1
|
Akintubosun MO, Higgins MA. A myo-inositol dehydrogenase involved in aminocyclitol biosynthesis of hygromycin A. Beilstein J Org Chem 2024; 20:589-596. [PMID: 38505238 PMCID: PMC10949010 DOI: 10.3762/bjoc.20.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Hygromycin A is a broad-spectrum antibiotic that contains a furanose, cinnamic acid, and aminocyclitol moieties. The biosynthesis of the aminocyclitol has been proposed to proceed through six enzymatic steps from glucose 6-phosphate through myo-inositol to the final methylenedioxy-containing aminocyclitol. Although there is some in vivo evidence for this proposed pathway, biochemical support for the individual enzyme activities is lacking. In this study, we verify the activity for one enzyme in this pathway. We show that Hyg17 is a myo-inositol dehydrogenase that has a unique substrate scope when compared to other myo-inositol dehydrogenases. Furthermore, we analyze sequences from the protein family containing Hyg17 and discuss genome mining strategies that target this protein family to identify biosynthetic clusters for natural product discovery.
Collapse
Affiliation(s)
- Michael O Akintubosun
- Department of Biological Sciences, The University of Alabama, 3314 Science and Engineering Complex, Tuscaloosa, AL 35487, USA
| | - Melanie A Higgins
- Department of Biological Sciences, The University of Alabama, 3314 Science and Engineering Complex, Tuscaloosa, AL 35487, USA
| |
Collapse
|
2
|
Geulin A, Bourne-Branchu Y, Ben Ayed K, Lecourt T, Joosten A. Ferrier/Aza-Wacker/Epoxidation/Glycosylation (FAWEG) Sequence to Access 1,2-Trans 3-Amino-3-deoxyglycosides. Chemistry 2023; 29:e202203987. [PMID: 36793144 DOI: 10.1002/chem.202203987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 02/17/2023]
Abstract
3-Amino-3-deoxyglycosides constitute an essential class of nitrogen-containing sugars. Among them, many important 3-amino-3-deoxyglycosides possess a 1,2-trans relationship. In view of their numerous biological applications, the synthesis of 3-amino-3-deoxyglycosyl donors giving rise to a 1,2-trans glycosidic linkage is thus an important challenge. Even though glycals are highly polyvalent donors, the synthesis and reactivity of 3-amino-3-deoxyglycals have been little studied. In this work, we describe a new sequence, involving a Ferrier rearrangement and subsequent aza-Wacker cyclization that allows the rapid synthesis of orthogonally protected 3-amino-3-deoxyglycals. Finally a 3-amino-3-deoxygalactal derivative was submitted for the first time to an epoxidation/glycosylation with high yield and great diastereoselectivity, highlighting FAWEG (Ferrier/Aza-Wacker/Epoxidation/Glycosylation) as a new approach to access 1,2-trans 3-amino-3-deoxyglycosides.
Collapse
Affiliation(s)
- Anselme Geulin
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Yann Bourne-Branchu
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Kawther Ben Ayed
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Thomas Lecourt
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| | - Antoine Joosten
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000, Rouen, France
- 24 Rue Lucien Tesnière, 76130, Mont-Saint-Aignan, France
| |
Collapse
|
3
|
Escalante A, Mendoza-Flores R, Gosset G, Bolívar F. The aminoshikimic acid pathway in bacteria as source of precursors for the synthesis of antibacterial and antiviral compounds. J Ind Microbiol Biotechnol 2021; 48:6347350. [PMID: 34374768 PMCID: PMC8788734 DOI: 10.1093/jimb/kuab053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
The aminoshikimic acid (ASA) pathway comprises a series of reactions resulting in the synthesis of 3-amino-5-hydroxybenzoic acid (AHBA), present in bacteria such as Amycolatopsis mediterranei and Streptomyces. AHBA is the precursor for synthesizing the mC7N units, the characteristic structural component of ansamycins and mitomycins antibiotics, compounds with important antimicrobial and anticancer activities. Furthermore, aminoshikimic acid, another relevant intermediate of the ASA pathway, is an attractive candidate for a precursor for oseltamivir phosphate synthesis, the most potent anti-influenza neuraminidase inhibitor treatment of both seasonal and pandemic influenza. This review discusses the relevance of the key intermediate AHBA as a scaffold molecule to synthesize diverse ansamycins and mitomycins. We describe the structure and control of the expression of the model biosynthetic cluster rif in A. mediterranei to synthesize ansamycins and review several current pharmaceutical applications of these molecules. Additionally, we discuss some relevant strategies developed for overproducing these chemicals, focusing on the relevance of the ASA pathway intermediates kanosamine, AHAB, and ASA.
Collapse
Affiliation(s)
- Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Rubén Mendoza-Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| |
Collapse
|
4
|
Sletten ET, Danglad-Flores J, Leichnitz S, Abragam Joseph A, Seeberger PH. Expedited synthesis of mannose-6-phosphate containing oligosaccharides. Carbohydr Res 2021; 511:108489. [PMID: 34922155 DOI: 10.1016/j.carres.2021.108489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/04/2023]
Abstract
Currently, the reaction toolbox for the functionalization of glycans assembled on solid-phase is quite limited. Automated (1 h) and manual (overnight) phosphorylation protocols that enable the solid-phase synthesis of oligosaccharides containing up to two mannose-6-phosphates are presented. Automated glycan assembly expedited access to substrates and facilitated the screening of experimental conditions.
Collapse
Affiliation(s)
- Eric T Sletten
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - José Danglad-Flores
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sabrina Leichnitz
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476, Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - A Abragam Joseph
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476, Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
5
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
6
|
Peterson SB, Bertolli SK, Mougous JD. The Central Role of Interbacterial Antagonism in Bacterial Life. Curr Biol 2021; 30:R1203-R1214. [PMID: 33022265 DOI: 10.1016/j.cub.2020.06.103] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of bacteria interacting with their environment has historically centered on strategies for obtaining nutrients and resisting abiotic stresses. We argue this focus has deemphasized a third facet of bacterial life that is equally central to their existence: namely, the threat to survival posed by antagonizing bacteria. The diversity and ubiquity of interbacterial antagonism pathways is becoming increasingly apparent, and the insidious manner by which interbacterial toxins disarm their targets emphasizes the highly evolved nature of these processes. Studies examining the role of antagonism in natural communities reveal it can serve many functions, from facilitating colonization of naïve habitats to maintaining bacterial community stability. The pervasiveness of antagonistic pathways is necessarily matched by an equally extensive array of defense strategies. These overlap with well characterized, central stress response pathways, highlighting the contribution of bacterial interactions to shaping cell physiology. In this review, we build the case for the ubiquity and importance of interbacterial antagonism.
Collapse
Affiliation(s)
- S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Savannah K Bertolli
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Vetter ND, Palmer DRJ. Substrate Substitution in Kanosamine Biosynthesis Using Phosphonates and Phosphite Rescue. Biochemistry 2021; 60:1926-1932. [PMID: 34096710 DOI: 10.1021/acs.biochem.1c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kanosamine is an antibiotic and antifungal compound synthesized from glucose 6-phosphate (G6P) in Bacillus subtilis by the action of three enzymes: NtdC, which catalyzes NAD-dependent oxidation of the C3-hydroxyl; NtdA, a PLP-dependent aminotransferase; and NtdB, a phosphatase. We previously demonstrated that NtdC can also oxidize substrates such as glucose and xylose, though at much lower rates, suggesting that the phosphoryloxymethylene moiety of the substrate is critical for effective catalysis. To probe this, we synthesized two phosphonate analogues of G6P in which the bridging oxygen is replaced by methylene and difluoromethylene groups. These analogues are substrates for NtdC, with second-order rate constants an order of magnitude lower than those for G6P. NtdA converts the resulting 3-keto products to the corresponding kanosamine 6-phosphonate analogues. We compared the rates to the rate of NtdC oxidation of glucose and xylose and showed that the low reactivity of xylose could be rescued 4-fold by the presence of phosphite, mimicking G6P in two pieces. These results allow the evaluation of the individual energetic contributions to catalysis of the bridging oxygen, the bridging C6 methylene, the phosphodianion, and the entropic gain of one substrate versus two substrate pieces. Phosphite also rescued the reversible formation 3-amino-3-deoxy-d-xylose by NtdA, demonstrating that truncated and nonhydrolyzable analogues of kanosamine 6-phosphate can be generated enzymatically.
Collapse
Affiliation(s)
- Natasha D Vetter
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, Canada S7N 5C9
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, Canada S7N 5C9
| |
Collapse
|
8
|
Prasertanan T, Palmer DRJ, Sanders DAR. Snapshots along the catalytic path of KabA, a PLP-dependent aminotransferase required for kanosamine biosynthesis in Bacillus cereus UW85. J Struct Biol 2021; 213:107744. [PMID: 33984505 DOI: 10.1016/j.jsb.2021.107744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Kanosamine is an antibiotic and antifungal monosaccharide. The kanosamine biosynthetic pathway from glucose 6-phosphate in Bacillus cereus UW85 was recently reported, and the functions of each of the three enzymes in the pathway, KabA, KabB and KabC, were demonstrated. KabA, a member of a subclass of the VIβ family of PLP-dependent aminotransferases, catalyzes the second step in the pathway, generating kanosamine 6-phosphate (K6P) using l-glutamate as the amino-donor. KabA catalysis was shown to be extremely efficient, with a second-order rate constant with respect to K6P transamination of over 107 M-1s-1. Here we report the high-resolution structure of KabA in both the PLP- and PMP-bound forms. In addition, co-crystallization with K6P allowed the structure of KabA in complex with the covalent PLP-K6P adduct to be solved. Co-crystallization or soaking with glutamate or 2-oxoglutarate did not result in crystals with either substrate/product. Reduction of the PLP-KabA complex with sodium cyanoborohydride gave an inactivated enzyme, and crystals of the reduced KabA were soaked with the l-glutamate analog glutarate to mimic the KabA-PLP-l-glutamate complex. Together these four structures give a complete picture of how the active site of KabA recognizes substrates for each half-reaction. The KabA structure is discussed in the context of homologous aminotransferases.
Collapse
Affiliation(s)
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada.
| | - David A R Sanders
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
9
|
Impact of activation of neotrehalosadiamine/kanosamine biosynthetic pathway on the metabolism of Bacillus subtilis. J Bacteriol 2021; 203:JB.00603-20. [PMID: 33619155 PMCID: PMC8092168 DOI: 10.1128/jb.00603-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pentose phosphate (PP) pathway is one of the major sources of cellular NADPH. A B. subtilis zwf mutant that lacks glucose-6-phosphate dehydrogenase (the enzyme that catalyzes the first step of the PP pathway) showed inoculum-dose-dependent growth. This growth defect was suppressed by glcP disruption, which causes the upregulation of an autoinducer neotrehalosadiamine (NTD)/kanosamine biosynthetic pathway. A metabolome analysis showed that the stimulation of NTD/kanosamine biosynthesis caused significant accumulation of TCA cycle intermediates and NADPH. Because the major malic enzyme YtsJ concomitantly generates NADPH through malate-to-pyruvate conversion, de novo NTD/kanosamine biosynthesis can result in an increase in the intracellular NADPH pool via the accumulation of malate. In fact, a zwf mutant grew in malate-supplemented medium. Artificial induction of glcP in the zwf mutant caused a reduction in the intracellular NADPH pool. Moreover, the correlation between the expression level of the NTD/kanosamine biosynthesis operon ntdABC and the intracellular NADPH pool was confirmed. Our results suggest that NTD/kanosamine has the potential to modulate the carbon-energy metabolism through an autoinduction mechanism.ImportanceAutoinducers enable bacteria to sense cell density and to coordinate collective behavior. NTD/kanosamine is an autoinducer produced by B. subtilis and several close relatives, although its physiological function remains unknown. The most important finding of this study was the significance of de novo NTD/kanosamine biosynthesis in the modulation of the central carbon metabolism in B. subtilis We showed that NTD/kanosamine biosynthesis caused an increase in the NADPH pool via the accumulation of TCA cycle intermediates. These results suggest a possible role for NTD/kanosamine in the carbon-energy metabolism. As Bacillus species are widely used for the industrial production of various useful enzymes and compounds, the NTD/kanosamine biosynthetic pathway might be utilized to control metabolic pathways in these industrial strains.
Collapse
|
10
|
Vetter ND, Jagdhane RC, Richter BJ, Palmer DRJ. Carbocyclic Substrate Analogues Reveal Kanosamine Biosynthesis Begins with the α-Anomer of Glucose 6-Phosphate. ACS Chem Biol 2020; 15:2205-2211. [PMID: 32786294 DOI: 10.1021/acschembio.0c00409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NtdC is an NAD-dependent dehydrogenase that catalyzes the conversion of glucose 6-phosphate (G6P) to 3-oxo-glucose 6-phosphate (3oG6P), the first step in kanosamine biosynthesis in Bacillus subtilis and other closely-related bacteria. The NtdC-catalyzed reaction is unusual because 3oG6P undergoes rapid ring opening, resulting in a 1,3-dicarbonyl compound that is inherently unstable due to enolate formation. We have reported the steady-state kinetic behavior of NtdC, but many questions remain about the nature of this reaction, including whether it is the α-anomer, β-anomer, or open-chain form that is the substrate for the enzyme. Here, we report the synthesis of carbocyclic G6P analogues by two routes, one based upon the Ferrier II rearrangement to generate the carbocycle and one based upon a Claisen rearrangement. We were able to synthesize both pseudo-anomers of carbaglucose 6-phosphate (C6P) using the Ferrier approach, and activity assays revealed that the pseudo-α-anomer is a good substrate for NtdC, while the pseudo-β-anomer and the open-chain analogue, sorbitol 6-phosphate (S6P), are not substrates. A more efficient synthesis of α-C6P was achieved using the Claisen rearrangement approach, which allowed for a thorough evaluation of the NtdC-catalyzed oxidation of α-C6P. The requirement for the α-anomer indicates that NtdC and NtdA, the subsequent enzyme in the pathway, have co-evolved to recognize the α-anomer in order to avoid mutarotation between enzymatic steps.
Collapse
Affiliation(s)
- Natasha D. Vetter
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Rajendra C. Jagdhane
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Brett J. Richter
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - David R. J. Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
11
|
Nakamura K, Zhu S, Komatsu K, Hattori M, Iwashima M. Deglycosylation of the Isoflavone C-Glucoside Puerarin by a Combination of Two Recombinant Bacterial Enzymes and 3-Oxo-Glucose. Appl Environ Microbiol 2020; 86:e00607-20. [PMID: 32385077 PMCID: PMC7357486 DOI: 10.1128/aem.00607-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
A human intestinal bacterium strain related to Dorea species, PUE, can metabolize the isoflavone C-glucoside puerarin (daidzein 8-C-glucoside) to daidzein and glucose. We reported previously that 3″-oxo-puerarin is an essential reaction intermediate in enzymatic puerarin degradation, and we characterized a bacterial enzyme, the DgpB-DgpC complex, that cleaved the C-glycosidic bond in 3″-oxo-puerarin. However, the exact enzyme catalyzing the oxidation of the C-3″ hydroxyl in puerarin has not been identified. In this study, we demonstrated that recombinant DgpA, a Gfo/Idh/MocA family oxidoreductase, catalyzed puerarin oxidation in the presence of 3-oxo-glucose as the hydride acceptor. In the redox reaction, NAD(H) functioned as the cofactor, which bound tightly but noncovalently to DgpA. Kinetics analysis of DgpA revealed that the reaction proceeded via a ping-pong mechanism. Enzymatic C-deglycosylation of puerarin was achieved by a combination of recombinant DgpA, the DgpB-DgpC complex, and 3-oxo-glucose. In addition, the metabolite derived from the sugar moiety in the 3″-oxo-puerarin-cleaving reaction catalyzed by the DgpB-DgpC complex was characterized as 1,5-anhydro-d-erythro-hex-1-en-3-ulose, suggesting that the C-glycosidic linkage is cleaved through a β-elimination-like mechanism.IMPORTANCE One important role of the gut microbiota is to metabolize dietary nutrients and supplements such as flavonoid glycosides. Ingested glycosides are metabolized by intestinal bacteria to more-absorbable aglycones and further degradation products that show beneficial effects in humans. Although numerous glycoside hydrolases that catalyze O-deglycosylation have been reported, enzymes responsible for C-deglycosylation are still limited. In this study, we characterized enzymes involved in the C-deglycosylation of puerarin from a human intestinal bacterium, PUE. Here, we report the purification and characterization of a recombinant oxidoreductase involved in C-glucoside degradation. This study provides new insights for the elucidation of mechanisms of enzymatic C-deglycosylation.
Collapse
Affiliation(s)
- Kenichi Nakamura
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Shu Zhu
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Masao Hattori
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Makoto Iwashima
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| |
Collapse
|
12
|
Kudo F, Kitayama Y, Miyanaga A, Hirayama A, Eguchi T. Biochemical and Structural Analysis of a Dehydrogenase, KanD2, and an Aminotransferase, KanS2, That Are Responsible for the Construction of the Kanosamine Moiety in Kanamycin Biosynthesis. Biochemistry 2020; 59:1470-1473. [DOI: 10.1021/acs.biochem.0c00204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yukinobu Kitayama
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Akane Hirayama
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
13
|
Dunlap CA, Bowman MJ, Zeigler DR. Promotion of Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris to species status. Antonie van Leeuwenhoek 2019; 113:1-12. [PMID: 31721032 DOI: 10.1007/s10482-019-01354-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 12/12/2022]
Abstract
Bacillus subtilis currently encompasses four subspecies, Bacillus subtilis subsp. subtilis, Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris. Several studies based on genomic comparisons have suggested these subspecies should be promoted to species status. Previously, one of the main reasons for leaving them as subspecies was the lack of distinguishing phenotypes. In this study, we used comparative genomics to determine the genes unique to each subspecies and used these to lead us to the unique phenotypes. The results show that one difference among the subspecies is they produce different bioactive secondary metabolites. B. subtilis subsp. spizizenii is shown conserve the genes to produce mycosubtilin, bacillaene and 3,3'-neotrehalosadiamine. B. subtilis subsp. inaquosorum is shown conserve the genes to produce bacillomycin F, fengycin and an unknown PKS/NRPS cluster. B. subtilis subsp. stercoris is shown conserve the genes to produce fengycin and an unknown PKS/NRPS cluster. While B. subtilis subsp. subtilis is shown to conserve the genes to produce 3,3'-neotrehalosadiamine. In addition, we update the chemotaxonomy and phenotyping to support their promotion to species status.
Collapse
Affiliation(s)
- Christopher A Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL, USA.
| | - Michael J Bowman
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL, USA
| | - Daniel R Zeigler
- Bacillus Genetic Stock Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Prasertanan T, Palmer DR. The kanosamine biosynthetic pathway in Bacillus cereus UW85: Functional and kinetic characterization of KabA, KabB, and KabC. Arch Biochem Biophys 2019; 676:108139. [DOI: 10.1016/j.abb.2019.108139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
|
15
|
Richts B, Rosenberg J, Commichau FM. A Survey of Pyridoxal 5'-Phosphate-Dependent Proteins in the Gram-Positive Model Bacterium Bacillus subtilis. Front Mol Biosci 2019; 6:32. [PMID: 31134210 PMCID: PMC6522883 DOI: 10.3389/fmolb.2019.00032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The B6 vitamer pyridoxal 5′-phosphate (PLP) is a co-factor for proteins and enzymes that are involved in diverse cellular processes. Therefore, PLP is essential for organisms from all kingdoms of life. Here we provide an overview about the PLP-dependent proteins from the Gram-positive soil bacterium Bacillus subtilis. Since B. subtilis serves as a model system in basic research and as a production host in industry, knowledge about the PLP-dependent proteins could facilitate engineering the bacteria for biotechnological applications. The survey revealed that the majority of the PLP-dependent proteins are involved in metabolic pathways like amino acid biosynthesis and degradation, biosynthesis of antibacterial compounds, utilization of nucleotides as well as in iron and carbon metabolism. Many PLP-dependent proteins participate in de novo synthesis of the co-factors biotin, folate, heme, and NAD+ as well as in cell wall metabolism, tRNA modification, regulation of gene expression, sporulation, and biofilm formation. A surprisingly large group of PLP-dependent proteins (29%) belong to the group of poorly characterized proteins. This review underpins the need to characterize the PLP-dependent proteins of unknown function to fully understand the “PLP-ome” of B. subtilis.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
16
|
Sucrose Metabolism in Haloarchaea: Reassessment Using Genomics, Proteomics, and Metagenomics. Appl Environ Microbiol 2019; 85:AEM.02935-18. [PMID: 30658981 DOI: 10.1128/aem.02935-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
The canonical pathway for sucrose metabolism in haloarchaea utilizes a modified Embden-Meyerhof-Parnas pathway (EMP), in which ketohexokinase and 1-phosphofructokinase phosphorylate fructose released from sucrose hydrolysis. However, our survey of haloarchaeal genomes determined that ketohexokinase and 1-phosphofructokinase genes were not present in all species known to utilize fructose and sucrose, thereby indicating that alternative mechanisms exist for fructose metabolism. A fructokinase gene was identified in the majority of fructose- and sucrose-utilizing species, whereas only a small number possessed a ketohexokinase gene. Analysis of a range of hypersaline metagenomes revealed that haloarchaeal fructokinase genes were far more abundant (37 times) than haloarchaeal ketohexokinase genes. We used proteomic analysis of Halohasta litchfieldiae (which encodes fructokinase) and identified changes in protein abundance that relate to growth on sucrose. Proteins inferred to be involved in sucrose metabolism included fructokinase, a carbohydrate primary transporter, a putative sucrose hydrolase, and two uncharacterized carbohydrate-related proteins encoded in the same gene cluster as fructokinase and the transporter. Homologs of these proteins were present in the genomes of all haloarchaea that use sugars for growth. Enzymes involved in the semiphosphorylative Entner-Doudoroff pathway also had higher abundances in sucrose-grown H. litchfieldiae cells, consistent with this pathway functioning in the catabolism of the glucose moiety of sucrose. The study revises the current understanding of fundamental pathways for sugar utilization in haloarchaea and proposes alternatives to the modified EMP pathway used by haloarchaea for sucrose and fructose utilization.IMPORTANCE Our ability to infer the function that microorganisms perform in the environment is predicated on assumptions about metabolic capacity. When genomic or metagenomic data are used, metabolic capacity is inferred from genetic potential. Here, we investigate the pathways by which haloarchaea utilize sucrose. The canonical haloarchaeal pathway for fructose metabolism involving ketohexokinase occurs only in a small proportion of haloarchaeal genomes and is underrepresented in metagenomes. Instead, fructokinase genes are present in the majority of genomes/metagenomes. In addition to genomic and metagenomic analyses, we used proteomic analysis of Halohasta litchfieldiae (which encodes fructokinase but lacks ketohexokinase) and identified changes in protein abundance that related to growth on sucrose. In this way, we identified novel proteins implicated in sucrose metabolism in haloarchaea, comprising a transporter and various catabolic enzymes (including proteins that are annotated as hypothetical).
Collapse
|
17
|
Mukherjee K, Huddleston JP, Narindoshvili T, Nemmara VV, Raushel FM. Functional Characterization of the ycjQRS Gene Cluster from Escherichia coli: A Novel Pathway for the Transformation of d-Gulosides to d-Glucosides. Biochemistry 2019; 58:1388-1399. [PMID: 30742415 DOI: 10.1021/acs.biochem.8b01278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A combination of bioinformatics, steady-state kinetics, and NMR spectroscopy has revealed the catalytic functions of YcjQ, YcjS, and YcjR from the ycj gene cluster in Escherichia coli K-12. YcjS was determined to be a 3-keto-d-glucoside dehydrogenase with a kcat = 22 s-1 and kcat/ Km = 2.3 × 104 M-1 s-1 for the reduction of methyl α-3-keto-d-glucopyranoside at pH 7.0 with NADH. YcjS also exhibited catalytic activity for the NAD+-dependent oxidation of d-glucose, methyl β-d-glucopyranoside, and 1,5-anhydro-d-glucitol. YcjQ was determined to be a 3-keto-d-guloside dehydrogenase with kcat = 18 s-1 and kcat/ Km = 2.0 × 103 M-1 s-1 for the reduction of methyl α-3-keto-gulopyranoside. This is the first reported dehydrogenase for the oxidation of d-gulose. YcjQ also exhibited catalytic activity with d-gulose and methyl β-d-gulopyranoside. The 3-keto products from both dehydrogenases were found to be extremely labile under alkaline conditions. The function of YcjR was demonstrated to be a C4 epimerase that interconverts 3-keto-d-gulopyranosides to 3-keto-d-glucopyranosides. These three enzymes, YcjQ, YcjR, and YcjS, thus constitute a previously unrecognized metabolic pathway for the transformation of d-gulosides to d-glucosides via the intermediate formation of 3-keto-d-guloside and 3-keto-d-glucoside.
Collapse
Affiliation(s)
- Keya Mukherjee
- Department of Biochemistry & Biophysics , Texas A&M University , College Station , Texas 77844 , United States
| | - Jamison P Huddleston
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Tamari Narindoshvili
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Venkatesh V Nemmara
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Frank M Raushel
- Department of Biochemistry & Biophysics , Texas A&M University , College Station , Texas 77844 , United States.,Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| |
Collapse
|
18
|
Cairns R, Gomm A, Ryan J, Clarke T, Kulcinskaja E, Butler K, O’Reilly E. Conversion of Aldoses to Valuable ω-Amino Alcohols Using Amine Transaminase Biocatalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan Cairns
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Andrew Gomm
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - James Ryan
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Thomas Clarke
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Evelina Kulcinskaja
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Kevin Butler
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Elaine O’Reilly
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
19
|
Draft Genome Sequence of Bacillus paralicheniformis F47, Isolated from an Algerian Salty Lake. GENOME ANNOUNCEMENTS 2018; 6:6/13/e00190-18. [PMID: 29599156 PMCID: PMC5876485 DOI: 10.1128/genomea.00190-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus paralicheniformis F47 was isolated from a salty lake in Ain Baida-Ouargla, southern Algeria. The genome contains genes for the production of several bioactive secondary metabolites, including the siderophore bacillibactin, the lipopeptides fengycin, surfactin, and lichenysin, the antibiotics bacitracin and kanosamine, and a putative circular bacteriocin.
Collapse
|
20
|
Hirayama A, Chu J, Goto E, Kudo F, Eguchi T. NAD+
-Dependent Dehydrogenase PctP and Pyridoxal 5′-Phosphate Dependent Aminotransferase PctC Catalyze the First Postglycosylation Modification of the Sugar Intermediate in Pactamycin Biosynthesis. Chembiochem 2017; 19:126-130. [DOI: 10.1002/cbic.201700483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Akane Hirayama
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Jinmiao Chu
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Ena Goto
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Fumitaka Kudo
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Tadashi Eguchi
- Department of Chemistry; Tokyo Institute of Technology; 2-12-1 O-okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
21
|
Vetter ND, Palmer DRJ. Simultaneous Measurement of Glucose-6-phosphate 3-Dehydrogenase (NtdC) Catalysis and the Nonenzymatic Reaction of Its Product: Kinetics and Isotope Effects on the First Step in Kanosamine Biosynthesis. Biochemistry 2017; 56:2001-2009. [PMID: 28353336 DOI: 10.1021/acs.biochem.7b00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glucose-6-phosphate 3-dehydrogenase (NtdC) is an NAD-dependent oxidoreductase encoded in the NTD operon of Bacillus subtilis. The oxidation of glucose 6-phosphate by NtdC is the first step in kanosamine biosynthesis. The product, 3-oxo-d-glucose 6-phosphate (3oG6P), has never been synthesized or isolated. The NtdC-catalyzed reaction is very slow at low and neutral pH, and its rate increases to a maximum near pH 9.5. However, under alkaline conditions, the product is not stable because of ring opening followed by deprotonation of the 1,3-dicarbonyl compound. The absorbance band due to this enolate at 310 nm overlaps with that of the other enzymatic product, NADH, complicating kinetic measurements. We report the deconvolution of the resulting spectra of the reaction to determine the rate constants and likely kinetic mechanism. In doing so, we were able to determine the extinction coefficient of the enolate of 3oG6P (23000 M-1 cm-1), which allowed the measurement of the first-order rate constant (5.51 × 10-3 s-1) and activation energy (93 kJ mol-1) of nonenzymatic enolate formation. Using deuterium-labeled substrates, we show that hydride transfer from carbon 3 is partially rate-limiting in the enzymatic reaction, and deuterium substitution on carbon 2 has no significant effect on the enzymatic reaction but lowers the rate of deprotonation of 3oG6P 4-fold. These experiments clearly establish the regiochemistry of the reactions. Coupling of the NtdC reaction with the subsequent step in the pathway, NtdA-catalyzed glutamate-dependent amino transfer, has a small but significant effect on the rate of NAD reduction, consistent with these enzymes working together to process the unstable metabolite.
Collapse
Affiliation(s)
- Natasha D Vetter
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, SK, Canada S7N 5C9
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, SK, Canada S7N 5C9
| |
Collapse
|
22
|
Jønsson R, Struve C, Boll EJ, Boisen N, Joensen KG, Sørensen CA, Jensen BH, Scheutz F, Jenssen H, Krogfelt KA. A Novel pAA Virulence Plasmid Encoding Toxins and Two Distinct Variants of the Fimbriae of Enteroaggregative Escherichia coli. Front Microbiol 2017; 8:263. [PMID: 28275371 PMCID: PMC5320562 DOI: 10.3389/fmicb.2017.00263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/07/2017] [Indexed: 11/29/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an increasingly recognized pathogen associated with acute and persistent diarrhea worldwide. While EAEC strains are considered highly heterogeneous, aggregative adherence fimbriae (AAFs) are thought to play a pivotal role in pathogenicity by facilitating adherence to the intestinal mucosa. In this study, we optimized an existing multiplex PCR to target all known AAF variants, which are distinguished by differences in their pilin subunits. We applied the assay on a collection of 162 clinical Danish EAEC strains and interestingly found six, by SNP analysis phylogenetically distinct, strains harboring the major pilin subunits from both AAF/III and AAF/V. Whole-genome and plasmid sequencing revealed that in these six strains the agg3A and agg5A genes were located on a novel pAA plasmid variant. Moreover, the plasmid also encoded several other virulence genes including some not previously found on pAA plasmids. Thus, this plasmid endows the host strains with a remarkably high number of EAEC associated virulence genes hereby likely promoting strain pathogenicity.
Collapse
Affiliation(s)
- Rie Jønsson
- Department of Science and Environment, Roskilde UniversityRoskilde, Denmark; Department of Microbiology and Infection Control, Statens Serum InstitutCopenhagen, Denmark
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Erik J Boll
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Nadia Boisen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Katrine G Joensen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Camilla A Sørensen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Betina H Jensen
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Flemming Scheutz
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University Roskilde, Denmark
| | - Karen A Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut Copenhagen, Denmark
| |
Collapse
|
23
|
Pandin C, Le Coq D, Canette A, Aymerich S, Briandet R. Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? Microb Biotechnol 2017; 10:719-734. [PMID: 28205337 PMCID: PMC5481536 DOI: 10.1111/1751-7915.12693] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 11/26/2022] Open
Abstract
Almost one‐third of crop yields are lost every year due to microbial alterations and diseases. The main control strategy to limit these losses is the use of an array of chemicals active against spoilage and unwanted pathogenic microorganisms. Their massive use has led to extensive environmental pollution, human poisoning and a variety of diseases. An emerging alternative to this chemical approach is the use of microbial biocontrol agents. Biopesticides have been used with success in several fields, but a better understanding of their mode of action is necessary to better control their activity and increase their use. Very few studies have considered that biofilms are the preferred mode of life of microorganisms in the target agricultural biotopes. Increasing evidence shows that the spatial organization of microbial communities on crop surfaces may drive important bioprotection mechanisms. The aim of this review is to summarize the evidence of biofilm formation by biocontrol agents on crops and discuss how this surface‐associated mode of life may influence their biology and interactions with other microorganisms and the host and, finally, their overall beneficial activity.
Collapse
Affiliation(s)
- Caroline Pandin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Dominique Le Coq
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Micalis Institute, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Alexis Canette
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Stéphane Aymerich
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
24
|
Kang DM, Tanaka K, Takenaka S, Ishikawa S, Yoshida KI. Bacillus subtilis iolU encodes an additional NADP +-dependent scyllo-inositol dehydrogenase. Biosci Biotechnol Biochem 2017; 81:1026-1032. [PMID: 28043209 DOI: 10.1080/09168451.2016.1268043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bacillus subtilis genes iolG, iolW, iolX, ntdC, yfiI, yrbE, yteT, and yulF belong to the Gfo/Idh/MocA family. The functions of iolG, iolW, iolX, and ntdC are known; however, the functions of the others are unknown. We previously reported the B. subtilis cell factory simultaneously overexpressing iolG and iolW to achieve bioconversion of myo-inositol (MI) into scyllo-inositol (SI). YulF shares a significant similarity with IolW, the NADP+-dependent SI dehydrogenase. Transcriptional abundance of yulF did not correlate to that of iol genes involved in inositol metabolism. However, when yulF was overexpressed instead of iolW in the B. subtilis cell factory, SI was produced from MI, suggesting a similar function to iolW. In addition, we demonstrated that recombinant His6-tagged YulF converted scyllo-inosose into SI in an NADPH-dependent manner. We have thus identified yulF encoding an additional NADP+-dependent SI dehydrogenase, which we propose to rename iolU.
Collapse
Affiliation(s)
- Dong-Min Kang
- a Department of Agrobioscience , Graduate School of Agricultural Science, Kobe University , Kobe , Japan
| | - Kosei Tanaka
- b Organization of Advanced Science and Technology , Kobe University , Kobe , Japan
| | - Shinji Takenaka
- a Department of Agrobioscience , Graduate School of Agricultural Science, Kobe University , Kobe , Japan.,b Organization of Advanced Science and Technology , Kobe University , Kobe , Japan
| | - Shu Ishikawa
- c Department of Science, Technology and Innovation, Graduate School of Science, Technology and Innovation , Kobe University , Kobe , Japan
| | - Ken-Ichi Yoshida
- b Organization of Advanced Science and Technology , Kobe University , Kobe , Japan.,c Department of Science, Technology and Innovation, Graduate School of Science, Technology and Innovation , Kobe University , Kobe , Japan
| |
Collapse
|
25
|
Skarbek K, Milewska MJ. Biosynthetic and synthetic access to amino sugars. Carbohydr Res 2016; 434:44-71. [PMID: 27592039 DOI: 10.1016/j.carres.2016.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/11/2016] [Accepted: 08/20/2016] [Indexed: 12/01/2022]
Abstract
Amino sugars are important constituents of a number of biomacromolecules and products of microbial secondary metabolism, including antibiotics. For most of them, the amino group is located at the positions C1, C2 or C3 of the hexose or pentose ring. In biological systems, amino sugars are formed due to the catalytic activity of specific aminotransferases or amidotransferases by introducing an amino functionality derived from L-glutamate or L-glutamine to the keto forms of sugar phosphates or sugar nucleotides. The synthetic introduction of amino functionalities in a regio- and stereoselective manner onto sugar scaffolds represents a substantial challenge. Most of the modern methods of for the preparation of 1-, 2- and 3-amino sugars are those starting from "an active ester" of carbohydrate derivatives, glycals, alcohols, carbonyl compounds and amino acids. A substantial progress in the development of region- and stereoselective methods of amino sugar synthesis has been made in the recent years, due to the application of metal-based catalysts and tethered approaches. A comprehensive review on the current state of knowledge on biosynthesis and chemical synthesis of amino sugars is presented.
Collapse
Affiliation(s)
- Kornelia Skarbek
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland.
| |
Collapse
|
26
|
Majumdar S, Chakraborty M, Maiti DK, Chowdhury S, Hossain J. Activation of 1,3-dioxolane by a protic ionic liquid in aqueous media: a green strategy for the selective hydrolytic cleavage of acetals and ketals. RSC Adv 2014. [DOI: 10.1039/c4ra00870g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
van Straaten KE, Ko JB, Jagdhane R, Anjum S, Palmer DRJ, Sanders DAR. The structure of NtdA, a sugar aminotransferase involved in the kanosamine biosynthetic pathway in Bacillus subtilis, reveals a new subclass of aminotransferases. J Biol Chem 2013; 288:34121-34130. [PMID: 24097983 DOI: 10.1074/jbc.m113.500637] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NtdA from Bacillus subtilis is a sugar aminotransferase that catalyzes the pyridoxal phosphate-dependent equatorial transamination of 3-oxo-α-D-glucose 6-phosphate to form α-D-kanosamine 6-phosphate. The crystal structure of NtdA shows that NtdA shares the common aspartate aminotransferase fold (Type 1) with residues from both monomers forming the active site. The crystal structures of NtdA alone, co-crystallized with the product α-D-kanosamine 6-phosphate, and incubated with the amine donor glutamate reveal three key structures in the mechanistic pathway of NtdA. The structure of NtdA alone reveals the internal aldimine form of NtdA with the cofactor pyridoxal phosphate covalently attached to Lys-247. The addition of glutamate results in formation of pyridoxamine phosphate. Co-crystallization with kanosamine 6-phosphate results in the formation of the external aldimine. Only α-D-kanosamine 6-phosphate is observed in the active site of NtdA, not the β-anomer. A comparison of the structure and sequence of NtdA with other sugar aminotransferases enables us to propose that the VIβ family of aminotransferases should be divided into subfamilies based on the catalytic lysine motif.
Collapse
Affiliation(s)
- Karin E van Straaten
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Jong Bum Ko
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Rajendra Jagdhane
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Shazia Anjum
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - David A R Sanders
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada.
| |
Collapse
|