1
|
Grover J, Sebastian AT, Maiti S, Bissember AC, Maiti D. Unified approaches in transition metal catalyzed C(sp 3)-H functionalization: recent advances and mechanistic aspects. Chem Soc Rev 2025; 54:2006-2053. [PMID: 39838813 DOI: 10.1039/d0cs00488j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In organic synthesis, C(sp3)-H functionalization is a revolutionary method that allows direct alteration of unactivated C-H bonds. It can obviate the need for pre-functionalization and provides access to streamlined and atom economical routes for the synthesis of complex molecules starting from simple starting materials. Many strategies have evolved, such as photoredox catalysis, organocatalysis, non-directed C-H activation, transiently directed C-H activation, and native functionality directed C-H activation. Together these advances have reinforced the importance of C(sp3)-H functionalization in synthetic chemistry. C(sp3)-H functionalization has direct applications in pharmacology, agrochemicals, and materials science, demonstrating its ability to transform synthetic approaches by creating new retrosynthetic disconnections and boost the efficiency of chemical processes. This review aims to provide an overview of current state of C(sp3)-H functionalization, focusing more on recent breakthroughs and associated mechanistic insights.
Collapse
Affiliation(s)
- Jagrit Grover
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | | | - Siddhartha Maiti
- VIT Bhopal University School of Biosciences Engineering & Technology, India
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia.
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
2
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
3
|
Usman FO, Gogoi AR, Mixdorf JC, Gutierrez O, Nguyen HM. Rhodium-Catalyzed Asymmetric Synthesis of 1,2-Disubstituted Allylic Fluorides. Angew Chem Int Ed Engl 2023; 62:e202314843. [PMID: 37856668 PMCID: PMC11069351 DOI: 10.1002/anie.202314843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Although there are many methods for the asymmetric synthesis of monosubstituted allylic fluorides, construction of enantioenriched 1,2-disubstituted allylic fluorides has not been reported. To address this gap, we report an enantioselective synthesis of 1,2-disubstituted allylic fluorides using chiral diene-ligated rhodium catalyst, Et3 N ⋅ 3HF as a source of fluoride, and Morita Baylis Hillman (MBH) trichloroacetimidates. Kinetic studies show that one enantiomer of racemic MBH substrate reacts faster than the other. Computational studies reveal that both syn and anti π-allyl complexes are formed upon ionization of allylic substrate, and the syn complexes are slightly energetically favorable. This is in contrast to our previous observation for formation of monosubstituted π-allyl intermediates, in which the syn π-allyl conformation is strongly preferred. In addition, the presence of an electron-withdrawing group at C2 position of racemic MBH substrate renders 1,2-disubstituted π-allyl intermediate formation endergonic and reversible. To compare, formation of monosubstituted π-allyl intermediates was exergonic and irreversible. DFT calculations and kinetic studies support a dynamic kinetic asymmetric transformation process wherein the rate of isomerization of the 1,2-disubstituted π-allylrhodium complexes is faster than that of fluoride addition onto the more reactive intermediate. The 1,2-disubstituted allylic fluorides were obtained in good yields, enantioselectivity, and branched selectivity.
Collapse
Affiliation(s)
- Fuad O Usman
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Achyut R Gogoi
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Jason C Mixdorf
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
4
|
Tang J, Lu F, Sun Y, Zhang G, Zhang E, Jiang YY. Late-Stage Diversification of Peptides via Pd-Catalyzed Site-Selective δ-C(sp 2)-H Fluorination and Amination. J Org Chem 2023; 88:14165-14171. [PMID: 37751495 DOI: 10.1021/acs.joc.3c01897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Site-selective C-H fluorination is an attractive strategy for directly transforming inert C-H bonds into C-F bonds, yet it remains a significant challenge. Herein, we have developed an efficient and versatile strategy for site-selective fluorination and amination of phenylalanine-containing peptides via late-stage Pd-catalyzed δ-C(sp2)-H activation, providing a valuable tool for the in situ synthesis of fluorinated indoline scaffolds within peptides.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210096, China
| | - Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yi Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Guodong Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuan-Ye Jiang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
5
|
Liu K, Wang Z, Künzel AN, Layh M, Studer A. Regioselective Formal β-Allylation of Carbonyl Compounds Enabled by Cooperative Nickel and Photoredox Catalysis. Angew Chem Int Ed Engl 2023; 62:e202303473. [PMID: 37141023 DOI: 10.1002/anie.202303473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
The Tsuji-Trost reaction between carbonyl compounds and allylic precursors has been widely used in the synthesis of natural products and pharmaceutical compounds. As the α-C-H bond is far more acidic than the β-C-H bond, carbonyl compounds undergo highly regioselective allylation at the α-position and their β-allylation is therefore highly challenging. This innate α-reactivity conversely hampers diversity, especially if the corresponding β-allylation product is targeted. Herein, we present a formal intermolecular β-C-C bond formation reaction of a broad range of aldehydes and ketones with different allyl electrophiles through cooperative nickel and photoredox catalysis. β-Selectivity is achieved via initial transformation of the aldehydes and ketones to their corresponding silyl enol ethers. The overall transformation features mild conditions, excellent regioselectivity, wide functional group tolerance and high reaction efficiency. The introduced facile and regioselective β-allylation of carbonyl compounds proceeding through cooperative catalysis allows the preparation of valuable building blocks that are difficult to access from aldehydes and ketones using existing methodology.
Collapse
Affiliation(s)
- Kun Liu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Zhe Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Augustinus N Künzel
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Marcus Layh
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität, Corrensstraße 28/30, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
6
|
Neti SS, Wang B, Iwig DF, Onderko EL, Booker SJ. Enzymatic Fluoromethylation Enabled by the S-Adenosylmethionine Analog Te-Adenosyl- L-(fluoromethyl)homotellurocysteine. ACS CENTRAL SCIENCE 2023; 9:905-914. [PMID: 37252363 PMCID: PMC10214534 DOI: 10.1021/acscentsci.2c01385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 05/31/2023]
Abstract
Fluoromethyl, difluoromethyl, and trifluoromethyl groups are present in numerous pharmaceuticals and agrochemicals, where they play critical roles in the efficacy and metabolic stability of these molecules. Strategies for late-stage incorporation of fluorine-containing atoms in molecules have become an important area of organic and medicinal chemistry as well as synthetic biology. Herein, we describe the synthesis and use of Te-adenosyl-L-(fluoromethyl)homotellurocysteine (FMeTeSAM), a novel and biologically relevant fluoromethylating agent. FMeTeSAM is structurally and chemically related to the universal cellular methyl donor S-adenosyl-L-methionine (SAM) and supports the robust transfer of fluoromethyl groups to oxygen, nitrogen, sulfur, and some carbon nucleophiles. FMeTeSAM is also used to fluoromethylate precursors to oxaline and daunorubicin, two complex natural products that exhibit antitumor properties.
Collapse
Affiliation(s)
- Syam Sundar Neti
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Bo Wang
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - David F. Iwig
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Elizabeth L. Onderko
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Leibler INM, Gandhi SS, Tekle-Smith MA, Doyle AG. Strategies for Nucleophilic C(sp 3)-(Radio)Fluorination. J Am Chem Soc 2023; 145:9928-9950. [PMID: 37094357 DOI: 10.1021/jacs.3c01824] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
This Perspective surveys the progress and current limitations of nucleophilic fluorination methodologies. Despite the long and rich history of C(sp3)-F bond construction in chemical research, the inherent challenges associated with this transformation have largely constrained nucleophilic fluorination to a privileged reaction platform. In recent years, the Doyle group─along with many others─has pursued the study and development of this transformation with the intent of generating deeper mechanistic understanding, developing user-friendly fluorination reagents, and contributing to the invention of synthetic methods capable of enabling radiofluorination. Studies from our laboratory are discussed along with recent developments from others in this field. Fluoride reagent development and the mechanistic implications of reagent identity are highlighted. We also outline the chemical space inaccessible by current synthetic technologies and a series of future directions in the field that can potentially fill the existing dark spaces.
Collapse
Affiliation(s)
| | - Shivaani S Gandhi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Makeda A Tekle-Smith
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Abigail G Doyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Li Y, Dong Y, Wang X, Li G, Xue H, Xin W, Zhang Q, Guan W, Fu J. Regio-, Site-, and Stereoselective Three-Component Aminofluorination of 1,3-Dienes via Cooperative Silver Salt and Copper Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yang Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yujiao Dong
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Guangfu Li
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Huiqing Xue
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wanyang Xin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Junkai Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
9
|
Hintz H, Bower J, Tang J, LaLama M, Sevov C, Zhang S. Copper-Catalyzed Electrochemical C-H Fluorination. CHEM CATALYSIS 2023; 3:100491. [PMID: 36743279 PMCID: PMC9894310 DOI: 10.1016/j.checat.2022.100491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the systematic development of an electrooxidative methodology that translates stoichiometric C-H fluorination reactivity of an isolable CuIII fluoride complex into a catalytic process. The critical challenges of electrocatalysis with a highly reactive CuIII species were addressed by the judicious selection of electrolyte, F- source, and sacrificial electron acceptor. Catalyst-controlled C-H fluorination occurs with a preference for hydridic C-H bonds with high bond dissociation energies over weaker but less hydridic C-H bonds. The selectivity is driven by an oxidative asynchronous proton-coupled elelctron transfer (PCET) at an electrophilic CuIII-F complex. We further demonstrate that the asynchronicity factor of hydrogen atom transfer η can be used as a guideline to rationalize the selectivity of C-H fluorination.
Collapse
Affiliation(s)
- Heather Hintz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Jamey Bower
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Jinghua Tang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Matthew LaLama
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Christo Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| |
Collapse
|
10
|
Yakubov S, Stockerl WJ, Tian X, Shahin A, Mandigma MJP, Gschwind RM, Barham JP. Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp 3)-H fluorinations. Chem Sci 2022; 13:14041-14051. [PMID: 36540818 PMCID: PMC9728569 DOI: 10.1039/d2sc05735b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/28/2022] [Indexed: 12/14/2023] Open
Abstract
Of the methods for direct fluorination of unactivated C(sp3)-H bonds, photosensitization of SelectFluor is a promising approach. Although many substrates can be activated with photosensitizing catalysts, issues remain that hamper fluorination of complex molecules. Alcohol- or amine-containing functional groups are not tolerated, fluorination regioselectivity follows factors endogenous to the substrate and cannot be influenced by the catalyst, and reactions are highly air-sensitive. We report that benzoyl groups serve as highly efficient photosensitizers which, in combination with SelectFluor, enable visible light-powered direct fluorination of unactivated C(sp3)-H bonds. Compared to previous photosensitizer architectures, the benzoyls have versatility to function both (i) as a photosensitizing catalyst for simple substrate fluorinations and (ii) as photosensitizing auxiliaries for complex molecule fluorinations that are easily installed and removed without compromising yield. Our auxiliary approach (i) substantially decreases the reaction's induction period, (ii) enables C(sp3)-H fluorination of many substrates that fail under catalytic conditions, (iii) increases kinetic reproducibility, and (iv) promotes reactions to higher yields, in shorter times, on multigram scales, and even under air. Observations and mechanistic studies suggest an intimate 'assembly' of auxiliary and SelectFluor prior/after photoexcitation. The auxiliary allows other EnT photochemistry under air. Examples show how auxiliary placement proximally directs regioselectivity, where previous methods are substrate-directed.
Collapse
Affiliation(s)
- Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Willibald J Stockerl
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Ahmed Shahin
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
- Chemistry Department, Faculty of Science, Benha University 13518 Benha Egypt
| | - Mark John P Mandigma
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Ruth M Gschwind
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| |
Collapse
|
11
|
Wang YC, Rath NP, Mirica LM. Allylic Amination of Pd(II)-Allyl Complexes via High-Valent Pd Intermediates. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yung-Ching Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nigam P. Rath
- Department of Chemistry and Biochemistry, University of Missouri − St. Louis, One University Boulevard, St. Louis, Missouri 63121-4400, United States
| | - Liviu M. Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Wu M, Ruan X, Han Z, Gong L. Palladium‐Catalyzed Cascade C−H Functionalization/Asymmetric Allylation Reaction of Aryl α‐Diazoamides and Allenes: Lewis Acid Makes a Difference. Chemistry 2022; 28:e202104218. [DOI: 10.1002/chem.202104218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Min‐Song Wu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Xiao‐Yun Ruan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Zhi‐Yong Han
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
13
|
A general strategy for C(sp 3)-H functionalization with nucleophiles using methyl radical as a hydrogen atom abstractor. Nat Commun 2021; 12:6950. [PMID: 34845207 PMCID: PMC8630022 DOI: 10.1038/s41467-021-27165-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
Abstract
Photoredox catalysis has provided many approaches to C(sp3)-H functionalization that enable selective oxidation and C(sp3)-C bond formation via the intermediacy of a carbon-centered radical. While highly enabling, functionalization of the carbon-centered radical is largely mediated by electrophilic reagents. Notably, nucleophilic reagents represent an abundant and practical reagent class, motivating the interest in developing a general C(sp3)-H functionalization strategy with nucleophiles. Here we describe a strategy that transforms C(sp3)-H bonds into carbocations via sequential hydrogen atom transfer (HAT) and oxidative radical-polar crossover. The resulting carbocation is functionalized by a variety of nucleophiles-including halides, water, alcohols, thiols, an electron-rich arene, and an azide-to effect diverse bond formations. Mechanistic studies indicate that HAT is mediated by methyl radical-a previously unexplored HAT agent with differing polarity to many of those used in photoredox catalysis-enabling new site-selectivity for late-stage C(sp3)-H functionalization.
Collapse
|
14
|
|
15
|
Britton R, Gouverneur V, Lin JH, Meanwell M, Ni C, Pupo G, Xiao JC, Hu J. Contemporary synthetic strategies in organofluorine chemistry. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00042-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Wang PS, Gong LZ. Palladium-Catalyzed Asymmetric Allylic C-H Functionalization: Mechanism, Stereo- and Regioselectivities, and Synthetic Applications. Acc Chem Res 2020; 53:2841-2854. [PMID: 33006283 DOI: 10.1021/acs.accounts.0c00477] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asymmetric functionalization of inert C-H bonds is undoubtedly a synthetically significant yet challenging bond-forming process, allowing for the preparation of densely functionalized molecules from abundantly available feedstocks. In the past decade, our group and others have found that trivalent phosphorus ligands are capable of facilitating Pd-catalyzed allylic C-H functionalization of α-alkenes upon using p-quinone as an oxidant. In these reactions, a 16-electron Pd(0) complex bearing a monodentate phosphorus ligand, a p-quinone, and an α-alkene has been identified as a key intermediate. Through a concerted proton and two-electron transfer process, electrophilic π-allylpalladium is subsequently generated and can be leveraged to forge versatile chemical bonds with a wide range of nucleophiles. This Account focuses on describing the origin, evolution, and synthetic applications of Pd-catalyzed asymmetric allylic C-H functionalization reactions, with an emphasis on the fundamental mechanism of the concerted proton and two-electron transfer process in allylic C-H activation.Enabled by the cooperative catalysis of the palladium complex of triarylphosphine, a primary amine, and a chiral phosphoric acid, an enantioselective α-allylation of aldehydes with α-alkenes is established. The combination of chiral phosphoric acid and a palladium complex of a chiral phosphoramidite ligand allows the allylic C-H alkylation of α-alkenes with pyrazol-5-ones to give excellent enantioselectivities, wherein the chiral ligand and chiral phosphoric acid synergistically control the stereoselectivity. Notably, the palladium-phosphoramidite complexes are also efficient catalysts for allylic C-H alkylation, with a wide scope of nucleophiles. In the case of 1,4-dienes, the geometry and coordination pattern of the nucleophile are able to vary the transition states of bond-forming events and thereby determine the Z/E-, regio-, and stereoselectivities.These enantioselective allylic C-H functionalization reactions are tolerant of a wide range of nucleophiles and α-alkenes, providing a large library of optically active building blocks. Based on enantioselective intramolecular allylic C-H oxidation, the formal synthesis of (+)-diversonol is accomplished, and enantioselective intramolecular allylic C-H amination can enable concise access to letermovir. In particular, the asymmetric allylic C-H alkylation of 1,4-dienes with azlactones offers highly enantioenriched α,α-disubstituted α-amino acid derivatives that are capable of serving as key building blocks for the enantioselective synthesis of lepadiformine alkaloids. In addition, a tachykinin receptor antagonist and (-)-tanikolide are also synthesized with chiral molecules generated from the corresponding allylic C-H alkylation reactions.
Collapse
Affiliation(s)
- Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Barday M, Blieck R, Ruyet L, Besset T. Remote trifluoromethylthiolation of alcohols under visible light. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Bag D, Verma PK, Sawant SD. Chiral Transient Directing Group Strategies in Asymmetric Synthesis. Chem Asian J 2020; 15:3225-3238. [PMID: 32822121 DOI: 10.1002/asia.202000657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Indexed: 12/13/2022]
Abstract
The development of novel methodologies for catalytic enantioselective functionalization reactions enabled by chiral transient directing groups is accompanying in a paradigm shift in the field of asymmetric synthesis. In particular, these highly atom- and step-economic enantioinduction processes commonly proceed either via enantioselective C-H functionalization, or via enantioselective hydroarylation of the pro-chiral substrates generating point, axial or planar chirality. The use of the transient directing group strategy in C-H functionalizations precludes the stoichiometric installations and removal of directing groups and enables efficient, more compatible and economical chemical routes. This minireview highlights asymmetric transition-metal-catalyzed methodologies involving chiral transient directing groups together with the scope, utility and future perspective of the field.
Collapse
Affiliation(s)
- Debojyoti Bag
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu Canal Road, Jammu, Jammu & Kashmir, 180001, India
| | - Praveen Kumar Verma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu Canal Road, Jammu, Jammu & Kashmir, 180001, India
| | - Sanghapal D Sawant
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu Canal Road, Jammu, Jammu & Kashmir, 180001, India
| |
Collapse
|
19
|
Affiliation(s)
- Alexandre M. Sorlin
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Fuad O. Usman
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Connor K. English
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M. Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
20
|
Yakubov S, Barham JP. Photosensitized direct C-H fluorination and trifluoromethylation in organic synthesis. Beilstein J Org Chem 2020; 16:2151-2192. [PMID: 32952732 PMCID: PMC7476599 DOI: 10.3762/bjoc.16.183] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The importance of fluorinated products in pharmaceutical and medicinal chemistry has necessitated the development of synthetic fluorination methods, of which direct C-H fluorination is among the most powerful. Despite the challenges and limitations associated with the direct fluorination of unactivated C-H bonds, appreciable advancements in manipulating the selectivity and reactivity have been made, especially via transition metal catalysis and photochemistry. Where transition metal catalysis provides one strategy for C-H bond activation, transition-metal-free photochemical C-H fluorination can provide a complementary selectivity via a radical mechanism that proceeds under milder conditions than thermal radical activation methods. One exciting development in C-F bond formation is the use of small-molecule photosensitizers, allowing the reactions i) to proceed under mild conditions, ii) to be user-friendly, iii) to be cost-effective and iv) to be more amenable to scalability than typical photoredox-catalyzed methods. In this review, we highlight photosensitized C-H fluorination as a recent strategy for the direct and remote activation of C-H (especially C(sp3)-H) bonds. To guide the readers, we present the developing mechanistic understandings of these reactions and exemplify concepts to assist the future planning of reactions.
Collapse
Affiliation(s)
- Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
21
|
Chen YQ, Singh S, Wu Y, Wang Z, Hao W, Verma P, Qiao JX, Sunoj RB, Yu JQ. Pd-Catalyzed γ-C(sp 3)-H Fluorination of Free Amines. J Am Chem Soc 2020; 142:9966-9974. [PMID: 32363869 DOI: 10.1021/jacs.9b13537] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first example of free amine γ-C(sp3)-H fluorination is realized using 2-hydroxynicotinaldehyde as the transient directing group. A wide range of cyclohexyl and linear aliphatic amines could be fluorinated selectively at the γ-methyl and methylene positions. Electron withdrawing 3,5-disubstituted pyridone ligands were identified to facilitate this reaction. Computational studies suggest that the turnover determining step is likely the oxidative addition step for methylene fluorination, while it is likely the C-H activation step for methyl fluorination. The explicit participation of Ag results in a lower energetic span for methylene fluorination and a higher energetic span for methyl fluorination, which is consistent with the experimental observation that the addition of silver salt is desirable for methylene but not for methyl fluorination. Kinetic studies on methyl fluorination suggest that the substrate and PdL are involved in the rate-determining step, indicating that the C-H activation step may be partially rate-determining. Importantly, an energetically preferred pathway has identified an interesting pyridone-assisted bimetallic transition state for the oxidative addition step in methylene fluorination, thus uncovering a potential new role of the pyridone ligand.
Collapse
Affiliation(s)
- Yan-Qiao Chen
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Sukriti Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Yongwei Wu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhen Wang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Wei Hao
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Pritha Verma
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jennifer X Qiao
- Discovery Chemistry, Bristol-Myers Squibb, PO Box 4000, Princeton, New Jersey 08543, United States
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
22
|
Kim J, Kang B, Hong SH. Direct Allylic C(sp3)–H Thiolation with Disulfides via Visible Light Photoredox Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01232] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jungwon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byungjoon Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
23
|
Bower JK, Cypcar AD, Henriquez B, Stieber SCE, Zhang S. C(sp 3)-H Fluorination with a Copper(II)/(III) Redox Couple. J Am Chem Soc 2020; 142:8514-8521. [PMID: 32275410 DOI: 10.1021/jacs.0c02583] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the growing interest in the synthesis of fluorinated organic compounds, few reactions are able to incorporate fluoride ions directly into alkyl C-H bonds. Here, we report the C(sp3)-H fluorination reactivity of a formally copper(III) fluoride complex. The C-H fluorination intermediate, LCuF, along with its chloride and bromide analogues, LCuCl and LCuBr, were prepared directly from halide sources with a chemical oxidant and fully characterized with single-crystal X-ray diffraction, X-ray absorption spectroscopy, UV-vis spectroscopy, and 1H nuclear magnetic resonance spectroscopy. Quantum chemical calculations reveal significant halide radical character for all complexes, suggesting their ability to initiate and terminate a C(sp3)-H halogenation sequence by sequential hydrogen atom abstraction (HAA) and radical capture. The capability of HAA by the formally copper(III) halide complexes was explored with 9,10-dihydroanthracene, revealing that LCuF exhibits rates 2 orders of magnitude higher than LCuCl and LCuBr. In contrast, all three complexes efficiently capture carbon radicals to afford C(sp3)-halogen bonds. Mechanistic investigation of radical capture with a triphenylmethyl radical revealed that LCuF proceeds through a concerted mechanism, while LCuCl and LCuBr follow a stepwise electron transfer-halide transfer pathway. The capability of LCuF to perform both hydrogen atom abstraction and radical capture was leveraged to enable fluorination of allylic and benzylic C-H bonds and α-C-H bonds of ethers at room temperature.
Collapse
Affiliation(s)
- Jamey K Bower
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Andrew D Cypcar
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Brenda Henriquez
- Department of Chemistry & Biochemistry, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona, California 91768, United States
| | - S Chantal E Stieber
- Department of Chemistry & Biochemistry, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona, California 91768, United States
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
24
|
Sun M, Chen W, Xia X, Shen G, Ma Y, Yang J, Ding H, Wang Z. Palladium-Catalyzed Tandem Dehydrogenative [4 + 2] Annulation of Terminal Olefins with N-Sulfonyl Amides via C–H Activations. Org Lett 2020; 22:3229-3233. [DOI: 10.1021/acs.orglett.0c01011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Weida Chen
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Xiangyu Xia
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Guodong Shen
- School of Chemistry and Chemical Engineering, School of Pharmacy, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yongmin Ma
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| |
Collapse
|
25
|
Wang H, Liu CF, Song Z, Yuan M, Ho YA, Gutierrez O, Koh MJ. Engaging α-Fluorocarboxylic Acids Directly in Decarboxylative C–C Bond Formation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00789] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongyu Wang
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Republic of Singapore, 117549
| | - Chen-Fei Liu
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Republic of Singapore, 117549
| | - Zhihui Song
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Mingbin Yuan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Yee Ann Ho
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Republic of Singapore, 117549
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Republic of Singapore, 117549
| |
Collapse
|
26
|
Kaldas SJ, Kran E, Mück-Lichtenfeld C, Yudin AK, Studer A. Reaction of Vinyl Aziridines with Arynes: Synthesis of Benzazepines and Branched Allyl Fluorides. Chemistry 2020; 26:1501-1505. [PMID: 31628755 DOI: 10.1002/chem.201904727] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 01/02/2023]
Abstract
We report the cycloaddition between vinyl aziridines and arynes. Depending on the reaction conditions and the choice of the aryne precursor, the aziridinium intermediate can be trapped through two distinct mechanistic pathways. The first one proceeds through a formal [5+2] cycloaddition to furnish valuable multi-substituted benzazepines. In the second pathway, the aziridinium is intercepted by a fluoride ion to afford allylic fluorides in good yields. Both reactions proceed stereospecifically and furnish enantiopure benzazepines and allylic fluorides.
Collapse
Affiliation(s)
- Sherif J Kaldas
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Eva Kran
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
27
|
Ren W, Jin M, Zuo QM, Yang SD. Allylation of β-amino phosphonic acid precursor via palladium-NHC catalyzed allylic C–H activation. Org Chem Front 2020. [DOI: 10.1039/c9qo01089k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A Pd(ii)/N-heterocyclic carbene (NHC) catalyzed allylic C–H alkylation of allylbenzene with α-cyano-phosphate ester has been achieved under mild reaction conditions with the highest regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Ming Jin
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Qian-Ming Zuo
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
28
|
Liu S, Zeng X, Xu B. Practical fluorothiolation and difluorothiolation of alkenes using pyridine-HF and N-thiosuccinimides. Org Chem Front 2020. [DOI: 10.1039/c9qo01228a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluorothiolation and difluorothiolation of alkenes using pyridine-HF and N-thiosuccinimides.
Collapse
Affiliation(s)
- Shiwen Liu
- College of Textiles and Clothing
- Yancheng Institute of Technology
- Yancheng
- China
- Key Laboratory of Science and Technology of Eco-Textiles
| | - Xiaojun Zeng
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|
29
|
Pinter EN, Bingham JE, AbuSalim DI, Cook SP. N-Directed fluorination of unactivated Csp 3-H bonds. Chem Sci 2019; 11:1102-1106. [PMID: 34084366 PMCID: PMC8146735 DOI: 10.1039/c9sc04055b] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Site-selective fluorination of aliphatic C-H bonds remains synthetically challenging. While directed C-H fluorination represents the most promising approach, the limited work conducted to date has enabled just a few functional groups as the arbiters of direction. Leveraging insights gained from both computations and experimentation, we enabled the use of the ubiquitous amine functional group as a handle for the directed C-H fluorination of Csp3-H bonds. By converting primary amines to adamantoyl-based fluoroamides, site-selective C-H fluorination proceeds under the influence of a simple iron catalyst in 20 minutes. Computational studies revealed a unique reaction coordinate for the catalytic process and offer an explanation for the high site selectivity.
Collapse
Affiliation(s)
- Emily N Pinter
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405-7102 USA
| | - Jenna E Bingham
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405-7102 USA
| | - Deyaa I AbuSalim
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405-7102 USA
| | - Silas P Cook
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405-7102 USA
| |
Collapse
|
30
|
Somasundaram M, Garg JA, Naidu S, Ramkumar V, Saiganesh R, Kabilan S, Balasubramanian KK. Halogen-Exchange Fluorination of β-Chlorovinyl Aldehydes - Unexpected Cascade Transformations in the Fluorination of 4-Chloro-2 H
-chromene and 4-Chloro-2 H
-thiochromene-3-carbaldehydes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jai Anand Garg
- Department of Chemistry; Indian Institute of Technology-Madras; Adyar 600036 Chennai India
| | - Shivaji Naidu
- Strides-Shasun pharmaceuticals Ltd; Vandalur-Kelambakkan Rd. 600127 Chennai India
| | - Venkatachalam Ramkumar
- Department of Chemistry; Indian Institute of Technology-Madras; Adyar 600036 Chennai India
| | - Ramanathan Saiganesh
- Strides-Shasun pharmaceuticals Ltd; Vandalur-Kelambakkan Rd. 600127 Chennai India
| | | | | |
Collapse
|
31
|
Li X, Shi X, Li X, Shi D. Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups. Beilstein J Org Chem 2019; 15:2213-2270. [PMID: 31598178 PMCID: PMC6774084 DOI: 10.3762/bjoc.15.218] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023] Open
Abstract
Fluorine chemistry plays an increasingly important role in pharmaceutical, agricultural, and materials industries. The incorporation of fluorine-containing groups into organic molecules can improve their chemical and physical properties, which attracts continuous interest in organic synthesis. Among various reported methods, transition-metal-catalyzed fluorination/fluoroalkylation has emerged as a powerful method for the construction of these compounds. This review attempts to describe the major advances in the transition-metal-catalyzed incorporation of fluorine, trifluoromethyl, difluoromethyl, trifluoromethylthio, and trifluoromethoxy groups reported between 2011 and 2019.
Collapse
Affiliation(s)
- Xiaowei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
32
|
Sorlin AM, Mixdorf JC, Rotella ME, Martin RT, Gutierrez O, Nguyen HM. The Role of Trichloroacetimidate To Enable Iridium-Catalyzed Regio- and Enantioselective Allylic Fluorination: A Combined Experimental and Computational Study. J Am Chem Soc 2019; 141:14843-14852. [PMID: 31438667 DOI: 10.1021/jacs.9b07575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Asymmetric allylic fluorination has proven to be a robust and efficient methodology with potential applications for the development of pharmaceuticals and practical synthesis for 18F-radiolabeling. A combined computational (dispersion-corrected DFT) and experimental approach was taken to interrogate the mechanism of the diene-ligated, iridium-catalyzed regio- and enantioselective allylic fluorination. Our group has shown that, in the presence of an iridium(I) catalyst and nucleophilic fluoride source (Et3N·3HF), allylic trichloroacetimidates undergo rapid fluoride substitution to generate allylic fluoride products with excellent levels of branched-to-linear ratios. Mechanistic studies reveal the crucial role of the trichloroacetimidate as a potent leaving group and ligand to enable conversion of racemic allylic trichloroacetimidates to the corresponding enantioenriched allylic fluorides, via a dynamic kinetic asymmetric transformation (DYKAT), in the presence of the chiral bicyclo[3.3.0]octadiene-ligated iridium catalyst.
Collapse
Affiliation(s)
- Alexandre M Sorlin
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Jason C Mixdorf
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Madeline E Rotella
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Robert T Martin
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Hien M Nguyen
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
33
|
Szpera R, Moseley DFJ, Smith LB, Sterling AJ, Gouverneur V. Fluorierung von C‐H‐Bindungen: Entwicklungen und Perspektiven. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814457] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Robert Szpera
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA Großbritannien
| | - Daniel F. J. Moseley
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA Großbritannien
| | - Lewis B. Smith
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA Großbritannien
| | - Alistair J. Sterling
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA Großbritannien
| | - Véronique Gouverneur
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA Großbritannien
| |
Collapse
|
34
|
Szpera R, Moseley DFJ, Smith LB, Sterling AJ, Gouverneur V. The Fluorination of C-H Bonds: Developments and Perspectives. Angew Chem Int Ed Engl 2019; 58:14824-14848. [PMID: 30759327 DOI: 10.1002/anie.201814457] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 12/16/2022]
Abstract
This Review summarizes advances in fluorination by C(sp2 )-H and C(sp3 )-H activation. Transition-metal-catalyzed approaches championed by palladium have allowed the installation of a fluorine substituent at C(sp2 ) and C(sp3 ) sites, exploiting the reactivity of high-oxidation-state transition-metal fluoride complexes combined with the use of directing groups (some transient) to control site and stereoselectivity. The large majority of known methods employ electrophilic fluorination reagents, but methods combining a nucleophilic fluoride source with an oxidant have appeared. External ligands have proven to be effective for C(sp3 )-H fluorination directed by weakly coordinating auxiliaries, thereby enabling control over reactivity. Methods relying on the formation of radical intermediates are complementary to transition-metal-catalyzed processes as they allow for undirected C(sp3 )-H fluorination. To date, radical C-H fluorinations mainly employ electrophilic N-F fluorination reagents but a unique MnIII -catalyzed oxidative C-H fluorination using fluoride has been developed. Overall, the field of late-stage nucleophilic C-H fluorination has progressed much more slowly, a state of play explaining why C-H 18 F-fluorination is still in its infancy.
Collapse
Affiliation(s)
- Robert Szpera
- Chemistry Research Laboratory, Oxford University, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Daniel F J Moseley
- Chemistry Research Laboratory, Oxford University, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Lewis B Smith
- Chemistry Research Laboratory, Oxford University, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Alistair J Sterling
- Chemistry Research Laboratory, Oxford University, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Oxford University, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
35
|
Tang L, Yang Z, Jiao J, Cui Y, Zou G, Zhou Q, Zhou Y, Rao W, Ma X. Chemoselective Mono- and Difluorination of 1,3-Dicarbonyl Compounds. J Org Chem 2019; 84:10449-10458. [PMID: 31335142 DOI: 10.1021/acs.joc.9b01808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
By altering the amount of Selectfluor, the highly selective mono- and difluorination of 1,3-dicarbonyl compounds has been achieved, affording a variety of 2-fluoro- and 2,2-difluoro-1,3-dicarbonyl compounds in good to excellent yields. The reaction can be readily performed in aqueous media without any catalyst and base, which features practical and convenient fluorination. Importantly, a gram-scale reaction, transformation of 2-fluoro-1,3-diphenylpropane-1,3-dione to 4-fluoro-1,3,5-triphenyl-1H-pyrazole, and chlorination and bromination of 1,3-dicarbonyl compounds are realized to further exhibit its synthetic utility.
Collapse
Affiliation(s)
- Lin Tang
- Henan Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan , Xinyang 464000 , P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Shen Z, Wang S, Hao W, Yang S, Tu S, Jiang B. Switching between Copper‐Catalysis and Photocatalysis for Tunable Halofluoroalkylation and Hydrofluoroalkylation of 1,6‐Enynes toward 1‐Indenones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900559] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zheng‐Jia Shen
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 221116 People's Republic of China
| | - Shi‐Chao Wang
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 221116 People's Republic of China
| | - Wen‐Juan Hao
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 221116 People's Republic of China
| | - Shi‐Zhao Yang
- Department of Quartermaster and FuelAir Force Logistic College Xuzhou 221000 People's Republic of China
| | - Shu‐Jiang Tu
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 221116 People's Republic of China
| | - Bo Jiang
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 221116 People's Republic of China
| |
Collapse
|
38
|
Wang R, Luan Y, Ye M. Transition Metal–Catalyzed Allylic C(sp
3
)–H Functionalization
via η
3
‐Allylmetal Intermediate. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900140] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronghua Wang
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yuxin Luan
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
39
|
Ping Y, Zhang S, Chang T, Wang J. Palladium-Catalyzed Oxidative Cross-Coupling of Conjugated Enynones with Allylarenes: Synthesis of Furyl-Substituted 1,3-Dienes. J Org Chem 2019; 84:8275-8283. [DOI: 10.1021/acs.joc.9b00922] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yifan Ping
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Sudong Zhang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Taiwei Chang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
- The State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
40
|
Li X, Sun B, Zhou J, Jin C, Yu C. Regioselective Acetoxylation of Terminal Olefins Using a Palladium(II)-Thiadiazole Catalyst. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaohan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| | - Jiadi Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| | - Can Jin
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Chuangming Yu
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| |
Collapse
|
41
|
Guo Y, Shen Z. Palladium-catalyzed allylic C-H oxidation under simple operation and mild conditions. Org Biomol Chem 2019; 17:3103-3107. [PMID: 30840010 DOI: 10.1039/c9ob00209j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We discovered an effective and simple system (Pd/BQ/air/r.t.) for making allylic alcohols through Pd-catalyzed allylic C-H bond functionalization. This approach exhibits advantages due to its simple operation, mild conditions, and environmentally benign features. By modifying reaction conditions, it can be suitable for preparing unsaturated aldehydes, allylic esters, ethers, and amines.
Collapse
Affiliation(s)
- Yunlong Guo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | | |
Collapse
|
42
|
Li R, Liu F, Dong G. Redox-Neutral ortho Functionalization of Aryl Boroxines via Palladium/Norbornene Cooperative Catalysis. Chem 2019; 5:929-939. [PMID: 31773067 DOI: 10.1016/j.chempr.2019.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Palladium/norbornene (Pd/NBE) cooperative catalysis, also known as the Catellani reaction, has become an increasingly useful method for site-selective arene functionalization; however, certain constraints still exist due to its intrinsic mechanistic pathway. Herein we report a redox-neutral ortho functionalization of aryl boroxines via Pd/NBE catalysis. An electrophile, such as carboxylic acid anhydrides or O-benzoyl hydroxylamines, is coupled at the boroxine ortho position, and a proton as the second electrophile is introduced at the ipso position. This reaction does not require extra oxidants or reductants, and avoids stoichiometric bases or acids, thereby tolerating a wide range of functional groups. In particular, orthogonal chemoselectivity between aryl iodide and boroxine moieties is demonstrated, which could be used to control reaction sequences. Finally, a deuterium labelling study supports the ipso-protonation pathway. This unique mechanistic feature could inspire the development of a new class of Pd/NBE-catalyzed transformations.
Collapse
Affiliation(s)
- Renhe Li
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Co-first author
| | - Feipeng Liu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193 (China)
- Co-first author
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Lead Contact
| |
Collapse
|
43
|
Jin M, Ren W, Qian DW, Yang SD. Direct Allylic C(sp3)-H Alkylation with 2-Naphthols via Cooperative Palladium and Copper Catalysis: Construction of Cyclohexadienones with Quaternary Carbon Centers. Org Lett 2018; 20:7015-7019. [DOI: 10.1021/acs.orglett.8b02910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ming Jin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wei Ren
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Dang-Wei Qian
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
44
|
Mao YJ, Lou SJ, Hao HY, Xu DQ. Selective C(sp 3 )-H and C(sp 2 )-H Fluorination of Alcohols Using Practical Auxiliaries. Angew Chem Int Ed Engl 2018; 57:14085-14089. [PMID: 30161283 DOI: 10.1002/anie.201808021] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/23/2018] [Indexed: 12/30/2022]
Abstract
Selective introduction of fluorine into molecules by the cleavage of inert C-H bonds is of central academic and synthetic interest, yet remains challenging. Given the central role of alcohols in organic chemistry as the most ubiquitous building blocks, a versatile and selective C(sp3 )-H and C(sp2 )-H fluorination of simple alcohols, enabled by novel designed exo-directing groups, is described. C(sp2 )-H bond fluorination was achieved by using a simple acetone oxime as auxiliary, whereas a new, modular and easily accessible bidentate auxiliary was developed for the efficient and site-selective fluorination of various primary methyl, methylene, and benzylic C(sp3 )-H bonds. Fluorinated alcohols can readily be accessed by the removal of auxiliaries, and significantly expands the synthetic prospect of the present procedure.
Collapse
Affiliation(s)
- Yang-Jie Mao
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, 18 Chaowang Road, Hangzhou, China
| | - Shao-Jie Lou
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, 18 Chaowang Road, Hangzhou, China
| | - Hong-Yan Hao
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, 18 Chaowang Road, Hangzhou, China
| | - Dan-Qian Xu
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, 18 Chaowang Road, Hangzhou, China
| |
Collapse
|
45
|
Mao YJ, Lou SJ, Hao HY, Xu DQ. Selective C(sp3
)−H and C(sp2
)−H Fluorination of Alcohols Using Practical Auxiliaries. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang-Jie Mao
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center; State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; 18 Chaowang Road Hangzhou China
| | - Shao-Jie Lou
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center; State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; 18 Chaowang Road Hangzhou China
| | - Hong-Yan Hao
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center; State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; 18 Chaowang Road Hangzhou China
| | - Dan-Qian Xu
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center; State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; 18 Chaowang Road Hangzhou China
| |
Collapse
|
46
|
Butcher TW, Hartwig JF. Enantioselective Synthesis of Tertiary Allylic Fluorides by Iridium-Catalyzed Allylic Fluoroalkylation. Angew Chem Int Ed Engl 2018; 57:13125-13129. [PMID: 30136379 DOI: 10.1002/anie.201807474] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2018] [Indexed: 12/16/2022]
Abstract
Few allylic electrophiles containing two different substituents at a single allyl terminus and none in which one of the two substituents is a heteroatom, have been shown previously to react with iridium catalysts to form substitution products. We report that iridium-catalysts are uniquely suited to form tertiary allylic fluorides enantioselectively by the addition of a diverse range of carbon-centered nucleophiles at the fluorine-containing terminus of 3-fluoro-substituted allylic esters. The products contain tertiary stereogenic centers bearing a single fluorine, which are isosteric with common tertiary stereocenters containing a single hydrogen. Computational studies reveal the principal steric interactions influencing the stability of endo and exo π-allyl intermediates formed from 3,3-disubstituted allylic electrophiles.
Collapse
Affiliation(s)
- Trevor W Butcher
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
47
|
Crotti S, Belletti G, Di Iorio N, Marotta E, Mazzanti A, Righi P, Bencivenni G. Asymmetric vinylogous aldol addition of alkylidene oxindoles on trifluoromethyl-α,β-unsaturated ketones. RSC Adv 2018; 8:33451-33458. [PMID: 35548158 PMCID: PMC9086480 DOI: 10.1039/c8ra06615a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
A novel vinylogous aldol addition of alkylidene oxindole with 1-trifluoromethyl-3-alkylidene-propan-2-ones is presented. The reaction, catalyzed by a bifunctional tertiary amine, provides an efficient application of the vinylogous reactivity of oxindoles for the preparation of enantioenriched trifluoromethylated allylic alcohols.
Collapse
Affiliation(s)
- Simone Crotti
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum-University of Bologna Viale del Risorgimento 4 40136-Bologna Italy
| | - Giada Belletti
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum-University of Bologna Viale del Risorgimento 4 40136-Bologna Italy
| | - Nicola Di Iorio
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum-University of Bologna Viale del Risorgimento 4 40136-Bologna Italy
| | - Emanuela Marotta
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum-University of Bologna Viale del Risorgimento 4 40136-Bologna Italy
| | - Andrea Mazzanti
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum-University of Bologna Viale del Risorgimento 4 40136-Bologna Italy
| | - Paolo Righi
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum-University of Bologna Viale del Risorgimento 4 40136-Bologna Italy
| | - Giorgio Bencivenni
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum-University of Bologna Viale del Risorgimento 4 40136-Bologna Italy
| |
Collapse
|
48
|
Crotti S, Di Iorio N, Mazzanti A, Righi P, Bencivenni G. Enantioselective Synthesis of Trifluoromethyl α,β-Unsaturated δ-Lactones via Vinylogous Aldol-Lactonization Cascade. J Org Chem 2018; 83:12440-12448. [DOI: 10.1021/acs.joc.8b01672] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Simone Crotti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Nicola Di Iorio
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Andrea Mazzanti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Paolo Righi
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Giorgio Bencivenni
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
49
|
Butcher TW, Hartwig JF. Enantioselective Synthesis of Tertiary Allylic Fluorides by Iridium‐Catalyzed Allylic Fluoroalkylation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Trevor W. Butcher
- Department of Chemistry University of California Berkeley CA 94720 USA
| | - John F. Hartwig
- Department of Chemistry University of California Berkeley CA 94720 USA
| |
Collapse
|
50
|
Guan H, Sun S, Mao Y, Chen L, Lu R, Huang J, Liu L. Iron(II)-Catalyzed Site-Selective Functionalization of Unactivated C(sp3
)−H Bonds Guided by Alkoxyl Radicals. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806434] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Honghao Guan
- School of Pharmaceutical Sciences; Shandong University; Jinan 250012 P. R. China
| | - Shutao Sun
- School of Pharmaceutical Sciences; Shandong University; Jinan 250012 P. R. China
| | - Ying Mao
- School of Pharmaceutical Sciences; Shandong University; Jinan 250012 P. R. China
| | - Lei Chen
- School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 P. R. China
| | - Ran Lu
- School of Pharmaceutical Sciences; Shandong University; Jinan 250012 P. R. China
| | - Jiancheng Huang
- School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 P. R. China
| | - Lei Liu
- School of Pharmaceutical Sciences; Shandong University; Jinan 250012 P. R. China
- School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 P. R. China
| |
Collapse
|