1
|
Yoo C, Choi J, Lee Y. Nickel model complexes to mimic carbon monoxide dehydrogenase reactions. Chem Sci 2025; 16:1093-1105. [PMID: 39713754 PMCID: PMC11656573 DOI: 10.1039/d4sc06957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024] Open
Abstract
Biological CO2/CO interconversion catalyzed at the Ni/Fe heterobimetallic active site of anaerobic carbon monoxide dehydrogenases (CODHs) offers important insights for the design of efficient and selective synthetic catalysts for CO2 capture and utilization (CCU). Notably, this organometallic C1 interconversion process is mediated at a three-coordinate nickel site. Extensive research has been conducted to elucidate the redox and structural changes involved in substrate binding and conversion. The CO2-bound structure of CODH, in particular, has inspired many synthetic studies aimed at exploring key questions, concerning the choice of metal, the role of the unique iron (Feu), and the geometry and oxidation states of both Ni and Feu, as well as CO2/CO exchange mechanism. A better understanding of CODH chemistry promises to reveal and uncover fundamental principles for small molecule activation of first-row transition metal complexes. This mini-review focuses on three key aspects: (1) the coordination environment of the Ni centre in CODH, (2) bioinorganic Ni model systems that provide insight into the biological CO2/CO interconversion at the CODH active site, and (3) recent advances in CODH-inspired catalysis for selective CO2-to-CO conversion.
Collapse
Affiliation(s)
- Changho Yoo
- Department of Chemistry, Ulsan National Institute of Science and Technology Ulsan 44919 Republic of Korea +82 52 217 2694
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology Ulsan 44919 Republic of Korea
| | - Jonghoon Choi
- Department of Chemistry Education, Chonnam National University Gwangju 61186 Republic of Korea +82 62 530 2492
| | - Yunho Lee
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea +82 2 880 6653
| |
Collapse
|
2
|
Rodriguez GM, Trotta C, Tensi L, Macchioni A. Reversible Electrocatalytic NAD +/NADH Interconversion Mediated by a Pyrazine-Amidate Iridium Complex. J Am Chem Soc 2024; 146:34298-34303. [PMID: 39626298 DOI: 10.1021/jacs.4c14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Herein, we report reversible electrocatalytic NAD+/NADH interconversion mediated by [Cp*Ir(pyza)Cl] (1, pyza = pyrazine amidate). 1 was designed through a rational approach aimed at lowering the overpotential of NAD+ to NADH reduction with respect to that observed for electrocatalyst [Cp*Ir(pica)Cl] (2, pica = picolinamidate). The peculiar properties of pyza, which is substantially less σ electron-donator and more π electron-acceptor than pica, resulted in an easier bielectronic reduction process occurring at -0.29 V (instead of ca. -0.65 V for 2), very close to the equilibrium potential of NAD+/NADH redox couple (E°eq = -0.32 V vs NHE, 298 K, pH 7). 1 catalyzes both NAD+ reduction and NADH oxidation in response to even a small departure from equilibrium potential, with a catalytic bias for the former (|ipred/ipox| = 6.2, 333 K). The reversibility of NAD+/NADH interconversion was ascertained by 1H EXSY NMR spectroscopy that clearly demonstrated the rapid establishment of 1_H + NAD+ ⇌ 1 + NADH equilibrium (Keq = 3, ΔG = -0.6 kcal/mol, 298 K) and a similar hydridicity of NADH (28.9 kcal/mol, 298 K) and 1_H (28.3 kcal/mol, 298 K).
Collapse
Affiliation(s)
- Gabriel Menendez Rodriguez
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Caterina Trotta
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Leonardo Tensi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Alceo Macchioni
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
3
|
Newman-Stonebraker SH, Gerard TJ, Holland PL. Opportunities for Insight into the Mechanism of Efficient CO 2/CO Interconversion at a Nickel-Iron Cluster in CO Dehydrogenase. Chem 2024; 10:1655-1667. [PMID: 38966253 PMCID: PMC11221784 DOI: 10.1016/j.chempr.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The reduction of CO2 with low overpotential and high selectivity is a crucial challenge in catalysis. Fortunately, natural systems have evolved enzymes that achieve this catalytic reaction very efficiently at a complex nickel-iron-sulfur cluster within carbon monoxide dehydrogenase (CODH). Extensive biochemical, crystallographic, and spectroscopic work has been done to understand the structures and mechanism involved in the catalytic cycle, which are summarized here from the perspective of mechanistic organometallic chemistry. We highlight the ambiguities in the data and suggest experiments that could lead to clearer understanding of the mechanism and structures of intermediates at the active-site cluster. These include parallel crystallography and spectroscopy, as well as the preparation of synthetic analogues that help to interpret structural and spectroscopic signatures.
Collapse
|
4
|
Kim SM, Kang SH, Jeon BW, Kim YH. Tunnel engineering of gas-converting enzymes for inhibitor retardation and substrate acceleration. BIORESOURCE TECHNOLOGY 2024; 394:130248. [PMID: 38158090 DOI: 10.1016/j.biortech.2023.130248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Carbon monoxide dehydrogenase (CODH), formate dehydrogenase (FDH), hydrogenase (H2ase), and nitrogenase (N2ase) are crucial enzymatic catalysts that facilitate the conversion of industrially significant gases such as CO, CO2, H2, and N2. The tunnels in the gas-converting enzymes serve as conduits for these low molecular weight gases to access deeply buried catalytic sites. The identification of the substrate tunnels is imperative for comprehending the substrate selectivity mechanism underlying these gas-converting enzymes. This knowledge also holds substantial value for industrial applications, particularly in addressing the challenges associated with separation and utilization of byproduct gases. In this comprehensive review, we delve into the emerging field of tunnel engineering, presenting a range of approaches and analyses. Additionally, we propose methodologies for the systematic design of enzymes, with the ultimate goal of advancing protein engineering strategies.
Collapse
Affiliation(s)
- Suk Min Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Sung Heuck Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Byoung Wook Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Bährle R, Böhnke S, Englhard J, Bachmann J, Perner M. Current status of carbon monoxide dehydrogenases (CODH) and their potential for electrochemical applications. BIORESOUR BIOPROCESS 2023; 10:84. [PMID: 38647803 PMCID: PMC10992861 DOI: 10.1186/s40643-023-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/16/2023] [Indexed: 04/25/2024] Open
Abstract
Anthropogenic carbon dioxide (CO2) levels are rising to alarming concentrations in earth's atmosphere, causing adverse effects and global climate changes. In the last century, innovative research on CO2 reduction using chemical, photochemical, electrochemical and enzymatic approaches has been addressed. In particular, natural CO2 conversion serves as a model for many processes and extensive studies on microbes and enzymes regarding redox reactions involving CO2 have already been conducted. In this review we focus on the enzymatic conversion of CO2 to carbon monoxide (CO) as the chemical conversion downstream of CO production render CO particularly attractive as a key intermediate. We briefly discuss the different currently known natural autotrophic CO2 fixation pathways, focusing on the reversible reaction of CO2, two electrons and protons to CO and water, catalyzed by carbon monoxide dehydrogenases (CODHs). We then move on to classify the different type of CODHs, involved catalyzed chemical reactions and coupled metabolisms. Finally, we discuss applications of CODH enzymes in photochemical and electrochemical cells to harness CO2 from the environment transforming it into commodity chemicals.
Collapse
Affiliation(s)
- Rebecca Bährle
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - Stefanie Böhnke
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - Jonas Englhard
- Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Julien Bachmann
- Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Mirjam Perner
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany.
| |
Collapse
|
6
|
Schüren AO, Ridgway BM, Di Salvo F, Carella LM, Gramm VK, Metzger E, Doctorovich F, Rentschler E, Schünemann V, Ruschewitz U, Klein A. Structural insight into halide-coordinated [Fe 4S 4X nY 4-n] 2- clusters (X, Y = Cl, Br, I) by XRD and Mössbauer spectroscopy. Dalton Trans 2023; 52:1277-1290. [PMID: 36621931 DOI: 10.1039/d2dt03203a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron sulphur halide clusters [Fe4S4Br4]2- and [Fe4S4X2Y2]2- (X, Y = Cl, Br, I) were obtained in excellent yields (77 to 78%) and purity from [Fe(CO)5], elemental sulphur, I2 and benzyltrimethylammonium (BTMA+) iodide, bromide and chloride. Single crystals of (BTMA)2[Fe4S4Br4] (1), (BTMA)2[Fe4S4Br2Cl2] (2), (BTMA)2[Fe4S4Cl2I2] (3), and (BTMA)2[Fe4S4Br2I2] (4) were isostructural to the previously reported (BTMA)2[Fe4S4I4] (5) (monoclinic, Cc). Instead of the chloride cubane cluster [Fe4S4Cl4]2-, we found the prismane-shaped cluster (BTMA)3[Fe6S6Cl6] (6) (P1̄). 57Fe Mössbauer spectroscopy indicates complete delocalisation with Fe2.5+ oxidation states for all iron atoms. Magnetic measurements showed small χMT values at 298 K ranging from 1.12 to 1.54 cm3 K mol-1, indicating the dominant antiferromagnetic exchange interactions. With decreasing temperature, the χMT values decreased to reach a plateau at around 100 K. From about 20 K, the values drop significantly. Fitting the data in the Heisenberg-Dirac-van Vleck (HDvV) as well as the Heisenberg Double Exchange (HDE) formalism confirmed the delocalisation and antiferromagnetic coupling assumed from Mössbauer spectroscopy.
Collapse
Affiliation(s)
- Andreas O Schüren
- Universität zu Köln, Mathematisch-Naturwissenschaftliche Fakultät, Department für Chemie, Institut für Anorganische Chemie, Greinstraße 6, D-50939 Köln, Germany. .,INQUIMAE-CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Piso 3, C1428EGA, Buenos Aires, Argentina
| | - Benjamin M Ridgway
- INQUIMAE-CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Piso 3, C1428EGA, Buenos Aires, Argentina
| | - Florencia Di Salvo
- INQUIMAE-CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Piso 3, C1428EGA, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Intendente Güiraldes 2160, Pabellón 2, Piso 3, C1428EGA, Buenos Aires, Argentina
| | - Luca M Carella
- Johannes Gutenberg Universität Mainz, Department Chemie, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Verena K Gramm
- Universität zu Köln, Mathematisch-Naturwissenschaftliche Fakultät, Department für Chemie, Institut für Anorganische Chemie, Greinstraße 6, D-50939 Köln, Germany.
| | - Elisa Metzger
- TU Kaiserlautern Department of Physics, 67663 Kaiserlautern, Germany
| | - Fabio Doctorovich
- INQUIMAE-CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Piso 3, C1428EGA, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Intendente Güiraldes 2160, Pabellón 2, Piso 3, C1428EGA, Buenos Aires, Argentina
| | - Eva Rentschler
- Johannes Gutenberg Universität Mainz, Department Chemie, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Volker Schünemann
- TU Kaiserlautern Department of Physics, 67663 Kaiserlautern, Germany
| | - Uwe Ruschewitz
- Universität zu Köln, Mathematisch-Naturwissenschaftliche Fakultät, Department für Chemie, Institut für Anorganische Chemie, Greinstraße 6, D-50939 Köln, Germany.
| | - Axel Klein
- Universität zu Köln, Mathematisch-Naturwissenschaftliche Fakultät, Department für Chemie, Institut für Anorganische Chemie, Greinstraße 6, D-50939 Köln, Germany.
| |
Collapse
|
7
|
Meneghello M, Léger C, Fourmond V. Electrochemical Studies of CO 2 -Reducing Metalloenzymes. Chemistry 2021; 27:17542-17553. [PMID: 34506631 DOI: 10.1002/chem.202102702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 11/07/2022]
Abstract
Only two enzymes are capable of directly reducing CO2 : CO dehydrogenase, which produces CO at a [NiFe4 S4 ] active site, and formate dehydrogenase, which produces formate at a mononuclear W or Mo active site. Both metalloenzymes are very rapid, energy-efficient and specific in terms of product. They have been connected to electrodes with two different objectives. A series of studies used protein film electrochemistry to learn about different aspects of the mechanism of these enzymes (reactivity with substrates, inhibitors…). Another series focused on taking advantage of the catalytic performance of these enzymes to build biotechnological devices, from CO2 -reducing electrodes to full photochemical devices performing artificial photosynthesis. Here, we review all these works.
Collapse
Affiliation(s)
- Marta Meneghello
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| | - Christophe Léger
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| | - Vincent Fourmond
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| |
Collapse
|
8
|
Lewis LC, Shafaat HS. Reversible Electron Transfer and Substrate Binding Support [NiFe 3S 4] Ferredoxin as a Protein-Based Model for [NiFe] Carbon Monoxide Dehydrogenase. Inorg Chem 2021; 60:13869-13875. [PMID: 34488341 DOI: 10.1021/acs.inorgchem.1c01323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The nickel-iron carbon monoxide dehydrogenase (CODH) enzyme catalyzes the reversible and selective interconversion of carbon dioxide (CO2) to carbon monoxide (CO) with high rates and negligible overpotential. Despite decades of research, many questions remain about this complex metalloenzyme system. A simplified model enzyme could provide substantial insight into biological carbon cycling. Here, we demonstrate reversible electron transfer and binding of both CO and cyanide, a substrate and an inhibitor of CODH, respectively, in a Pyrococcus furiosus (Pf) ferredoxin (Fd) protein that has been reconstituted with a nickel-iron sulfide cluster ([NiFe3S4] Fd). The [NiFe3S4] cluster mimics the core of the native CODH active site and thus serves as a protein-based structural model of the CODH subsite. Notably, despite binding cyanide, no CO binding is observed for the physiological [Fe4S4] clusters in Pf Fd, providing chemical rationale underlying the evolution of a site-differentiated cluster for substrate conversion in native CODH. The demonstration of a substrate-binding metalloprotein model of CODH sets the stage for high-resolution spectroscopic and mechanistic studies correlating the subsite structure and function, ultimately guiding the design of anthropogenic catalysts that harness the advantages of CODH for effective CO2 reduction.
Collapse
Affiliation(s)
- Luke C Lewis
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Contaldo U, Guigliarelli B, Perard J, Rinaldi C, Le Goff A, Cavazza C. Efficient Electrochemical CO 2/CO Interconversion by an Engineered Carbon Monoxide Dehydrogenase on a Gas-Diffusion Carbon Nanotube-Based Bioelectrode. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Umberto Contaldo
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
- University Grenoble Alpes, DCM UMR 5250, BEA, F-38000 Grenoble, France
| | | | - Julien Perard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Clara Rinaldi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Alan Le Goff
- University Grenoble Alpes, DCM UMR 5250, BEA, F-38000 Grenoble, France
| | - Christine Cavazza
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| |
Collapse
|
10
|
Turning Carbon Dioxide and Ethane into Ethanol by Solar-Driven Heterogeneous Photocatalysis over RuO2- and NiO-co-Doped SrTiO3. Catalysts 2021. [DOI: 10.3390/catal11040461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The current work focused on the sunlight-driven thermo-photocatalytic reduction of carbon dioxide (CO2), the primary greenhouse gas, by ethane (C2H6), the second most abundant element in shale gas, aiming at the generation of ethanol (EtOH), a renewable fuel. To promote this process, a hybrid catalyst was prepared and properly characterized, comprising of strontium titanate (SrTiO3) co-doped with ruthenium oxide (RuO2) and nickel oxide (NiO). The photocatalytic activity towards EtOH production was assessed in batch-mode and at gas-phase, under the influence of different conditions: (i) dopant loading; (ii) temperature; (iii) optical radiation wavelength; (vi) consecutive uses; and (v) electron scavenger addition. From the results here obtained, it was found that: (i) the functionalization of the SrTiO3 with RuO2 and NiO allows the visible light harvest and narrows the band gap energy (ca. 14–20%); (ii) the selectivity towards EtOH depends on the presence of Ni and irradiation; (iii) the catalyst photoresponse is mainly due to the visible photons; (iv) the photocatalyst loses > 50% efficiency right after the 2nd use; (v) the reaction mechanism is based on the photogenerated electron-hole pair charge separation; and (vi) a maximum yield of 64 μmol EtOH gcat−1 was obtained after 45-min (85 μmol EtOH gcat−1 h−1) of simulated solar irradiation (1000 W m−2) at 200 °C, using 0.4 g L−1 of SrTiO3:RuO2:NiO (0.8 wt.% Ru) with [CO2]:[C2H6] and [Ru]:[Ni] molar ratios of 1:3 and 1:1, respectively. Notwithstanding, despite its exploratory nature, this study offers an alternative route to solar fuels’ synthesis from the underutilized C2H6 and CO2.
Collapse
|
11
|
Abstract
Efficient electrocatalytic energy conversion requires the devices to function reversibly, i.e. deliver a significant current at minimal overpotential. Redox-active films can effectively embed and stabilise molecular electrocatalysts, but mediated electron transfer through the film typically makes the catalytic response irreversible. Here, we describe a redox-active film for bidirectional (oxidation or reduction) and reversible hydrogen conversion, consisting of [FeFe] hydrogenase embedded in a low-potential, 2,2’-viologen modified hydrogel. When this catalytic film served as the anode material in a H2/O2 biofuel cell, an open circuit voltage of 1.16 V was obtained - a benchmark value near the thermodynamic limit. The same film also acted as a highly energy efficient cathode material for H2 evolution. We explained the catalytic properties using a kinetic model, which shows that reversibility can be achieved despite intermolecular electron transfer being slower than catalysis. This understanding of reversibility simplifies the design principles of highly efficient and stable bioelectrocatalytic films, advancing their implementation in energy conversion.
Collapse
|
12
|
Rodríguez‐Maciá P, Galle LM, Bjornsson R, Lorent C, Zebger I, Yoda Y, Cramer SP, DeBeer S, Span I, Birrell JA. Caught in the H inact : Crystal Structure and Spectroscopy Reveal a Sulfur Bound to the Active Site of an O 2 -stable State of [FeFe] Hydrogenase. Angew Chem Int Ed Engl 2020; 59:16786-16794. [PMID: 32488975 PMCID: PMC7540559 DOI: 10.1002/anie.202005208] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/01/2020] [Indexed: 01/25/2023]
Abstract
[FeFe] hydrogenases are the most active H2 converting catalysts in nature, but their extreme oxygen sensitivity limits their use in technological applications. The [FeFe] hydrogenases from sulfate reducing bacteria can be purified in an O2 -stable state called Hinact . To date, the structure and mechanism of formation of Hinact remain unknown. Our 1.65 Å crystal structure of this state reveals a sulfur ligand bound to the open coordination site. Furthermore, in-depth spectroscopic characterization by X-ray absorption spectroscopy (XAS), nuclear resonance vibrational spectroscopy (NRVS), resonance Raman (RR) spectroscopy and infrared (IR) spectroscopy, together with hybrid quantum mechanical and molecular mechanical (QM/MM) calculations, provide detailed chemical insight into the Hinact state and its mechanism of formation. This may facilitate the design of O2 -stable hydrogenases and molecular catalysts.
Collapse
Affiliation(s)
- Patricia Rodríguez‐Maciá
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Lisa M. Galle
- Physikalische BiologieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Ragnar Bjornsson
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Christian Lorent
- Physikalische Chemie/ Biophysikalische ChemieInstitut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Ingo Zebger
- Physikalische Chemie/ Biophysikalische ChemieInstitut für ChemieTechnische Universität BerlinStraße des 17. Juni 13510623BerlinGermany
| | - Yoshitaka Yoda
- Japanese Synchrotron Radiation Institute, Spring-81-1-1 Kouto, Mikazuki-choSayo-gunHyogo679-5198Japan
| | | | - Serena DeBeer
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Ingrid Span
- Physikalische BiologieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - James A. Birrell
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| |
Collapse
|
13
|
Rodríguez‐Maciá P, Galle LM, Bjornsson R, Lorent C, Zebger I, Yoda Y, Cramer SP, DeBeer S, Span I, Birrell JA. Kristallstruktur und Spektroskopie offenbaren einen Schwefel‐Liganden am aktiven Zentrum einer O
2
‐stabilen [FeFe]‐Hydrogenase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Patricia Rodríguez‐Maciá
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | - Lisa M. Galle
- Physikalische BiologieHeinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| | - Ragnar Bjornsson
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
| | - Christian Lorent
- Physikalische Chemie/ Biophysikalische ChemieInstitut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Ingo Zebger
- Physikalische Chemie/ Biophysikalische ChemieInstitut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Yoshitaka Yoda
- Japanese Synchrotron Radiation Institute, Spring-8 1-1-1 Kouto, Mikazuki-cho Sayo-gun Hyogo 679-5198 Japan
| | - Stephen P. Cramer
- SETI Institute 189 Bernardo Avenue Mountain View California 94043 USA
| | - Serena DeBeer
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
| | - Ingrid Span
- Physikalische BiologieHeinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| | - James A. Birrell
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
| |
Collapse
|
14
|
The two CO-dehydrogenases of Thermococcus sp. AM4. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148188. [PMID: 32209322 DOI: 10.1016/j.bbabio.2020.148188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/19/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Ni-containing CO-dehydrogenases (CODHs) allow some microorganisms to couple ATP synthesis to CO oxidation, or to use either CO or CO2 as a source of carbon. The recent detailed characterizations of some of them have evidenced a great diversity in terms of catalytic properties and resistance to O2. In an effort to increase the number of available CODHs, we have heterologously produced in Desulfovibrio fructosovorans, purified and characterized the two CooS-type CODHs (CooS1 and CooS2) from the hyperthermophilic archaeon Thermococcus sp. AM4 (Tc). We have also crystallized CooS2, which is coupled in vivo to a hydrogenase. CooS1 and CooS2 are homodimers, and harbour five metalloclusters: two [Ni4Fe-4S] C clusters, two [4Fe-4S] B clusters and one interfacial [4Fe-4S] D cluster. We show that both are dependent on a maturase, CooC1 or CooC2, which is interchangeable. The homologous protein CooC3 does not allow Ni insertion in either CooS. The two CODHs from Tc have similar properties: they can both oxidize and produce CO. The Michaelis constants (Km) are in the microM range for CO and in the mM range (CODH 1) or above (CODH 2) for CO2. Product inhibition is observed only for CO2 reduction, consistent with CO2 binding being much weaker than CO binding. The two enzymes are rather O2 sensitive (similarly to CODH II from Carboxydothermus hydrogenoformans), and react more slowly with O2 than any other CODH for which these data are available.
Collapse
|
15
|
Fourmond V, Wiedner ES, Shaw WJ, Léger C. Understanding and Design of Bidirectional and Reversible Catalysts of Multielectron, Multistep Reactions. J Am Chem Soc 2019; 141:11269-11285. [PMID: 31283209 DOI: 10.1021/jacs.9b04854] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Some enzymes, including those that are involved in the activation of small molecules such as H2 or CO2, can be wired to electrodes and function in either direction of the reaction depending on the electrochemical driving force and display a significant rate at very small deviations from the equilibrium potential. We call the former property "bidirectionality" and the latter "reversibility". This performance sets very high standards for chemists who aim at designing synthetic electrocatalysts. Only recently, in the particular case of the hydrogen production/evolution reaction, has it been possible to produce inorganic catalysts that function bidirectionally, with an even smaller number that also function reversibly. This raises the question of how to engineer such desirable properties in other synthetic catalysts. Here we introduce the kinetic modeling of bidirectional two-electron-redox reactions in the case of molecular catalysts and enzymes that are either attached to an electrode or diffusing in solution in the vicinity of an electrode. We emphasize that trying to discuss bidirectionality and reversibility in relation to a single redox potential leads to an impasse: the catalyst undergoes two redox transitions, and therefore two catalytic potentials must be defined, which may depart from the two potentials measured in the absence of catalysis. The difference between the two catalytic potentials defines the reversibility; the difference between their average value and the equilibrium potential defines the directionality (also called "preference", or "bias"). We describe how the sequence of events in the bidirectional catalytic cycle can be elucidated on the basis of the voltammetric responses. Further, we discuss the design principles of bidirectionality and reversibility in terms of thermodynamics and kinetics and conclude that neither bidirectionality nor reversibility requires that the catalytic energy landscape be flat. These theoretical findings are illustrated by previous results obtained with nickel diphosphine molecular catalysts and hydrogenases. In particular, analysis of the nickel catalysts highlights the fact that reversible catalysis can be achieved by catalysts that follow complex mechanisms with branched reaction pathways.
Collapse
Affiliation(s)
- Vincent Fourmond
- Aix Marseille Université , CNRS, BIP UMR 7281 , Marseille , France
| | - Eric S Wiedner
- Pacific Northwest National Laboratory , P.O. Box 999, K2-57, Richland , Washington 99352 , United States
| | - Wendy J Shaw
- Pacific Northwest National Laboratory , P.O. Box 999, K2-57, Richland , Washington 99352 , United States
| | - Christophe Léger
- Aix Marseille Université , CNRS, BIP UMR 7281 , Marseille , France
| |
Collapse
|
16
|
Dalle K, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019; 119:2752-2875. [PMID: 30767519 PMCID: PMC6396143 DOI: 10.1021/acs.chemrev.8b00392] [Citation(s) in RCA: 467] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/31/2022]
Abstract
The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.
Collapse
Affiliation(s)
| | | | - Jane J. Leung
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bertrand Reuillard
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Isabell S. Karmel
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
17
|
Abstract
Carbon monoxide dehydrogenases (CODHs) catalyze the reversible oxidation of CO with water to CO2, two electrons, and two protons. Two classes of CODHs exist, having evolved from different scaffolds featuring active sites built from different transition metals. The basic properties of both classes are described in this overview chapter.
Collapse
Affiliation(s)
- Jae-Hun Jeoung
- Institute of Biology, Structural Biology and Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Berta M Martins
- Institute of Biology, Structural Biology and Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Holger Dobbek
- Institute of Biology, Structural Biology and Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Burton R, Can M, Esckilsen D, Wiley S, Ragsdale SW. Production and properties of enzymes that activate and produce carbon monoxide. Methods Enzymol 2018; 613:297-324. [PMID: 30509471 PMCID: PMC6309614 DOI: 10.1016/bs.mie.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chapter focuses on the methods involved in producing and characterizing two key nickel-iron-sulfur enzymes in the Wood-Ljungdahl pathway (WLP) of anaerobic conversion of carbon dioxide fixation into acetyl-CoA: carbon monoxide dehydrogenase (CODH) and acetyl-CoA synthase (ACS). The WLP is used for biosynthesis of cell material and energy conservation by anaerobic bacteria and archaea, and it is central to several industrial biotechnology processes aimed at using syngas and waste gases for the production of fuels and chemicals. The pathway can run in reverse to allow organisms, e. g., methanogens and sulfate reducers, to grow on acetate. The CODH and ACS intertwine to form a tenacious CODH/ACS complex that converts CO2, a methyl group, and coenzyme A into acetyl-CoA. CODH also behaves as a modular unit that can function as an independent homodimer. Besides coupling to ACS, CODH can interact with hydrogenases to couple CO oxidation to H2 formation. These enzymes have been purified and characterized from several microbes.
Collapse
Affiliation(s)
- Rodney Burton
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mehmet Can
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Daniel Esckilsen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Seth Wiley
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
19
|
Rodríguez-Maciá P, Reijerse EJ, van Gastel M, DeBeer S, Lubitz W, Rüdiger O, Birrell JA. Sulfide Protects [FeFe] Hydrogenases From O 2. J Am Chem Soc 2018; 140:9346-9350. [PMID: 30008217 DOI: 10.1021/jacs.8b04339] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[FeFe] hydrogenases catalyze proton reduction and hydrogen oxidation with high rates and efficiency under physiological conditions, but are highly oxygen sensitive. The [FeFe] hydrogenase from Desulfovibrio desulfuricans ( DdHydAB) can be purified under air in an oxygen stable inactive state Hoxair. The formation of the Hoxair state in vitro allows the handling of hydrogenases in air, making their implementation in biotechnological applications more feasible. Here, we report a simple and robust protocol for the formation of the Hoxair state in DdHydAB and the [FeFe] hydrogenase from Chlamydomonas reinhardtii, which is based on high potential inactivation in the presence of sulfide.
Collapse
Affiliation(s)
- Patricia Rodríguez-Maciá
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Edward J Reijerse
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - James A Birrell
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
20
|
Dey S, Ahmed ME, Dey A. Activation of Co(I) State in a Cobalt-Dithiolato Catalyst for Selective and Efficient CO 2 Reduction to CO. Inorg Chem 2018; 57:5939-5947. [PMID: 29714479 DOI: 10.1021/acs.inorgchem.8b00450] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reduction of CO2 holds the key to solving two major challenges taunting the society-clean energy and clean environment. There is an urgent need for the development of efficient non-noble metal-based catalysts that can reduce CO2 selectively and efficiently. Unfortunately, activation and reduction of CO2 can only be achieved by highly reduced metal centers jeopardizing the energy efficiency of the process. A carbon monoxide dehydrogenase inspired Co complex bearing a dithiolato ligand can reduce CO2, in wet acetonitrile, to CO with ∼95% selectivity over a wide potential range and 1559 s-1 rate with a remarkably low overpotential of 70 mV. Unlike most of the transition-metal-based systems that require reduction of the metal to its formal zerovalent state for CO2 reduction, this catalyst can reduce CO2 in its formal +1 state making it substantially more energy efficient than any system known to show similar reactivity. While covalent donation from one thiolate increases electron density at the Co(I) center enabling it to activate CO2, protonation of the bound thiolate, in the presence of H2O as a proton source, plays a crucial role in lowering overpotential (thermodynamics) and ensuring facile proton transfer to the bound CO2 ensuring facile (kinetics) reactivity. A very covalent Co(III)-C bond in a Co(III)-COOH intermediate is at the heart of selective protonation of the oxygen atoms to result in CO as the exclusive product of the reduction.
Collapse
Affiliation(s)
- Subal Dey
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , Kolkata 700032 , India
| | - Md Estak Ahmed
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , Kolkata 700032 , India
| | - Abhishek Dey
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , Kolkata 700032 , India
| |
Collapse
|
21
|
Zhang L, Can M, Ragsdale SW, Armstrong FA. Fast and Selective Photoreduction of CO 2 to CO Catalyzed by a Complex of Carbon Monoxide Dehydrogenase, TiO 2, and Ag Nanoclusters. ACS Catal 2018; 8:2789-2795. [PMID: 31448153 DOI: 10.1021/acscatal.7b04308] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selective, visible-light-driven conversion of CO2 to CO with a turnover frequency of 20 s-1 under visible light irradiation at 25 °C is catalyzed by an aqueous colloidal system comprising a pseudoternary complex formed among carbon monoxide dehydrogenase (CODH), silver nanoclusters stabilized by polymethacrylic acid (AgNCs-PMAA), and TiO2 nanoparticles. The photocatalytic assembly, which is stable over several hours and for at least 250000 turnovers of the enzyme's active site, was investigated by separate electrochemical (dark) and fluorescence measurements to establish specific connectivities among the components. The data show (a) that a coating of AgNCs-PMAA on TiO2 greatly enhances its ability as an electrode for CODH- based electrocatalysis of CO2 reduction and (b) that the individual Ag nanoclusters interact directly and dynamically with the enzyme surface, most likely at exposed cysteine thiols. The results lead to a model for photocatalysis in which the AgNCs act as photosensitizers, CODH captures the excited electrons for catalysis, and TiO2 mediates hole transfer from the AgNC valence band to sacrificial electron donors. The results greatly increase the benchmark for reversible CO2 reduction under ambient conditions and demonstrate that, with such efficient catalysts, the limiting factor is the supply of photogenerated electrons.
Collapse
Affiliation(s)
- Liyun Zhang
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Mehmet Can
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, United States
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, United States
| | - Fraser A. Armstrong
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
22
|
Reliable estimation of the kinetic parameters of redox enzymes by taking into account mass transport towards rotating electrodes in protein film voltammetry experiments. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Sickerman NS, Hu Y, Ribbe MW. Activation of CO
2
by Vanadium Nitrogenase. Chem Asian J 2017; 12:1985-1996. [DOI: 10.1002/asia.201700624] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Nathaniel S. Sickerman
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| |
Collapse
|
24
|
Ciaccafava A, Tombolelli D, Domnik L, Jeoung JH, Dobbek H, Mroginski MA, Zebger I, Hildebrandt P. Die Kohlenmonoxid-Dehydrogenase reduziert Cyanat zu Cyanid. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alexandre Ciaccafava
- Institut für Chemie; Technische Universität Berlin; Sekretariat PC 14 10623 Berlin Deutschland
| | - Daria Tombolelli
- Institut für Chemie; Technische Universität Berlin; Sekretariat PC 14 10623 Berlin Deutschland
| | - Lilith Domnik
- Institut für Biologie, Strukturbiologie/Biochemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Deutschland
| | - Jae-Hun Jeoung
- Institut für Biologie, Strukturbiologie/Biochemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Deutschland
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Deutschland
| | - Maria-Andrea Mroginski
- Institut für Chemie; Technische Universität Berlin; Sekretariat PC 14 10623 Berlin Deutschland
| | - Ingo Zebger
- Institut für Chemie; Technische Universität Berlin; Sekretariat PC 14 10623 Berlin Deutschland
| | - Peter Hildebrandt
- Institut für Chemie; Technische Universität Berlin; Sekretariat PC 14 10623 Berlin Deutschland
| |
Collapse
|
25
|
Ciaccafava A, Tombolelli D, Domnik L, Jeoung JH, Dobbek H, Mroginski MA, Zebger I, Hildebrandt P. Carbon Monoxide Dehydrogenase Reduces Cyanate to Cyanide. Angew Chem Int Ed Engl 2017; 56:7398-7401. [DOI: 10.1002/anie.201703225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Alexandre Ciaccafava
- Institut für Chemie; Technische Universität Berlin; Sekretariat PC 14 10623 Berlin Germany
| | - Daria Tombolelli
- Institut für Chemie; Technische Universität Berlin; Sekretariat PC 14 10623 Berlin Germany
| | - Lilith Domnik
- Institut für Biologie, Strukturbiologie/Biochemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Jae-Hun Jeoung
- Institut für Biologie, Strukturbiologie/Biochemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Maria-Andrea Mroginski
- Institut für Chemie; Technische Universität Berlin; Sekretariat PC 14 10623 Berlin Germany
| | - Ingo Zebger
- Institut für Chemie; Technische Universität Berlin; Sekretariat PC 14 10623 Berlin Germany
| | - Peter Hildebrandt
- Institut für Chemie; Technische Universität Berlin; Sekretariat PC 14 10623 Berlin Germany
| |
Collapse
|
26
|
Heijstra BD, Leang C, Juminaga A. Gas fermentation: cellular engineering possibilities and scale up. Microb Cell Fact 2017; 16:60. [PMID: 28403896 PMCID: PMC5389167 DOI: 10.1186/s12934-017-0676-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/04/2017] [Indexed: 12/11/2022] Open
Abstract
Low carbon fuels and chemicals can be sourced from renewable materials such as biomass or from industrial and municipal waste streams. Gasification of these materials allows all of the carbon to become available for product generation, a clear advantage over partial biomass conversion into fermentable sugars. Gasification results into a synthesis stream (syngas) containing carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2) and nitrogen (N2). Autotrophy-the ability to fix carbon such as CO2 is present in all domains of life but photosynthesis alone is not keeping up with anthropogenic CO2 output. One strategy is to curtail the gaseous atmospheric release by developing waste and syngas conversion technologies. Historically microorganisms have contributed to major, albeit slow, atmospheric composition changes. The current status and future potential of anaerobic gas-fermenting bacteria with special focus on acetogens are the focus of this review.
Collapse
Affiliation(s)
| | - Ching Leang
- LanzaTech, Inc., 8045 Lamon Ave, Suite 400, Skokie, IL USA
| | - Alex Juminaga
- LanzaTech, Inc., 8045 Lamon Ave, Suite 400, Skokie, IL USA
| |
Collapse
|
27
|
Kramer WW, McCrory CCL. Polymer coordination promotes selective CO 2 reduction by cobalt phthalocyanine. Chem Sci 2016; 7:2506-2515. [PMID: 28660020 PMCID: PMC5477023 DOI: 10.1039/c5sc04015a] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/01/2016] [Indexed: 12/23/2022] Open
Abstract
Cobalt phthalocyanine (CoPc) is a known electrocatalyst for the carbon dioxide reduction reaction (CO2RR) that, when adsorbed onto edge-plane graphite (EPG) electrodes, shows modest activity and selectivity for CO production along with co-generation of H2. In contrast, electrodes modified with CoPc immobilized in a poly-4-vinylpridine (P4VP) film show dramatically enhanced activity and selectivity compared to those modified with CoPc alone. CoPc-P4VP films display a faradaic efficiency of ∼90% for CO, with a turnover frequency of 4.8 s-1 at just -0.75 V vs. RHE. Two properties of P4VP contribute to enhancing the activity of CoPc: (1) the ability of individual pyridine residues to coordinate to CoPc and (2) the high concentration of uncoordinated pyridine residues throughout the film which may enhance the catalytic activity of CoPc through secondary and other outer coordination sphere effects. Electrodes modified with polymer-free, five-coordinate CoPc(py) films (py = pyridine) and with CoPc catalysts immobilized in non-coordinating poly-2-vinylpyridine films were prepared to independently investigate the role that each property plays in enhancing CO2RR performance of CoPc-P4VP. These studies show that a synergistic relationship between the primary and outer coordination sphere effects is responsible for the enhanced catalytic activity of CoPc when embedded in the P4VP membrane.
Collapse
Affiliation(s)
- W W Kramer
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - C C L McCrory
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| |
Collapse
|
28
|
|
29
|
Schüren AO, Gramm VK, Dürr M, Foi A, Ivanović-Burmazović I, Doctorovich F, Ruschewitz U, Klein A. Halide coordinated homoleptic [Fe4S4X4](2-) and heteroleptic [Fe4S4X2Y2](2-) clusters (X, Y = Cl, Br, I)--alternative preparations, structural analogies and spectroscopic properties in solution and solid state. Dalton Trans 2016; 45:361-75. [PMID: 26618565 DOI: 10.1039/c5dt02769a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New facile methods to prepare iron sulphur halide clusters [Fe4S4X4](2-) from [Fe(CO)5] and elemental sulphur were elaborated. Reactions of ferrous precursors like tetrahalidoferrates(ii) or simple ferrous halides with [Fe(CO)5] and sulphur turned out to be efficient methods to prepare homoleptic [Fe4S4X4](2-) (X = Cl, Br) and heteroleptic clusters [Fe4S4X4-nYn](2-) (X = Cl, Br; Y = Br, I). Solid materials were obtained as salts of BTMA(+) (= benzyltrimethylammonium); the new compounds containing [Fe4S4Br4](2-) and [Fe4S4X2Y2](2-) (X, Y = Cl, Br, I) were all isostructural to (BTMA)2[Fe4S4I4] (monoclinic, Cc) as inferred from synchrotron X-ray powder diffraction. While the solid materials contain defined heteroleptic clusters with a halide X : Y ratio of 2 : 2, dissolving these compounds leads to rapid scrambling of the halide ligands forming mixtures of all five possible [Fe4S4X4-nYn](2-) clusters as could be shown by UHR-ESI MS. The variation of X and Y allowed assignment of the absorption bands in the visible and NIR; the long-wavelength bands around 1100 nm were tentatively assigned to intervalence charge transfer (IVCT) transitions.
Collapse
Affiliation(s)
- Andreas O Schüren
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, 50939 Köln, Germany. and Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 3, C1428EHA Buenos Aires, Argentina
| | - Verena K Gramm
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, 50939 Köln, Germany.
| | - Maximilian Dürr
- Department Chemie und Pharmazie, Lehrstuhl für Bioanorgansiche Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Ana Foi
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 3, C1428EHA Buenos Aires, Argentina
| | - Ivana Ivanović-Burmazović
- Department Chemie und Pharmazie, Lehrstuhl für Bioanorgansiche Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 3, C1428EHA Buenos Aires, Argentina
| | - Uwe Ruschewitz
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, 50939 Köln, Germany.
| | - Axel Klein
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, 50939 Köln, Germany.
| |
Collapse
|
30
|
Wang VCC. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems. Phys Chem Chem Phys 2016; 18:22364-72. [DOI: 10.1039/c6cp03500k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Unifying the kinetic and thermodynamic properties of electrocatalysts for the oxygen evolution reaction.
Collapse
Affiliation(s)
- Vincent C.-C. Wang
- Yancheng, Kaohsiung 803
- Republic of China
- Institute of Chemistry
- Academia Sinica
- Taipei 115
| |
Collapse
|
31
|
Hwang ET, Seo BK, Gu MB, Zeng AP. Successful bi-enzyme stabilization for the biomimetic cascade transformation of carbon dioxide. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00783j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In nature, carbon dioxide (CO2) conversion to valuable chemicals occurs via several metabolic pathways through multi-enzymatic reactions.
Collapse
Affiliation(s)
- Ee Taek Hwang
- Institute of Bioprocess and Biosystems Engineering
- Hamburg University of Technology
- D-21073 Hamburg
- Germany
| | - Bo-Kuk Seo
- Department of Biotechnology
- College of Life Science and Biotechnology
- Korea University
- Seongbuk-gu
- Republic of Korea
| | - Man Bock Gu
- Department of Biotechnology
- College of Life Science and Biotechnology
- Korea University
- Seongbuk-gu
- Republic of Korea
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering
- Hamburg University of Technology
- D-21073 Hamburg
- Germany
| |
Collapse
|
32
|
Merrouch M, Hadj‐Saïd J, Domnik L, Dobbek H, Léger C, Dementin S, Fourmond V. O
2
Inhibition of Ni‐Containing CO Dehydrogenase Is Partly Reversible. Chemistry 2015; 21:18934-8. [DOI: 10.1002/chem.201502835] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Meriem Merrouch
- Aix‐Marseille University, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille cedex 20, (France)
| | - Jessica Hadj‐Saïd
- Aix‐Marseille University, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille cedex 20, (France)
| | - Lilith Domnik
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt‐Universität zu Berlin, Unter den Linden 6, 10099 Berlin (Germany)
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt‐Universität zu Berlin, Unter den Linden 6, 10099 Berlin (Germany)
| | - Christophe Léger
- Aix‐Marseille University, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille cedex 20, (France)
| | - Sébastien Dementin
- Aix‐Marseille University, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille cedex 20, (France)
| | - Vincent Fourmond
- Aix‐Marseille University, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille cedex 20, (France)
| |
Collapse
|
33
|
Varley JB, Wang Y, Chan K, Studt F, Nørskov JK. Mechanistic insights into nitrogen fixation by nitrogenase enzymes. Phys Chem Chem Phys 2015; 17:29541-7. [PMID: 26366854 DOI: 10.1039/c5cp04034e] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Biological nitrogen fixation by nitrogenase enzymes is a process that activates dinitrogen (N2) one of the most inert molecules in nature, within the confines of a living organism and at ambient conditions. Despite decades of study, there are still no complete explanations as to how this is possible. Here we describe a model of N2 reduction using the Mo-containing nitrogenase (FeMoco) that can explain the reactivity of the active site via a series of electrochemical steps that reversibly unseal a highly reactive Fe edge site. Our model can explain the 8 proton-electron transfers involved in biological ammonia synthesis within the kinetic scheme of Lowe and Thorneley, the obligatory formation of one H2 per N2 reduced, and the behavior of known inhibitors.
Collapse
Affiliation(s)
- J B Varley
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA.
| | | | | | | | | |
Collapse
|
34
|
Wang VCC, Islam STA, Can M, Ragsdale SW, Armstrong FA. Investigations by Protein Film Electrochemistry of Alternative Reactions of Nickel-Containing Carbon Monoxide Dehydrogenase. J Phys Chem B 2015; 119:13690-7. [PMID: 26176986 DOI: 10.1021/acs.jpcb.5b03098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein film electrochemistry has been used to investigate reactions of highly active nickel-containing carbon monoxide dehydrogenases (CODHs). When attached to a pyrolytic graphite electrode, these enzymes behave as reversible electrocatalysts, displaying CO2 reduction or CO oxidation at minimal overpotential. The O2 sensitivity of CODH is suppressed by adding cyanide, a reversible inhibitor of CO oxidation, or by raising the electrode potential. Reduction of N2O, isoelectronic with CO2, is catalyzed by CODH, but the reaction is sluggish, despite a large overpotential, and results in inactivation. Production of H2 and formate under highly reducing conditions is consistent with calculations predicting that a nickel-hydrido species might be formed, but the very low rates suggest that such a species is not on the main catalytic pathway.
Collapse
Affiliation(s)
- Vincent C-C Wang
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, OX1 3QR, U.K
| | - Shams T A Islam
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, OX1 3QR, U.K
| | - Mehmet Can
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109-0606, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109-0606, United States
| | - Fraser A Armstrong
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, OX1 3QR, U.K
| |
Collapse
|
35
|
Ribbe MW. Insights into the Mechanism of Carbon Monoxide Dehydrogenase at Atomic Resolution. Angew Chem Int Ed Engl 2015; 54:8337-9. [DOI: 10.1002/anie.201503979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 11/06/2022]
|
36
|
Ribbe MW. Atomare Einblicke in den Mechanismus der Kohlenmonoxid-Dehydrogenase. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Fesseler J, Jeoung JH, Dobbek H. Wie der [NiFe4S4]-Cluster der CO-Dehydrogenase CO2und NCO−aktiviert. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Fesseler J, Jeoung JH, Dobbek H. How the [NiFe4S4] Cluster of CO Dehydrogenase Activates CO2and NCO−. Angew Chem Int Ed Engl 2015; 54:8560-4. [DOI: 10.1002/anie.201501778] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 11/07/2022]
|
39
|
Bachmeier A, Armstrong F. Solar-driven proton and carbon dioxide reduction to fuels — lessons from metalloenzymes. Curr Opin Chem Biol 2015; 25:141-51. [DOI: 10.1016/j.cbpa.2015.01.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/23/2014] [Accepted: 01/07/2015] [Indexed: 01/13/2023]
|
40
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II. {[Fe2S2](SγCys)4} proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Bachmeier A, Hall S, Ragsdale SW, Armstrong FA. Selective visible-light-driven CO2 reduction on a p-type dye-sensitized NiO photocathode. J Am Chem Soc 2014; 136:13518-21. [PMID: 25237714 DOI: 10.1021/ja506998b] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We present a photocathode assembly for the visible-light-driven selective reduction of CO2 to CO at potentials below the thermodynamic equilibrium in the dark. The photoelectrode comprises a porous p-type semiconducting NiO electrode modified with the visible-light-responsive organic dye P1 and the reversible CO2 cycling enzyme carbon monoxide dehydrogenase. The direct electrochemistry of the enzymatic electrocatalyst on NiO shows that in the dark the electrocatalytic behavior is rectified toward CO oxidation, with the reactivity being governed by the carrier availability at the semiconductor-catalyst interface.
Collapse
Affiliation(s)
- Andreas Bachmeier
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, Oxfordshire, United Kingdom
| | | | | | | |
Collapse
|
42
|
Can M, Armstrong F, Ragsdale SW. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem Rev 2014; 114:4149-74. [PMID: 24521136 PMCID: PMC4002135 DOI: 10.1021/cr400461p] [Citation(s) in RCA: 415] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Mehmet Can
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fraser
A. Armstrong
- Inorganic
Chemistry Laboratory, University of Oxford Oxford, OX1 3QR, United Kingdom
| | - Stephen W. Ragsdale
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
43
|
Wang V, Ragsdale SW, Armstrong FA. Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases. Met Ions Life Sci 2014; 14:71-97. [PMID: 25416391 PMCID: PMC4261625 DOI: 10.1007/978-94-017-9269-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Carbon monoxide dehydrogenases (CODH) play an important role in utilizing carbon monoxide (CO) or carbon dioxide (CO2) in the metabolism of some microorganisms. Two distinctly different types of CODH are distinguished by the elements constituting the active site. A Mo-Cu containing CODH is found in some aerobic organisms, whereas a Ni-Fe containing CODH (henceforth simply Ni-CODH) is found in some anaerobes. Two members of the simplest class (IV) of Ni-CODH behave as efficient, reversible electrocatalysts of CO2/CO interconversion when adsorbed on a graphite electrode. Their intense electroactivity sets an important benchmark for the standard of performance at which synthetic molecular and material electrocatalysts comprised of suitably attired abundant first-row transition elements must be able to operate. Investigations of CODHs by protein film electrochemistry (PFE) reveal how the enzymes respond to the variable electrode potential that can drive CO2/CO interconversion in each direction, and identify the potential thresholds at which different small molecules, both substrates and inhibitors, enter or leave the catalytic cycle. Experiments carried out on a much larger (Class III) enzyme CODH/ACS, in which CODH is complexed tightly with acetyl-CoA synthase, show that some of these characteristics are retained, albeit with much slower rates of interfacial electron transfer, attributable to the difficulty in making good electronic contact at the electrode. The PFE results complement and clarify investigations made using spectroscopic investigations.
Collapse
|
44
|
Hexter SV, Esterle TF, Armstrong FA. A unified model for surface electrocatalysis based on observations with enzymes. Phys Chem Chem Phys 2014; 16:11822-33. [DOI: 10.1039/c3cp55230f] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Pietrzyk P, Mazur T, Podolska-Serafin K, Chiesa M, Sojka Z. Intimate Binding Mechanism and Structure of Trigonal Nickel(I) Monocarbonyl Adducts in ZSM-5 Zeolite—Spectroscopic Continuous Wave EPR, HYSCORE, and IR Studies Refined with DFT Quantification of Disentangled Electron and Spin Density Redistributions along σ and π Channels. J Am Chem Soc 2013; 135:15467-78. [DOI: 10.1021/ja405874t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Piotr Pietrzyk
- Faculty
of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| | - Tomasz Mazur
- Faculty
of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| | | | - Mario Chiesa
- Dipartimento
di Chimica, Università di Torino and NIS Centre of Excellence, via
P. Giuria 7, 10125, Torino, Italy
| | - Zbigniew Sojka
- Faculty
of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| |
Collapse
|
46
|
Gutiérrez Acosta OB, Hardt N, Schink B. Carbonylation as a key reaction in anaerobic acetone activation by Desulfococcus biacutus. Appl Environ Microbiol 2013; 79:6228-35. [PMID: 23913429 PMCID: PMC3811201 DOI: 10.1128/aem.02116-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/29/2013] [Indexed: 01/23/2023] Open
Abstract
Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg(-1) protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria.
Collapse
Affiliation(s)
- Olga B. Gutiérrez Acosta
- Department of Biology
- Konstanz Research School of Chemical Biology, Universität Konstanz, Constance, Germany
| | - Norman Hardt
- Department of Chemistry
- Konstanz Research School of Chemical Biology, Universität Konstanz, Constance, Germany
| | - Bernhard Schink
- Department of Biology
- Konstanz Research School of Chemical Biology, Universität Konstanz, Constance, Germany
| |
Collapse
|
47
|
Bachmeier A, Wang VCC, Woolerton TW, Bell S, Fontecilla-Camps JC, Can M, Ragsdale SW, Chaudhary YS, Armstrong FA. How light-harvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction. J Am Chem Soc 2013; 135:15026-32. [PMID: 24070184 PMCID: PMC3838662 DOI: 10.1021/ja4042675] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The most efficient catalysts for solar fuel production should operate close to reversible potentials, yet possess a bias for the fuel-forming direction. Protein film electrochemical studies of Ni-containing carbon monoxide dehydrogenase and [NiFeSe]-hydrogenase, each a reversible electrocatalyst, show that the electronic state of the electrode strongly biases the direction of electrocatalysis of CO2/CO and H(+)/H2 interconversions. Attached to graphite electrodes, these enzymes show high activities for both oxidation and reduction, but there is a marked shift in bias, in favor of CO2 or H(+) reduction, when the respective enzymes are attached instead to n-type semiconductor electrodes constructed from CdS and TiO2 nanoparticles. This catalytic rectification effect can arise for a reversible electrocatalyst attached to a semiconductor electrode if the electrode transforms between semiconductor- and metallic-like behavior across the same narrow potential range (<0.25 V) that the electrocatalytic current switches between oxidation and reduction.
Collapse
Affiliation(s)
- Andreas Bachmeier
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, Oxfordshire, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang VCC, Ragsdale SW, Armstrong FA. Investigations of two bidirectional carbon monoxide dehydrogenases from Carboxydothermus hydrogenoformans by protein film electrochemistry. Chembiochem 2013; 14:1845-51. [PMID: 24002936 DOI: 10.1002/cbic.201300270] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 11/08/2022]
Abstract
Carbon monoxide dehydrogenases (CODHs) catalyse the reversible conversion between CO and CO2 . Several small molecules or ions are inhibitors and probes for different oxidation states of the unusual [Ni-4 Fe-4 S] cluster that forms the active site. The actions of these small probes on two enzymes-CODH ICh and CODH IICh -produced by Carboxydothermus hydrogenoformans have been studied by protein film voltammetry to compare their behaviour and to establish general characteristics. Whereas CODH ICh is, so far, the better studied of the two isozymes in terms of its electrocatalytic properties, it is CODH IICh that has been characterised by X-ray crystallography. The two isozymes, which share 58.3% sequence identity and 73.9% sequence similarity, show similar patterns of behaviour with regard to selective inhibition of CO2 reduction by CO (product) and cyanate, potent and selective inhibition of CO oxidation by cyanide, and the action of sulfide, which promotes oxidative inactivation of the enzyme. For both isozymes, rates of binding of substrate analogues CN(-) (for CO) and NCO(-) (for CO2 ) are orders of magnitude lower than turnover, a feature that is clearly revealed through hysteresis of cyclic voltammetry. Inhibition by CN(-) and CO is much stronger for CODH IICh than for CODH ICh, a property that has relevance for applying these enzymes as model catalysts in solar-driven CO2 reduction.
Collapse
Affiliation(s)
- Vincent C-C Wang
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (UK)
| | | | | |
Collapse
|
49
|
Kato M, Cardona T, Rutherford AW, Reisner E. Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J Am Chem Soc 2013; 135:10610-3. [PMID: 23829513 PMCID: PMC3795471 DOI: 10.1021/ja404699h] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Indexed: 12/27/2022]
Abstract
Photosystem II (PSII) offers a biological and sustainable route of photochemical water oxidation to O2 and can provide protons and electrons for the generation of solar fuels, such as H2. We present a rational strategy to electrostatically improve the orientation of PSII from a thermophilic cyanobacterium, Thermosynechococcus elongatus , on a nanostructured indium tin oxide (ITO) electrode and to covalently immobilize PSII on the electrode. The ITO electrode was modified with a self-assembled monolayer (SAM) of phosphonic acid ITO linkers with a dangling carboxylate moiety. The negatively charged carboxylate attracts the positive dipole on the electron acceptor side of PSII via Coulomb interactions. Covalent attachment of PSII in its electrostatically improved orientation to the SAM-modified ITO electrode was accomplished via an amide bond to further enhance red-light-driven, direct electron transfer and stability of the PSII hybrid photoelectrode.
Collapse
Affiliation(s)
- Masaru Kato
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge
CB2 1EW, U.K
| | - Tanai Cardona
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | | | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge
CB2 1EW, U.K
| |
Collapse
|