOA, Eubacterium (2.1%), Hyphomicrobium (1.8%), and Methyloversatilis (1.2%) were enriched under anaerobic condition, and more abundant than that in the control sludge (0.4%, 1.5%, and 0.6%, respectively). These genera were the potential PFOA-resistant members. In addition, Azospirillum and Sporomusa were the most connected taxa in PFOA-aerobic and PFOA-anaerobic networks, respectively. Prediction of the functional gene showed that PFOA inhibited some gene expression of sludge microbes, such as transcription, amino acid transport and metabolism, and energy production and conversion. In summary, continued exposure to PFOA induced substantial shifts of the sludge bacterial diversity and composition under both aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Duanyi Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, China
| | - Yongbin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, China.
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, China.
- School of Environment, Henan Normal University, Xinxiang, China.
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, China.
| |
Collapse
|
21
|
Wackett LP. Strategies for the Biodegradation of Polyfluorinated Compounds. Microorganisms 2022; 10:1664. [PMID: 36014082 PMCID: PMC9415301 DOI: 10.3390/microorganisms10081664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 01/01/2023] Open
Abstract
Many cite the strength of C-F bonds for the poor microbial biodegradability of polyfluorinated organic compounds (PFCs). However, commercial PFCs almost invariably contain more functionality than fluorine. The additional functionality provides a weak entry point for reactions that activate C-F bonds and lead to their eventual cleavage. This metabolic activation strategy is common in microbial biodegradation pathways and is observed with aromatic hydrocarbons, chlorinated compounds, phosphonates and many other compounds. Initial metabolic activation precedes critical bond breakage and assimilation of nutrients. A similar strategy with commercial PFCs proceeds via initial attack at the non-fluorinated functionalities: sulfonates, carboxylates, chlorines, phenyl rings, or phosphonates. Metabolic transformation of these non-fluorinated groups can activate the C-F bonds, allowing more facile cleavage than a direct attack on the C-F bonds. Given that virtually all compounds denoted as "PFAS" are not perfluorinated and are not alkanes, it is posited here that considering their individual chemical classes is more useful for both chemical and microbiological considerations of their fate.
Collapse
Affiliation(s)
- Lawrence P Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and BioTechnology Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
22
|
Bygd MD, Aukema KG, Richman JE, Wackett LP. Microwell Fluoride Screen for Chemical, Enzymatic, and Cellular Reactions Reveals Latent Microbial Defluorination Capacity for -CF 3 Groups. Appl Environ Microbiol 2022; 88:e0028822. [PMID: 35435713 PMCID: PMC9088286 DOI: 10.1128/aem.00288-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022] Open
Abstract
The capacity to defluorinate polyfluorinated organic compounds is a rare phenotype in microbes but is increasingly considered important for maintaining the environment. New discoveries will be greatly facilitated by the ability to screen many natural and engineered microbes in a combinatorial manner against large numbers of fluorinated compounds simultaneously. Here, we describe a low-volume, high-throughput screening method to determine defluorination capacity of microbes and their enzymes. The method is based on selective binding of fluoride to a lanthanum chelate complex that gives a purple-colored product. It was miniaturized to determine biodefluorination in 96-well microtiter plates by visual inspection or robotic handling and spectrophotometry. Chemicals commonly used in microbiological studies were examined to define usable buffers and reagents. Base-catalyzed, purified enzyme and whole-cell defluorination reactions were demonstrated with fluoroatrazine and showed correspondence between the microtiter assay and a fluoride electrode. For discovering new defluorination reactions and mechanisms, a chemical library of 63 fluorinated compounds was screened in vivo with Pseudomonas putida F1 in microtiter well plates. These data were also calibrated against a fluoride electrode. Our new method revealed 21 new compounds undergoing defluorination. A compound with four fluorine substituents, 4-fluorobenzotrifluoride, was shown to undergo defluorination to the greatest extent. The mechanism of its defluorination was studied to reveal a latent microbial propensity to defluorinate trifluoromethylphenyl groups, a moiety that is commonly incorporated into numerous pharmaceutical and agricultural chemicals. IMPORTANCE Thousands of organofluorine chemicals are known, and a number are considered to be persistent and toxic environmental pollutants. Environmental bioremediation methods are avidly being sought, but few bacteria biodegrade fluorinated chemicals. To find new organofluoride biodegradation, a rapid screening method was developed. The method is versatile, monitoring chemical, enzymatic, and whole-cell biodegradation. Biodegradation of organofluorine compounds invariably releases fluoride anions, which was sensitively detected. Our method uncovered 21 new microbial defluorination reactions. A general mechanism was delineated for the biodegradation of trifluoromethylphenyl groups that are increasingly being used in drugs and pesticides.
Collapse
Affiliation(s)
- Madison D. Bygd
- Microbial Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kelly G. Aukema
- Biotechnology Institute, University of Minnesota, Minneapolis, Minnesota, USA
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jack E. Richman
- Biotechnology Institute, University of Minnesota, Minneapolis, Minnesota, USA
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lawrence P. Wackett
- Microbial Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota, Minneapolis, Minnesota, USA
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
23
|
Wackett LP. Pseudomonas: Versatile Biocatalysts for PFAS. Environ Microbiol 2022; 24:2882-2889. [PMID: 35384226 DOI: 10.1111/1462-2920.15990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Lawrence P Wackett
- Microbial Engineering, University of Minnesota.,Biotechnology Institute, University of Minnesota.,Biochemistry, Molecular Biology and Biophysics, University of Minnesota
| |
Collapse
|
24
|
Wackett LP. Nothing lasts forever: understanding microbial biodegradation of polyfluorinated compounds and perfluorinated alkyl substances. Microb Biotechnol 2022; 15:773-792. [PMID: 34570953 PMCID: PMC8913905 DOI: 10.1111/1751-7915.13928] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Poly- and perfluorinated chemicals, including perfluorinated alkyl substances (PFAS), are pervasive in today's society, with a negative impact on human and ecosystem health continually emerging. These chemicals are now subject to strict government regulations, leading to costly environmental remediation efforts. Commercial polyfluorinated compounds have been called 'forever chemicals' due to their strong resistance to biological and chemical degradation. Environmental cleanup by bioremediation is not considered practical currently. Implementation of bioremediation will require uncovering and understanding the rare microbial successes in degrading these compounds. This review discusses the underlying reasons why microbial degradation of heavily fluorinated compounds is rare. Fluorinated and chlorinated compounds are very different with respect to chemistry and microbial physiology. Moreover, the end product of biodegradation, fluoride, is much more toxic than chloride. It is imperative to understand these limitations, and elucidate physiological mechanisms of defluorination, in order to better discover, study, and engineer bacteria that can efficiently degrade polyfluorinated compounds.
Collapse
Affiliation(s)
- Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMN55108USA
| |
Collapse
|
25
|
Longendyke GK, Katel S, Wang Y. PFAS fate and destruction mechanisms during thermal treatment: a comprehensive review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:196-208. [PMID: 34985474 DOI: 10.1039/d1em00465d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent chemicals and have been detected throughout the environment. Thermal treatment is the most common remediation approach for PFAS-contaminated solid wastes. Although various thermal treatment techniques have demonstrated the potential to destruct PFAS, the fate of PFAS, removal efficacy, potential emissions, and the formation of incomplete combustion products during thermal treatment are little known. This study provides a critical review on the behavior of PFAS based on different types of thermal treatment technologies with various PFAS-impacted environmental medias that include water, soil, sewage sludge, pure PFAS materials, and other PFAS-containing wastes. Different extents of PFAS thermal destruction are observed across various thermal treatment techniques and operating conditions. PFAS removal and destruction efficiencies rely heavily on PFAS structures, the complex combustion chemistry, the presence or absence of oxygen, temperature, and other operational conditions. This review also covers proposed PFAS thermal destruction mechanisms. Different thermal destruction mechanisms for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), and other PFAS are reviewed and compared. The majority of studies about PFAS thermal destruction mechanisms were focused on a specific list of PFAS and based mostly on the pyrolysis treatment. The basic pathway for PFAS destruction during pyrolysis is hydrodefluorination, which could be largely influenced by the alkaline condition. Future field-scale research that involves the characterization of PFAS destruction products and incomplete combustion products is needed to address public concerns and better emission control.
Collapse
Affiliation(s)
- Grace K Longendyke
- Department of Geological Sciences and Environmental Studies, Binghamton University, 4400 Vestal Pkwy E, Vestal, NY 13850, USA.
| | - Sebica Katel
- Biochemistry, Binghamton University, 4400 Vestal Pkwy E, Vestal, NY 13850, USA
| | - Yuxin Wang
- Department of Geological Sciences and Environmental Studies, Binghamton University, 4400 Vestal Pkwy E, Vestal, NY 13850, USA.
| |
Collapse
|
26
|
Yang SH, Shi Y, Strynar M, Chu KH. Desulfonation and defluorination of 6:2 fluorotelomer sulfonic acid (6:2 FTSA) by Rhodococcus jostii RHA1: Carbon and sulfur sources, enzymes, and pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127052. [PMID: 34523492 PMCID: PMC8823295 DOI: 10.1016/j.jhazmat.2021.127052] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 05/26/2023]
Abstract
6:2 fluorotelomer sulfonic acid (6:2 FTSA) is one per- and poly-fluoroalkyl substances commonly detected in the environment. While biotransformation of 6:2 FTSA has been reported, factors affecting desulfonation and defluorination of 6:2 FTSA remain poorly understood. This study elucidated the effects of carbon and sulfur sources on the gene expression of Rhodococcus jostii RHA1 which is responsible for the 6:2 FTSA biotransformation. While alkane monooxygenase and cytochrome P450 were highly expressed in ethanol-, 1-butanol-, and n-octane-grown RHA1 in sulfur-rich medium, these cultures only defluorinated 6:2 fluorotelomer alcohol but not 6:2 FTSA, suggesting that the sulfonate group in 6:2 FTSA hinders enzymatic defluorination. In sulfur-free growth media, alkanesulfonate monooxygenase was linked to desulfonation of 6:2 FTSA; while alkane monooxygenase, haloacid dehalogenase, and cytochrome P450 were linked to defluorination of 6:2 FTSA. The desulfonation and defluorination ability of these enzymes toward 6:2 FTSA were validated through heterologous gene expression and in vitro assays. Four degradation metabolites were confirmed and one was identified as a tentative metabolite. The results provide a new understanding of 6:2 FTSA biotransformation by RHA1. The genes encoding these desulfonating- and defluorinating-enzymes are potential markers to be used to assess 6:2 FTSA biotransformation in the environment.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843, USA
| | - Ying Shi
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843, USA
| | - Mark Strynar
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27709, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
27
|
Chan PWY, Chakrabarti N, Ing C, Halgas O, To TKW, Wälti M, Petit AP, Tran C, Savchenko A, Yakunin AF, Edwards EA, Pomès R, Pai EF. Defluorination Capability of l-2-Haloacid Dehalogenases in the HAD-Like Hydrolase Superfamily Correlates with Active Site Compactness. Chembiochem 2022; 23:e202100414. [PMID: 34643018 PMCID: PMC10281000 DOI: 10.1002/cbic.202100414] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Indexed: 11/11/2022]
Abstract
l-2-Haloacid dehalogenases, industrially and environmentally important enzymes that catalyse cleavage of the carbon-halogen bond in S-2-halocarboxylic acids, were known to hydrolyse chlorinated, brominated and iodinated substrates but no activity towards fluorinated compounds had been reported. A screen for novel dehalogenase activities revealed four l-2-haloacid dehalogenases capable of defluorination. We now report crystal structures for two of these enzymes, Bpro0530 and Rha0230, as well as for the related proteins PA0810 and RSc1362, which hydrolyse chloroacetate but not fluoroacetate, all at ∼2.2 Å resolution. Overall structure and active sites of these enzymes are highly similar. In molecular dynamics (MD) calculations, only the defluorinating enzymes sample more compact conformations, which in turn allow more effective interactions with the small fluorine atom. Structural constraints, based on X-ray structures and MD calculations, correctly predict the defluorination activity of the homologous enzyme ST2570.
Collapse
Affiliation(s)
- Peter W Y Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Present address: Zymeworks, Inc., 1385 West 8th Avenue Suite 540, Vancouver, British Columbia, V6H 3 V9, Canada
- Princess Margaret Cancer Centre, The Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | | | - Chris Ing
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Present address: ProteinQure, Inc., 119 Spadina Avenue suite 304, Toronto, Ontario, M5V 2L1, Canada
| | - Ondrej Halgas
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Terence K W To
- Princess Margaret Cancer Centre, The Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- Present address: International Point of Care, Inc., 135 The West Mall, Unit 9, Toronto, Ontario, M9C 1C2, Canada
| | - Marielle Wälti
- Princess Margaret Cancer Centre, The Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- Present address: Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0510, USA
| | - Alain-Pierre Petit
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Present address: Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Christopher Tran
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Present address: Ramboll Environment & Health, 2400 Meadowpine Boulevard, Suite 100, Mississauga, Ontario, L5N 6S2, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Present address: Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Health Research Innovation Centre, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Régis Pomès
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Emil F Pai
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Princess Margaret Cancer Centre, The Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
28
|
Huang Q, Zhang X, Chen Q, Tian S, Tong W, Zhang W, Chen Y, Ma M, Chen B, Wang B, Wang JB. Discovery of a P450-Catalyzed Oxidative Defluorination Mechanism toward Chiral Organofluorines: Uncovering a Hidden Pathway. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qun Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Shaixiao Tian
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Tong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Yingzhuang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Jian-bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| |
Collapse
|
29
|
Abstract
Thousands of heavily fluorinated chemicals are found in the environment, impact human and ecosystem health, and are relatively resistant to biological and chemical degradation. Their persistence in the environment is due to the inability of most microorganisms to biodegrade them. Only a very few examples of polyfluorinated compound biodegradation are known, and the reported rates are very low. This has been mostly attributed to the low chemical reactivity of the C-F bond. This Perspective goes beyond that explanation to highlight microbiological reasons why polyfluorinated compounds resist metabolism. The evolutionary and physiological impediments must be appreciated to better find, study, and harness microbes that degrade polyfluorinated compounds.
Collapse
|
30
|
Kang H, Zheng M. Influence of the quantum mechanical region size in QM/MM modelling: A case study of fluoroacetate dehalogenase catalyzed C F bond cleavage. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Reetz MT, Garcia-Borràs M. The Unexplored Importance of Fleeting Chiral Intermediates in Enzyme-Catalyzed Reactions. J Am Chem Soc 2021; 143:14939-14950. [PMID: 34491742 PMCID: PMC8461649 DOI: 10.1021/jacs.1c04551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 02/07/2023]
Abstract
Decades of extensive research efforts by biochemists, organic chemists, and protein engineers have led to an understanding of the basic mechanisms of essentially all known types of enzymes, but in a formidable number of cases an essential aspect has been overlooked. The occurrence of short-lived chiral intermediates formed by symmetry-breaking of prochiral precursors in enzyme catalyzed reactions has been systematically neglected. We designate these elusive species as fleeting chiral intermediates and analyze such crucial questions as "Do such intermediates occur in homochiral form?" If so, what is the absolute configuration, and why did Nature choose that particular stereoisomeric form, even when the isolable final product may be achiral? Does the absolute configuration of a chiral product depend in any way on the absolute configuration of the fleeting chiral precursor? How does this affect the catalytic proficiency of the enzyme? If these issues continue to be unexplored, then an understanding of the mechanisms of many enzyme types remains incomplete. We have systematized the occurrence of these chiral intermediates according to their structures and enzyme types. This is followed by critical analyses of selected case studies and by final conclusions and perspectives. We hope that the fascinating concept of fleeting chiral intermediates will attract the attention of scientists, thereby opening an exciting new research field.
Collapse
Affiliation(s)
- Manfred T. Reetz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Marc Garcia-Borràs
- Institute
of Computational Chemistry and Catalysis (IQCC) and Departament de
Química, Universitat de Girona, Carrer Maria Aurèlia Capmany
69, 17003 Girona, Spain
| |
Collapse
|
32
|
Che S, Jin B, Liu Z, Yu Y, Liu J, Men Y. Structure-Specific Aerobic Defluorination of Short-Chain Fluorinated Carboxylic Acids by Activated Sludge Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:668-674. [PMID: 35316934 PMCID: PMC8936751 DOI: 10.1021/acs.estlett.1c00511] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of manmade chemicals that impose emerging environmental concerns. Among them, short-chain per- and polyfluorinated carboxylic acids represent an important subgroup used as building blocks of biologically active chemicals and functional materials. Some are also considered PFAS alternatives, and some could be byproducts of the physicochemical treatment of PFAS. However, little is known about the environmental fate of short-chain fluorinated carboxylic acids (FCAs) and their defluorination/transformation by microorganisms. To fill the knowledge gap, we investigated the structure-reactivity relationships in the aerobic defluorination of C3-C5 FCAs by activated sludge communities. Four structures exhibited greater than 20% defluorination, with 3,3,3-trifluoropropionic acid being almost completely defluorinated. We further analyzed the defluorination/transformation pathways and inferred the structures susceptible to aerobic microbial defluorination. We also demonstrated that the defluorination was via cometabolism. The findings advance the fundamental understanding of aerobic microbial defluorination and help assess the environmental fate of PFAS. Since some short-chain PFAS, such as 3,3,3-trifluoropropionic acid, are the incomplete defluorination byproducts of advanced reduction processes, their defluorination by activated sludge communities sheds light on the development of cost-effective chemical-biological PFAS treatment train systems.
Collapse
Affiliation(s)
- Shun Che
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Bosen Jin
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Zekun Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yaochun Yu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
Yue Y, Fan J, Xin G, Huang Q, Wang JB, Li Y, Zhang Q, Wang W. Comprehensive Understanding of Fluoroacetate Dehalogenase-Catalyzed Degradation of Fluorocarboxylic Acids: A QM/MM Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9817-9825. [PMID: 34080849 DOI: 10.1021/acs.est.0c08811] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorochemicals are persistent, bioaccumulative, and toxic compounds that are widely tributed in the environment. Developing efficient biodegradation strategies to decompose the fluorochemicals via breaking the inert C-F bonds presents a holistic challenge. As a promising biodegradation enzyme candidate, fluoroacetate dehalogenase (FAcD) has been reported as the only non-metallic enzyme to catalyze the cleavage of the strong C-F bond. Here, we systematically investigated the catalytic actions of FAcD toward its natural substrate fluoroacetate using molecular dynamics simulations and quantum mechanism/molecular mechanism calculations. We propose that the enzymatic transformation involves four elementary steps, (I) C-F bond activation, (II) nucleophilic attack, (III) C-O bond cleavage, and (IV) proton transfer. Our results show that nucleophilic attack is the rate-determining step. However, for difluoroacetate and trifluoroacetate, C-F bond activation, instead of nucleophilic attack, becomes the rate-determining step. We show that FAcD, originally recognized as α-fluorocarboxylic acid degradation enzyme, can catalyze the defluorination of difluoroacetate to glyoxylate, which is captured by our high-resolution mass spectrometry experiments. In addition, we employed amino acid electrostatic analysis method to screen potential mutation hotspots for tuning FAcD's electrostatic environment to favor substrate conversion. The comprehensive understanding of catalytic mechanism will inform a rational enzyme engineering strategy to degrade fluorochemicals for benefits of environmental sustainability.
Collapse
Affiliation(s)
- Yue Yue
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Jiaqian Fan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Guoqing Xin
- Wuhan National High Magnetic Field Center (WHMFC), Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Qun Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Jian-Bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
34
|
Zhang L, De BC, Zhang W, Mándi A, Fang Z, Yang C, Zhu Y, Kurtán T, Zhang C. Mutation of an atypical oxirane oxyanion hole improves regioselectivity of the α/β-fold epoxide hydrolase Alp1U. J Biol Chem 2020; 295:16987-16997. [PMID: 33004437 PMCID: PMC7863881 DOI: 10.1074/jbc.ra120.015563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Indexed: 01/13/2023] Open
Abstract
Epoxide hydrolases (EHs) have been characterized and engineered as biocatalysts that convert epoxides to valuable chiral vicinal diol precursors of drugs and bioactive compounds. Nonetheless, the regioselectivity control of the epoxide ring opening by EHs remains challenging. Alp1U is an α/β-fold EH that exhibits poor regioselectivity in the epoxide hydrolysis of fluostatin C (compound 1) and produces a pair of stereoisomers. Herein, we established the absolute configuration of the two stereoisomeric products and determined the crystal structure of Alp1U. A Trp-186/Trp-187/Tyr-247 oxirane oxygen hole was identified in Alp1U that replaced the canonical Tyr/Tyr pair in α/β-EHs. Mutation of residues in the atypical oxirane oxygen hole of Alp1U improved the regioselectivity for epoxide hydrolysis on 1. The single site Y247F mutation led to highly regioselective (98%) attack at C-3 of 1, whereas the double mutation W187F/Y247F resulted in regioselective (94%) nucleophilic attack at C-2. Furthermore, single-crystal X-ray structures of the two regioselective Alp1U variants in complex with 1 were determined. These findings allowed insights into the reaction details of Alp1U and provided a new approach for engineering regioselective epoxide hydrolases.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Bidhan Chandra De
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; University of the Chinese Academy of Sciences, Beijing, China.
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Zhuangjie Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Chunfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
35
|
Kumar A, Pillay B, Olaniran AO. Genome sequence and metabolic analysis revealed the catabolic pathways for the degradation of 1,2-dichloroethane and other related Xenobiotics in Ancylobacter aquaticus strain UV5. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Oyewusi HA, Wahab RA, Huyop F. Dehalogenase-producing halophiles and their potential role in bioremediation. MARINE POLLUTION BULLETIN 2020; 160:111603. [PMID: 32919122 DOI: 10.1016/j.marpolbul.2020.111603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
This review aims to briefly describe the potential role of dehalogenase-producing halophilic bacteria in decontamination of organohalide pollutants. Hypersaline habitats pose challenges to life because of low water activity (water content) and is considered as the largest and ultimate sink for pollutants due to naturally and anthropogenic activities in which a substantial amount of ecological contaminants are organohalides. Several such environments appear to host and support substantial diversity of extremely halophilic and halotolerant bacteria as well as halophilic archaea. Biodegradation of several toxic inorganic and organic compounds in both aerobic and anaerobic conditions are carried out by halophilic microbes. Therefore, remediation of polluted marine/hypersaline environments are the main scorching issues in the field of biotechnology. Although many microbial species are reported as effective pollutants degrader, but little has been isolated from marine/hypersaline environments. Therefore, more novel microbial species with dehalogenase-producing ability are still desired.
Collapse
Affiliation(s)
- Habeebat Adekilekun Oyewusi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Department of Biochemistry, School of Science and Computer Studies, Federal Polytechnic Ado Ekiti, PMB, 5351, Ekiti State, Nigeria
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| |
Collapse
|
37
|
Yue Y, Chen J, Bao L, Wang J, Li Y, Zhang Q. Fluoroacetate dehalogenase catalyzed dehalogenation of halogenated carboxylic acids: A QM/MM approach. CHEMOSPHERE 2020; 254:126803. [PMID: 32361540 DOI: 10.1016/j.chemosphere.2020.126803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Dehalogenation is one of the most important reactions in environmental pollution control, for instance, the degradation of persistent organic pollutants (POPs). Recently, fluoroacetate dehalogenase (FAcD) has been reported to catalyze the dehalogenation reactions, which shows great potential in treating halogenated pollutants. Here the dehalogenation mechanism catalyzed by FAcD was fully deciphered with the aid of quantum mechanics/molecular mechanics method. The results show that FAcD catalyzed dehalogenation efficiency follows the order of defluorination > dechlorination > debromination. The corresponding Boltzmann-weighted average barriers are 10.1, 19.7, and 20.9 kcal mol-1. Positive/negative correlations between activation barriers and structural parameters (e.g. distance and angle) for FAcD catalyzed dechlorination and debromination were established. Based on the structure-energy relationship, we propose that mutation of the binding pocket amino acids (e.g. His155, Trp156, Tyr219) to smaller proton donor amino acids (e.g. Serine, Threonine, Cysteine, Asparagine) may increase the efficiency for dechlorination and debromination. The results may of practical value for the efficient degradation of chlorined and bromined pollutants by harnessing FAcD.
Collapse
Affiliation(s)
- Yue Yue
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Jinfeng Chen
- School of Life Sciences, Westlake University, Hangzhou, 310000, PR China
| | - Lei Bao
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Junjie Wang
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Jinan, 250100, PR China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| |
Collapse
|
38
|
Abstract
Fluorochemicals are a widely distributed class of compounds and have been utilized across a wide range of industries for decades. Given the environmental toxicity and adverse health threats of some fluorochemicals, the development of new methods for their decomposition is significant to public health. However, the carbon-fluorine (C-F) bond is among the most chemically robust bonds; consequently, the degradation of fluorinated hydrocarbons is exceptionally difficult. Here, metalloenzymes that catalyze the cleavage of this chemically challenging bond are reviewed. These enzymes include histidine-ligated heme-dependent dehaloperoxidase and tyrosine hydroxylase, thiolate-ligated heme-dependent cytochrome P450, and four nonheme oxygenases, namely, tetrahydrobiopterin-dependent aromatic amino acid hydroxylase, 2-oxoglutarate-dependent hydroxylase, Rieske dioxygenase, and thiol dioxygenase. While much of the literature regarding the aforementioned enzymes highlights their ability to catalyze C-H bond activation and functionalization, in many cases, the C-F bond cleavage has been shown to occur on fluorinated substrates. A copper-dependent laccase-mediated system representing an unnatural radical defluorination approach is also described. Detailed discussions on the structure-function relationships and catalytic mechanisms provide insights into biocatalytic defluorination, which may inspire drug design considerations and environmental remediation of halogenated contaminants.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
39
|
Structure-guided protein design of fluoroacetate dehalogenase for kinetic resolution of rac-2-bromobutyric acid. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Johnson BM, Shu YZ, Zhuo X, Meanwell NA. Metabolic and Pharmaceutical Aspects of Fluorinated Compounds. J Med Chem 2020; 63:6315-6386. [PMID: 32182061 DOI: 10.1021/acs.jmedchem.9b01877] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The applications of fluorine in drug design continue to expand, facilitated by an improved understanding of its effects on physicochemical properties and the development of synthetic methodologies that are providing access to new fluorinated motifs. In turn, studies of fluorinated molecules are providing deeper insights into the effects of fluorine on metabolic pathways, distribution, and disposition. Despite the high strength of the C-F bond, the departure of fluoride from metabolic intermediates can be facile. This reactivity has been leveraged in the design of mechanism-based enzyme inhibitors and has influenced the metabolic fate of fluorinated compounds. In this Perspective, we summarize the literature associated with the metabolism of fluorinated molecules, focusing on examples where the presence of fluorine influences the metabolic profile. These studies have revealed potentially problematic outcomes with some fluorinated motifs and are enhancing our understanding of how fluorine should be deployed.
Collapse
Affiliation(s)
- Benjamin M Johnson
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yue-Zhong Shu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Xiaoliang Zhuo
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Discovery Chemistry Platforms, Small Molecule Drug Discovery, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
41
|
Zhang H, Tian S, Yue Y, Li M, Tong W, Xu G, Chen B, Ma M, Li Y, Wang JB. Semirational Design of Fluoroacetate Dehalogenase RPA1163 for Kinetic Resolution of α-Fluorocarboxylic Acids on a Gram Scale. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Shaixiao Tian
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Yue Yue
- Environment Research Institute, Shandong University, Qingdao 266237, People’s Republic of China
| | - Min Li
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Wei Tong
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Guangyu Xu
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Bo Chen
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, People’s Republic of China
| | - Jian-bo Wang
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081, People’s Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 368 Youyi Road, Wuchang Wuhan 430062, People’s Republic of China
| |
Collapse
|
42
|
Abstract
AbstractOrganofluorines are widely used in a variety of applications, ranging from pharmaceuticals to pesticides and advanced materials. The widespread use of organofluorines also leads to its accumulation in the environment, and two major questions arise: how to synthesize and how to degrade this type of compound effectively? In contrast to a considerable number of easy-access chemical methods, milder and more effective enzymatic methods remain to be developed. In this review, we present recent progress on enzyme-catalyzed C–F bond formation and cleavage, focused on describing C–F bond formation enabled by fluorinase and C–F bond cleavage catalyzed by oxidase, reductase, deaminase, and dehalogenase.
Collapse
|
43
|
Bauer TL, Buchholz PCF, Pleiss J. The modular structure of α/β-hydrolases. FEBS J 2019; 287:1035-1053. [PMID: 31545554 DOI: 10.1111/febs.15071] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022]
Abstract
The α/β-hydrolase fold family is highly diverse in sequence, structure and biochemical function. To investigate the sequence-structure-function relationships, the Lipase Engineering Database (https://led.biocatnet.de) was updated. Overall, 280 638 protein sequences and 1557 protein structures were analysed. All α/β-hydrolases consist of the catalytically active core domain, but they might also contain additional structural modules, resulting in 12 different architectures: core domain only, additional lids at three different positions, three different caps, additional N- or C-terminal domains and combinations of N- and C-terminal domains with caps and lids respectively. In addition, the α/β-hydrolases were distinguished by their oxyanion hole signature (GX-, GGGX- and Y-types). The N-terminal domains show two different folds, the Rossmann fold or the β-propeller fold. The C-terminal domains show a β-sandwich fold. The N-terminal β-propeller domain and the C-terminal β-sandwich domain are structurally similar to carbohydrate-binding proteins such as lectins. The classification was applied to the newly discovered polyethylene terephthalate (PET)-degrading PETases and MHETases, which are core domain α/β-hydrolases of the GX- and the GGGX-type respectively. To investigate evolutionary relationships, sequence networks were analysed. The degree distribution followed a power law with a scaling exponent γ = 1.4, indicating a highly inhomogeneous network which consists of a few hubs and a large number of less connected sequences. The hub sequences have many functional neighbours and therefore are expected to be robust toward possible deleterious effects of mutations. The cluster size distribution followed a power law with an extrapolated scaling exponent τ = 2.6, which strongly supports the connectedness of the sequence space of α/β-hydrolases. DATABASE: Supporting data about domains from other proteins with structural similarity to the N- or C-terminal domains of α/β-hydrolases are available in Data Repository of the University of Stuttgart (DaRUS) under doi: https://doi.org/10.18419/darus-458.
Collapse
Affiliation(s)
- Tabea L Bauer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| | - Patrick C F Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| |
Collapse
|
44
|
Li Y, Yue Y, Zhang H, Yang Z, Wang H, Tian S, Wang JB, Zhang Q, Wang W. Harnessing fluoroacetate dehalogenase for defluorination of fluorocarboxylic acids: in silico and in vitro approach. ENVIRONMENT INTERNATIONAL 2019; 131:104999. [PMID: 31319293 DOI: 10.1016/j.envint.2019.104999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Widely distributed fluorocarboxylic acids have aroused worldwide environmental concerns due to its toxicity, persistence, and bioaccumulation. Enzyme-based eco-friendly biodegradation techniques have become increasingly important in treating fluorocarboxylic acids. Here we utilized in silico and in vitro approaches to investigate the defluorination mechanism of fluoroacetate dehalogenase (FAcD) toward monofluoropropionic acids at atomic-level. The experimentally determined kcat and kM for defluorination of 2-fluoropropionic acid are 330 ± 60 min-1 and 6.12 ± 0.13 mM. The in silico results demonstrated positive/negative correlations between activation barriers and structural parameters (e.g. distance and angle) under different enzymatic conformations. We also screened computationally and tested in vitro (enzyme assay and kinetic study) the catalytic proficiency of FAcD toward polyfluoropropionic acids and perfluoropropionic acids which are known to be challenging for enzymatic degradation. The results revealed potential degradation activity of FAcD enzyme toward 2,3,3,3-tetrafluoropropionic acids. Our work will initiate the development of a new "integrated approach" for enzyme engineering to degrade environmentally persistent fluorocarboxylic acids.
Collapse
Affiliation(s)
- Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Yue Yue
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Hongxia Zhang
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Zhongyue Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Hui Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Shaixiao Tian
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Jian-Bo Wang
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
45
|
Mehrabi P, Schulz EC, Dsouza R, Müller-Werkmeister HM, Tellkamp F, Miller RJD, Pai EF. Time-resolved crystallography reveals allosteric communication aligned with molecular breathing. Science 2019; 365:1167-1170. [DOI: 10.1126/science.aaw9904] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
A comprehensive understanding of protein function demands correlating structure and dynamic changes. Using time-resolved serial synchrotron crystallography, we visualized half-of-the-sites reactivity and correlated molecular-breathing motions in the enzyme fluoroacetate dehalogenase. Eighteen time points from 30 milliseconds to 30 seconds cover four turnover cycles of the irreversible reaction. They reveal sequential substrate binding, covalent-intermediate formation, setup of a hydrolytic water molecule, and product release. Small structural changes of the protein mold and variations in the number and placement of water molecules accompany the various chemical steps of catalysis. Triggered by enzyme-ligand interactions, these repetitive changes in the protein framework’s dynamics and entropy constitute crucial components of the catalytic machinery.
Collapse
|
46
|
Mehrabi P, Di Pietrantonio C, Kim TH, Sljoka A, Taverner K, Ing C, Kruglyak N, Pomès R, Pai EF, Prosser RS. Substrate-Based Allosteric Regulation of a Homodimeric Enzyme. J Am Chem Soc 2019; 141:11540-11556. [PMID: 31188575 DOI: 10.1021/jacs.9b03703] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Many enzymes operate through half-of-the sites reactivity wherein a single protomer is catalytically engaged at one time. In the case of the homodimeric enzyme, fluoroacetate dehalogenase, substrate binding triggers closing of a regulatory cap domain in the empty protomer, preventing substrate access to the remaining active site. However, the empty protomer serves a critical role by acquiring more disorder upon substrate binding, thereby entropically favoring the forward reaction. Empty protomer dynamics are also allosterically coupled to the bound protomer, driving conformational exchange at the active site and progress along the reaction coordinate. Here, we show that at high concentrations, a second substrate binds along the substrate-access channel of the occupied protomer, thereby dampening interprotomer dynamics and inhibiting catalysis. While a mutation (K152I) abrogates second site binding and removes inhibitory effects, it also precipitously lowers the maximum catalytic rate, implying a role for the allosteric pocket at low substrate concentrations, where only a single substrate engages the enzyme at one time. We show that this outer pocket first desolvates the substrate, whereupon it is deposited in the active site. Substrate binding to the active site then triggers the empty outer pocket to serve as an interprotomer allosteric conduit, enabling enhanced dynamics and sampling of activation states needed for catalysis. These allosteric networks and the ensuing changes resulting from second substrate binding are delineated using rigidity-based allosteric transmission theory and validated by nuclear magnetic resonance and functional studies. The results illustrate the role of dynamics along allosteric networks in facilitating function.
Collapse
Affiliation(s)
- Pedram Mehrabi
- Department of Medical Biophysics , University of Toronto , Toronto , Ontario M5G 1L7 , Canada.,Department for Atomically Resolved Dynamics , Max-Planck-Institute for Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany.,Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre , Toronto , Ontario M5G 1L7 , Canada
| | - Christopher Di Pietrantonio
- Department of Chemistry , University of Toronto, UTM , 3359 Mississauga Road North , Mississauga , Ontario L5L 1C6 , Canada
| | - Tae Hun Kim
- Department of Chemistry , University of Toronto, UTM , 3359 Mississauga Road North , Mississauga , Ontario L5L 1C6 , Canada.,Program in Molecular Medicine, Research Institute, The Hospital for Sick Children , Toronto , Ontario M5G 0A4 , Canada
| | - Adnan Sljoka
- Department of Chemistry , University of Toronto, UTM , 3359 Mississauga Road North , Mississauga , Ontario L5L 1C6 , Canada.,CREST, Japan Science and Technology Agency (JST), Department of Informatics, School of Science and Technology , Kwansei Gakuin University , Sanda 669-1337 , Japan.,Center for Advanced Intelligence Project, RIKEN , 1-4-1 Nihombashi, Chuo-ku , Tokyo 103-0027 , Japan
| | - Keith Taverner
- Department of Chemistry , University of Toronto, UTM , 3359 Mississauga Road North , Mississauga , Ontario L5L 1C6 , Canada
| | - Christopher Ing
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children , Toronto , Ontario M5G 0A4 , Canada.,Department of Biochemistry , University of Toronto , 1 King's College Circle , Toronto , Ontario M5S 1A8 , Canada
| | - Natasha Kruglyak
- Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre , Toronto , Ontario M5G 1L7 , Canada.,Department of Biochemistry , University of Toronto , 1 King's College Circle , Toronto , Ontario M5S 1A8 , Canada
| | - Régis Pomès
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children , Toronto , Ontario M5G 0A4 , Canada.,Department of Biochemistry , University of Toronto , 1 King's College Circle , Toronto , Ontario M5S 1A8 , Canada
| | - Emil F Pai
- Department of Medical Biophysics , University of Toronto , Toronto , Ontario M5G 1L7 , Canada.,Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre , Toronto , Ontario M5G 1L7 , Canada.,Department of Biochemistry , University of Toronto , 1 King's College Circle , Toronto , Ontario M5S 1A8 , Canada
| | - R Scott Prosser
- Department of Medical Biophysics , University of Toronto , Toronto , Ontario M5G 1L7 , Canada.,Department of Chemistry , University of Toronto, UTM , 3359 Mississauga Road North , Mississauga , Ontario L5L 1C6 , Canada.,Department of Biochemistry , University of Toronto , 1 King's College Circle , Toronto , Ontario M5S 1A8 , Canada
| |
Collapse
|
47
|
Wierman JL, Paré-Labrosse O, Sarracini A, Besaw JE, Cook MJ, Oghbaey S, Daoud H, Mehrabi P, Kriksunov I, Kuo A, Schuller DJ, Smith S, Ernst OP, Szebenyi DME, Gruner SM, Miller RJD, Finke AD. Fixed-target serial oscillation crystallography at room temperature. IUCRJ 2019; 6:305-316. [PMID: 30867928 PMCID: PMC6400179 DOI: 10.1107/s2052252519001453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/25/2019] [Indexed: 05/18/2023]
Abstract
A fixed-target approach to high-throughput room-temperature serial synchrotron crystallography with oscillation is described. Patterned silicon chips with microwells provide high crystal-loading density with an extremely high hit rate. The microfocus, undulator-fed beamline at CHESS, which has compound refractive optics and a fast-framing detector, was built and optimized for this experiment. The high-throughput oscillation method described here collects 1-5° of data per crystal at room temperature with fast (10° s-1) oscillation rates and translation times, giving a crystal-data collection rate of 2.5 Hz. Partial datasets collected by the oscillation method at a storage-ring source provide more complete data per crystal than still images, dramatically lowering the total number of crystals needed for a complete dataset suitable for structure solution and refinement - up to two orders of magnitude fewer being required. Thus, this method is particularly well suited to instances where crystal quantities are low. It is demonstrated, through comparison of first and last oscillation images of two systems, that dose and the effects of radiation damage can be minimized through fast rotation and low angular sweeps for each crystal.
Collapse
Affiliation(s)
| | - Olivier Paré-Labrosse
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Antoine Sarracini
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Jessica E. Besaw
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | | | - Saeed Oghbaey
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Hazem Daoud
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Pedram Mehrabi
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | | | - Anling Kuo
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Scott Smith
- MacCHESS, Cornell University, Ithaca, NY 14853, USA
| | - Oliver P. Ernst
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Sol M. Gruner
- MacCHESS, Cornell University, Ithaca, NY 14853, USA
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - R. J. Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | | |
Collapse
|
48
|
Schulz EC, Mehrabi P, Müller-Werkmeister HM, Tellkamp F, Jha A, Stuart W, Persch E, De Gasparo R, Diederich F, Pai EF, Miller RJD. The hit-and-return system enables efficient time-resolved serial synchrotron crystallography. Nat Methods 2018; 15:901-904. [DOI: 10.1038/s41592-018-0180-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/10/2018] [Indexed: 11/10/2022]
|
49
|
Cleavage of a carbon-fluorine bond by an engineered cysteine dioxygenase. Nat Chem Biol 2018; 14:853-860. [PMID: 29942080 PMCID: PMC6103799 DOI: 10.1038/s41589-018-0085-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/04/2018] [Indexed: 11/08/2022]
Abstract
Cysteine dioxygenase (CDO) plays an essential role in sulfur metabolism by regulating homeostatic levels of cysteine. Human CDO contains a post-translationally generated Cys93-Tyr157 cross-linked cofactor. Here, we investigated this Cys-Tyr cross-linking by incorporating unnatural tyrosines in place of Tyr157 via a genetic method. The catalytically active variants were obtained with a thioether bond between Cys93 and the halogen-substituted Tyr157, and we determined the crystal structures of both wild-type and engineered CDO variants in the purely uncross-linked form and with a mature cofactor. Along with mass spectrometry and 19F NMR, these data indicated that the enzyme could catalyze oxidative C-F or C-Cl bond cleavage, resulting in a substantial conformational change of both Cys93 and Tyr157 during cofactor assembly. These findings provide insights into the mechanism of Cys-Tyr cofactor biogenesis and may aid the development of bioinspired aromatic carbon-halogen bond activation.
Collapse
|
50
|
Ang TF, Maiangwa J, Salleh AB, Normi YM, Leow TC. Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications. Molecules 2018; 23:E1100. [PMID: 29735886 PMCID: PMC6100074 DOI: 10.3390/molecules23051100] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022] Open
Abstract
The variety of halogenated substances and their derivatives widely used as pesticides, herbicides and other industrial products is of great concern due to the hazardous nature of these compounds owing to their toxicity, and persistent environmental pollution. Therefore, from the viewpoint of environmental technology, the need for environmentally relevant enzymes involved in biodegradation of these pollutants has received a great boost. One result of this great deal of attention has been the identification of environmentally relevant bacteria that produce hydrolytic dehalogenases—key enzymes which are considered cost-effective and eco-friendly in the removal and detoxification of these pollutants. These group of enzymes catalyzing the cleavage of the carbon-halogen bond of organohalogen compounds have potential applications in the chemical industry and bioremediation. The dehalogenases make use of fundamentally different strategies with a common mechanism to cleave carbon-halogen bonds whereby, an active-site carboxylate group attacks the substrate C atom bound to the halogen atom to form an ester intermediate and a halide ion with subsequent hydrolysis of the intermediate. Structurally, these dehalogenases have been characterized and shown to use substitution mechanisms that proceed via a covalent aspartyl intermediate. More so, the widest dehalogenation spectrum of electron acceptors tested with bacterial strains which could dehalogenate recalcitrant organohalides has further proven the versatility of bacterial dehalogenators to be considered when determining the fate of halogenated organics at contaminated sites. In this review, the general features of most widely studied bacterial dehalogenases, their structural properties, basis of the degradation of organohalides and their derivatives and how they have been improved for various applications is discussed.
Collapse
Affiliation(s)
- Thiau-Fu Ang
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Jonathan Maiangwa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Yahaya M Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|