1
|
Su Q, Wang Z, Zhou H, Zhang M, Deng W, Wei X, Xiao J, Duan X. Eradication of Large Tumors by Nanoscale Drug Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410536. [PMID: 39420689 DOI: 10.1002/adma.202410536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Most patients with cancer are first diagnosed at an advanced disease stage, when tumors are already large and/or metastases are present. This circumstance has a negative impact on the prognosis and therapeutic effect of anticancer drugs. In this study, it is demonstrated that photosensitizer chlorin e6 and the photochemotherapy drug mitoxantrone self-assemble into relatively stable nanoassemblies (CM NAs) through hydrogen-bonding effect, π-π stacking, and hydrophobic interactions. Administration of CM NAs in combination with 660 nm laser irradiation shows chemotherapeutic, photothermal, and photodynamic effects, causing tumor cell apoptosis and pyroptosis and enabling noninvasive tumor ablation without compromising the surrounding normal tissue. More importantly, treatment with CM NAs increases tumor immunogenicity, leading to a strong and long-term antitumor immune response that eradicates large tumors and provides long-term protection against tumor recurrence on various tumor models.
Collapse
Affiliation(s)
- Qianyi Su
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhenyu Wang
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Huimin Zhou
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Miaomiao Zhang
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenjia Deng
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Wei
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Jisheng Xiao
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaopin Duan
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
2
|
Zhang Y, Zhao C, Picchetti P, Zheng K, Zhang X, Wu Y, Shen Y, De Cola L, Shi J, Guo Z, Zou X. Quantitative SERS sensor for mycotoxins with extraction and identification function. Food Chem 2024; 456:140040. [PMID: 38878539 DOI: 10.1016/j.foodchem.2024.140040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024]
Abstract
The development of new sensors for on-site food toxin monitoring that combine extraction, analytes distinction and detection is important in resource-limited environments. Surface-enhanced Raman scattering (SERS)-based signal readout features fast response and high sensitivity, making it a powerful method for detecting mycotoxins. In this work, a SERS-based assay for the detection of multiple mycotoxins is presented that combines extraction and subsequent detection, achieving an analytically relevant detection limit (∼ 1 ng/mL), which is also tested in corn samples. This sensor consists of a magnetic-core and mycotoxin-absorbing polydopamine-shell, with SERS-active Au nanoparticles on the outer surface. The assay can concentrate multiple mycotoxins, which are identified through multiclass partite least squares analysis based on their SERS spectra. We developed a strategy for the analysis of multiple mycotoxins with minimal sample pretreatment, enabling in situ analytical extraction and subsequent detection, displaying the potential to rapidly identify lethal mycotoxin contamination on site.
Collapse
Affiliation(s)
- Yang Zhang
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chuping Zhao
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Pierre Picchetti
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Kaiyi Zheng
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanling Wu
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ye Shen
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Luisa De Cola
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany; Department DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy; Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRRCCS, 20156 Milano, Italy
| | - Jiyong Shi
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhiming Guo
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
3
|
El-Rifai A, Perumanath S, Borg MK, Pillai R. Unraveling the Regimes of Interfacial Thermal Conductance at a Solid/Liquid Interface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:8408-8417. [PMID: 38807631 PMCID: PMC11129300 DOI: 10.1021/acs.jpcc.4c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024]
Abstract
The interfacial thermal conductance at a solid/liquid interface (G) exhibits an exponential-to-linear crossover with increasing solid/liquid interaction strength, previously attributed to the relative strength of solid/liquid to liquid/liquid interactions. Instead, using a simple Lennard-Jones setup, our molecular simulations reveal that this crossover occurs due to the onset of solidification in the interfacial liquid at high solid/liquid interaction strengths. This solidification subsequently influences interfacial energy transport, leading to the crossover in G. We use the overlap between the spectrally decomposed heat fluxes of the interfacial solid and liquid to pinpoint when "solid-like energy transport" within the interfacial liquid emerges. We also propose a novel decomposition of G into (i) the conductance right at the solid/liquid interface and (ii) the conductance of the nanoscale interfacial liquid region. We demonstrate that the rise of solid-like energy transport within the interfacial liquid influences the relative magnitude of these conductances, which in turn dictates when the crossover occurs. Our results can aid engineers in optimizing G at realistic interfaces, critical to designing effective cooling solutions for electronics among other applications.
Collapse
Affiliation(s)
- Abdullah El-Rifai
- Institute
for Multiscale Thermofluids, University
of Edinburgh, Edinburgh EH9 3FD, U.K.
| | | | - Matthew K. Borg
- Institute
for Multiscale Thermofluids, University
of Edinburgh, Edinburgh EH9 3FD, U.K.
| | - Rohit Pillai
- Institute
for Multiscale Thermofluids, University
of Edinburgh, Edinburgh EH9 3FD, U.K.
| |
Collapse
|
4
|
Liu S, Ye Z, Yin Y. Seeded Growth of Plasmonic Nanostructures in Deformable Polymer Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8760-8770. [PMID: 38641343 DOI: 10.1021/acs.langmuir.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Plasmonic nanostructures exhibit optical properties highly related to their morphologies, enabling diverse applications in various areas such as biosensing, bioimaging, chemical detection, cancer therapy, and solar energy conversion. The expansive uses of these nanostructures necessitate robust and versatile synthesis methods suitable for large-scale production. Here, we introduce our recent efforts in developing a new strategy for controlling the seeded growth of plasmonic metal nanostructures, employing deformable polymer capsules to regulate the growth kinetics and the resulting particle morphology. Employing sol-gel-derived resorcinol-formaldehyde (RF) resin as a typical capsule material, we highlight its advanced features, including mechanical deformability and molecular permeability, that can be manipulated by tuning the capsule thickness and cross-linking degree. These features enable highly controllable confined seeded growth of plasmonic nanostructures. We reveal the significant role of the Ostwald ripening process of the seeds and the capsule structures in determining the morphological evolution of the plasmonic nanostructures. Moreover, we highlight some distinctive plasmonic nanostructures resulting from this unique synthesis strategy and their intriguing functionalities in various potential applications. Our discussion concludes with potential research directions to advance the development of the deformable polymer-confined seeded growth strategy into a general and robust synthesis platform for creating cutting-edge functional plasmonic nanostructures.
Collapse
Affiliation(s)
- Sangmo Liu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Kumar A, Lee IS. Designer Nanoreactors for Bioorthogonal Catalysis. Acc Chem Res 2024; 57:413-427. [PMID: 38243820 DOI: 10.1021/acs.accounts.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The evolutionary complexity of compartmentalized biostructures (such as cells and organelles) endows life-sustaining multistep chemical cascades and intricate living functionalities. Relatively, within a very short time span, a synthetic paradigm has resulted in tremendous growth in controlling the materials at different length scales (molecular, nano, micro, and macro), improving mechanistic understanding and setting the design principals toward different compositions, configurations, and structures, and in turn fine-tuning their optoelectronic and catalytic properties for targeted applications. Bioorthogonal catalysis offers a highly versatile toolkit for biochemical modulation and the capability to perform new-to-nature reactions inside living systems, endowing augmented functions. However, conventional catalysts have limitations to control the reactions under physiological conditions due to the hostile bioenvironment. The present account details the development of bioapplicable multicomponent designer nanoreactors (NRs), where the compositions, morphologies, interfacial active sites, and microenvironments around different metal nanocatalysts can be precisely controlled by novel nanospace-confined chemistries. Different architectures of porous, hollow, and open-mouth silica-based nano-housings facilitate the accommodation, protection, and selective access of different nanoscale metal-based catalytic sites. The modular porosity/composition, optical transparency, thermal insulation, and nontoxicity of silica are highly useful. Moreover, large macropores or cavities can also be occupied by enzymes (for chemoenzymatic cascades) and selectivity enhancers (for stimuli-responsive gating) along with the metal nanocatalysts. Further, it is crucial to selectively activate and control catalytic reactions by a remotely operable biocompatible energy source. Integration of highly coupled plasmonic (Au) components having few-nanometer structural features (gaps, cavities, and junctions as electromagnetic hot-spots) endows an opportunity to efficiently harness low-power NIR light and selectively supply energy to the interfacial catalytic sites through localized photothermal and electronic effects. Different plasmonically integrated NRs with customizable plasmonic-catalytic components, cavities inside bilayer nanospaces, and metal-laminated nanocrystals inside hollow silica can perform NIR-/light-induced catalytic reactions in complex media including living cells. In addition, magnetothermia-induced NRs by selective growth of catalytic metals on a pre-installed superparamagnetic iron-oxide core inside a hollow-porous silica shell endowed the opportunity to apply AMF as a bioorthogonal stimulus to promote catalytic reactions. By combining "plasmonic-catalytic" and "magnetic-catalytic" components within a single NR, two distinct reaction steps can be desirably controlled by two energy sources (NIR light and AMF) of distinct energy regimes. The capability to perform multistep organic molecular transformations in harmony with the natural living system will reveal novel reaction schemes for in cellulo synthesis of active drug and bioimaging probes. Well-designed nanoscale discrete architectures of NRs can facilitate spatiotemporal control over abiotic chemical synthesis without adversely affecting the cell viability. However, in-depth understanding of heterogeneous surface catalytic reactions, rate induction mechanisms, selectivity control pathways, and targeted nanobio interactions is necessary. The broad field of biomedical engineering can hugely benefit from the aid of novel nanomaterials with chemistry-based designs and the synthesis of engineered NRs performing unique bioorthogonal chemistry functions.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCRs) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCRs) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
6
|
Yin X, Fan T, Zheng N, Yang J, Ji T, Yan L, Ai F, Hu J. Glucose oxidase and ruthenium nanorods-embedded self-healing polyvinyl alcohol/polyethylene imine hydrogel for simultaneous photothermal/photodynamic/starvation therapy and skin reconstruction. Colloids Surf B Biointerfaces 2024; 234:113738. [PMID: 38199189 DOI: 10.1016/j.colsurfb.2023.113738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Tumor recurrence and wound healing represent significant burdens for tumor patients after the surgical removal of melanomas. Wound dressings with wound healing and anticancer therapeutic abilities could help to solve these issues. Thus, a hybrid hydrogel made of polyvinyl alcohol (PVA) and polyethylene imine (PEI) was prepared by cross-linking imine bond and boronic acid bond. This hydrogel was loaded with ruthenium nanorods (Ru NRs) and glucose oxidase (GOx) and named as nanocomposite hydrogel (Ru/GOx@Hydrogel), exhibiting remarkable photothermal/photodynamic/starvation antitumor therapy and wound repair abilities. Ru NRs are bifunctional phototherapeutic agents that simultaneously exhibit intrinsic photothermal and photodynamic functions. Three-dimensional composite hydrogel loaded with GOx can also consume glucose in the presence of O2 during tumor starvation therapy. Near-infrared (NIR) light-triggered hyperthermia can not only promote the consumption of glucose, but also facilitate the ablation of residual cancer cells. The antitumor effect of the Ru/GOx@Hydrogel resulted in significant improvements, compared to those observed with either phototherapy or starvation therapy alone. Additionally, the postoperative wound was substantially healed after treatment with Ru/GOx@Hydrogel and NIR irradiation. Therefore, the Ru/GOx@Hydrogel can be used as a multi-stimulus-responsive nanoplatform that could facilitate on-demand controlled drug release, and be used as a promising postoperative adjuvant in combination therapy.
Collapse
Affiliation(s)
- Xiuzhao Yin
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China; College of Applied Technology, Shenzhen University, Shenzhen 518060, PR China
| | - Taojian Fan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China; College of Applied Technology, Shenzhen University, Shenzhen 518060, PR China
| | - Nannan Zheng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China; College of Applied Technology, Shenzhen University, Shenzhen 518060, PR China
| | - Jing Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Tao Ji
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China; Shenzhen Bay Laboratory, Shenzhen 518132, PR China
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China; Shenzhen Bay Laboratory, Shenzhen 518132, PR China.
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, PR China; College of Applied Technology, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Bay Laboratory, Shenzhen 518132, PR China
| |
Collapse
|
7
|
Mansoor F, Ju H, Saeed M, Kanwal S. Facile synthesis of gold nanocages with silver nanocubes templates dual metal effects enabled SERS imaging and catalytic reduction. RSC Adv 2023; 13:31366-31374. [PMID: 37901276 PMCID: PMC10603383 DOI: 10.1039/d3ra06344e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023] Open
Abstract
Silver (Ag) nanomaterials featuring a cubic shape particularly represent supreme class of advance nanomaterials. This work explored a new precursor and its effect on morphological features of silver (Ag) nanocubes (NCs) serving as sacrificial templates for facile synthesis of gold NCs. The AgNCs were initially prepared utilizing sodium thiosulphate (Na2S2O3) as relatively stable S2- producing species along with a soft etchant source KCl. The effects of different potassium halides were evaluated to grasp control over seed mediated growth of Ag nanocubes. Taking the advantages of dual metallic properties, Ag@4MBA@AuNCs nanostructure was synthesized using 4-mercaptobenzoic acid (4MBA) as a Raman reporter molecule. This nanostructure showed 1010-times enhancement in surface enhanced Raman scattering (SERS) signal, leading to a highly sensitive imaging probe for the detection of even three breast cancer cells (MCF-7 cells) in vitro. Subsequently, the oxidative nanopeeling well accompanied by incorporation of Au/Ag alloy nanoparticles on AuNCs corona assembly was achieved, which facilitated the catalytic reduction of toxic nitrophenol to eco-friendly aminophenol. Such sophisticated and engineered nanoassemblies possess broad applications in bioanalysis.
Collapse
Affiliation(s)
- Farukh Mansoor
- Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology Abu Dhabi Road Rahim Yar Khan Pakistan
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Sciences Department of Chemistry, Nanjing University Nanjing 210023 China
| | - Madiha Saeed
- Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University, Islamabad, Lahore Campus Lahore Pakistan
| | - Shamsa Kanwal
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology Abu Dhabi Road Rahim Yar Khan Pakistan
| |
Collapse
|
8
|
Arellano LG, Villar-Alvarez EM, Velasco B, Domínguez-Arca V, Prieto G, Cambón A, Barbosa S, Taboada P. Light excitation of gold Nanorod-Based hybrid nanoplatforms for simultaneous bimodal phototherapy. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Zhang Y, Zhao P, Chen X, Xu C, Guo J, Qu X, Hu X, Gao H, Huang P, Zhang J. Near Infrared-Activatable Methylene Blue Polypeptide Codelivery of the NO Prodrug via π-π Stacking for Cascade Reactive Oxygen Species Amplification-Mediated Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12750-12765. [PMID: 36852940 DOI: 10.1021/acsami.2c21280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The application of photodynamic therapy (PDT) has attracted remarkable interest in cancer treatment because of the advantages of noninvasiveness and spatiotemporal selectivity. However, the PDT efficiency is considerably limited by photosensitizer (PS) quenching and severe hypoxia in solid tumors. Herein, a kind of near infrared (NIR)-activatable methylene blue (MB) peptide nanocarrier was developed for codelivery of nitric oxide (NO) prodrug JSK, expecting a cascade of reactive oxygen species (ROS) amplification-mediated antitumor PDT. In detail, MB was conjugated to water-soluble polyethylene glycol-polylysine (PEG-PLL) through NIR-photocleavable 10-N-carbamoyl bonds, and the subsequent amphiphilic conjugates (mPEG-PLL-MB) self-assembled into nanoparticles (NPs), which allowed JSK codelivery via π-π stacking interactions. MB in quenched state in mPEG-PLL-MB/JSK NPs could be photoactivated by NIR light locoregionally in a controlled manner due to the photocleavage of carbamoyl bonds. Apart from ROS production, assembly disturbance and even disintegration of mPEG-PLL-MB/JSK occurred along with MB activation that subsequently freed JSK, which was further triggered by intracellularly overexpressed glutathione (GSH) and glutathione S-transferase (GST) to sustain the release of NO. NO then served as a hypoxia relief agent through inhibition of cellular respiration to economize O2, cooperating with MB activation and GSH depletion, which synergistically enabled a cascade of ROS amplification to augment PDT for mitochondrial apoptosis-mediated tumor inhibition in vitro and in vivo. Therefore, this pioneering strategy of cascade amplification of ROS addressed the key issues of PS inactivation, hypoxia resistance, and ROS neutralization in a three-pronged approach, which hold great promise in efficient antitumor PDT.
Collapse
Affiliation(s)
- Yu Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Peng Zhao
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Xiaoai Chen
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Chang Xu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Jingzhe Guo
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Xiuli Hu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Hui Gao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
10
|
Zhang W, Zhang C, Yang C, Wang X, Liu W, Yang M, Cao Y, Ran H. Photochemically-driven highly efficient intracellular delivery and light/hypoxia programmable triggered cancer photo-chemotherapy. J Nanobiotechnology 2023; 21:11. [PMID: 36631855 PMCID: PMC9835365 DOI: 10.1186/s12951-023-01774-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Using nanotechnology to improve the efficiency of tumor treatment represents a major research interest in recent years. However, there are paradoxes and obstacles in using a single nanoparticle to fulfill all the requirements of complex tumor treatment. RESULTS In this paper, a programmed-triggered nanoplatform (APP NPs), which is sequentially responsive to light and hypoxia, is rationally integrated for photoacoustic (PA) imaging-guided synergistic cancer photo-chemotherapy. The nanoplatform is constructed by in situ hybridization of dopamine monomer in the skeleton of PCN-224 and loading prodrug banoxantrone (AQ4N). Upon first-stage irradiation with a 660 nm laser, cellular internalization was effectively promoted by a photosensitizer-mediated photochemical effect. Furthermore, under second-stage irradiation, APP NPs exhibit a notably high photothermal conversion efficiency and sufficient reactive oxygen species (ROS) production for photothermal therapy (PTT) and photodynamic therapy (PDT), respectively, which not only triggers rapid intercellular drug release but also consequently aggravates tumor hypoxia levels, and aggravated hypoxia can further active the cytotoxicity of AQ4N for chemotherapy. Both in vitro and in vivo studies confirm that the dual-stage light guided photo-chemotherapy strategy exhibits a greatly enhanced anticancer effects and superior therapeutic safety. CONCLUSION This work represents a versatile strategy to construct a dual-stage light induced PDT/PTT and hypoxia-activated chemotherapy nanoplatform and will be promising for the development of multistimuli-responsive nanosystems with programmable functions for precise cancer therapy.
Collapse
Affiliation(s)
- Wei Zhang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010 People’s Republic of China
| | - Cuncheng Zhang
- Department of Ultrasound, Chongqing General Hospital, No. 104, Pipashan Main Street, Yuzhong District, Chongqing, 40013 China
| | - Chao Yang
- Department of Radiology, Chongqing General Hospital, No. 104, Pipashan Main Street, Yuzhong District, Chongqing, 40013 China
| | - Xingyue Wang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010 People’s Republic of China
| | - Weiwei Liu
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010 People’s Republic of China
| | - Mi Yang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010 People’s Republic of China
| | - Yang Cao
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010 People’s Republic of China
| | - Haitao Ran
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010 People’s Republic of China
| |
Collapse
|
11
|
Wang P, Krasavin AV, Liu L, Jiang Y, Li Z, Guo X, Tong L, Zayats AV. Molecular Plasmonics with Metamaterials. Chem Rev 2022; 122:15031-15081. [PMID: 36194441 PMCID: PMC9562285 DOI: 10.1021/acs.chemrev.2c00333] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Molecular plasmonics, the area which deals with the interactions between surface plasmons and molecules, has received enormous interest in fundamental research and found numerous technological applications. Plasmonic metamaterials, which offer rich opportunities to control the light intensity, field polarization, and local density of electromagnetic states on subwavelength scales, provide a versatile platform to enhance and tune light-molecule interactions. A variety of applications, including spontaneous emission enhancement, optical modulation, optical sensing, and photoactuated nanochemistry, have been reported by exploiting molecular interactions with plasmonic metamaterials. In this paper, we provide a comprehensive overview of the developments of molecular plasmonics with metamaterials. After a brief introduction to the optical properties of plasmonic metamaterials and relevant fabrication approaches, we discuss light-molecule interactions in plasmonic metamaterials in both weak and strong coupling regimes. We then highlight the exploitation of molecules in metamaterials for applications ranging from emission control and optical modulation to optical sensing. The role of hot carriers generated in metamaterials for nanochemistry is also discussed. Perspectives on the future development of molecular plasmonics with metamaterials conclude the review. The use of molecules in combination with designer metamaterials provides a rich playground both to actively control metamaterials using molecular interactions and, in turn, to use metamaterials to control molecular processes.
Collapse
Affiliation(s)
- Pan Wang
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Alexey V. Krasavin
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Lufang Liu
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunlu Jiang
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Zhiyong Li
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Xin Guo
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Limin Tong
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Anatoly V. Zayats
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| |
Collapse
|
12
|
Jia X, Liu D, Yu C, Niu N, Li D, Wang J, Wang E. Tumor Microenvironment Stimuli-Responsive Single-NIR-Laser Activated Synergistic Phototherapy for Hypoxic Cancer by Perylene Functionalized Dual-Targeted Upconversion Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203292. [PMID: 36031411 PMCID: PMC9596832 DOI: 10.1002/advs.202203292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Although synergistic therapy has shown great promise for effective treatment of cancer, the unsatisfactory therapeutic efficacy of photothermal therapy/photodynamic therapy is resulted from the absorption wavelength mismatch, tumor hypoxia, photosensitizer leakage, and inability in intelligent on-demand activation. Herein, based on the characteristics of tumor microenvironment (TME), such as the slight acidity, hypoxia, and overexpression of H2 O2 , a TME stimuli-responsive and dual-targeted composite nanoplatform (UCTTD-PC4) is strategically explored by coating a tannic acid (TA)/Fe3+ nanofilm with good biocompatibility onto the upconversion nanoparticles in an ultrafast, green and simple way. The pH-responsive feature of UCTTD-PC4 remains stable during the blood circulation, while rapidly releases Fe3+ in the slightly acidic tumor cells, which results in catalyzing H2 O2 to produce O2 and overcoming the tumor hypoxia. Notably, the emission spectrum of the UCTTD perfectly matches the absorption spectrum of the photosensitizer (perylene probe (PC4)) to achieve the enhanced therapeutic effect triggered by a single laser. This study provides a new strategy for the rational design and development of the safe and efficient single near-infrared laser-triggered synergistic treatment platform for hypoxic cancer under the guidance of multimodal imaging.
Collapse
Affiliation(s)
- Xiuna Jia
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Deming Liu
- State Key Laboratory of Luminescence and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin130033P. R. China
| | - Cong Yu
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Niu Niu
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Dan Li
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Jin Wang
- Department of Chemistry and PhysicsState University of New York at Stony BrookNew York11794‐3400USA
| | - Erkang Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- College of ChemistryJilin UniversityChangchunJilin130012P. R. China
| |
Collapse
|
13
|
Pasparakis G. Recent developments in the use of gold and silver nanoparticles in biomedicine. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1817. [PMID: 35775611 PMCID: PMC9539467 DOI: 10.1002/wnan.1817] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/18/2022]
Abstract
Gold and silver nanoparticles (NPs) are widely used in the biomedical research both in the therapeutic and the sensing/diagnostics fronts. Both metals share some common optical properties with surface plasmon resonance being the most widely exploited property in therapeutics and diagnostics. Au NPs exhibit excellent light‐to‐heat conversion efficiencies and hence have found applications primarily in precision oncology, while Ag NPs have excellent antibacterial properties which can be harnessed in biomaterials' design. Both metals constitute excellent biosensing platforms owing to their plasmonic properties and are now routinely used in various optical platforms. The utilization of Au and Ag NPs in the COVID‐19 pandemic was rapidly expanded mostly in biosensing and point‐of‐care platforms and to some extent in therapeutics. In this review article, the main physicochemical properties of Au and Ag NPs are discussed with selective examples from the recent literature. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vitro Nanoparticle‐Based Sensing Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Collapse
Affiliation(s)
- George Pasparakis
- Department of Chemical Engineering University of Patras Patras Greece
| |
Collapse
|
14
|
Novel Dual-Color Immunochromatographic Assay Based on Chrysanthemum-like Au@polydopamine and Colloidal Gold for Simultaneous Sensitive Detection of Paclobutrazol and Carbofuran in Fruits and Vegetables. Foods 2022; 11:foods11111564. [PMID: 35681314 PMCID: PMC9180898 DOI: 10.3390/foods11111564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
To ensure food safety and prevent the toxic effects of paclobutrazol (PBZ) and carbofuran (CAR) on humans, a sensitive and rapid method for the detection of PBZ and CAR in fruits and vegetables is required. Herein, a highly sensitive PBZ monoclonal antibody (PBZ mAb) and CAR monoclonal antibody (CAR mAb) with half-inhibitory concentrations (IC50) at 0.77 and 0.82 ng mL−1 were prepared, respectively. We proposed a novel dual-color immunochromatographic assay (ICA) with two test lines (T1 and T2) and an independent control line (C) based on chrysanthemum-like Au@Polydopamine (AuNC@PDA) and colloidal gold (AuNPs) for the simultaneous and sensitive detection of PBZ and CAR with naked-eye detection limits of 10 and 5 μg kg−1, respectively. The limits of detection (LOD) for PBZ and CAR were 0.117 and 0.087 μg kg−1 in orange, 0.109 and 0.056 μg kg−1 in grape, and 0.131 and 0.094 μg kg−1 in cabbage mustard, respectively. The average recoveries of PBZ and CAR in orange, grape, and cabbage mustard were 97.86−102.83%, with coefficients of variation from 8.94 to 11.05. The detection results of this method for 30 samples (orange, grapes, and cabbage mustard) agreed well with those of liquid chromatography–tandem mass spectrometry. The novel dual-color ICA was sensitive, rapid, and accurate for the simultaneous detection of PBZ and CAR in real samples.
Collapse
|
15
|
Detection strategies for superoxide anion: A review. Talanta 2022; 236:122892. [PMID: 34635271 DOI: 10.1016/j.talanta.2021.122892] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms. Superoxide anion (O2-.), one kind of ROS, is the single-electron reduction product of oxygen molecules, which mainly exists in plants and animals, and is closely related to many inflammatory diseases. In the field of biomedicine, with the deepening understanding of superoxide anion, more and more detection methods have been developed. This review mainly introduces the detection techniques for superoxide anion in recent years.
Collapse
|
16
|
Xu X, Liu Q, Hui S, Jiang S. Hollow Core-satellite ZIF-8/PDA/AgNPs Nanocomplexs: Fabrication, Structure and Antibacterial Activity. CHEM LETT 2021. [DOI: 10.1246/cl.210619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaoyi Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qiqi Liu
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuhan Hui
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shan Jiang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
17
|
Karmacharya M, Kumar S, Lee C, Cho YK. Lab-on-a-disc for ultrafast plasmonic assay of cysteamine. Biosens Bioelectron 2021; 194:113584. [PMID: 34474276 DOI: 10.1016/j.bios.2021.113584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022]
Abstract
Cysteamine (CA) is a cystine depleting agent used in the treatment of cystinosis and many other diseases. However, high dose of CA can be toxic and thus point-of-care-test devices measuring blood CA level can be highly beneficial. Here, we report a highly sensitive, straightforward, and quantitative assay for the colorimetric and spectroscopic determination of CA concentration using plasmonic nanoparticles. The principle is based on the chemical etching-induced exchange of the surface ligands of plasmonic gold nanoparticles (AuNPs) upon the addition of CA. Moreover, destabilized particles can aggregate to generate the plasmonic couplings that trigger the redshift in the ultraviolet-visible (UV-vis) spectrum (the absorption band shifted from 526 to 732 nm) and the solution color change (wine-red to blackish-blue). This plasmonic AuNPs sensor displays a clear red-to-blue colorimetric transition in the presence of CA among various biothiols with high specificity and sensitivity within a short time (<15 s). Furthermore, a lab-on-a-disc platform was applied to the analysis of blood samples donated by healthy volunteers spiked with known amounts of the CA standard solution. This fully automated lab-on-a-disc platform approach for naked eye detecting the CA concentration in human blood samples (20 μL) is highly simple and time-efficient (<6 min), and it would be potentially useful for the careful selection of CA doses in the hospital industry.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Sumit Kumar
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Chaeeun Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
18
|
Hui S, Liu Q, Han Y, Zhang L, Yang J, Jiang S, Qian H, Yang W. ICG@ZIF-8/PDA/Ag composites as chemo-photothermal antibacterial agents for efficient sterilization and enhanced wound disinfection. J Mater Chem B 2021; 9:9961-9970. [PMID: 34870667 DOI: 10.1039/d1tb02107a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial infection has increasingly affected people's lives, therefore it is significant to explore novel antibacterial agents and strategies for efficient disinfection. Herein, we designed ZIF-8 based composites ICG@ZIF-8/PDA/Ag, which encapsulate photothermal agent indocyanine green (ICG) and grow polydopamine (PDA) on their surface for in situ reduction to generate Ag nanoparticles. With 20 min of 808 nm laser irradiation at 1.5 W cm-2, 100 μg mL-1 ICG@ZIF-8/PDA/Ag exhibited 100% bactericidal effects toward E. coli and S. aureus bacteria resulting from both hyperthermia of ICG and PDA and chemical toxicity of the released Ag and Zn ions. When the bacterial incubation period was extended to 12 h, the minimum bactericidal concentration (MBC) of ICG@ZIF-8/PDA/Ag was reduced to 6.25 μg mL-1, and this extremely low MBC was due to the long-term chemo-photothermal combinational effect induced by NIR irradiation. Additionally, the composites successfully promote the healing of S. aureus infected wounds on mice. This work constructed photo-responsive antibacterial composites that realize chemo-photothermal synergistic therapy.
Collapse
Affiliation(s)
- Shuhan Hui
- College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Qiqi Liu
- College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yandong Han
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Lijuan Zhang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Jun Yang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Shan Jiang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, P. R. China.
| | - Wensheng Yang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
19
|
Huo C, Han W, Tang W, Duan X. Stable SERS substrate based on highly reflective metal liquid-like films wrapped hydrogels for direct determination of small molecules in a high protein matrix. Talanta 2021; 234:122678. [PMID: 34364478 DOI: 10.1016/j.talanta.2021.122678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/26/2022]
Abstract
The study of the interaction between small molecules and proteins is important. Surface-enhanced Raman spectroscopy (SERS) is suitable for such applications since it has the power of detecting a molecule based on its intrinsic nature and without labeling. Herein, the MeLLFs@PAAG SERS substrate supporting highly reflective metal liquid-like films (MeLLFs) with polyacrylamide hydrogels (PAAG) has high-density "hot spots" to provide excellent SERS activity. The MeLLFs@PAAG formed by AgNPs only has less than 15% SERS activity loss when stored in the air for more than three weeks. By using rhodamine 6G (R6G) as a model analyte, the AgNPs based MeLLFs@PAAG SERS substrate exhibits an enhancement factor (EF) as high as 8.0 × 106, a limit of detection (LOD) of 76.8 pM (S/N = 3). Also, the formed PAAG provided a 3D molecular network to orderly secure the assembled nanoparticles (NPs), which not only improves the stability of NPs but also shields the Raman signal of proteins as high as 45 g/L allowing the direct determination of the binding rate of human serum albumin (HSA) and doxorubicin (DOX). A binding rate of about 70% was detected, which is consistent with previous reports. Thus, proposed the MeLLFs@PAAG SERS substrate can be used as a promising candidate for SERS measurement in complex biological samples.
Collapse
Affiliation(s)
- Chengcheng Huo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi, 710119, People's Republic of China
| | - Wanying Han
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi, 710119, People's Republic of China
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi, 710119, People's Republic of China
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi, 710119, People's Republic of China.
| |
Collapse
|
20
|
Yang Y, Zhang T, Xing D. Single 808 nm near-infrared-triggered multifunctional upconverting phototheranostic nanocomposite for imaging-guided high-efficiency treatment of tumors. JOURNAL OF BIOPHOTONICS 2021; 14:e202100134. [PMID: 34115430 DOI: 10.1002/jbio.202100134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Multifunctional phototheranostic nanocomposites are promising for early diagnosis and precision therapy of cancer. Aim to enhance their accuracy and efficiency, in this study, we develop a single-laser excited activatable phototheranostic nanocomposite (UCNPs-D-MQ): 808 nm-excited upconverting nanoparticles (UCNPs) as the matrix programmed assembly with amphipathic compound DSPE-PEG-COOH, a near-infrared absorbing polymer DPP and the pro-photosensitizer MBQB. Upon endocytosed by cancer cells and excited by the 808 nm laser, UCNPs-D-MQ could produce high-yield reactive oxygen species (ROS) as the results of singlet oxygen generation from transferring to methylene blue, GSH depletion and ROS generation from photoactivation. It was proven both in vitro and in vivo that the nanocomposites exhibits remarkable therapeutic efficacy as well as minimal photodamage to normal cells. These results reveal UCNPs-D-MQ as a robust theranostic agent for tumor phototherapy.
Collapse
Affiliation(s)
- Yang Yang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, China
- College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
21
|
Acharya A, Dubbu S, Kumar S, Kumari N, Kim Y, So S, Kwon T, Wang Z, Park J, Cho YK, Rho J, Oh SH, Kumar A, Lee IS. Atomically Conformal Metal Laminations on Plasmonic Nanocrystals for Efficient Catalysis. J Am Chem Soc 2021; 143:10582-10589. [PMID: 34213897 DOI: 10.1021/jacs.1c05753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the enormous application potential, methods for conformal few-atomic-layer deposition on colloidal nanocrystals (NCs) are scarce. Similar to the process of lamination, we introduce a "confine and shine" strategy to homogeneously modify the different surface curvatures of plasmonic NCs with ultrathin conformal layers of diverse catalytic noble metals. This self-limited epitaxial skinlike metal growth harvests the localized surface plasmon resonance to induce reduction chemistry directly on the NC surface, confined inside hollow silica. This strategy avoids any kinetic anisotropic metal deposition. Unlike the conventional thick, anisotropic, and dendritic shells, which show severe nonradiative damping, the skinlike metal lamination preserves the key plasmonic properties of the core NCs. Consequently, the plasmonic-catalytic hybrid nanoreactors can carry out a variety of organic reactions with impressive rates.
Collapse
Affiliation(s)
- Anubhab Acharya
- Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sateesh Dubbu
- Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), and Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Yeseul Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sunae So
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Zhipeng Wang
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Junbeom Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), and Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sang Ho Oh
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Amit Kumar
- Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-Confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
22
|
Triphenylamine-perylene diimide conjugate-based organic nanoparticles for photoacoustic imaging and cancer phototherapy. Colloids Surf B Biointerfaces 2021; 205:111841. [PMID: 33992824 DOI: 10.1016/j.colsurfb.2021.111841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022]
Abstract
Phototherapy has gained great attention in the past decade owing to the advantages of high selectivity and low toxicity. However, it's still a challenge to develop a single photosensitizer that can achieve both photothermal and photodynamic effects. Herein, we design and synthesize a new organic compound (PIT) with a typical D-A-D structure through the covalent conjugation of perylene diimides (PDI) and triphenylamine (TPA). The amphiphilic PIT could be transformed to the nanoparticles (PIT NPs) through nanoprecipitation method. PIT NPs exhibit good water dispersibility with particle size around 70 nm. Because of the efficient NIR absorption, PIT NPs display high photothermal conversion efficiency (PCE) (η = 46.1 %) and strong photoacoustic signal under irradiation of 635 nm laser. Moreover, under the same laser irradiation, significant reactive oxygen species can be induced by PIT NPs both in aqueous solution and cancer cells. The MTT assay demonstrate the good biocompatibility and outstanding photocytotoxicity of PIT NPs. Thus, the as-prepared PIT NPs could be used as excellent candidates for photoacoustic imaging and photodynamic/photothermal therapy.
Collapse
|
23
|
Pan J, Ouyang A, Fang W, Cheng G, Liu W, Wang F, Zhao D, Le K, Jiang J. cis-Silicon phthalocyanine conformation endows J-aggregated nanosphere with unique near-infrared absorbance and fluorescence enhancement: a tumor sensitive phototheranostic agent with deep tissue penetrating ability. J Mater Chem B 2021; 8:2895-2908. [PMID: 32195527 DOI: 10.1039/d0tb00192a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Organic phototheranostic nanomedicines with an optimized near-infrared (NIR) biological transparent window (700-900 nm) are highly desirable for the diagnosis and treatment of deep-seated tumors in clinic. As excellent organic photosensitizers for photodynamic therapy (PDT) with outstanding photo- and thermo-stability, phthalocyanines (Pcs) have been used as the building blocks of single-component nanomedicines. However, to the best of our knowledge, all the Pc-based single-component self-assemblies reported to date are of an H-aggregate nature. This results in the simultaneous self-quenching of fluorescence emission and photodynamic activity as well as greatly reduced tissue penetration due to blue-shifted absorption. In the present work, intramolecular hydrogen bonding was formed between the two long and flexible axial NH2-terminated diethylene glycol ligands of the amphiphilic SiPc molecule (SiPc-NH2) in solution, leading to the employment of a cis-conformation of this molecule according to the 1H-NMR spectroscopy result, which as a building block then further self-assembled into monodisperse nanospheres (SiPcNano) with a J-aggregation nature on the basis of electronic absorption spectroscopic results. As a result, SiPcNano exhibited significantly enhanced red-shifted absorption in the NIR range of 750-850 nm and fluorescence emission. This in combination with the increased photodynamic effect for SiPcNano triggered by the protonation of amine groups due to the acidic nature of tumors endowed effective synergistic NIR photodynamic and photothermal effects in different cancer cells and thus effective inhibition of tumor growth in A549 tumor-bearing mice on the basis of a series of in vitro and in vivo evaluations. The present result provides a new approach for constructing novel single-component NIR organic nanomedicines for multifunctional cancer therapy.
Collapse
Affiliation(s)
- Jiabao Pan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Ancheng Ouyang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Wenjuan Fang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Guanghui Cheng
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan 250100, P. R. China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Fang Wang
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan 250100, P. R. China
| | - Dongmu Zhao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Kai Le
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology, Beijing 100083, P. R. China.
| |
Collapse
|
24
|
Wu D, Zhou J, Creyer MN, Yim W, Chen Z, Messersmith PB, Jokerst JV. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev 2021; 50:4432-4483. [PMID: 33595004 PMCID: PMC8106539 DOI: 10.1039/d0cs00908c] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.
Collapse
Affiliation(s)
- Di Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Yan Z, Wang M, Shi M, He Y, Zhang Y, Qiu S, Yang H, Chen H, He H, Guo Z. Amphiphilic BODIPY dye aggregates in polymeric micelles for wavelength-dependent photo-induced cancer therapy. J Mater Chem B 2021; 8:6886-6897. [PMID: 32323684 DOI: 10.1039/d0tb00609b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Near-infrared (NIR) light-responsive nanoparticles of organic small-molecule dyes hold great promise as phototherapeutic dyes (PDs) for clinical translation due to their intrinsic merits, including well-defined structure, high purity, and good reproducibility. However, they have been explored with limited success in the development of photostable NIR PDs with extraordinary photoconversion for highly effective phototherapy. Herein, we have described amphiphilic BODIPY dye aggregates within the polymeric micelles (Micelles) as potent bifunctional PDs for dually cooperative phototherapy under NIR irradiation. Micelles possessed an intensive NIR absorption, high photostability, and favorable non-radiative transition, thereby exhibiting both remarkable singlet oxygen generation and photothermal effect under NIR light irradiation. Besides, Micelles had preferable cellular uptake, effective cytoplasmic drug translocation as well as enhanced tumor accumulation. Owing to the combined virtues, Micelles showed clinical potential as bifunctional PDs for photo-induced cancer therapy. This work thus provides a facile strategy to exploit advanced PDs for practical phototherapeutic applications.
Collapse
Affiliation(s)
- Ziling Yan
- State Key Laboratory of Radiation Medicine and Protection, Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dai X, Ma J, Chen N, Cai Y, He Y, Li X, Gao F. MSNs-Based Nanocomposite for Biofilm Imaging and NIR-Activated Chem/Photothermal/Photodynamic Combination Therapy. ACS APPLIED BIO MATERIALS 2021; 4:2810-2820. [PMID: 35014320 DOI: 10.1021/acsabm.1c00034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial infections caused by biofilms are severe clinical problems, resulting in high drug resistance by limiting the penetration of antibiotics. Herein, a near-infrared (NIR)-activated chem/photodynamic/photothermal combined therapeutic agent is proposed by loading fluorescein isothiocyanate (FITC), ultrasmall copper sulfide nanoparticles (Cu2-xSNPs), and ε-polylysine (PLL) onto mesoporous silica nanoparticles (MSNs) through a layer-by-layer self-assembly approach. FITC-doped MSNs are prepared to monitor the permeability and accumulation of nanocomposites into biofilms. MSNs can also act as hosts for the synthesis of ultrasmall Cu2-xSNPs, which has effective photodynamic and photothermal ablation against bacteria under NIR light irradiation. Moreover, biodegradable PLL introduced can not only enhance adhesion toward the bacterial surface to increase the effectiveness of phototherapy but also damage bacteria through electrostatic interaction. As a result, the prepared nanocomposites could not only penetrate biofilms but also ablate biofilms through combined chem/photodynamic/photothermal effects under NIR light irradiation. Furthermore, the nanocomposites could treat bacterial infections in vivo with negligible tissue toxicity. Overall, the finely designed nanocomposites are anticipated to display promising applications in imaging-guided chem/photodynamic/photothermal combined therapy for bacterial infections.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Jifang Ma
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Ningning Chen
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yuanyuan Cai
- Anhui Province Key Laboratory of Active Biological Macro-molecules Research, Institute of Synthesis and Application of Medical Materials, Department of Chemistry, Wannan Medical College, Wuhu 241002, China
| | - Yanping He
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xiangzi Li
- Anhui Province Key Laboratory of Active Biological Macro-molecules Research, Institute of Synthesis and Application of Medical Materials, Department of Chemistry, Wannan Medical College, Wuhu 241002, China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
27
|
Affiliation(s)
- Jinxing Chen
- Department of Chemistry University of California Riverside CA 92521 USA
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Zuyang Ye
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Fan Yang
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Yadong Yin
- Department of Chemistry University of California Riverside CA 92521 USA
| |
Collapse
|
28
|
Ha M, Nam SH, Sim K, Chong SE, Kim J, Kim Y, Lee Y, Nam JM. Highly Efficient Photothermal Therapy with Cell-Penetrating Peptide-Modified Bumpy Au Triangular Nanoprisms using Low Laser Power and Low Probe Dose. NANO LETTERS 2021; 21:731-739. [PMID: 33332127 DOI: 10.1021/acs.nanolett.0c04386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal therapy (PTT) exploits nanomaterials with optimal heat conversion and cellular penetration using near-infrared (NIR) laser irradiation. However, current PTT agents suffer from inefficient heat conversion, poor intracellular delivery, and a high dose of probes along with excessive laser irradiation, causing limited therapeutic outcomes. Here, bumpy Au triangular nanoprisms (BATrisms) are developed for increasing the surface area, improving cell penetration, shifting the absorption peak to the NIR region, and enhancing the photothermal conversion efficiency (∼86%). Further, leucine (L)- and lysine (K)-rich cell-penetrating peptides (LK peptides) were employed to largely improve their cellular uptake efficiency. Importantly, a significant in vivo therapeutic efficacy with LK-BATrisms was demonstrated in a triple-negative breast cancer xenograft mice model. A very small dose of LK-BATrism (2.5 μg Au) was enough to exert antitumor efficacy under very low laser power (808 nm, 0.25 W/cm2), causing minimal tissue damages while very efficiently killing cancer cells.
Collapse
Affiliation(s)
- Minji Ha
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - So Hee Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Kyunjong Sim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Seung-Eun Chong
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jiyeon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Yuna Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
29
|
Yang W, Lim DK. Recent Advances in the Synthesis of Intra-Nanogap Au Plasmonic Nanostructures for Bioanalytical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002219. [PMID: 33063429 DOI: 10.1002/adma.202002219] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Indexed: 05/24/2023]
Abstract
Plasmonic nanogap-enhanced Raman scattering has attracted considerable attention in the fields of Raman-based bioanalytical applications and materials science. Various strategies have been proposed to prepare nanostructures with an inter- or intra-nanogap for fundamental study models or applications. This report focuses on recent advances in synthetic methods to fabricate intra-nanogap structures with diverse dimensions, with detailed focus on the theory and bioanalytical applications. Synthetic strategies ranging from the use of a silica layer to small molecules, the use of polymers and galvanic replacement, are extensively investigated. Furthermore, various core structures, such as spherical, rod-, and cube-shaped, are widely studied, and greatly expand the diversity of plasmonic nanostructures with an intra-nanogap. Theoretical calculations, ranging from the first plasmonic hybridization model that is applied to a concentric Au-SiO2 -Au nanosphere to the modern quantum corrected model, have evolved to accurately describe the plasmonic resonance property in concentric core-shell nanostructures with a subnanometer nanogap. The greatly enhanced and uniform Raman responses from the localized Raman reporter in the built-in nanogap have made it possible to achieve promising probes with an extraordinary high sensitivity in various formats, such as biomolecule detection, high-resolution cell imaging, and an in vivo imaging application.
Collapse
Affiliation(s)
- Wonseok Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seong-buk gu, Seoul, 02841, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seong-buk gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
30
|
Zhu Y, Chen C, Yang G, Wu Q, Tian J, Hao E, Cao H, Gao Y, Zhang W. Inhibiting Radiative Transition-Mediated Multifunctional Polymeric Nanoplatforms for Highly Efficient Tumor Phototherapeutics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44523-44533. [PMID: 32910635 DOI: 10.1021/acsami.0c12756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is highly desired to explore ideal phototherapeutic nanoplatforms, especially containing satisfactory phototherapeutic agents (PTAs), for potential cancer therapies. Herein, we proposed an effective strategy for designing a highly efficient PTA through inhibiting radiative transition (IRT). Specifically, we developed an ultralow radiative BODIPY derivative (TPA-IBDP) by simply conjugating two triphenylamine units to iodine-substituted BODIPY, which could simultaneously facilitate the nonradiative decay channels of singlet-to-triplet intersystem crossing and intramolecular charge transfer. In comparison to the normal BODIPY compound, TPA-IBDP exhibited an outstanding singlet oxygen yield (31.8-fold) and a higher photothermal conversion efficiency (PCE; over 3-fold), respectively, benefiting from the extended π-conjugated donor-to-accepter (D-A) structure and the heavy atom effect. For tumor phototherapy using TPA-IBDP, TPA-IBDP was conjugated with a H2O2-responsive amphiphilic copolymer POEGMA10-b-[PBMA5-co-(PS-N3)2] to construct a multifunctional phototherapeutic BODIPY-based nanoplatform (PB). PB produced abundant singlet oxygen (1O2) and heat along with negligible fluorescence emission under near-infrared laser irradiation. Additionally, PB could generate a GSH-depletion scavenger (quinone methide, QM) after reacting with the abundant intracellular H2O2 in tumor for the cooperative enhancement of IRT-mediated phototherapy. We envision that this highly efficient multifunctional phototherapeutic nanoplatform cooperated by GSH-depletion could be a valuable paradigm for tumor treatments.
Collapse
Affiliation(s)
- Yucheng Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chao Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule Based Materials (State Key Laboratory Cultivation Base) and School of Chemistry and Materials Science, Anhui Normal University, No. 1 East Beijing Road, Wuhu 241000, Anhui, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule Based Materials (State Key Laboratory Cultivation Base) and School of Chemistry and Materials Science, Anhui Normal University, No. 1 East Beijing Road, Wuhu 241000, Anhui, China
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
31
|
Zhao Y, Xu C. DNA-Based Plasmonic Heterogeneous Nanostructures: Building, Optical Responses, and Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907880. [PMID: 32596873 DOI: 10.1002/adma.201907880] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
The integration of multiple functional nanoparticles into a specific architecture allows the precise manipulation of light for coherent electron oscillations. Plasmonic metals-based heterogeneous nanostructures are fabricated by using DNA as templates. This comprehensive review provides an overview of the controllable synthesis and self-assembly of heterogeneous nanostructures, and analyzes the effects of structural parameters on the regulation of optical responses. The potential applications and challenges of heterogeneous nanostructures in the fields of biosensors and bioanalysis, in vivo monitoring, and phototheranostics are discussed.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
32
|
Zheng P, Ding B, Li G. Polydopamine-Incorporated Nanoformulations for Biomedical Applications. Macromol Biosci 2020; 20:e2000228. [PMID: 32830435 DOI: 10.1002/mabi.202000228] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Indexed: 12/18/2022]
Abstract
Polydopamine (PDA), a pigment in natural melanin, has attracted considerable attention because of its excellent optical properties, extraordinary adhesion, and good biocompatibility, which make it a promising material for application in energy, environmental, and biomedical fields. In this review, PDA-incorporated nanoformulations are focused for biomedical applications such as drug delivery, bioimaging, and tumor therapy. First, the recent advances in PDA-incorporated nanoformulations for drug delivery are discussed. Further, their application in boimaging, such as fluorescence imaging, photothermal imaging, and photoacoustic imaging, is reviewed. Next, their therapeutic applications, including chemotherapy, photodynamic therapy, photothermal therapy, and synergistic therapy are discussed. Finally, other biomedical applications of PDA-incorporated nanoformulations such as biosensing and clinical diagnosis are briefly presented. Finally, the biomedical applications of PDA-incorporated nanoformulations along with their prospects are summarized.
Collapse
Affiliation(s)
- Pan Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
33
|
Hakamada M, Sakakibara S, Miyazawa N, Deguchi S, Mabuchi M. Antibacterial activity of ultrathin platinum islands on flat gold against Escherichia coli. Sci Rep 2020; 10:9594. [PMID: 32533026 PMCID: PMC7293303 DOI: 10.1038/s41598-020-66504-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/15/2020] [Indexed: 11/24/2022] Open
Abstract
Nanoporous Au exhibits high antibacterial activity (AA) without releasing reactive oxygen species or metal ions, instead its AA depends on the work function (WF) because cell walls are affected by peculiar electronic states at the surface. Based on this mechanism, a flat surface without nanostructure should show high AA if the WF of the surface is suitably tuned. To verify this, ultrathin Pt islands with high WF was fabricated on flat Au by underpotential deposition (UPD) of copper and subsequent redox replacement with Pt, and the AA of the Pt/Au substrate on Escherichia coli was evaluated. The Pt/Au substrate showed higher AA than Pt and Au surfaces, and a positive relationship between AA and WF was demonstrated. In addition, first principles calculations were performed to investigate the mechanism for the high WF of the Pt/Au substrate. The findings suggest that the high WF of the Pt/Au substrate is at least partly due to charge transfer from Au to Pt.
Collapse
Affiliation(s)
- Masataka Hakamada
- Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan.
| | - Susumu Sakakibara
- Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| | - Naoki Miyazawa
- Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| | - Soichiro Deguchi
- Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| | - Mamoru Mabuchi
- Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, 606-8501, Kyoto, Japan
| |
Collapse
|
34
|
Kumar A, Kumari N, Dubbu S, Kumar S, Kwon T, Koo JH, Lim J, Kim I, Cho Y, Rho J, Lee IS. Nanocatalosomes as Plasmonic Bilayer Shells with Interlayer Catalytic Nanospaces for Solar‐Light‐Induced Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Sateesh Dubbu
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Sumit Kumar
- Center for Soft and Living MatterInstitute for Basic Science (IBS) and Department of Biomedical EngineeringSchool of Life Sciences Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Jung Hun Koo
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Jongwon Lim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Inki Kim
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Yoon‐Kyoung Cho
- Center for Soft and Living MatterInstitute for Basic Science (IBS) and Department of Biomedical EngineeringSchool of Life Sciences Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Junsuk Rho
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| |
Collapse
|
35
|
Kumar A, Kumari N, Dubbu S, Kumar S, Kwon T, Koo JH, Lim J, Kim I, Cho YK, Rho J, Lee IS. Nanocatalosomes as Plasmonic Bilayer Shells with Interlayer Catalytic Nanospaces for Solar-Light-Induced Reactions. Angew Chem Int Ed Engl 2020; 59:9460-9469. [PMID: 32237185 DOI: 10.1002/anie.202001531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 12/19/2022]
Abstract
Interest and challenges remain in designing and synthesizing catalysts with nature-like complexity at few-nm scale to harness unprecedented functionalities by using sustainable solar light. We introduce "nanocatalosomes"-a bio-inspired bilayer-vesicular design of nanoreactor with metallic bilayer shell-in-shell structure, having numerous controllable confined cavities within few-nm interlayer space, customizable with different noble metals. The intershell-confined plasmonically coupled hot-nanospaces within the few-nm cavities play a pivotal role in harnessing catalytic effects for various organic transformations, as demonstrated by "acceptorless dehydrogenation", "Suzuki-Miyaura cross-coupling" and "alkynyl annulation" affording clean conversions and turnover frequencies (TOFs) at least one order of magnitude higher than state-of-the-art Au-nanorod-based plasmonic catalysts. This work paves the way towards next-generation nanoreactors for chemical transformations with solar energy.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sateesh Dubbu
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS) and Department of Biomedical Engineering, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jung Hun Koo
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jongwon Lim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Inki Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS) and Department of Biomedical Engineering, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
36
|
Jiang X, Wang Y, Xu D, Lin B, Yang F, Lv R. Lanthanide-Based Nanocomposites for Photothermal Therapy under Near-Infrared Laser: Relationship between Light and Heat, Biostability, and Reaction Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4033-4043. [PMID: 32188251 DOI: 10.1021/acs.langmuir.0c00343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this research, typical organic/inorganic photothermal therapy (PTT) agents were designed with a combination of upconversion luminescent (UCL) or near-infrared (NIR) II imaging rare-earth nanomaterials for photo-acoustic (PA)/UCL/NIR II imaging-guided PTT under NIR laser irradiation. The results show the following: (1) The PTT effect mainly comes from NIR absorption and partly from UCL light conversion. (2) Visible UCL emission is mainly quenched by NIR absorption of the coated PTT agent and partly quenched by visible absorption, indicating that excitation may play a more important role than in the UCL emission process. (3) The biostability of the composite might be decided by the synthesis reaction temperature. Among the five inorganic/organic nanocomposites, UCNP@MnO2 is the most suitable candidate for cancer diagnosis and treatment because of its stimuli-response ability to the micro-acid environment of tumor cells and highest biostability. The composites generate heat for PTT after entering the tumor cells, and then, the visible light emission gradually regains as MnO2 is reduced to colorless Mn2+ ions, thereby illuminating the cancer cells after the therapy.
Collapse
Affiliation(s)
- Xue Jiang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Danyang Xu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Fan Yang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| |
Collapse
|
37
|
Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: Working as "drug" carriers. Bioact Mater 2020; 5:522-541. [PMID: 32322763 PMCID: PMC7170807 DOI: 10.1016/j.bioactmat.2020.04.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inspired by the mechanism of mussel adhesion, polydopamine (PDA), a versatile polymer for surface modification has been discovered. Owing to its unique properties like extraordinary adhesiveness, excellent biocompatibility, mild synthesis requirements, as well as distinctive drug loading approach, strong photothermal conversion capacity and reactive oxygen species (ROS) scavenging facility, various PDA-modified nanoparticles have been desired as drug carriers. These nanoparticles with diverse nanostructures are exploited in multifunctions, consisting of targeting, imaging, chemical treatment (CT), photodynamic therapy (PDT), photothermal therapy (PTT), tissue regeneration ability, therefore have attracted great attentions in plenty biomedical applications. Herein, recent progress of PDA-modified nanoparticle drug carriers in cancer therapy, antibiosis, prevention of inflammation, theranostics, vaccine delivery and adjuvant, tissue repair and implant materials are reviewed, including preparation of PDA-modified nanoparticle drug carriers with various nanostructures and their drug loading strategies, basic roles of PDA surface modification, etc. The advantages of PDA modification in overcoming the existing limitations of cancer therapy, antibiosis, tissue repair and the developing trends in the future of PDA-modified nanoparticle drug carriers are also discussed. Multifunctional PDA-modified drug systems are introduced in terms of classification, synthesis and drug loading strategies. Basic roles of PDA surface modification in the drug systems are discussed. Biomedical applications and unique advantages of the PDA-modified nanoparticle working as drug carriers are illustrated. Challenges and perspectives for future development are proposed.
Collapse
Affiliation(s)
- Anting Jin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Yitong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Lingyong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| |
Collapse
|
38
|
Zhang Y, Yang L, Li W, Gai C, Hu B, Liu A. Tumor Microenvironment-Directed Multisensitive Nanorobotics for Synergistic Photothermal Therapy/Chemotherapy. ACS APPLIED BIO MATERIALS 2020; 3:3345-3353. [DOI: 10.1021/acsabm.0c00265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yang Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Lu Yang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Wentong Li
- Department of Pathology, School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Chengcheng Gai
- Department of Pathology, School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
- School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
39
|
Lu M, Qu A, Li S, Sun M, Xu L, Kuang H, Xu C. Mitochondria‐Targeting Plasmonic Spiky Nanorods Increase the Elimination of Aging Cells in Vivo. Angew Chem Int Ed Engl 2020; 59:8698-8705. [DOI: 10.1002/anie.202002576] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Meiru Lu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Aihua Qu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Si Li
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
40
|
Lu M, Qu A, Li S, Sun M, Xu L, Kuang H, Xu C. Mitochondria‐Targeting Plasmonic Spiky Nanorods Increase the Elimination of Aging Cells in Vivo. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meiru Lu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Aihua Qu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Si Li
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education State Key Lab of Food Science and Technology International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
41
|
Panfilova EV, Burov AM, Khlebtsov BN. Single-Stage Synthesis of Submicron Gold Particles. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Li S, Gu K, Wang H, Xu B, Li H, Shi X, Huang Z, Liu H. Degradable Holey Palladium Nanosheets with Highly Active 1D Nanoholes for Synergetic Phototherapy of Hypoxic Tumors. J Am Chem Soc 2020; 142:5649-5656. [DOI: 10.1021/jacs.9b12929] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic−Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Kai Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic−Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Hui Wang
- CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic−Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Huawei Li
- CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Xinghua Shi
- CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Zhijun Huang
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic−Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
43
|
Jiang L, Liu L, Lv F, Wang S, Ren X. Integration of Self‐Luminescence and Oxygen Self‐Supply: A Potential Photodynamic Therapy Strategy for Deep Tumor Treatment. Chempluschem 2020; 85:510-518. [DOI: 10.1002/cplu.202000083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Linye Jiang
- Department of Environmental Science and EngineeringCollege of Resources and Environmental SciencesChina Agricultural University Beijing 100193 P. R. China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Xueqin Ren
- Department of Environmental Science and EngineeringCollege of Resources and Environmental SciencesChina Agricultural University Beijing 100193 P. R. China
- Beijing Key Laboratory of Farmland SoilPollution Prevention and RemediationChina Agricultural University Beijing 100193 P. R. China
| |
Collapse
|
44
|
Li J, Liu L, Ai Y, Liu Y, Sun H, Liang Q. Self-Polymerized Dopamine-Decorated Au NPs and Coordinated with Fe-MOF as a Dual Binding Sites and Dual Signal-Amplifying Electrochemical Aptasensor for the Detection of CEA. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5500-5510. [PMID: 31939286 DOI: 10.1021/acsami.9b19161] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fabrication of functional electrochemical biosensor is a hot topic; however, precise and sensitive cancer detection in early clinical diagnosis is still a great challenge. Continuous efforts have been devoted to explore functional materials for this issue. In this work, we developed a dual binding sites and dual signal-amplifying electrochemical aptasensor of self-polymerized dopamine-decorated Au and coordinated with Fe-MOF (Au@PDA@Fe-MOF) for the detection of carcinoembryonic antigen (CEA). Remarkably, Au@PDA@Fe-MOF features high sensitivity, multiple active sites, good biocompatibility, and excellent selectivity, which is attributed to abundant -COOH in porous Fe-MOF and unsaturated Fe3+ sites on the surface of Fe-MOF as the active binding sites grafting more NH2-functionalized CEA-specific aptamer and redox PDA and Fe-MOF accelerating the movement of electrons for dual signal amplifying. Meanwhile, the electrochemical aptasensor shows favorable repeatability with 1.82% relative standard deviation (RSD) under five independent aptasensors and strong stability with only 3.3% degradation after 12 days of storage. In addition, the aptasensor has wide CEA detection range from 1 fg mL-1 to 1 μg mL-1 with a low detection limit of 0.33 fg mL-1 (S/N = 3). Furthermore, the aptasensor is feasible for accurate and quantitative detection of CEA in serum samples with RSD below 2.32%. The satisfying results demonstrate promising applications of the CEA aptasensor in practical sample analysis and lay an important foundation for other biomarker detection in early clinical diagnosis.
Collapse
Affiliation(s)
- Jifan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology , Tsinghua University , Beijing 100084 , People's Republic of China
- Department of Chemistry , Northeastern University , Shenyang 110819 , People's Republic of China
| | - Lei Liu
- Department of Chemistry , Northeastern University , Shenyang 110819 , People's Republic of China
| | - Yongjian Ai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Yang Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Hongbin Sun
- Department of Chemistry , Northeastern University , Shenyang 110819 , People's Republic of China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
45
|
Li G, Hu W, Zhao M, Zhao W, Li F, Liu S, Huang W, Zhao Q. Rational design of near-infrared platinum(ii)-acetylide conjugated polymers for photoacoustic imaging-guided synergistic phototherapy under 808 nm irradiation. J Mater Chem B 2020; 8:7356-7364. [DOI: 10.1039/d0tb01107j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed a novel near-infrared Pt-acetylide conjugated polymer CP3 with highly efficient photoconversion behaviors for synergistic cancer phototherapy.
Collapse
Affiliation(s)
- Guo Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Wenbo Hu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Menglong Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Weili Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Feiyang Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| |
Collapse
|
46
|
Li H, Zhao Y, Jia Y, Chen G, Peng J, Li J. pH-Responsive dopamine-based nanoparticles assembled via Schiff base bonds for synergistic anticancer therapy. Chem Commun (Camb) 2020; 56:13347-13350. [DOI: 10.1039/d0cc04656f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dopamine-based nanoparticles are constructed via Schiff base bonds to serve as pH-responsive drug nanocarriers for combined photodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Hong Li
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields
- College of Chemistry and Chemical Engineering
- Xi’an Shiyou University
- Xi’an 710065
- China
| | - Yuanyuan Zhao
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields
- College of Chemistry and Chemical Engineering
- Xi’an Shiyou University
- Xi’an 710065
- China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences
- CAS Key Lab of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Gang Chen
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields
- College of Chemistry and Chemical Engineering
- Xi’an Shiyou University
- Xi’an 710065
- China
| | - Junxia Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences
- CAS Key Lab of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
47
|
Wang Y, Gong N, Li Y, Lu Q, Wang X, Li J. Atomic-Level Nanorings (A-NRs) Therapeutic Agent for Photoacoustic Imaging and Photothermal/Photodynamic Therapy of Cancer. J Am Chem Soc 2019; 142:1735-1739. [DOI: 10.1021/jacs.9b11553] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yongji Wang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ningqiang Gong
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yujie Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Qichen Lu
- Department of Chemistry, Key Laboratory of Optoelectronics and Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Xun Wang
- Department of Chemistry, Key Laboratory of Optoelectronics and Molecular Engineering, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
48
|
Xing Y, Cai Z, Xu M, Ju W, Luo X, Hu Y, Liu X, Kang T, Wu P, Cai C, Zhu JJ. Raman observation of a molecular signaling pathway of apoptotic cells induced by photothermal therapy. Chem Sci 2019; 10:10900-10910. [PMID: 32190245 PMCID: PMC7066574 DOI: 10.1039/c9sc04389f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
Plasmonic nanoparticle (NP)-mediated photothermal therapy (PPTT) has been explored as a minimally invasive approach to cancer therapy and has progressed from concept to the early stage of clinical trials. Better understanding of the cellular and molecular response to PPTT is crucial for improvement of therapy efficacy and advancement of clinical application. However, the molecular mechanism underlying PPTT-induced apoptosis is still unclear and under dispute. In this work, we used nuclear-targeting Au nanostars (Au NSs) as both a photothermal agent to specifically induce apoptosis in cancer cells and as a surface enhanced Raman spectroscopy (SERS) probe to monitor the time-dependent SERS spectra of MCF-7 cells which are undergoing apoptosis. Through SERS spectra and their synchronous and asynchronous SERS correlation maps, the occurrence and dynamics of a cascade of molecular events have been investigated, and a molecular signaling pathway of PPTT-induced apoptosis, including release of cytochrome c, protein degradation, and DNA fragmentation, was revealed, which was also demonstrated by metabolomics, agarose gel electrophoresis, and western blot analysis, respectively. These results indicated that PPTT-induced apoptosis undergoes an intrinsic mitochondria-mediated apoptosis pathway. Combined with western blot results, this intrinsic mitochondria-mediated apoptosis pathway was further demonstrated to be initiated by a BH3-only protein, BID. This work is beneficial for not only improving the fundamental understanding of the molecular mechanism of apoptosis induced by PPTT but also for guiding the modulation of PPTT to drive forward its clinical application.
Collapse
Affiliation(s)
- Yingfang Xing
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , National and Local Joint Engineering Research Center of Biomedical Functional Materials , College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210097 , P. R. China . ;
| | - Zhewei Cai
- Department of Chemical and Biomolecular Engineering , Clarkson University , Potsdam , NY 13699 , USA
| | - Meijuan Xu
- Key Laboratory of Department of Clinical Pharmacology , Affiliated Hospital of Nanjing University of Chinese Medicine , China
| | - Wenzheng Ju
- Key Laboratory of Department of Clinical Pharmacology , Affiliated Hospital of Nanjing University of Chinese Medicine , China
| | - Xiaojun Luo
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , National and Local Joint Engineering Research Center of Biomedical Functional Materials , College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210097 , P. R. China . ;
| | - Yaojuan Hu
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , National and Local Joint Engineering Research Center of Biomedical Functional Materials , College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210097 , P. R. China . ;
| | - Xiaoyan Liu
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , National and Local Joint Engineering Research Center of Biomedical Functional Materials , College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210097 , P. R. China . ;
| | - Tuli Kang
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , National and Local Joint Engineering Research Center of Biomedical Functional Materials , College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210097 , P. R. China . ;
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , National and Local Joint Engineering Research Center of Biomedical Functional Materials , College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210097 , P. R. China . ;
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , National and Local Joint Engineering Research Center of Biomedical Functional Materials , College of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210097 , P. R. China . ;
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical for Life Science , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China .
| |
Collapse
|
49
|
Yan Y, Zhang K, Wang H, Liu W, Zhang Z, Liu J, Shi J. A fullerene based hybrid nanoparticle facilitates enhanced photodynamic therapy via changing light source and oxygen consumption. Colloids Surf B Biointerfaces 2019; 186:110700. [PMID: 31821968 DOI: 10.1016/j.colsurfb.2019.110700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 01/10/2023]
Abstract
Recently, fullerene (C60) has been widely used as a nano photosensitizer (PS) for tumor related photodynamic therapy (PDT). However, current PDT based on C60 is severely restricted by the visible light source (shallow tissue penetrating depth) and oxygen dependent (tumor hypoxia). Therefore, taking advantages of the surface plasmon resonance (SPR) effect of gold nanoparticles (GNPs) and "electronic sponge" property of C60, a C60 based hybrid nanostructured photosensitizer (C60@GNPs) with high light stability, near infrared light (NIR) excitation, and oxygen non-dependent properties was rational designed according to the mechanism of PDT. Compared with C60, after GNPs in-situ synthesis, the PDT mechanism of C60@GNPs changed from type II to type I, and the main product of PDT changed from singlet oxygen to hydroxyl radicals. Furthermore, C60@GNPs hybrid could efficiently generate hydroxyl radicals under NIR light excitation even in the hypoxia condition. These results suggest that C60@GNPs hybrid has a great potential for in vivo PDT applications.
Collapse
Affiliation(s)
- Yunwei Yan
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Kaixiang Zhang
- College of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Huiling Wang
- College of Pharmaceutical Sciences, Zhengzhou Railway Vocational and Technical College, Zhengzhou, People's Republic of China
| | - Wei Liu
- College of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhenzhong Zhang
- College of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Junjie Liu
- College of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.
| | - Jinjin Shi
- College of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
50
|
Ma H, Liu Z, Wei Y, Jiang L. Controlled morphology evolution of branched Au nanostructures and their shape-dependent catalytic and photo-thermal properties. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|