1
|
Bonet-Aleta J, Maehara T, Craig BA, Bernardes GJL. Small Molecule RNA Degraders. Angew Chem Int Ed Engl 2024; 63:e202412925. [PMID: 39162084 DOI: 10.1002/anie.202412925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024]
Abstract
RNA is a central molecule in life, involved in a plethora of biological processes and playing a key role in many diseases. Targeting RNA emerges as a significant endeavor in drug discovery, diverging from conventional protein-centric approaches to tackle various pathologies. Whilst identifying small molecules that bind to specific RNA regions is the first step, the abundance of non-functional RNA segments renders many interactions biologically inert. Consequently, small molecule binding does not necessarily meet stringent criteria for clinical translation, calling for solutions to push the field forward. Converting RNA-binders into RNA-degraders presents a promising avenue to enhance RNA-targeting. This mini-review outlines strategies and exemplars wherein simple small molecule RNA binders are reprogrammed into active degraders through the linkage of functional groups. These approaches encompass mechanisms that induce degradation via endogenous enzymes, termed RIBOTACs, as well as those with functional moieties acting autonomously to degrade RNA. Through this exploration, we aim to offer insights into advancing RNA-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Tomoaki Maehara
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Benjamin A Craig
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| |
Collapse
|
2
|
Nagasawa R, Onizuka K, Komatsu KR, Miyashita E, Murase H, Ojima K, Ishikawa S, Ozawa M, Saito H, Nagatsugi F. Large-scale analysis of small molecule-RNA interactions using multiplexed RNA structure libraries. Commun Chem 2024; 7:98. [PMID: 38693284 PMCID: PMC11865577 DOI: 10.1038/s42004-024-01181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The large-scale analysis of small-molecule binding to diverse RNA structures is key to understanding the required interaction properties and selectivity for developing RNA-binding molecules toward RNA-targeted therapies. Here, we report a new system for performing the large-scale analysis of small molecule-RNA interactions using a multiplexed pull-down assay with RNA structure libraries. The system profiled the RNA-binding landscapes of G-clamp and thiazole orange derivatives, which recognizes an unpaired guanine base and are good probes for fluorescent indicator displacement (FID) assays, respectively. We discuss the binding preferences of these molecules based on their large-scale affinity profiles. In addition, we selected combinations of fluorescent indicators and different ranks of RNA based on the information and screened for RNA-binding molecules using FID. RNAs with high- and intermediate-rank RNA provided reliable results. Our system provides fundamental information about small molecule-RNA interactions and facilitates the discovery of novel RNA-binding molecules.
Collapse
Affiliation(s)
- Ryosuke Nagasawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan.
- Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Miyagi, 980-8577, Japan.
| | - Kaoru R Komatsu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Emi Miyashita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Hirotaka Murase
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
| | - Kanna Ojima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan
| | - Shunya Ishikawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan
| | - Mamiko Ozawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan
| | - Hirohide Saito
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, 980-8577, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Miyagi, 980-8578, Japan.
| |
Collapse
|
3
|
Bouton L, Ecoutin A, Malard F, Campagne S. Small molecules modulating RNA splicing: a review of targets and future perspectives. RSC Med Chem 2024; 15:1109-1126. [PMID: 38665842 PMCID: PMC11042171 DOI: 10.1039/d3md00685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 04/28/2024] Open
Abstract
In eukaryotic cells, RNA splicing is crucial for gene expression. Dysregulation of this process can result in incorrect mRNA processing, leading to aberrant gene expression patterns. Such abnormalities are implicated in many inherited diseases and cancers. Historically, antisense oligonucleotides, which bind to specific RNA targets, have been used to correct these splicing abnormalities. Despite their high specificity of action, these oligonucleotides have drawbacks, such as lack of oral bioavailability and the need for chemical modifications to enhance cellular uptake and stability. As a result, recent efforts focused on the development of small organic molecules that can correct abnormal RNA splicing event under disease conditions. This review discusses known and potential targets of these molecules, including RNA structures, trans-acting splicing factors, and the spliceosome - the macromolecular complex responsible for RNA splicing. We also rely on recent advances to discuss therapeutic applications of RNA-targeting small molecules in splicing correction. Overall, this review presents an update on strategies for RNA splicing modulation, emphasizing the therapeutic promise of small molecules.
Collapse
Affiliation(s)
- Léa Bouton
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Agathe Ecoutin
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| |
Collapse
|
4
|
Kaur J, Sharma A, Mundlia P, Sood V, Pandey A, Singh G, Barnwal RP. RNA-Small-Molecule Interaction: Challenging the "Undruggable" Tag. J Med Chem 2024; 67:4259-4297. [PMID: 38498010 DOI: 10.1021/acs.jmedchem.3c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
RNA targeting, specifically with small molecules, is a relatively new and rapidly emerging avenue with the promise to expand the target space in the drug discovery field. From being "disregarded" as an "undruggable" messenger molecule to FDA approval of an RNA-targeting small-molecule drug Risdiplam, a radical change in perspective toward RNA has been observed in the past decade. RNAs serve important regulatory functions beyond canonical protein synthesis, and their dysregulation has been reported in many diseases. A deeper understanding of RNA biology reveals that RNA molecules can adopt a variety of structures, carrying defined binding pockets that can accommodate small-molecule drugs. Due to its functional diversity and structural complexity, RNA can be perceived as a prospective target for therapeutic intervention. This perspective highlights the proof of concept of RNA-small-molecule interactions, exemplified by targeting of various transcripts with functional modulators. The advent of RNA-oriented knowledge would help expedite drug discovery.
Collapse
Affiliation(s)
- Jaskirat Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Poonam Mundlia
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
5
|
Liu Y, Wang L, Zhao L, Zhang Y, Li ZT, Huang F. Multiple hydrogen bonding driven supramolecular architectures and their biomedical applications. Chem Soc Rev 2024; 53:1592-1623. [PMID: 38167687 DOI: 10.1039/d3cs00705g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Lulu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
6
|
Kovachka S, Panosetti M, Grimaldi B, Azoulay S, Di Giorgio A, Duca M. Small molecule approaches to targeting RNA. Nat Rev Chem 2024; 8:120-135. [PMID: 38278932 DOI: 10.1038/s41570-023-00569-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/28/2024]
Abstract
The development of innovative methodologies to identify RNA binders has attracted enormous attention in chemical biology and drug discovery. Although antibiotics targeting bacterial ribosomal RNA have been on the market for decades, the renewed interest in RNA targeting reflects the need to better understand complex intracellular processes involving RNA. In this context, small molecules are privileged tools used to explore the biological functions of RNA and to validate RNAs as therapeutic targets, and they eventually are to become new drugs. Despite recent progress, the rational design of specific RNA binders requires a better understanding of the interactions which occur with the RNA target to reach the desired biological response. In this Review, we discuss the challenges to approaching this underexplored chemical space, together with recent strategies to bind, interact and affect biologically relevant RNAs.
Collapse
Affiliation(s)
- Sandra Kovachka
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
| | - Marc Panosetti
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
- Molecular Medicine Research Line, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Benedetto Grimaldi
- Molecular Medicine Research Line, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Stéphane Azoulay
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France.
| |
Collapse
|
7
|
Bui NL, Chu DT. An introduction to RNA therapeutics and their potentials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:1-12. [PMID: 38359993 DOI: 10.1016/bs.pmbts.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA therapeutics is a biological term regarding the usage of RNA-based molecules for medical purposes. Thanks to the success of mRNA-vaccine production against COVID-19, RNA therapeutics has gained more and more attention and investigation from worldwide scientists. It is considered as one of the promising alternatives for conventional drugs. In this first chapter, we presented an overview of the history and perspectives of RNA therapeutics' development. This chapter also explained the underlying mechanisms of different RNA-based molecules, including antisense oligonucleotide, interfering RNA (iRNA), aptamer, and mRNA, from degrading mRNA to inactivating targeted protein. Although there are many advantages of RNA therapeutics, its challenges in designing RNA chemical structure and the delivery vehicle need to be discussed. We described advanced technologies in the development of drug delivery systems that are positively correlated to the efficacy of the drug. Our aim is to provide a general background of RNA therapeutics to the audience before introducing plenty of more detailed parts, including clinical applications in certain diseases in the following chapters of the "RNA therapeutics" book.
Collapse
Affiliation(s)
- Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
8
|
Kwok JG, Yuan Z, Arora PS. An Encodable Scaffold for Sequence-Specific Recognition of Duplex RNA. Angew Chem Int Ed Engl 2023; 62:e202308650. [PMID: 37548640 PMCID: PMC10528708 DOI: 10.1002/anie.202308650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
RNA, unlike DNA, folds into a multitude of secondary and tertiary structures. This structural diversity has impeded the development of ligands that can sequence-specifically target this biomolecule. We sought to develop ligands for double-stranded RNA (dsRNA) segments, which are ubiquitous in RNA tertiary structure. The major groove of double-stranded DNA is sequence-specifically recognized by a range of dimeric helical transcription factors, including the basic leucine zippers (bZIP) and basic helix-loop-helix (bHLH) proteins; however, such simple structural motifs are not prevalent in RNA-binding proteins. We interrogated the high-resolution structures of DNA and RNA to identify requirements for a helix fork motif to occupy dsRNA major grooves akin to dsDNA. Our analysis suggested that the rigidity and angle of approach of dimeric helices in bZIP/bHLH motifs are not ideal for the binding of dsRNA major grooves. This investigation revealed that the replacement of the leucine zipper motifs in bHLH proteins with synthetic crosslinkers would allow recognition of dsRNA. We show that a model bHLH DNA-binding motif does not bind dsRNA but can be reengineered as an RNA ligand. Based on this hypothesis, we rationally designed a miniature synthetic crosslinked helix fork (CHF) as a generalizable proteomimetic scaffold for targeting dsRNA. We evaluated several CHF constructs against a set of RNA and DNA hairpins to probe the specificity of the designed construct. Our studies reveal a new class of proteomimetics as an encodable platform for sequence-specific recognition of dsRNA.
Collapse
Affiliation(s)
- Jonathan G. Kwok
- Department of Chemistry, New York University, 29 Washington Place, New York, NY10003
| | - Zhi Yuan
- Department of Chemistry, New York University, 29 Washington Place, New York, NY10003
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 29 Washington Place, New York, NY10003
| |
Collapse
|
9
|
Morozov B, Oshchepkov AS, Klemt I, Agafontsev AM, Krishna S, Hampel F, Xu HG, Mokhir A, Guldi D, Kataev E. Supramolecular Recognition of Cytidine Phosphate in Nucleotides and RNA Sequences. JACS AU 2023; 3:964-977. [PMID: 37006770 PMCID: PMC10052242 DOI: 10.1021/jacsau.2c00658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/19/2023]
Abstract
Supramolecular recognition of nucleotides would enable manipulating crucial biochemical pathways like transcription and translation directly and with high precision. Therefore, it offers great promise in medicinal applications, not least in treating cancer or viral infections. This work presents a universal supramolecular approach to target nucleoside phosphates in nucleotides and RNA. The artificial active site in new receptors simultaneously realizes several binding and sensing mechanisms: encapsulation of a nucleobase via dispersion and hydrogen bonding interactions, recognition of the phosphate residue, and a self-reporting feature-"turn-on" fluorescence. Key to the high selectivity is the conscious separation of phosphate- and nucleobase-binding sites by introducing specific spacers in the receptor structure. We have tuned the spacers to achieve high binding affinity and selectivity for cytidine 5' triphosphate coupled to a record 60-fold fluorescence enhancement. The resulting structures are also the first functional models of poly(rC)-binding protein coordinating specifically to C-rich RNA oligomers, e.g., the 5'-AUCCC(C/U) sequence present in poliovirus type 1 and the human transcriptome. The receptors bind to RNA in human ovarian cells A2780, causing strong cytotoxicity at 800 nM. The performance, self-reporting property, and tunability of our approach open up a promising and unique avenue for sequence-specific RNA binding in cells by using low-molecular-weight artificial receptors.
Collapse
Affiliation(s)
- Boris
S. Morozov
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | | | - Insa Klemt
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Aleksandr M. Agafontsev
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Swathi Krishna
- Department
of Chemistry and Pharmacy, Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Egerlandstr. 3, Erlangen 91058, Germany
| | - Frank Hampel
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Hong-Gui Xu
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Andriy Mokhir
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Dirk Guldi
- Department
of Chemistry and Pharmacy, Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-Universität
Erlangen-Nürnberg, Egerlandstr. 3, Erlangen 91058, Germany
| | - Evgeny Kataev
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| |
Collapse
|
10
|
Nagatsugi F, Onizuka K. Selective Chemical Modification to the Higher-Order Structures of Nucleic Acids. CHEM REC 2023; 23:e202200194. [PMID: 36111635 DOI: 10.1002/tcr.202200194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Indexed: 11/06/2022]
Abstract
DNA and RNA can adopt a variety of stable higher-order structural motifs, including G-quadruplex (G4 s), mismatches, and bulges. Many of these secondary structures are closely related to the regulation of gene expression. Therefore, the higher-order structure of nucleic acids is one of the candidate therapeutic targets, and the development of binding molecules targeting the higher-order structure of nucleic acids has been pursued vigorously. Furthermore, as one of the methodologies for detecting the higher-order structures of these nucleic acids, developing techniques for the selective chemical modification of the higher-order structures of nucleic acids is also underway. In this personal account, we focus on the following higher-order structures of nucleic acids, double-stranded DNA containing the abasic site, T-T/U-U mismatch structure, and G-quadruplex structure, and describe the development of molecules that bind to and chemically modify these structures.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan.,Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
11
|
Lau MHY, Wong CH, Chan HYE, Au-Yeung HY. Development of Fluorescent Turn-On Probes for CAG-RNA Repeats. BIOSENSORS 2022; 12:1080. [PMID: 36551047 PMCID: PMC9775061 DOI: 10.3390/bios12121080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Fluorescent sensing of nucleic acids is a highly sensitive and efficient bioanalytical method for their study in cellular processes, detection and diagnosis in related diseases. However, the design of small molecule fluorescent probes for the selective binding and detection of RNA of a specific sequence is very challenging because of their diverse, dynamic, and flexible structures. By modifying a bis(amidinium)-based small molecular binder that is known to selectively target RNA with CAG repeats using an environment-sensitive fluorophore, a turn-on fluorescent probe featuring aggregation-induced emission (AIE) is successfully developed in this proof-of-concept study. The probe (DB-TPE) exhibits a strong, 19-fold fluorescence enhancement upon binding to a short CAG RNA, and the binding and fluorescence response was found to be specific to the overall RNA secondary structure with A·A mismatches. These promising analytical performances suggest that the probe could be applied in pathological studies, disease progression monitoring, as well as diagnosis of related neurodegenerative diseases due to expanded CAG RNA repeats.
Collapse
Affiliation(s)
- Matthew Ho Yan Lau
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun-Ho Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
12
|
Krueger SB, Zimmerman SC. Dynamic Covalent Template-Guided Screen for Nucleic Acid-Targeting Agents. J Med Chem 2022; 65:12417-12426. [PMID: 36099320 DOI: 10.1021/acs.jmedchem.2c01086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trinucleotide repeat diseases such as myotonic dystrophy type 1 (DM1) and Huntington's disease (HD) are caused by expanded DNA repeats that can be used as templates to synthesize their own inhibitors. Because it would be particularly advantageous to reversibly assemble multivalent nucleic acid-targeting agents in situ, we sought to develop a target-guided screen that uses dynamic covalent chemistry to identify multitarget inhibitors. We report the synthesis of a library of amine- or aldehyde-containing fragments. The assembly of these fragments led to a diverse set of hit combinations that was confirmed by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) in the presence of DM1 and HD repeat sequences. Of interest for both diseases, the resulting hit combinations inhibited transcription selectively and in a cooperative manner in vitro, with inhibitory concentration (IC50) values in the micromolar range. This dynamic covalent library and screening approach could be applied to identify compounds that reversibly assemble on other nucleic acid targets.
Collapse
Affiliation(s)
- Sarah B Krueger
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Krueger SB, Lanzendorf AN, Jeon HH, Zimmerman SC. Selective and Reversible Ligand Assembly on the DNA and RNA Repeat Sequences in Myotonic Dystrophy. Chembiochem 2022; 23:e202200260. [PMID: 35790065 PMCID: PMC9733911 DOI: 10.1002/cbic.202200260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/03/2022] [Indexed: 02/06/2023]
Abstract
Small molecule targeting of DNA and RNA sequences has come into focus as a therapeutic strategy for diseases such as myotonic dystrophy type 1 (DM1), a trinucleotide repeat disease characterized by RNA gain-of-function. Herein, we report a novel template-selected, reversible assembly of therapeutic agents in situ via aldehyde-amine condensation. Rationally designed small molecule targeting agents functionalized with either an aldehyde or an amine were synthesized and screened against the target nucleic acid sequence. The assembly of fragments was confirmed by MALDI-MS in the presence of DM1-relevant nucleic acid sequences. The resulting hit combinations of aldehyde and amine inhibited the formation of r(CUG)exp in vitro in a cooperative manner at low micromolar levels and rescued mis-splicing defects in DM1 model cells. This reversible template-selected assembly is a promising approach to achieve cell permeable and multivalent targeting via in situ synthesis and could be applied to other nucleic acid targets.
Collapse
Affiliation(s)
- Sarah B Krueger
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, USA
| | - Amie N Lanzendorf
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, USA
| | - Hyoeun Heather Jeon
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, USA
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Almehmadi LM, Valsangkar VA, Halvorsen K, Zhang Q, Sheng J, Lednev IK. Surface-enhanced Raman spectroscopy for drug discovery: peptide-RNA binding. Anal Bioanal Chem 2022; 414:6009-6016. [PMID: 35764806 PMCID: PMC9404289 DOI: 10.1007/s00216-022-04190-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 11/01/2022]
Abstract
The ever-growing demand for new drugs highlights the need to develop novel cost- and time-effective techniques for drug discovery. Surface-enhanced Raman spectroscopy (SERS) is an emerging ultrasensitive and label-free technique that allows for the efficient detection and characterization of molecular interactions. We have recently developed a SERS platform for detecting a single protein molecule linked to a gold substrate (Almehmadi et al. Scientific Reports 2019). In this study, we extended the approach to probe the binding of potential drugs to RNA targets. To demonstrate the proof of concept, two 16-amino acid residue peptides with close primary structures and different binding affinities to the RNA CUG repeat related to myotonic dystrophy were tested. Three-microliter solutions of the RNA repeat with these peptides at nanomolar concentrations were probed using the developed approach, and the binding of only one peptide was demonstrated. The SER spectra exhibited significant fluctuations along with a sudden strong enhancement as spectra were collected consecutively from individual spots. Principal component analysis (PCA) of the SER spectral datasets indicated that free RNA repeats could be differentiated from those complexed with a peptide with 100% accuracy. The developed SERS platform provides a novel opportunity for label-free screening of RNA-binding peptides for drug discovery. Schematic representation of the SERS platform for drug discovery developed in this study.
Collapse
Affiliation(s)
- Lamyaa M Almehmadi
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.,College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Vibhav A Valsangkar
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.,College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ken Halvorsen
- College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Qiang Zhang
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA. .,College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA. .,College of Arts and Science, RNA Institute, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
15
|
Chang Z, Zheng YY, Mathivanan J, Valsangkar VA, Du J, Abou-Elkhair RAI, Hassan AEA, Sheng J. Fluorescence-Based Binding Characterization of Small Molecule Ligands Targeting CUG RNA Repeats. Int J Mol Sci 2022; 23:ijms23063321. [PMID: 35328743 PMCID: PMC8955525 DOI: 10.3390/ijms23063321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pathogenic CUG and CCUG RNA repeats have been associated with myotonic dystrophy type 1 and 2 (DM1 and DM2), respectively. Identifying small molecules that can bind these RNA repeats is of great significance to develop potential therapeutics to treat these neurodegenerative diseases. Some studies have shown that aminoglycosides and their derivatives could work as potential lead compounds targeting these RNA repeats. In this work, sisomicin, previously known to bind HIV-1 TAR, is investigated as a possible ligand for CUG RNA repeats. We designed a novel fluorescence-labeled RNA sequence of r(CUG)10 to mimic cellular RNA repeats and improve the detecting sensitivity. The interaction of sisomicin with CUG RNA repeats is characterized by the change of fluorescent signal, which is initially minimized by covalently incorporating the fluorescein into the RNA bases and later increased upon ligand binding. The results show that sisomicin can bind and stabilize the folded RNA structure. We demonstrate that this new fluorescence-based binding characterization assay is consistent with the classic UV Tm technique, indicating its feasibility for high-throughput screening of ligand-RNA binding interactions and wide applications to measure the thermodynamic parameters in addition to binding constants and kinetics when probing such interactions.
Collapse
Affiliation(s)
- Zhihua Chang
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Ya Ying Zheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Johnsi Mathivanan
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Vibhav A. Valsangkar
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Jinxi Du
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
| | - Reham A. I. Abou-Elkhair
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44523, Egypt;
| | - Abdalla E. A. Hassan
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44523, Egypt;
- Correspondence: (A.E.A.H.); (J.S.)
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (Z.C.); (Y.Y.Z.); (J.M.); (V.A.V.); (J.D.)
- Correspondence: (A.E.A.H.); (J.S.)
| |
Collapse
|
16
|
Anokhina VS, Miller BL. Targeting Ribosomal Frameshifting as an Antiviral Strategy: From HIV-1 to SARS-CoV-2. Acc Chem Res 2021; 54:3349-3361. [PMID: 34403258 DOI: 10.1021/acs.accounts.1c00316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Treatment of HIV-1 has largely involved targeting viral enzymes using a cocktail of inhibitors. However, resistance to these inhibitors and toxicity in the long term have pushed the field to identify new therapeutic targets. To that end, -1 programmed ribosomal frameshifting (-1 PRF) has gained attention as a potential node for therapeutic intervention. In this process, a ribosome moves one nucleotide backward in the course of translating a mRNA, revealing a new reading frame for protein synthesis. In HIV-1, -1 PRF allows the virus to regulate the ratios of enzymatic and structural proteins as needed for correct viral particle assembly. Two RNA structural elements are central to -1 PRF in HIV: a slippery sequence and a highly conserved stable hairpin called the HIV-1 frameshifting stimulatory signal (FSS). Dysregulation of -1 PRF is deleterious for the virus. Thus, -1 PRF is an attractive target for new antiviral development. It is important to note that HIV-1 is not the only virus exploiting -1 PRF for regulating production of its proteins. Coronaviruses, including the COVID-19 pandemic virus SARS-CoV-2, also rely on -1 PRF. In SARS-CoV-2 and other coronaviruses, -1 PRF is required for synthesis of RNA-dependent RNA polymerase and several other nonstructural proteins. Coronaviruses employ a more complex RNA structural element for regulating -1 PRF called a pseudoknot. The purpose of this Account is primarily to review the development of molecules targeting HIV-1 -1 PRF. These approaches are case studies illustrating how the entire pipeline from screening to the generation of high-affinity leads might be implemented. We consider both target-based and function-based screening, with a particular focus on our group's approach beginning with a resin-bound dynamic combinatorial library (RBDCL) screen. We then used rational design approaches to optimize binding affinity, selectivity, and cellular bioavailability. Our tactic is, to the best of our knowledge, the only study resulting in compounds that bind specifically to the HIV-1 FSS RNA and reduce infectivity of laboratory and drug-resistant strains of HIV-1 in human cells. Lessons learned from strategies targeting -1 PRF HIV-1 might provide solutions in the development of antivirals in areas of unmet medical need. This includes the development of new frameshift-altering therapies for SARS-CoV-2, approaches to which are very recently beginning to appear.
Collapse
Affiliation(s)
- Viktoriya S. Anokhina
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, United States
| | - Benjamin L. Miller
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, United States
- Department of Dermatology, University of Rochester, Rochester, New York 14642, United States
| |
Collapse
|
17
|
Das B, Murata A, Nakatani K. A small-molecule fluorescence probe ANP77 for sensing RNA internal loop of C, U and A/CC motifs and their binding molecules. Nucleic Acids Res 2021; 49:8462-8470. [PMID: 34358308 PMCID: PMC8421207 DOI: 10.1093/nar/gkab650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 11/12/2022] Open
Abstract
Small-molecules interacting with particular RNAs and modulating their functions are vital tools for RNA-targeting drug discovery. Considering the substantial distribution of the internal loops involving two contiguous cytosines opposite to a single-nucleotide base (Y/CC; Y = C, U or A) within the biologically significant functional RNAs, developing small-molecule probes targeting Y/CC sites should provide profound insight into their functions and roles in biochemical processes. Herein, we report ANP77 as the small-molecule probe for sensing RNA internal loop of Y/CC motifs and molecules binding to the motifs. The Y/CC motifs interact with ANP77 via the formation of a 1:1 complex and quench the fluorescence of ANP77. The flanking sequence-dependent binding to C/CC and U/CC sites was assessed by fluorometric screening, provided the binding heat maps. The quenching phenomena of ANP77 fluorescence was confirmed with intrinsic potential drug target pre-miR-1908. Finally, the binding-dependent fluorescence quenching of ANP77 was utilized in the fluorescence indicator displacement assay to demonstrate the potential of ANP77 as an indicator by using the RNA-binding drugs, risdiplam and branaplam.
Collapse
Affiliation(s)
- Bimolendu Das
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
18
|
Targeting RNA structures in diseases with small molecules. Essays Biochem 2021; 64:955-966. [PMID: 33078198 PMCID: PMC7724634 DOI: 10.1042/ebc20200011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 01/08/2023]
Abstract
RNA is crucial for gene expression and regulation. Recent advances in understanding of RNA biochemistry, structure and molecular biology have revealed the importance of RNA structure in cellular processes and diseases. Various approaches to discovering drug-like small molecules that target RNA structure have been developed. This review provides a brief introduction to RNA structural biology and how RNA structures function as disease regulators. We summarize approaches to targeting RNA with small molecules and highlight their advantages, shortcomings and therapeutic potential.
Collapse
|
19
|
Ketley A, Wojciechowska M, Ghidelli-Disse S, Bamborough P, Ghosh TK, Morato ML, Sedehizadeh S, Malik NA, Tang Z, Powalowska P, Tanner M, Billeter-Clark R, Trueman RC, Geiszler PC, Agostini A, Othman O, Bösche M, Bantscheff M, Rüdiger M, Mossakowska DE, Drewry DH, Zuercher WJ, Thornton CA, Drewes G, Uings I, Hayes CJ, Brook JD. CDK12 inhibition reduces abnormalities in cells from patients with myotonic dystrophy and in a mouse model. Sci Transl Med 2021; 12:12/541/eaaz2415. [PMID: 32350131 DOI: 10.1126/scitranslmed.aaz2415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/16/2019] [Accepted: 02/25/2020] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an RNA-based disease with no current treatment. It is caused by a transcribed CTG repeat expansion within the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Mutant repeat expansion transcripts remain in the nuclei of patients' cells, forming distinct microscopically detectable foci that contribute substantially to the pathophysiology of the condition. Here, we report small-molecule inhibitors that remove nuclear foci and have beneficial effects in the HSALR mouse model, reducing transgene expression, leading to improvements in myotonia, splicing, and centralized nuclei. Using chemoproteomics in combination with cell-based assays, we identify cyclin-dependent kinase 12 (CDK12) as a druggable target for this condition. CDK12 is a protein elevated in DM1 cell lines and patient muscle biopsies, and our results showed that its inhibition led to reduced expression of repeat expansion RNA. Some of the inhibitors identified in this study are currently the subject of clinical trials for other indications and provide valuable starting points for a drug development program in DM1.
Collapse
Affiliation(s)
- Ami Ketley
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Marzena Wojciechowska
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Sonja Ghidelli-Disse
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 61997 Heidelberg, Germany
| | - Paul Bamborough
- Computational and Modelling Sciences, GlaxoSmithKline, Medicines Research Centre, Hertfordshire SG1 2NY, UK
| | - Tushar K Ghosh
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Marta Lopez Morato
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Saam Sedehizadeh
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Naveed Altaf Malik
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Zhenzhi Tang
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642-0001, USA
| | - Paulina Powalowska
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.,School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Matthew Tanner
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642-0001, USA
| | - Rudolf Billeter-Clark
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Rebecca C Trueman
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Philippine C Geiszler
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Alessandra Agostini
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Othman Othman
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Markus Bösche
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 61997 Heidelberg, Germany
| | - Marcus Bantscheff
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 61997 Heidelberg, Germany
| | - Martin Rüdiger
- Screening Profiling and Mechanistic Biology, GlaxoSmithKline, Medicines Research Centre, Hertfordshire SG1 2NY, UK
| | - Danuta E Mossakowska
- Discovery Partnerships with Academia, GlaxoSmithKline, Medicines Research Centre, Hertfordshire SG1 2NY, UK.,Malopolska Centre of Biotechnology, Jagiellonian University, 30-348 Krakow, Poland
| | - David H Drewry
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, NC 27709-3398, USA
| | - William J Zuercher
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, NC 27709-3398, USA.,SGC Center for Chemical Biology, UNC, Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642-0001, USA
| | - Gerard Drewes
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 61997 Heidelberg, Germany
| | - Iain Uings
- Discovery Partnerships with Academia, GlaxoSmithKline, Medicines Research Centre, Hertfordshire SG1 2NY, UK
| | - Christopher J Hayes
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - J David Brook
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
20
|
Li K, Krueger SB, Zimmerman SC. A Novel Minor Groove Binder as a Potential Therapeutic Agent for Myotonic Dystrophy Type 1. ChemMedChem 2021; 16:2638-2644. [PMID: 34114350 DOI: 10.1002/cmdc.202100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/10/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic neuromuscular disorder that is inherited in an autosomal dominant manner. DM1 originates in a (CTG⋅CAG) repeat expansion in the 3'-UTR of the dystrophia myotonic protein kinase (DMPK) gene on chromosome 19. One of the transcripts, r(CUG)exp , is toxic in various ways. Herein we report a rationally designed small molecule with a thiazole peptidomimetic unit that can serve as a minor groove binder for the nucleic acid targets. This peptide unit linked to two triaminotriazine recognition units selectively binds to d(CTG)exp to inhibit the transcription process, and also targets r(CUG)exp selectively to improve representative DM1 pathological molecular features, including foci formation and pre-mRNA splicing defects in DM1 model cells. As such, it represents a new structure type that might serve as a lead compound for future structure-activity optimization.
Collapse
Affiliation(s)
- Ke Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, 61801, Urbana, IL, USA
| | - Sarah B Krueger
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, 61801, Urbana, IL, USA
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, 61801, Urbana, IL, USA
| |
Collapse
|
21
|
Abstract
RNAs are involved in an enormous range of cellular processes, including gene regulation, protein synthesis, and cell differentiation, and dysfunctional RNAs are associated with disorders such as cancers, neurodegenerative diseases, and viral infections. Thus, the identification of compounds with the ability to bind RNAs and modulate their functions is an exciting approach for developing next-generation therapies. Numerous RNA-binding agents have been reported over the past decade, but the design of synthetic molecules with selectivity for specific RNA sequences is still in its infancy. In this perspective, we highlight recent advances in targeting RNAs with synthetic molecules, and we discuss the potential value of this approach for the development of innovative therapeutic agents.
Collapse
Affiliation(s)
- Farzad Zamani
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
22
|
Peng S, Guo P, Lin X, An Y, Sze KH, Lau MHY, Chen ZS, Wang Q, Li W, Sun JKL, Ma SY, Chan TF, Lau KF, Ngo JCK, Kwan KM, Wong CH, Lam SL, Zimmerman SC, Tuccinardi T, Zuo Z, Au-Yeung HY, Chow HM, Chan HYE. CAG RNAs induce DNA damage and apoptosis by silencing NUDT16 expression in polyglutamine degeneration. Proc Natl Acad Sci U S A 2021; 118:e2022940118. [PMID: 33947817 PMCID: PMC8126783 DOI: 10.1073/pnas.2022940118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the Nudix hydrolase 16 (NUDT16) gene was down-regulated in mutant CAG RNA-expressing cells. The loss of NUDT16 function results in a misincorporation of damaging nucleotides into DNAs and leads to DNA damage. We showed that small CAG (sCAG) RNAs, species generated from expanded CAG transcripts, hybridize with CUG-containing NUDT16 mRNA and form a CAG-CUG RNA heteroduplex, resulting in gene silencing of NUDT16 and leading to the DNA damage and cellular apoptosis. These results were further validated using expanded CAG RNA-expressing mouse primary neurons and in vivo R6/2 HD transgenic mice. Moreover, we identified a bisamidinium compound, DB213, that interacts specifically with the major groove of the CAG RNA homoduplex and disfavors the CAG-CUG heteroduplex formation. This action subsequently mitigated RNA-induced silencing complex (RISC)-dependent NUDT16 silencing in both in vitro cell and in vivo mouse disease models. After DB213 treatment, DNA damage, apoptosis, and locomotor defects were rescued in HD mice. This work establishes NUDT16 deficiency by CAG repeat RNAs as a pathogenic mechanism of polyQ diseases and as a potential therapeutic direction for HD and other polyQ diseases.
Collapse
Affiliation(s)
- Shaohong Peng
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pei Guo
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying An
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kong Hung Sze
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Matthew Ho Yan Lau
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Zhefan Stephen Chen
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianwen Wang
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Sum Yi Ma
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Ho Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yu Au-Yeung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong, China;
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
- Nexus of Rare Neurodegenerative Diseases, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Nucleobase-Modified Triplex-Forming Peptide Nucleic Acids for Sequence-Specific Recognition of Double-Stranded RNA. Methods Mol Biol 2021; 2105:157-172. [PMID: 32088869 DOI: 10.1007/978-1-0716-0243-0_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Because of the important roles noncoding RNAs play in gene expression, their sequence-specific recognition is important for both fundamental science and the pharmaceutical industry. However, most noncoding RNAs fold in complex helical structures that are challenging problems for molecular recognition. Herein, we describe a method for sequence-specific recognition of double-stranded RNA using peptide nucleic acids (PNAs) that form triple helices in the major grove of RNA under physiologically relevant conditions. We also outline methods for solid-phase conjugation of PNA with cell-penetrating peptides and fluorescent dyes. Protocols for PNA preparation and binding studies using isothermal titration calorimetry are described in detail.
Collapse
|
24
|
Miao S, Liang Y, Rundell S, Bhunia D, Devari S, Munyaradzi O, Bong D. Unnatural bases for recognition of noncoding nucleic acid interfaces. Biopolymers 2021; 112:e23399. [PMID: 32969496 PMCID: PMC7855516 DOI: 10.1002/bip.23399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
The notion of using synthetic heterocycles instead of the native bases to interface with DNA and RNA has been explored for nearly 60 years. Unnatural bases compatible with the DNA/RNA coding interface have the potential to expand the genetic code and co-opt the machinery of biology to access new macromolecular function; accordingly, this body of research is core to synthetic biology. While much of the literature on artificial bases focuses on code expansion, there is a significant and growing effort on docking synthetic heterocycles to noncoding nucleic acid interfaces; this approach seeks to illuminate major processes of nucleic acids, including regulation of transcription, translation, transport, and transcript lifetimes. These major avenues of research at the coding and noncoding interfaces have in common fundamental principles in molecular recognition. Herein, we provide an overview of foundational literature in biophysics of base recognition and unnatural bases in coding to provide context for the developing area of targeting noncoding nucleic acid interfaces with synthetic bases, with a focus on systems developed through iterative design and biophysical study.
Collapse
Affiliation(s)
- Shiqin Miao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Yufeng Liang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Sarah Rundell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Debmalya Bhunia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Shekar Devari
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Oliver Munyaradzi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Dennis Bong
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
25
|
Ondono R, Lirio Á, Elvira C, Álvarez-Marimon E, Provenzano C, Cardinali B, Pérez-Alonso M, Perálvarez-Marín A, Borrell JI, Falcone G, Estrada-Tejedor R. Design of novel small molecule base-pair recognizers of toxic CUG RNA transcripts characteristics of DM1. Comput Struct Biotechnol J 2020; 19:51-61. [PMID: 33363709 PMCID: PMC7753043 DOI: 10.1016/j.csbj.2020.11.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/11/2023] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is an incurable neuromuscular disorder caused by toxic DMPK transcripts that carry CUG repeat expansions in the 3' untranslated region (3'UTR). The intrinsic complexity and lack of crystallographic data makes noncoding RNA regions challenging targets to study in the field of drug discovery. In DM1, toxic transcripts tend to stall in the nuclei forming complex inclusion bodies called foci and sequester many essential alternative splicing factors such as Muscleblind-like 1 (MBNL1). Most DM1 phenotypic features stem from the reduced availability of free MBNL1 and therefore many therapeutic efforts are focused on recovering its normal activity. For that purpose, herein we present pyrido[2,3-d]pyrimidin-7-(8H)-ones, a privileged scaffold showing remarkable biological activity against many targets involved in human disorders including cancer and viral diseases. Their combination with a flexible linker meets the requirements to stabilise DM1 toxic transcripts, and therefore, enabling the release of MBNL1. Therefore, a set of novel pyrido[2,3-d]pyrimidin-7-(8H)-ones derivatives (1a-e) were obtained using click chemistry. 1a exerted over 20% MBNL1 recovery on DM1 toxic RNA activity in primary cell biology studies using patient-derived myoblasts. 1a promising anti DM1 activity may lead to subsequent generations of ligands, highlighting a new affordable treatment against DM1.
Collapse
Affiliation(s)
- Raul Ondono
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Ángel Lirio
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Carlos Elvira
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Elena Álvarez-Marimon
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Claudia Provenzano
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, Rome, Italy
| | - Beatrice Cardinali
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, Rome, Italy
| | - Manuel Pérez-Alonso
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Department of Genetics and Interdisciplinary Research Structure for Biotechnology and Biomedicine, University of Valencia, Valencia, Spain
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José I. Borrell
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Germana Falcone
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, Rome, Italy
| | - Roger Estrada-Tejedor
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
- Corresponding author.
| |
Collapse
|
26
|
Matsumoto J, Nakamori M, Okamoto T, Murata A, Dohno C, Nakatani K. The Dimeric Form of 1,3-Diaminoisoquinoline Derivative Rescued the Mis-splicing of Atp2a1 and Clcn1 Genes in Myotonic Dystrophy Type 1 Mouse Model. Chemistry 2020; 26:14305-14309. [PMID: 32449537 PMCID: PMC7702137 DOI: 10.1002/chem.202001572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/21/2020] [Indexed: 12/25/2022]
Abstract
Expanded CUG repeat RNA in the dystrophia myotonia protein kinase (DMPK) gene causes myotonic dystrophy type 1 (DM1) and sequesters RNA processing proteins, such as the splicing factor muscleblind-like 1 protein (MBNL1). Sequestration of splicing factors results in the mis-splicing of some pre-mRNAs. Small molecules that rescue the mis-splicing in the DM1 cells have drawn attention as potential drugs to treat DM1. Herein we report a new molecule JM642 consisted of two 1,3-diaminoisoquinoline chromophores having an auxiliary aromatic unit at the C5 position. JM642 alternates the splicing pattern of the pre-mRNA of the Ldb3 gene in the DM1 cell model and Clcn1 and Atp2a1 genes in the DM1 mouse model. In vitro binding analysis by surface plasmon resonance (SPR) assay to the r(CUG) repeat and disruption of ribonuclear foci in the DM1 cell model suggested the binding of JM642 to the expanded r(CUG) repeat in vivo, eventually rescue the mis-splicing.
Collapse
Affiliation(s)
- Jun Matsumoto
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University8-1 MihogaokaIbaraki567-0047Japan
| | - Masayuki Nakamori
- Department of NeurologyGraduate School of MedicineOsaka University2-2 YamadaokaSuita565-0871Japan
| | - Tatsumasa Okamoto
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University8-1 MihogaokaIbaraki567-0047Japan
| | - Asako Murata
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University8-1 MihogaokaIbaraki567-0047Japan
| | - Chikara Dohno
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University8-1 MihogaokaIbaraki567-0047Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University8-1 MihogaokaIbaraki567-0047Japan
| |
Collapse
|
27
|
Hagler LD, Bonson SE, Kocheril PA, Zimmerman SC. Assessing the feasibility and stability of uracil base flipping in RNA–small molecule complexes using molecular dynamics simulations. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small molecules can be used to target RNAs that mediate disease. A fundamental understanding of binding interactions between RNA and small molecules and the structure of their complexes will further inform the design of new targeting agents. Two small molecule ligands were investigated for their ability to recognize the expanded CUG repeat sequence in RNA, the causative agent of myotonic dystrophy type 1. We report the use of molecular dynamics simulations to explore small molecule–RNA complexes and the finding of a stabilized base flipped conformation at UU mismatches. The results of this computational study support experimental observations and suggest that base flipping is feasible for CUG-repeat RNA.
Collapse
Affiliation(s)
- Lauren D. Hagler
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sarah E. Bonson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Philip A. Kocheril
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Steven C. Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Guo P, Farahat AA, Paul A, Kumar A, Boykin DW, Wilson WD. Extending the σ-Hole Motif for Sequence-Specific Recognition of the DNA Minor Groove. Biochemistry 2020; 59:1756-1768. [PMID: 32293884 DOI: 10.1021/acs.biochem.0c00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The majority of current drugs against diseases, such as cancer, can bind to one or more sites in a protein and inhibit its activity. There are, however, well-known limits on the number of druggable proteins, and complementary current drugs with compounds that could selectively target DNA or RNA would greatly enhance the availability of cellular probes and therapeutic progress. We are focusing on the design of sequence-specific DNA minor groove binders that, for example, target the promoter sites of transcription factors involved in a disease. We have started with AT-specific minor groove binders that are known to enter human cells and have entered clinical trials. To broaden the sequence-specific recognition of these compounds, several modules that have H-bond acceptors that strongly and specifically recognize G·C base pairs were identified. A lead module is a thiophene-N-alkyl-benzimidazole σ-hole-based system with terminal phenyl-amidines that have excellent affinity and selectivity for a G·C base pair in the minor groove. Efforts are now focused on optimizing this module. In this work, we are evaluating modifications to the compound aromatic system with the goal of improving GC selectivity and affinity. The lead compounds retain the thiophene-N-alkyl-BI module but have halogen substituents adjacent to an amidine group on the terminal phenyl-amidine. The optimum compounds must have strong affinity and specificity with a residence time of at least 100 s.
Collapse
Affiliation(s)
- Pu Guo
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, 50 Decatur Street Southeast, Atlanta, Georgia 30303, United States
| | - Abdelbasset A Farahat
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, 50 Decatur Street Southeast, Atlanta, Georgia 30303, United States.,Master of Pharmaceutical Sciences Program, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, 50 Decatur Street Southeast, Atlanta, Georgia 30303, United States
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, 50 Decatur Street Southeast, Atlanta, Georgia 30303, United States
| | - David W Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, 50 Decatur Street Southeast, Atlanta, Georgia 30303, United States
| | - W David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, 50 Decatur Street Southeast, Atlanta, Georgia 30303, United States
| |
Collapse
|
29
|
Boer RE, Torrey ZR, Schneekloth JS. Chemical Modulation of Pre-mRNA Splicing in Mammalian Systems. ACS Chem Biol 2020; 15:808-818. [PMID: 32191432 DOI: 10.1021/acschembio.0c00001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA splicing is a key component of gene expression and proteomic diversity in humans. The spliceosome assembles on and processes individual nascent pre-mRNA transcripts into distinct mature mRNAs that can code for different proteins. Splicing programs can be affected by somatic mutations and changes in response to exogenous stimuli. Importantly, alterations in splicing can be direct drivers of diseases including cancers. This Review describes recent advances and the potential for targeting and controlling pre-mRNA splicing in humans with small molecules, ranging from targeting spliceosomal proteins to direct targeting of individual RNA transcripts.
Collapse
Affiliation(s)
- Robert E. Boer
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| | - Zachary R. Torrey
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| | - John S. Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| |
Collapse
|
30
|
Murata A, Nakamori M, Nakatani K. Modulating RNA secondary and tertiary structures by mismatch binding ligands. Methods 2019; 167:78-91. [DOI: 10.1016/j.ymeth.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
|
31
|
Reddy K, Jenquin JR, Cleary JD, Berglund JA. Mitigating RNA Toxicity in Myotonic Dystrophy using Small Molecules. Int J Mol Sci 2019; 20:E4017. [PMID: 31426500 PMCID: PMC6720693 DOI: 10.3390/ijms20164017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
This review, one in a series on myotonic dystrophy (DM), is focused on the development and potential use of small molecules as therapeutics for DM. The complex mechanisms and pathogenesis of DM are covered in the associated reviews. Here, we examine the various small molecule approaches taken to target the DNA, RNA, and proteins that contribute to disease onset and progression in myotonic dystrophy type 1 (DM1) and 2 (DM2).
Collapse
Affiliation(s)
- Kaalak Reddy
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA.
| | - Jana R Jenquin
- Center for NeuroGenetics and Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32608, USA
| | - John D Cleary
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - J Andrew Berglund
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA.
- Center for NeuroGenetics and Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
32
|
Di Giorgio A, Duca M. Synthetic small-molecule RNA ligands: future prospects as therapeutic agents. MEDCHEMCOMM 2019; 10:1242-1255. [PMID: 31534649 PMCID: PMC6748380 DOI: 10.1039/c9md00195f] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022]
Abstract
RNA is one of the most intriguing and promising biological targets for the discovery of innovative drugs in many pathologies and various biologically relevant RNAs that could serve as drug targets have already been identified. Among the most important ones, one can mention prokaryotic ribosomal RNA which is the target of several marketed antibiotics, viral RNAs or oncogenic microRNAs that are tightly involved in the development and progression of various cancers. Oligonucleotides are efficient and specific RNA targeting agents but suffer from poor pharmacodynamic and pharmacokinetic properties. For this reason, a number of synthetic small-molecule ligands have been identified and studied upon screening of chemical libraries or focused design of RNA binders. In this review, we report the most relevant examples of synthetic compounds bearing sufficient selectivity to envisage clinical studies and future therapeutic applications with a particular attention for the main strategies that can be undertaken toward the improvement of selectivity and biological activity.
Collapse
Affiliation(s)
- A Di Giorgio
- Université Côte d'Azur , CNRS , Institute of Chemistry of Nice (ICN) , Nice , France .
| | - M Duca
- Université Côte d'Azur , CNRS , Institute of Chemistry of Nice (ICN) , Nice , France .
| |
Collapse
|
33
|
Jenquin JR, Yang H, Huigens RW, Nakamori M, Berglund JA. Combination Treatment of Erythromycin and Furamidine Provides Additive and Synergistic Rescue of Mis-Splicing in Myotonic Dystrophy Type 1 Models. ACS Pharmacol Transl Sci 2019; 2:247-263. [PMID: 31485578 DOI: 10.1021/acsptsci.9b00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multi-systemic disease that presents with clinical symptoms including myotonia, cardiac dysfunction and cognitive impairment. DM1 is caused by a CTG expansion in the 3' UTR of the DMPK gene. The transcribed expanded CUG repeat RNA sequester the muscleblind-like (MBNL) and up-regulate the CUG-BP Elav-like (CELF) families of RNA-binding proteins leading to global mis-regulation of RNA processing and altered gene expression. Currently, there are no disease-targeting treatments for DM1. Given the multi-step pathogenic mechanism, combination therapies targeting different aspects of the disease mechanism may be a viable therapeutic approach. Here, as proof-of-concept, we studied a combination of two previously characterized small molecules, erythromycin and furamidine, in two DM1 models. In DM1 patient-derived myotubes, rescue of mis-splicing was observed with little to no cell toxicity. In a DM1 mouse model, a combination of erythromycin and the prodrug of furamidine (pafuramidine), administered orally, displayed both additive and synergistic mis-splicing rescue. Gene expression was only modestly affected and over 40 % of the genes showing significant expression changes were rescued back toward WT expression levels. Further, the combination treatment partially rescued the myotonia phenotype in the DM1 mouse. This combination treatment showed a high degree of mis-splicing rescue coupled with low off-target gene expression changes. These results indicate that combination therapies are a promising therapeutic approach for DM1.
Collapse
Affiliation(s)
- Jana R Jenquin
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Hongfen Yang
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - J Andrew Berglund
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.,Department of Biological Sciences, RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, 12222, USA
| |
Collapse
|
34
|
Morgan BS, Forte JE, Hargrove AE. Insights into the development of chemical probes for RNA. Nucleic Acids Res 2019; 46:8025-8037. [PMID: 30102391 PMCID: PMC6144806 DOI: 10.1093/nar/gky718] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, the RNA revolution has revealed thousands of non-coding RNAs that are essential for cellular regulation and are misregulated in disease. While the development of methods and tools to study these RNAs has been challenging, the power and promise of small molecule chemical probes is increasingly recognized. To harness existing knowledge, we compiled a list of 116 ligands with reported activity against RNA targets in biological systems (R-BIND). In this survey, we examine the RNA targets, design and discovery strategies, and chemical probe characterization techniques of these ligands. We discuss the applicability of current tools to identify and evaluate RNA-targeted chemical probes, suggest criteria to assess the quality of RNA chemical probes and targets, and propose areas where new tools are particularly needed. We anticipate that this knowledge will expedite the discovery of RNA-targeted ligands and the next phase of the RNA revolution.
Collapse
Affiliation(s)
| | - Jordan E Forte
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, NC 27708, USA.,Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
35
|
Cheng MSQ, Su MXX, Wang MXN, Sun MZY, Ou TM. Probes and drugs that interfere with protein translation via targeting to the RNAs or RNA-protein interactions. Methods 2019; 167:124-133. [PMID: 31185274 DOI: 10.1016/j.ymeth.2019.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/08/2019] [Accepted: 06/05/2019] [Indexed: 11/18/2022] Open
Abstract
Protein synthesis is critical to cell survival and translation regulation is essential to post-transcriptional gene expression regulation. Disorders of this process, particularly through RNA-binding proteins, is associated with the development and progression of a number of diseases, including cancers. However, the molecular mechanisms underlying the initiation of protein synthesis are intricate, making it difficult to find a drug that interferes with this process. Chemical probes are useful in elucidating the structures of RNA-protein complex and molecular mechanism of biological events. Moreover, some of these chemical probes show certain therapeutic benefits and can be further developed as leading compounds. Here, we will briefly review the general process and mechanism of protein synthesis, and emphasis on chemical probes in examples of probing the RNA structural changes and RNA-protein interactions. Moreover, the therapeutic potential of these probes is also discussed to give a comprehensive understanding.
Collapse
Affiliation(s)
- Miss Sui-Qi Cheng
- Sun Yat-Sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong 510006, China
| | - Miss Xiao-Xuan Su
- Sun Yat-Sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong 510006, China.
| | - Miss Xiao-Na Wang
- Sun Yat-Sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong 510006, China
| | - Miss Zhi-Yin Sun
- Sun Yat-Sen University, School of Pharmaceutical Sciences, Guangzhou, Guangdong 510006, China
| | - Tian-Miao Ou
- Sun Yat-Sen University, School of Pharmaceutical Sciences, 132 Waihuan East Road, Guangzhou University City, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
Development of novel macrocyclic small molecules that target CTG trinucleotide repeats. Bioorg Med Chem 2019; 27:2978-2984. [PMID: 31113691 DOI: 10.1016/j.bmc.2019.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022]
Abstract
We describe the molecular design, synthesis, and investigation of a series of acridine-triaminotriazine macrocycles that selectively bind to CTG trinucleotide repeats in DNA with minimal nonspecific binding. The limited conformational flexibility enforces the stacking of the triaminotriazine and acridine units. Isothermal titration calorimetry studies and Job plot analyses revealed that the ligands bound to d(CTG) mismatched sites. The acridine and triaminotriazine units were shown to intramolecularly π-stack in aqueous solutions. Compared to a noncyclic analog, the macrocycles showed an almost 10-fold lower cytotoxicity in HeLa cells and up to 4-fold higher transcription inhibition of d(CTG·CAG)74.
Collapse
|
37
|
Mbarek A, Moussa G, Chain JL. Pharmaceutical Applications of Molecular Tweezers, Clefts and Clips. Molecules 2019; 24:molecules24091803. [PMID: 31075983 PMCID: PMC6539068 DOI: 10.3390/molecules24091803] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022] Open
Abstract
Synthetic acyclic receptors, composed of two arms connected with a spacer enabling molecular recognition, have been intensively explored in host-guest chemistry in the past decades. They fall into the categories of molecular tweezers, clefts and clips, depending on the geometry allowing the recognition of various guests. The advances in synthesis and mechanistic studies have pushed them forward to pharmaceutical applications, such as neurodegenerative disorders, infectious diseases, cancer, cardiovascular disease, diabetes, etc. In this review, we provide a summary of the synthetic molecular tweezers, clefts and clips that have been reported for pharmaceutical applications. Their structures, mechanism of action as well as in vitro and in vivo results are described. Such receptors were found to selectively bind biological guests, namely, nucleic acids, sugars, amino acids and proteins enabling their use as biosensors or therapeutics. Particularly interesting are dynamic molecular tweezers which are capable of controlled motion in response to an external stimulus. They proved their utility as imaging agents or in the design of controlled release systems. Despite some issues, such as stability, cytotoxicity or biocompatibility that still need to be addressed, it is obvious that molecular tweezers, clefts and clips are promising candidates for several incurable diseases as therapeutic agents, diagnostic or delivery tools.
Collapse
Affiliation(s)
- Amira Mbarek
- Gene Delivery Laboratory, Faculty of pharmacy, Université de Montréal, H3C 3J7, Montréal, Québec, Canada.
| | - Ghina Moussa
- Gene Delivery Laboratory, Faculty of pharmacy, Université de Montréal, H3C 3J7, Montréal, Québec, Canada.
| | - Jeanne Leblond Chain
- Gene Delivery Laboratory, Faculty of pharmacy, Université de Montréal, H3C 3J7, Montréal, Québec, Canada.
- Univ. Bordeaux, ARNA Laboratory, F-33016 Bordeaux, France.
- INSERM U1212, CNRS UMR 5320, ARNA Laboratory, F-33016 Bordeaux, France.
| |
Collapse
|
38
|
Intrinsically cell-penetrating multivalent and multitargeting ligands for myotonic dystrophy type 1. Proc Natl Acad Sci U S A 2019; 116:8709-8714. [PMID: 30975744 DOI: 10.1073/pnas.1820827116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developing highly active, multivalent ligands as therapeutic agents is challenging because of delivery issues, limited cell permeability, and toxicity. Here, we report intrinsically cell-penetrating multivalent ligands that target the trinucleotide repeat DNA and RNA in myotonic dystrophy type 1 (DM1), interrupting the disease progression in two ways. The oligomeric ligands are designed based on the repetitive structure of the target with recognition moieties alternating with bisamidinium groove binders to provide an amphiphilic and polycationic structure, mimicking cell-penetrating peptides. Multiple biological studies suggested the success of our multivalency strategy. The designed oligomers maintained cell permeability and exhibited no apparent toxicity both in cells and in mice at working concentrations. Furthermore, the oligomers showed important activities in DM1 cells and in a DM1 liver mouse model, reducing or eliminating prominent DM1 features. Phenotypic recovery of the climbing defect in adult DM1 Drosophila was also observed. This design strategy should be applicable to other repeat expansion diseases and more generally to DNA/RNA-targeted therapeutics.
Collapse
|
39
|
A New Generation of Minor-Groove-Binding-Heterocyclic Diamidines That Recognize G·C Base Pairs in an AT Sequence Context. Molecules 2019; 24:molecules24050946. [PMID: 30866557 PMCID: PMC6429135 DOI: 10.3390/molecules24050946] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022] Open
Abstract
We review the preparation of new compounds with good solution and cell uptake properties that can selectively recognize mixed A·T and G·C bp sequences of DNA. Our underlying aim is to show that these new compounds provide important new biotechnology reagents as well as a new class of therapeutic candidates with better properties and development potential than other currently available agents. In this review, entirely different ways to recognize mixed sequences of DNA by modifying AT selective heterocyclic cations are described. To selectively recognize a G·C base pair an H-bond acceptor must be incorporated with AT recognizing groups as with netropsin. We have used pyridine, azabenzimidazole and thiophene-N-methylbenzimidazole GC recognition units in modules crafted with both rational design and empirical optimization. These modules can selectively and strongly recognize a single G·C base pair in an AT sequence context. In some cases, a relatively simple change in substituents can convert a heterocyclic module from AT to GC recognition selectivity. Synthesis and DNA interaction results for initial example lead modules are described for single G·C base pair recognition compounds. The review concludes with a description of the initial efforts to prepare larger compounds to recognize sequences of DNA with more than one G·C base pairs. The challenges and initial successes are described along with future directions.
Collapse
|
40
|
Zhang Q, An Y, Chen ZS, Koon AC, Lau KF, Ngo JCK, Chan HYE. A Peptidylic Inhibitor for Neutralizing r(GGGGCC) exp-Associated Neurodegeneration in C9ALS-FTD. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:172-185. [PMID: 30889483 PMCID: PMC6424097 DOI: 10.1016/j.omtn.2019.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
Abstract
One drug, two diseases is a rare and economical therapeutic strategy that is highly desirable in the pharmaceutical industry. We previously reported a 21-amino acid peptide named beta-structured inhibitor for neurodegenerative diseases (BIND) that can effectively inhibit expanded CAG trinucleotide toxicity in polyglutamine (polyQ) diseases. Here we report that BIND also effectively inhibits GGGGCC repeat-mediated neurodegeneration in vitro and in vivo. When fused with a cell-penetrating peptide derived from the transactivator of transcription (TAT) protein of the HIV, TAT-BIND reduces cell death, formation of GGGGCC RNA foci, and levels of poly-GR, poly-GA, and poly-GP dipeptide proteins in cell models of C9ORF72-associated amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS-FTD). We showed that TAT-BIND disrupts the interaction between GGGGCC RNA and nucleolin protein, restores rRNA maturation, and inhibits mislocalization of nucleolin and B23, which eventually suppresses nucleolar stress in C9ALS-FTD. In a Drosophila model of C9ALS-FTD, TAT-BIND suppresses retinal degeneration, rescues climbing ability, and extends the lifespan of flies. In contrast, TAT-BIND has no effect on UAS-poly-glycine-arginine (poly-GR)100-expressing flies, which generate only poly-GR protein toxicity, indicating BIND ameliorates toxicity in C9ALS-FTD models via a r(GGGGCC)exp-dependent inhibitory mechanism. Our findings demonstrated that, apart from being a potential therapeutic for polyQ diseases, BIND is also a potent peptidylic inhibitor that suppresses expanded GGGGCC RNA-mediated neurodegeneration, highlighting its potential application in C9ALS-FTD treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ying An
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhefan Stephen Chen
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Alex Chun Koon
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.
| |
Collapse
|
41
|
Costales MG, Hoch DG, Abegg D, Childs-Disney JL, Velagapudi SP, Adibekian A, Disney MD. A Designed Small Molecule Inhibitor of a Non-Coding RNA Sensitizes HER2 Negative Cancers to Herceptin. J Am Chem Soc 2019; 141:2960-2974. [PMID: 30726072 DOI: 10.1021/jacs.8b10558] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A small molecule (1) with overlapping affinity for two microRNA (miRNA) precursors was used to inform design of a dimeric compound (2) selective for one of the miRNAs. In particular, 2 selectively targets the microRNA(miR)-515 hairpin precursor to inhibit production of miR-515 that represses sphingosine kinase 1 (SK1), a key enzyme in the biosynthesis of sphingosine 1-phosphate (S1P). Application of 2 to breast cancer cells enhanced SK1 and S1P levels, triggering a migratory phenotype. Knockout of SK1, forced overexpression of miR-515, and application of a small molecule SK1 inhibitor all ablated 2's effect on phenotype, consistent with its designed mode of action. Target profiling studies via Chem-CLIP showed that 2 bound selectively to the miR-515 hairpin precursor in cells. Global neoprotein synthesis upon addition of 2 to MCF-7 breast cancer cells demonstrated 2's selectivity and upregulation of cancer-associated proteins regulated by S1P. The most upregulated protein was human epidermal growth factor receptor 2 (ERBB2/HER2), which is regulated by the SK1/S1P pathway and is normally not expressed in MCF-7 cells. Like triple negative breast cancer (TNBC) cells, the lack of HER2 renders them insusceptible to Herceptin and its antibody-drug conjugate Kadcyla. In addition to proteomics, an RNA-seq study supports that 2 has limited off target effects and other studies support that 2 is more selective than an oligonucleotide. We therefore hypothesized that 2 could sensitize MCF-7 cells to anti-HER2 therapies. Indeed, application of 2 sensitized cells to Herceptin. These results were confirmed in two other cell lines that express miR-515 and are HER2-, the hepatocellular carcinoma cell line HepG2 and the TNBC line MDA-MB-231. Importantly, normal breast epithelial cells (MCF-10A) that do not express miR-515 are not affected by 2. These observations suggest a precision medicine approach to sensitize HER2- cancers to approved anticancer medicines. This study has implications for broadening the therapeutic utility of known targeted cancer therapeutics by using a secondary targeted approach to render otherwise insensitive cells, sensitive to a targeted therapeutic.
Collapse
Affiliation(s)
- Matthew G Costales
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Dominic G Hoch
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Daniel Abegg
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Jessica L Childs-Disney
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Sai Pradeep Velagapudi
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Alexander Adibekian
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Matthew D Disney
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| |
Collapse
|
42
|
Hong H, Koon AC, Chen ZS, Wei Y, An Y, Li W, Lau MHY, Lau KF, Ngo JCK, Wong CH, Au-Yeung HY, Zimmerman SC, Chan HYE. AQAMAN, a bisamidine-based inhibitor of toxic protein inclusions in neurons, ameliorates cytotoxicity in polyglutamine disease models. J Biol Chem 2018; 294:2757-2770. [PMID: 30593503 DOI: 10.1074/jbc.ra118.006307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/26/2018] [Indexed: 01/30/2023] Open
Abstract
Polyglutamine (polyQ) diseases are a group of dominantly inherited neurodegenerative disorders caused by the expansion of an unstable CAG repeat in the coding region of the affected genes. Hallmarks of polyQ diseases include the accumulation of misfolded protein aggregates, leading to neuronal degeneration and cell death. PolyQ diseases are currently incurable, highlighting the urgent need for approaches that inhibit the formation of disaggregate cytotoxic polyQ protein inclusions. Here, we screened for bisamidine-based inhibitors that can inhibit neuronal polyQ protein inclusions. We demonstrated that one inhibitor, AQAMAN, prevents polyQ protein aggregation and promotes de-aggregation of self-assembled polyQ proteins in several models of polyQ diseases. Using immunocytochemistry, we found that AQAMAN significantly reduces polyQ protein aggregation and specifically suppresses polyQ protein-induced cell death. Using a recombinant and purified polyQ protein (thioredoxin-Huntingtin-Q46), we further demonstrated that AQAMAN interferes with polyQ self-assembly, preventing polyQ aggregation, and dissociates preformed polyQ aggregates in a cell-free system. Remarkably, AQAMAN feeding of Drosophila expressing expanded polyQ disease protein suppresses polyQ-induced neurodegeneration in vivo In addition, using inhibitors and activators of the autophagy pathway, we demonstrated that AQAMAN's cytoprotective effect against polyQ toxicity is autophagy-dependent. In summary, we have identified AQAMAN as a potential therapeutic for combating polyQ protein toxicity in polyQ diseases. Our findings further highlight the importance of the autophagy pathway in clearing harmful polyQ proteins.
Collapse
Affiliation(s)
- Huiling Hong
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Alex Chun Koon
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Zhefan Stephen Chen
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Yuming Wei
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Ying An
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Wen Li
- School of Life Sciences, Faculty of Science
| | - Matthew Ho Yan Lau
- the Department of Chemistry, University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China, and
| | | | | | | | - Ho Yu Au-Yeung
- the Department of Chemistry, University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China, and
| | - Steven C Zimmerman
- the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Ho Yin Edwin Chan
- From the Laboratory of Drosophila Research, .,School of Life Sciences, Faculty of Science.,Gerald Choa Neuroscience Centre, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
43
|
Souidi A, Zmojdzian M, Jagla K. Dissecting Pathogenetic Mechanisms and Therapeutic Strategies in Drosophila Models of Myotonic Dystrophy Type 1. Int J Mol Sci 2018; 19:E4104. [PMID: 30567354 PMCID: PMC6321436 DOI: 10.3390/ijms19124104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common cause of adult-onset muscular dystrophy, is autosomal dominant, multisystemic disease with characteristic symptoms including myotonia, heart defects, cataracts and testicular atrophy. DM1 disease is being successfully modelled in Drosophila allowing to identify and validate new pathogenic mechanisms and potential therapeutic strategies. Here we provide an overview of insights gained from fruit fly DM1 models, either: (i) fundamental with particular focus on newly identified gene deregulations and their link with DM1 symptoms; or (ii) applied via genetic modifiers and drug screens to identify promising therapeutic targets.
Collapse
Affiliation(s)
- Anissa Souidi
- GReD, INSERM U1103, CNRS, UMR6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Monika Zmojdzian
- GReD, INSERM U1103, CNRS, UMR6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Krzysztof Jagla
- GReD, INSERM U1103, CNRS, UMR6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
44
|
Agafontsev AM, Ravi A, Shumilova TA, Oshchepkov AS, Kataev EA. Molecular Receptors for Recognition and Sensing of Nucleotides. Chemistry 2018; 25:2684-2694. [PMID: 30289184 DOI: 10.1002/chem.201802978] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/05/2018] [Indexed: 12/15/2022]
Abstract
Nucleotides are constituents of nucleic acids and they have a variety of functions in cellular metabolism. Synthetic receptors and sensors are required to reveal the role of nucleotides in living organisms and mechanisms of signal transduction events. In recent years, a large number of nucleotide-selective synthetic receptors have been devised, which utilize different molecular designs and sensing mechanisms. This Minireview presents recent progress in the design of synthetic molecular receptors for selective recognition of nucleotides in aqueous solution. The binding properties of receptors and the origins of their selectivity for a particular nucleotide are discussed.
Collapse
Affiliation(s)
- Aleksandr M Agafontsev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany.,N. N. Vorozhtsov Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova St. 1, 630090, Novosibirsk, Russia
| | - Anil Ravi
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Tatiana A Shumilova
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Aleksandr S Oshchepkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russia
| | - Evgeny A Kataev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| |
Collapse
|
45
|
Li J, Nakamori M, Matsumoto J, Murata A, Dohno C, Kiliszek A, Taylor K, Sobczak K, Nakatani K. A Dimeric 2,9‐Diamino‐1,10‐phenanthroline Derivative Improves Alternative Splicing in Myotonic Dystrophy Type 1 Cell and Mouse Models. Chemistry 2018; 24:18115-18122. [DOI: 10.1002/chem.201804368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/05/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Jinxing Li
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University 8-1 Mihogaoka Ibaraki 567-0047 Japan
| | - Masayuki Nakamori
- Department of NeurologyGraduate School of MedicineOsaka University 2-2 Yamadaoka Suita 565-0871 Japan
| | - Jun Matsumoto
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University 8-1 Mihogaoka Ibaraki 567-0047 Japan
| | - Asako Murata
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University 8-1 Mihogaoka Ibaraki 567-0047 Japan
| | - Chikara Dohno
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University 8-1 Mihogaoka Ibaraki 567-0047 Japan
| | - Agnieszka Kiliszek
- Department of Structure and Function of BiomoleculesThe Institute of Bioorganic ChemistryPolish Academy of Sciences Z. Noskowskiego 12/14 61-704 Poznan Poland
| | - Katarzyna Taylor
- Department of Gene ExpressionLaboratory of Gene TherapyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz University Umultowska 89 61-614 Poznań Poland
| | - Krzysztof Sobczak
- Department of Gene ExpressionLaboratory of Gene TherapyInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz University Umultowska 89 61-614 Poznań Poland
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic ChemistryThe Institute of Scientific and Industrial ResearchOsaka University 8-1 Mihogaoka Ibaraki 567-0047 Japan
| |
Collapse
|
46
|
Guo P, Farahat AA, Paul A, Harika NK, Boykin DW, Wilson WD. Compound Shape Effects in Minor Groove Binding Affinity and Specificity for Mixed Sequence DNA. J Am Chem Soc 2018; 140:14761-14769. [PMID: 30353731 PMCID: PMC6399738 DOI: 10.1021/jacs.8b08152] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AT specific heterocyclic cations that bind in the DNA duplex minor groove have had major successes as cell and nuclear stains and as therapeutic agents which can effectively enter human cells. Expanding the DNA sequence recognition capability of the minor groove compounds could also expand their therapeutic targets and have an impact in many areas, such as modulation of transcription factor biological activity. Success in the design of mixed sequence binding compounds has been achieved with N-methylbenzimidazole ( N-MeBI) thiophenes which are preorganized to fit the shape of the DNA minor groove and H-bond to the -NH of G·C base pairs that project into the minor groove. Initial compounds bind strongly to a single G·C base pair in an AT context with a specificity ratio of 50 ( KD AT-GC/ KD AT) or less and this is somewhat low for biological use. We felt that modifications of compound shape could be used to probe local DNA microstructure in target mixed base pair sequences of DNA and potentially improve the compound binding selectivity. Modifications were made by increasing the size of the benzimidazole N-substituent, for example, by using N-isobutyl instead of N-Me, and by changing the molecular twist by introducing substitutions at specific positions on the aromatic core of the compounds. In both cases, we have been able to achieve a dramatic increase in binding specificity, including no detectible binding to pure AT sequences, without a significant loss in affinity to mixed base pair target sequences.
Collapse
Affiliation(s)
- Pu Guo
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , 50 Decatur Street South East , Atlanta , Georgia 30303 , United States
| | - Abdelbasset A Farahat
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , 50 Decatur Street South East , Atlanta , Georgia 30303 , United States
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy , Mansoura University , Mansoura 35516 , Egypt
| | - Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , 50 Decatur Street South East , Atlanta , Georgia 30303 , United States
| | - Narinder K Harika
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , 50 Decatur Street South East , Atlanta , Georgia 30303 , United States
| | - David W Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , 50 Decatur Street South East , Atlanta , Georgia 30303 , United States
| | - W David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , 50 Decatur Street South East , Atlanta , Georgia 30303 , United States
| |
Collapse
|
47
|
|
48
|
Jenquin JR, Coonrod LA, Silverglate QA, Pellitier NA, Hale MA, Xia G, Nakamori M, Berglund JA. Furamidine Rescues Myotonic Dystrophy Type I Associated Mis-Splicing through Multiple Mechanisms. ACS Chem Biol 2018; 13:2708-2718. [PMID: 30118588 DOI: 10.1021/acschembio.8b00646] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant, CTG•CAG microsatellite expansion disease. Expanded CUG repeat RNA sequester the muscleblind-like (MBNL) family of RNA-binding proteins, thereby disrupting their normal cellular function which leads to global mis-regulation of RNA processing. Previously, the small molecule furamidine was shown to reduce CUG foci and rescue mis-splicing in a DM1 HeLa cell model and to rescue mis-splicing in the HSALR DM1 mouse model, but furamidine's mechanism of action was not explored. Here we use a combination of biochemical, cell toxicity, and genomic studies in DM1 patient-derived myotubes and the HSALR DM1 mouse model to investigate furamidine's mechanism of action. Mis-splicing rescue was observed in DM1 myotubes and the HSALR DM1 mouse with furamidine treatment. Interestingly, while furamidine was found to bind CTG•CAG repeat DNA with nanomolar affinity, a reduction in expanded CUG repeat transcript levels was observed in the HSALR DM1 mouse but not DM1 patient-derived myotubes. Further investigation in these cells revealed that furamidine treatment at nanomolar concentrations led to up-regulation of MBNL1 and MBNL2 protein levels and a reduction of ribonuclear foci. Additionally, furamidine was shown to bind CUG RNA with nanomolar affinity and disrupted the MBNL1 -CUG RNA complex in vitro at micromolar concentrations. Furamidine's likely promiscuous interactions in vitro and in vivo appear to affect multiple pathways in the DM1 mechanism to rescue mis-splicing, yet surprisingly furamidine was shown globally to rescue many mis-splicing events with only modest off-target effects on gene expression in the HSALR DM1 mouse model. Importantly, over 20% of the differentially expressed genes were shown to be returned, to varying degrees, to wild-type expression levels.
Collapse
Affiliation(s)
- Jana R. Jenquin
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Leslie A. Coonrod
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Quinn A. Silverglate
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Natalie A. Pellitier
- Department of Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Melissa A. Hale
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Guangbin Xia
- Department of Neurology and Neuroscience, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - J. Andrew Berglund
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
49
|
Haniff HS, Graves A, Disney MD. Selective Small Molecule Recognition of RNA Base Pairs. ACS COMBINATORIAL SCIENCE 2018; 20:482-491. [PMID: 29966095 PMCID: PMC6325646 DOI: 10.1021/acscombsci.8b00049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many types of RNAs exist in the human transcriptome, yet only the bacterial ribosome has been exploited as a small molecule drug target. Aside from rRNA, other cellular RNAs such as noncoding RNAs have primarily secondary structure and limited tertiary structure. Within these secondary structures of noncanonically paired and unpaired regions, more than 50% are base paired, with most efforts to target these structures focused on looped regions. A void exists in the availability of small molecules capable of targeting RNA base pairs. Using chemoinformatics, an RNA-focused library enriched for nitrogen-containing heterocycles was developed and tested for binding RNA base pairs, leading to the identification of six selective and previously unknown binders. While all binders were derivatives of benzimidazoles, those with expanded aromatic polycycles bound selectively to AU pairs, while those with flexible urea side chains bound selectively to GC pairs. Two of the three selective GC pair binders can distinguish between two different orientations, 5'GG/3'CC and 5'GC/3'CG pairs. Furthermore, all six molecules showed >50-fold selectivity for RNA over DNA. These studies provide foundational knowledge to better exploit RNA as targets for small molecule chemical probes or lead therapeutics by using modules that target RNA base pairs.
Collapse
Affiliation(s)
- Hafeez S Haniff
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Amanda Graves
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Matthew D Disney
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| |
Collapse
|
50
|
López-Morató M, Brook JD, Wojciechowska M. Small Molecules Which Improve Pathogenesis of Myotonic Dystrophy Type 1. Front Neurol 2018; 9:349. [PMID: 29867749 PMCID: PMC5968088 DOI: 10.3389/fneur.2018.00349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/30/2018] [Indexed: 12/30/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults for which there is currently no treatment. The pathogenesis of this autosomal dominant disorder is associated with the expansion of CTG repeats in the 3'-UTR of the DMPK gene. DMPK transcripts with expanded CUG repeats (CUGexpDMPK) are retained in the nucleus forming multiple discrete foci, and their presence triggers a cascade of toxic events. Thus far, most research emphasis has been on interactions of CUGexpDMPK with the muscleblind-like (MBNL) family of splicing factors. These proteins are sequestered by the expanded CUG repeats of DMPK RNA leading to their functional depletion. As a consequence, abnormalities in many pathways of RNA metabolism, including alternative splicing, are detected in DM1. To date, in vitro and in vivo efforts to develop therapeutic strategies for DM1 have mostly been focused on targeting CUGexpDMPK via reducing their expression and/or preventing interactions with MBNL1. Antisense oligonucleotides targeted to the CUG repeats in the DMPK transcripts are of particular interest due to their potential capacity to discriminate between mutant and normal transcripts. However, a growing number of reports describe alternative strategies using small molecule chemicals acting independently of a direct interaction with CUGexpDMPK. In this review, we summarize current knowledge about these chemicals and we describe the beneficial effects they caused in different DM1 experimental models. We also present potential mechanisms of action of these compounds and pathways they affect which could be considered for future therapeutic interventions in DM1.
Collapse
Affiliation(s)
- Marta López-Morató
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - John David Brook
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Marzena Wojciechowska
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Polish Academy of Sciences, Department of Molecular Genetics, Institute of Bioorganic Chemistry, Poznan, Poland
| |
Collapse
|