1
|
Huo Q, Meng T, Lu X, Li D. Multiphoton Excited Fluorescence Imaging over Metal-Organic Frameworks. Chembiochem 2025; 26:e202400782. [PMID: 39676052 DOI: 10.1002/cbic.202400782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/17/2024]
Abstract
Multiphoton excited fluorescence (MPEF) imaging has emerged as a powerful tool for visualizing biological processes with high spatial and temporal resolution. Metal-organic frameworks (MOFs), a class of porous materials composed of metal ions or clusters coordinated with organic ligands, have recently gained attention for their unique optical properties and potential applications in MPEF imaging. This review provides a comprehensive overview of the design, synthesis, and applications of multiphoton excited fluorescence imaging using MOFs. We discuss the principles behind the fluorescence behavior of MOFs, explore strategies to enhance their photophysical properties, and showcase their applications in bioimaging. Additionally, we address the current challenges and future prospects in this rapidly evolving field, highlighting the potential of multiphoton excited fluorescence imaging by MOFs for advancing our understanding of complex biological processes.
Collapse
Affiliation(s)
- Qingwei Huo
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Tong Meng
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xin Lu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
2
|
Lu X, Huo Q, Li J, Li B, Yu X, Sun X, Cheng L, Zhou H, Tian Y, Li D. Elevating Nonlinear Optical Response Through D-Electron Modulation in Metal-Organic Frameworks. Chemistry 2025; 31:e202403564. [PMID: 39445652 DOI: 10.1002/chem.202403564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 10/25/2024]
Abstract
Electronic structure and excited state behavior is of pronounced influence on regulation of nonlinear optical (NLO) response. Herein, a serials of transition metal ions bearing different d-electron numbers were in situ coordinated within porphyrinic metal-organic frameworks (MOFs), creating NLO-responsive M-metal (metal=Fe, Co, Ni, Cu, and Zn) frameworks. It demonstrated that the NLO properties can be optimized with the increased occupancy of the d-shell, which enhances the degree of delocalization. Specifically, the full-filled (d10) electron configuration of Zn2+ stabilizes the electronic structure, combination with π-π* local excitation character of M-Zn, promoting charge transfer process and resulting in outstanding NLO properties. Moreover, parameters related to the nonlinear process (β, n2, Imχ(3), Reχ(3) and χ(3)) of M-Zn are calculated to be higher than those of other materials, consistent with theoretical calculations. This work paves the way for NLO modulation based on electronic analysis and provides a promising approach for constructing high-performance NLO materials.
Collapse
Affiliation(s)
- Xin Lu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Qingwei Huo
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Jiaqi Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Bo Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xinlei Yu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xianshun Sun
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Longjiu Cheng
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Hongping Zhou
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Yupeng Tian
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
3
|
Yan X, Jing P, Zhuang Z, Zhang J, Chen H, Xia T, Jiang K. Co-delivery of vitamin and amino acid within MOFs for oxidative stress-based tumor gas therapy. J Colloid Interface Sci 2024; 680:518-528. [PMID: 39579419 DOI: 10.1016/j.jcis.2024.11.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
As an alternative to chemotherapy, emerging gas therapy is considered a "green" treatment due to its minimal side effects. However, even typical gas molecules like nitric oxide (NO) face challenges such as a very short half-life (1.5-6 min), poor targeting, and limited therapeutic effects. This study employs a one-pot method to simultaneously encapsulate the NO donor L-arginine (L-Arg) and the H2O2 precursor Vitamin K3 (VK3) into the pores of zeolitic imidazolate framework-8 (ZIF-8), achieving their co-delivery to tumor sites to address these issues. Furthermore, ZIF-8 is functionalized with hyaluronic acid (HA) to impart active targeting properties to tumor tissues. In the acidic tumor microenvironment, pH-sensitive ZIF-8 degrades, releasing VK3 and L-Arg. Under the action of the NAD(P)H quinone oxidoreductase-1 (NQO1) enzyme, VK3 generates H2O2, increasing oxidative stress levels in the tumor microenvironment, and reacts with L-Arg to produce NO, thereby achieving tumor oxidative stress-based gas therapy. Both in vitro and in vivo experiments showed good tumor treatment effects, with a tumor inhibition rate of up to 90.5 % and minimal impact on normal tissues and organs. This approach demonstrates efficient loading, controlled release, and significant anti-tumor performance, offering new insights into gas and reactive oxygen species (ROS) synergistic therapy.
Collapse
Affiliation(s)
- Xueping Yan
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Peng Jing
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Zitian Zhuang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jianing Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Haiming Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Tifeng Xia
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, PR China.
| | - Ke Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
4
|
Gong L, Chen L, Lin Q, Wang L, Zhang Z, Ye Y, Chen B. Nanoscale Metal-Organic Frameworks as a Photoluminescent Platform for Bioimaging and Biosensing Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402641. [PMID: 39011737 DOI: 10.1002/smll.202402641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Indexed: 07/17/2024]
Abstract
The tracking of nanomedicines in their concentration and location inside living systems has a pivotal effect on the understanding of the biological processes, early-stage diagnosis, and therapeutic monitoring of diseases. Nanoscale metal-organic frameworks (nano MOFs) possess high surface areas, definite structure, regulated optical properties, rich functionalized sites, and good biocompatibility that allow them to excel in a wide range of biomedical applications. Controllable syntheses and functionalization endow nano MOFs with better properties as imaging agents and sensing units for the diagnosis and treatment of diseases. This minireview summarizes the tunable synthesis strategies of nano MOFs with controllable size, shape, and regulated luminescent performance, and pinpoints their recent advanced applications as optical elements in bioimaging and biosensing. The current limitations and future development directions of nano MOF-contained materials in bioimaging and biosensing applications are also discussed, aiming to expand the biological applications of nano MOF-based nanomedicine and facilitate their production or clinical translation.
Collapse
Affiliation(s)
- Lingshan Gong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Lixiang Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Quanjie Lin
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362046, P. R. China
| | - Lihua Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| |
Collapse
|
5
|
Wen C, Li RS, Guan Y, Chang X, Li N. A Two-Photon-Active Zr-Based Metal-Organic Framework-Based Orthogonal Nanoprobe for Recognition of Cellular Senescence. Anal Chem 2024; 96:16170-16178. [PMID: 39358945 DOI: 10.1021/acs.analchem.4c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A luminescent nanoprobe capable of orthogonal sensing of two independent events is highly significant for unbiased disease-related detection such as the detection of senescent cells. Moreover, it is invaluable that the nanoprobe possesses a two-photon excitable characteristic that is highly suitable for imaging living cells and tissues. Herein, we present a two-photon-excitable multiluminescent orthogonal-sensing nanoprobe (OS nanoprobe) capable of detecting both pH elevation and β-galactosidase (β-gal) overexpression in senescent cells. In the design, Zr-based dual-emissive metal-organic frameworks prepared from two mixed amino linkers, referred to as NH2-MU, were used as the component for the ratiometric sensing of pH; additionally, fluorogenic resorufin-β-d-galactopyranoside, linked to the NH2-MU framework, enables β-gal detection. In the OS nanoprobe, the signals for pH and β-gal sensing remain independent while maintaining high colocalization. The two-photon excitable organic linkers of NH2-MU impart the OS nanoprobe with a bioimaging capability, allowing for the differentiation of senescent human foreskin fibroblast (HFF) cells from younger HFF cells or LacZ positive cells with the 800 nm laser excitation. This study marks the first instance of achieving the multiplexed orthogonal fluorescent sensing of cellular senescence using a two-photon excitation strategy, suggesting the potential of using versatile metal-organic framework (MOFs)-based fluorophores to realize the orthogonal multiplexing of disease-related biomarkers through multiphoton excitation.
Collapse
Affiliation(s)
- Cong Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yan Guan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
6
|
Sun H, Zhang Q, Meng L, Wang Z, Fan Y, Mayor M, Pan M, Su CY. Thermal control over phosphorescence or thermally activated delayed fluorescence in a metal-organic framework. Chem Sci 2024; 15:8905-8912. [PMID: 38873057 PMCID: PMC11168186 DOI: 10.1039/d4sc02030h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
By integrating a tailor-made donor-acceptor (D-A) ligand in a metal-organic framework (MOF), a material with unprecedented features emerges. The ligand combines a pair of cyano groups as acceptors with four sulfanylphenyls as donors, which expose each a carboxylic acid as coordination sites. Upon treatment with zinc nitrate in a solvothermal synthesis, the MOF is obtained. The new material combines temperature-assisted reverse intersystem crossing (RISC) and intersystem crossing (ISC). As these two mechanisms are active in different temperature windows, thermal switching between their characteristic emission wavelengths is observed for this material. The two mechanisms can be activated by both, one-photon absorption (OPA) and two-photon absorption (TPA) resulting in a large excitement window ranging from ultraviolet (UV) over visible light (VL) to near infrared (NIR). Furthermore, the emission features of the material are pH sensitive, such that its application potential is demonstrated in a first ammonia sensor.
Collapse
Affiliation(s)
- Huili Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Qiangsheng Zhang
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University Haikou P. R. China
| | - Liuli Meng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhonghao Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Yanan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Marcel Mayor
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
- Department of Chemistry, University of Basel Switzerland
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Germany
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
7
|
Han C, Kundu BK, Liang Y, Sun Y. Near-Infrared Light-Driven Photocatalysis with an Emphasis on Two-Photon Excitation: Concepts, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307759. [PMID: 37703435 DOI: 10.1002/adma.202307759] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Efficient utilization of sunlight in photocatalysis is widely recognized as a promising solution for addressing the growing energy demand and environmental issues resulting from fossil fuel consumption. Recently, there have been significant developments in various near-infrared (NIR) light-harvesting systems for artificial photosynthesis and photocatalytic environmental remediation. This review provides an overview of the most recent advancements in the utilization of NIR light through the creation of novel nanostructured materials and molecular photosensitizers, as well as modulating strategies to enhance the photocatalytic processes. A special focus is given to the emerging two-photon excitation NIR photocatalysis. The unique features and limitations of different systems are critically evaluated. In particular, it highlights the advantages of utilizing NIR light and two-photon excitation compared to UV-visible irradiation and one-photon excitation. Ongoing challenges and potential solutions for the future exploration of NIR light-responsive materials are also discussed.
Collapse
Affiliation(s)
- Chuang Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Yujun Liang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
8
|
Li H, Yang Y, Jing X, He C, Duan C. Mixed-ligand metal-organic frameworks as an effective photocatalyst for selective oxidation reaction. Chem Commun (Camb) 2023; 59:11220-11223. [PMID: 37655546 DOI: 10.1039/d3cc02839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
By incorporating tetrakis(4-carboxyphenyl)porphyrin and bis(3,5-dicarboxyphenyl)pyridine into one single metal-organic framework (MOF), a multifunctional mixed-ligand Zn-MIX with large pores was obtained. Under visible-light irradiation, Zn-MIX exhibits high photocatalytic activity for the oxidation of amines and sulfides.
Collapse
Affiliation(s)
- Hanning Li
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Yang Yang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Xu Jing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Cheng He
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Chunying Duan
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
9
|
Wang Z, Dai B, Su Y, Hu H, He X, Chen J, Wang C. Why Ligand Doping Increases the Fluorescence of an Anthracene-Based Metal-Organic Framework. Inorg Chem 2023. [PMID: 37466947 DOI: 10.1021/acs.inorgchem.3c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Metal-organic frameworks (MOFs) built from fluorescent ligands frequently exhibit enhanced fluorescence when doped with inert ligands. This study focuses on a MOF of the UiO-68 structure, which is built from a fluorescent dibenzoate-anthracene ligand doped with a dibenzoate-benzene ligand. Our investigation aims to understand the mechanism behind the doping-enhanced emission of this MOF. We rule out several possible mechanisms, including exciton coupling, electron transfer between ligand and metal center, and ligand intersystem crossing induced by the metal center. Inhibition of the interligand charge transfer is considered a possible way to enhance emission. Furthermore, we propose that the conformational change of the anthracene-based ligand in the MOF cavity is also a way for enhancement. Our molecular dynamics simulations of the MOF structure filled with solvents reveal that the steric crowding in the cavity induces a conformational change at different doping levels, affecting the rate of intersystem crossing of the ligand.
Collapse
Affiliation(s)
- Zhiye Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Bingling Dai
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yuming Su
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Huihui Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xinru He
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jiawei Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Cheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| |
Collapse
|
10
|
Xu Y, Xiong H, Zhang B, Lee I, Xie J, Li M, Zhang H, Seung Kim J. Photodynamic Alzheimer’s disease therapy: From molecular catalysis to photo-nanomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
de Wergifosse M, Beaujean P, Grimme S. Ultrafast Evaluation of Two-Photon Absorption with Simplified Time-Dependent Density Functional Theory. J Phys Chem A 2022; 126:7534-7547. [PMID: 36201255 DOI: 10.1021/acs.jpca.2c02395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work presents the theoretical background to evaluate two-photon absorption (2PA) cross-sections in the framework of simplified time-dependent density functional theory (sTD-DFT). Our new implementation allows the ultrafast evaluation of 2PA cross-sections for large molecules based on a regular DFT ground-state determinant as well as a variant employing our tight-binding sTD-DFT-xTX flavor for very large systems. The method is benchmarked against higher-level calculations for trans-stilbene and typical fluorescent protein chromophores. For eGFP, a quadrupolar chromophore and its branched version, the flavine mono-nucleotide, and the iLOV protein, we compare sTD-DFT 2PA spectra to experimental ones. This includes extension and testing of our all-atom quantum chemistry methodology for the evaluation of 2PA for a system of ∼2000 atoms, providing striking agreement with the experimental spectrum.
Collapse
Affiliation(s)
- Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115Bonn, Germany
| | - Pierre Beaujean
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000Namur, Belgium
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115Bonn, Germany
| |
Collapse
|
12
|
Fu J, Zhou S, Wu X, Tang S, Zhao P, Tang K, Chen Y, Yang Z, Zhang Z, Chen H. Down/up-conversion dual-mode ratiometric fluorescence imprinted sensor embedded with metal-organic frameworks for dual-channel multi-emission multiplexed visual detection of thiamphenicol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119762. [PMID: 35835275 DOI: 10.1016/j.envpol.2022.119762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The establishment of a fluorescence sensing system for sensitive and selective visual detection of trace antibiotics is of great significance to food safety and human health risk assessment. A simple and rapid one-pot strategy was developed successfully to synthesize a down/up-conversion dual-excitation multi-emission fluorescence imprinted sensor for dual-channel thiamphenicol (TAP) detection. In this strategy, the metal-organic frameworks were in situ incorporated into the fluorescence imprinted sensor, guiding the coordination induced emission of abiotic carbon dots and signal-amplification effect of fluorescence sensing. Under dual-excitation (370 nm and 780 nm), the fluorescence imprinted sensor exhibited a dual-channel fluorescence response toward TAP with two-part linear ranges of 5.0 nM-6.0 μM and 6.0 μM-26.0 μM. Significantly, the fluorescence color ranged from blue to purple to red can be observed with the naked eye. The results of the dual-channel TAP determination in actual samples by the fluorescence imprinted sensor indicated that the fluorescence imprinted sensor provided a sensitive, selective, and multiplexed visual detection of TAP in complex sample.
Collapse
Affiliation(s)
- Jinli Fu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Shu Zhou
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Xiaodan Wu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Sisi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Pengfei Zhao
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Kangling Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Yu Chen
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Zhaoxia Yang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China; School of Pharmaceutical Sciences, Jishou University, Jishou, 416000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
| | - Hongjun Chen
- School of Pharmaceutical Sciences, Jishou University, Jishou, 416000, PR China
| |
Collapse
|
13
|
Zhang M, Liu P, Dang R, Zhang P, Cui H, Zhang L, Jiang G, Wang J, Wang M, Sun T, Wang M, Qin G, Tang Y, Wang S. MOF Pillaring Method: Ligand-to-Ligand and Axial-to-Axial Cross-Linking of "Paddlewheels". Inorg Chem 2022; 61:12356-12362. [PMID: 35878315 DOI: 10.1021/acs.inorgchem.2c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By shortening the previous shortest tetracarboxylate ligand, the first ligand-to-ligand and axial-to-axial pillaring method was realized in the prototype MOF NTUniv-56 (NTUniv = Nantong University), which exhibit a rare (2,4,6)-connected net with a new topology and interesting gas adsorption performance.
Collapse
Affiliation(s)
- Mingxing Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, China
| | - Penghui Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, China
| | - Rui Dang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, China
| | - Peipei Zhang
- School of Sciences, Nantong University, Nantong 226019, Jiangsu, China
| | - Huihui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, China
| | - Guomin Jiang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, China
| | - Miao Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, China
| | - Tongming Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, China
| | - Minmin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, China
| | - Guoping Qin
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, China
| | - Su Wang
- School of Sciences, Nantong University, Nantong 226019, Jiangsu, China
| |
Collapse
|
14
|
Gong Y, Bi X, Chen N, Forconi M, Kuthirummal N, Teklu A, Gao B, Koenemann J, Harris N, Brennan C, Thomas M, Barnes T, Hu M. Significant Enhancement of Two-Photon Excited Fluorescence in Water-Soluble Triphenylamine-Based All-Organic Compounds. J Phys Chem B 2022; 126:5513-5522. [PMID: 35830467 DOI: 10.1021/acs.jpcb.2c03514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding water-soluble and environmentally friendly two-photon absorption (TPA) molecules benefits the design of superior organic complexes for biomedical, illumination, and display applications. In this work, we designed two triphenylamine-based all-organic compounds and explored the mechanism of enhanced TP fluorescence in water solutions for potential applications. Experimentally, we showed that adding protein into our TPA molecule solution can drastically boost the TP fluorescence. Numerical simulations reveal that the TPA molecules prefer to dock inside the protein complex. We hypothesize that the interaction between our triphenylamine-based all-organic compounds and water molecules lead to non-radiative decay processes, which prevent strong TP fluorescence in the water solution. Therefore, the protection by, for example, protein molecules from such interactions can be a universal strategy for superior functioning of organic TPA molecules. Further experiments and numerical simulations support our hypothesis. The present study may facilitate the design of superior water-soluble and environmentally friendly superior organic complexes.
Collapse
Affiliation(s)
- Yu Gong
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, South Carolina 29424, United States
| | - Xiangdong Bi
- Department of Physical Sciences, Charleston Southern University, 9200 University Blvd, Charlest on, South Carolina 29485, United States
| | - Nikki Chen
- Department of Chemistry and Biochemistry, College of Charleston, 66 George Street, Charleston, South Carolina 29424, United States
| | - Marcello Forconi
- Department of Chemistry and Biochemistry, College of Charleston, 66 George Street, Charleston, South Carolina 29424, United States
| | - Narayanan Kuthirummal
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, South Carolina 29424, United States
| | - Alem Teklu
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, South Carolina 29424, United States
| | - Bo Gao
- Department of Physics and Astronomy, Hunter College, City University of New York, New York, New York 10065, United States
| | - Jacob Koenemann
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, South Carolina 29424, United States
| | - Nico Harris
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, South Carolina 29424, United States
| | - Christian Brennan
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, South Carolina 29424, United States
| | - Marisa Thomas
- Department of Physical Sciences, Charleston Southern University, 9200 University Blvd, Charlest on, South Carolina 29485, United States
| | - Taylor Barnes
- Department of Physical Sciences, Charleston Southern University, 9200 University Blvd, Charlest on, South Carolina 29485, United States
| | - Ming Hu
- Department of Mechanical Engineering, University of South Carolina, 541 Main Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
15
|
Miao P, Hao M, Li C, Wang W, Ge S, Yang X, Geng B, Ding B, Zhang J, Yan M. Integrating Ti 3C 2/MgIn 2S 4 heterojunction with a controlled release strategy for split-type photoelectrochemical sensing of miRNA-21. Anal Chim Acta 2022; 1215:339990. [PMID: 35680338 DOI: 10.1016/j.aca.2022.339990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/29/2022]
Abstract
The harsh operating conditions and time-consuming fabrication process of the photoelectrode modification process have limited the potential applications of photoelectrochemical (PEC) sensors. To overcome these drawbacks, this study introduced a unique split-type PEC biosensor for microRNA-21 (miRNA-21) detection. Specifically, a Ti3C2/MgIn2S4 heterojunction was adopted as the photosensitive material, and a target-controlled glucose release system, comprising a multifunctional porphyrin-based metal-organic framework (PCN-224), was used for signal amplification. The Ti3C2/MgIn2S4 heterojunction effectively separated the photogenerated electrons and holes, and improved the photoelectric conversion efficiency, offering a strong initial photocurrent signal during PEC biosensing. Meanwhile, the porous PCN-224 acted as a nimble nanocontainer that encapsulated glucose using a capture probe (CP). In the presence of miRNA-21, the CP formed a CP-miRNA-21 complex and then detached from PCN-224, controllably releasing the trapped glucose. The oxidization of glucose by glucose oxidase resulted in hydrogen peroxide generation, which acted as a scavenger for the holes generated on the surface of Ti3C2/MgIn2S4, and significantly enhanced the photocurrent response under visible light irradiation. Finally, the sensor exhibited good performance for miRNA-21 detection with a low detection limit (0.17 fM) and wide linearity range (0.5 fM-1.0 nM). Thus, the proposed Ti3C2/MgIn2S4-based split-type PEC sensor is a promising tool for sensitive and accurate detection of miRNA-21 and provides an innovative basis for the preparation of other high-performance sensors.
Collapse
Affiliation(s)
- Pei Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Mengjiao Hao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Chengfang Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wenshou Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, PR China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Bing Geng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, 250022, PR China
| | - Biyan Ding
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
16
|
Abstract
Laser interference patterning on top of a thin film and inside a crystal is a powerful tool today to create the desired patterns for optical data processing. Here, we demonstrate reversible and irreversible laser interference patterning on a metal-organic framework (MOF) thin film through the water desorption and thermal decomposition processes, respectively. The irreversible interference pattern with a period of the strips of up to 5 µm has been realized, and its morphology has been characterized using confocal Raman and reflection spectroscopy as well as atomic force microscopy. We revealed that reducing the distance between the interference maxima from 10.5 to a record of 5 µm for MOFs yields a 10-fold increase in the surface roughness of the irreversible pattern; on the other hand, the reversible laser pattern provides a completely non-destructive effect of variable optical contrast. The experimental results obtained open up prospects for the use of MOF crystals as photosensitive materials in the template drawing of the desired patterns for different application scopes.
Collapse
|
17
|
Fu J, Zhou S, Tang S, Wu X, Zhao P, Tang K, Chen Y, Yang Z, Zhang Z. Imparting down/up-conversion dual channels fluorescence to luminescence metal-organic frameworks by carbon dots-induced for fluorescence sensing. Talanta 2022; 242:123283. [DOI: 10.1016/j.talanta.2022.123283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
18
|
Zhang Y, Su Y, Zhao Y, Wang Z, Wang C. Two-Photon 3D Printing in Metal-Organic Framework Single Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200514. [PMID: 35481614 DOI: 10.1002/smll.202200514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Two-photon polymerization (TPP) is a micro/nano-fabrication technology for additive manufacturing, enabling 3D printing of polymeric materials using ultrafast laser pulses. In this work, two-photon polymerization is realized inside a metal-organic framework (MOF) crystal. Intricate structures are built in the porous crystal to create a microstructure-in-crystal hybrid. Furthermore, the MOF can be removed by acid treatment to release the printed structure. The two-photon polymerization inside the crystal has the potential for MOF sensing device fabrication and data storage applications. In the future development, printing different materials in the same MOF crystal for creating functional 3D devices is hoped.
Collapse
Affiliation(s)
- Yusheng Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuming Su
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yi Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhiye Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Cheng Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
19
|
Zheng L, Wei C, Zhou H, Sun F, Gao A, Wang D, Liu Y. Mid-infrared optical switches enabled by metal-organic frameworks for compact high-power nanosecond laser sources at 3 µm. OPTICS EXPRESS 2022; 30:12409-12419. [PMID: 35472877 DOI: 10.1364/oe.455854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Pulsed lasers operating in the mid-infrared are of great importance for numerous applications in spectroscopy, medical surgery, laser processing, and communications. In spite of recent advances with mid-infrared gain platforms, the lack of a capable pulse generation mechanism hinders the development of compact mid-infrared pulsed laser source. Here we show that MIL-68(Al) and MIL-68(Fe), which are aluminum- and iron- based metal-organic frameworks (MOFs) with ordered atoms distribution and periodic mesoporous structure, constitute exceptional optical switches for the mid-infrared. We fabricated the MIL-68(Al) and MIL-68(Fe) via hydrothermal method and prepared reflection-type MIL-68(Al)- and MIL-68(Fe)- saturable absorber mirrors (SAMs). By employing the as-prepared SAMs in the laser cavities, we achieved high-power nanosecond Q-switched fiber lasers at 2.8 µm. Especially, the average output power and pulse duration of the MIL-68(Al) Q-switched fiber laser reached 809.1 mW and 567 ns, respectively. To the best of our knowledge, this is the first time to demonstrate that MIL-68(M) can be efficient optical switches for 3-µm mid-IR laser pulses generation. Our findings reveal that MIL-68(M) is promising saturable absorber for compact and high-performance mid-infrared pulsed lasers.
Collapse
|
20
|
Zhou X, Li S, Mao A, Wang Q, Yang J, Zheng J, Wen N, Zhan H, Zheng YY, Wei Y. Novel Binary Ni-Based Mixed Metal-Organic Framework Nanosheets Materials and Their High Optical Power Limiting. ACS OMEGA 2022; 7:10429-10437. [PMID: 35382312 PMCID: PMC8973087 DOI: 10.1021/acsomega.1c07196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
With the rapid advance of laser technology in the photonicera, damage to precision optical instruments caused by exposure to sudden intense laser pulses has stimulated the search for effective optical power limiting materials exhibiting good dispersion, fast response speed, and good visible light transparency. In this study, novel binary Ni-based mixed MOF NSs (M = Mn, Zn, Co, Cd, Fe) were obtained, making the electronic transition more selective and changing the band gap to obtain an excellent reverse saturation absorption signal. The theoretical calculation results show that with the doping of the Fe element, the band gap of Ni-MOF NSs decreases from 3.12 to 0.66 eV of Ni-Fe-MOF NSs, indicating that the doping of the Fe element has a positive effect on the reverse saturated absorption. The experimental results prove that the optical limiting threshold of Ni-Fe-MOF NSs is better than the GNSs, indicating that the Ni-Fe-MOF NSs have a broad application prospect in the field of nonlinear optics and photonics.
Collapse
Affiliation(s)
- Xin Zhou
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou, Fujian 350108, P. R. China
| | - Shuangshuang Li
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou, Fujian 350108, P. R. China
| | - Aijiao Mao
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou, Fujian 350108, P. R. China
| | - Qi Wang
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou, Fujian 350108, P. R. China
| | - Jiachao Yang
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou, Fujian 350108, P. R. China
| | - Jingying Zheng
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou, Fujian 350108, P. R. China
| | - Na Wen
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou, Fujian 350108, P. R. China
| | - Hongbing Zhan
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou, Fujian 350108, P. R. China
| | - Yu-Ying Zheng
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou, Fujian 350108, P. R. China
| | - Yen Wei
- Department
of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
21
|
Liu N, Chen Z, Fan W, Su J, Lin T, Xiao S, Meng J, He J, Vittal JJ, Jiang J. Highly Efficient Multiphoton Absorption of Zinc‐AIEgen Metal–Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naifang Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Zhihui Chen
- Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University Changsha Hunan 410083 China
| | - Wenxuan Fan
- Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University Changsha Hunan 410083 China
| | - Jie Su
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Tingting Lin
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Innnovis, Singapore 138634 Singapore
| | - Si Xiao
- Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University Changsha Hunan 410083 China
| | - Jianqiao Meng
- Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University Changsha Hunan 410083 China
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices School of Physics and Electronics Central South University Changsha Hunan 410083 China
| | - Jagadese J. Vittal
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
22
|
Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Liu N, Chen Z, Fan W, Su J, Lin T, Xiao S, Meng J, He J, Vittal JJ, Jiang J. Highly Efficient Multiphoton Absorption of Zn-AIEgen Frameworks. Angew Chem Int Ed Engl 2021; 61:e202115205. [PMID: 34962680 DOI: 10.1002/anie.202115205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 11/07/2022]
Abstract
A series of luminescent frameworks were synthesized from the selective combination of AIE-linker tetra-(4-carboxylphenyl)ethylene (H 4 TCPE) and Zn 2+ . Complex 1 was formed by the close packing of Zn-TCPE hinge, and isostructural complexes 2 - 5 were constructed by the linkage of Zn-TCPE layer and pillar ligand. These complexes exhibit highly efficient multiphoton excited photoluminescence (MEPL) concomitant third-harmonic generation (THG). Interestingly, multiphoton apparent parameters of 1 are far superior to some excellent multiphoton emission materials, even the perovskite nanocrystal. The incorporation of pillar linkers slows down the charge transfer between layers of Zn-TCPE, and the aromatic core of pillar linkers has a great influence on the MEA performance of corresponding frameworks. The unprecedented structural and optical tuning of high performance MPA crystalline materials provides efficient suggestion for the design of next generation multiphoton absorption materials.
Collapse
Affiliation(s)
- Naifang Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhihui Chen
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Wenxuan Fan
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Jie Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tingting Lin
- Institute of Materials Research and Engineering A*STAR, 2 Fusionopolis Way, Innnovis, Singapore, 138634, Singapore
| | - Si Xiao
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Jianqiao Meng
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Jun He
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Jagadese J Vittal
- Department of Chemistry, National University of Singapore 3, Science Drive 3, Singapore, 117543, Singapore
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
24
|
Dutta A, Pan Y, Liu JQ, Kumar A. Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214074] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Weng QY, Zhao YL, Li JM, Ouyang M. Construction of Two Stable Co(II)-Based Hydrogen-Bonded Organic Frameworks as a Luminescent Probe for Recognition of Fe 3+ and Cr 2O 72- in H 2O. Molecules 2021; 26:5955. [PMID: 34641498 PMCID: PMC8513017 DOI: 10.3390/molecules26195955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
A pair of cobalt(II)-based hydrogen-bonded organic frameworks (HOFs), [Co(pca)2(bmimb)]n (1) and [Co2(pca)4(bimb)2] (2), where Hpca = p-chlorobenzoic acid, bmimb = 1,3-bis((2-methylimidazol-1-yl)methyl)benzene, and bimb = 1,4-bis(imidazol-1-ylmethyl)benzene were hydrothermally synthesized and characterized through infrared spectroscopy (IR), elemental and thermal analysis (EA), power X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD) analyses. X-ray diffraction structural analysis revealed that 1 has a one-dimensional (1D) infinite chain network through the deprotonated pca- monodentate chelation and with a μ2-bmimb bridge Co(II) atom, and 2 is a binuclear Co(II) complex construction with a pair of symmetry-related pca- and bimb ligands. For both 1 and 2, each cobalt atom has four coordinated twisted tetrahedral configurations with a N2O2 donor set. Then, 1 and 2 are further extended into three-dimensional (3D) or two-dimensional (2D) hydrogen-bonded organic frameworks through C-H···Cl interactions. Topologically, HOFs 1 and 2 can be simplified as a 4-connected qtz topology with a Schläfli symbol {64·82} and a 4-connected sql topology with a Schläfli symbol {44·62}, respectively. The fluorescent sensing application of 1 was investigated; 1 exhibits high sensitivity recognition for Fe3+ (Ksv: 10970 M-1 and detection limit: 19 μM) and Cr2O72- (Ksv: 12960 M-1 and detection limit: 20 μM). This work provides a feasible detection platform of HOFs for highly sensitive discrimination of Fe3+ and Cr2O72- in aqueous media.
Collapse
Affiliation(s)
- Qi-Ying Weng
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China; (Q.-Y.W.); (Y.-L.Z.)
| | - Ya-Li Zhao
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China; (Q.-Y.W.); (Y.-L.Z.)
- College of International Studies, Beibu Gulf University, Qinzhou 535011, China
| | - Jia-Ming Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China; (Q.-Y.W.); (Y.-L.Z.)
| | - Miao Ouyang
- School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China
| |
Collapse
|
26
|
Huang X, Yu S, Lin W, Wang Y, He Q, Zheng J, Zhu H, Chen J. A biocompatible Y-based metal-organic framework based on nitrogen heterocycle as a pH-responsive oral drug carrier. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Fan M, Chen G, Xiang Y, Li J, Yu X, Zhang W, Long X, Xu L, Wu J, Xu Z, Zhang Q. Anthrathiadiazole Derivatives: Synthesis, Physical Properties and Two-photon Absorption. Chemistry 2021; 27:10898-10902. [PMID: 33780036 DOI: 10.1002/chem.202100307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/07/2022]
Abstract
Anthrathiadiazole is a key synthon for the construction of large azaacenes, however, the attachment of different substituents onto the skeleton of anthrathiadiazole is difficult but highly desirable because it could be easy to enrich the structures of azaacenes. Here, it is demonstrated that anthrathiadiazole derivatives with -Br, -CN, and -OCH3 groups could be easily constructed through a simple [4+2] cycloaddition reaction between a,a,a',a'-tetrabromo-o-xylenes derivatives and benzo[c][1,2,5]thiadiazole-4,7-dione. The structures of the as-prepared compounds with different substituents were carefully characterized. Moreover, the basic physical properties of the as-prepared anthrathiadiazole derivatives were fully investigated, where the cyano-substituted derivative (BTH-CN) has the highest stability and the methoxy-substituted derivative (BTH-OCH3 ) is easy to be oxidized. Moreover, the two-photon absorption (TPA) characteristics of different anthrathiadiazoles are also studied by using the femtosecond Z-scan technique. The results show that the fused anthrathiadiazole skeletons possess large TPA cross-section values δ2 in the range of 3000-5000 GM, where the nature, position and strength of the substituted groups have strong effect on these values.
Collapse
Affiliation(s)
- Mingxuan Fan
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Guangsheng Chen
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Yu Xiang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Xianglin Yu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Wenying Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, P. R. China
| | - Xueting Long
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, P. R. China
| | - Liang Xu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, P. R. China
| | - Jinjun Wu
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Ze Xu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hongkong
| |
Collapse
|
28
|
Feng P, Yang X, Feng X, Zhao G, Li X, Cao J, Tang Y, Yan CH. Highly Stable Perovskite Quantum Dots Modified by Europium Complex for Dual-Responsive Optical Encoding. ACS NANO 2021; 15:6266-6275. [PMID: 33630564 DOI: 10.1021/acsnano.0c09228] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inorganic perovskite quantum dots (QDs) have attracted great scientific attention in the field of luminescent materials, but the application has been limited by the inferior stability that results from highly dynamic capping ligands. In this work, we use a rare-earth complex to modify perovskite QDs with ligand exchange to realize perovskite functionalization; meanwhile, the stability of perovskite QDs is greatly improved. Density functional theory calculation results show that the adsorption energy of the europium complex to QDs is higher than that with traditional ligands, which provides a thermodynamic basis for stability improvement. Furthermore, the modified QDs exhibit attractive dual-response property, including temperature and pH response ascribed to QDs and europium complexes, respectively. The superior property can be applied to multi-stimuli-responsive optical encoding, which is further capable of enhancing the security of encrypted information. This study not only affords a strategy for the synthesis of highly stable perovskites but also provides a method for the functionalization of perovskites.
Collapse
Affiliation(s)
- Pengfei Feng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiaoxi Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiaoxia Feng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Guodong Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiaochen Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, P.R. China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
29
|
Gong Y, Hou GL, Bi X, Kuthirummal N, Teklu AA, Koenemann J, Harris N, Wei P, Devera K, Hu M. Enhanced Two-Photon Absorption in Two Triphenylamine-Based All-Organic Compounds. J Phys Chem A 2021; 125:1870-1879. [PMID: 33635065 DOI: 10.1021/acs.jpca.0c10567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-photon absorption (TPA) enables the excitation of molecules by comparatively lower energy photons with longer penetration depth and higher spatial precision control, which advances the uses of organic molecules in various applications. In this work, we report two simple all-organic molecules C42H33N (compound 3) and C138H168N4 (compound 14) with strong TPA and fluorescent emission activity. Density functional theory calculations show that the enhanced oscillator strengths could be responsible for improved TPA and emission activity for compound 14 compared to those for 3. The degradation of C138H168N4 under focused laser illumination without circulation is almost negligible within 5 h, making it a candidate for laser dyes. Solid-state measurements confirm the presence of a direct band gap for electron transition that determines the channel to release the absorbed energy and functionality of the studied molecules. This work emphasizes that a high TPA cross-section and selectable energy relaxation (fluorescent emission or heat dissipation) are equally important to the design of advanced functional TPA molecules.
Collapse
Affiliation(s)
- Yu Gong
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston 29407, South Carolina, United States
| | - Gao-Lei Hou
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven 3001, Belgium
| | - Xiangdong Bi
- Department of Chemistry, Charleston Southern University, 9200 University Blvd, Charleston 29485, South Carolina, United States
| | - Narayanan Kuthirummal
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston 29407, South Carolina, United States
| | - Alem Abraha Teklu
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston 29407, South Carolina, United States
| | - Jacob Koenemann
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston 29407, South Carolina, United States
| | - Nico Harris
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston 29407, South Carolina, United States
| | - Peng Wei
- Affinity Research Chemicals, Inc., 406 Meco Dr., Wilmington 19804, Delaware, United States
| | - Krystal Devera
- Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston 29407, South Carolina, United States
| | - Ming Hu
- Department of Mechanical Engineering, University of South Carolina, 541 Main Street, Columbia 29208, South Carolina, United States
| |
Collapse
|
30
|
Wang S, Gong M, Han X, Zhao D, Liu J, Lu Y, Li C, Chen B. Embedding Red Emitters in the NbO-Type Metal-Organic Frameworks for Highly Sensitive Luminescence Thermometry over Tunable Temperature Range. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11078-11088. [PMID: 33635069 DOI: 10.1021/acsami.1c00635] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The intrinsic advantages of metal-organic frameworks (MOFs), including extraordinarily high porosities, tailorable architectures, and diverse functional sites, make the MOFs platforms for multifunctional materials. In this study, we synthesized two kinds of isostructural NbO-type Zn2+-based MOFs, where two structurally similar tetracarboxylate ligands, 5,5'-(pyrazine-2,5-diyl)diisophthalic acid (H4PZDDI) and 5,5'-(pyridine-2,5-diyl)diisophthalic acid (H4PDDI), with pyridine or pyrazine moieties, were employed as the organic linkers. By embedding the red-emitting cationic units of pyridinium hemicyanine dye 4-[p-(dimethylamino)styryl]-1-methylpyridinium (DSM) and trivalent europium ion (Eu3+), two types of composites, DSM@ZnPZDDI and DSM@ZJU-56 and Eu3+@ZnPZDDI and Eu3+@ZJU-56, were harvested and evaluated for use as potential ratiometric temperature probes. The temperature-responsive luminescence of these dual-emitting composites was investigated, and their representative features of relative sensitivity, temperature resolution, spectral repeatability, and luminescence color change were discussed. Importantly, compared with the DSM-incorporated composites, Eu3+@ZnPZDDI and Eu3+@ZJU-56 show a much wider sensing temperature range and higher relative sensitivities, suggesting the performance of the composites can be engineered by elaborately combining the host and guest units. Given the rich choices of porous MOFs and emitting units, such a strategy can be useful in the design and preparation of multifunctional dual-emitting sensory materials.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Mengyao Gong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Xue Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Dian Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jingwen Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yantong Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Chunxia Li
- Institute of Frontier and Interdisciplinarity Science and Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
31
|
Hazra A, Bonakala S, Adalikwu SA, Balasubramanian S, Maji TK. Fluorocarbon-Functionalized Superhydrophobic Metal-Organic Framework: Enhanced CO 2 Uptake via Photoinduced Postsynthetic Modification. Inorg Chem 2021; 60:3823-3833. [PMID: 33655749 DOI: 10.1021/acs.inorgchem.0c03575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The design and synthesis of porous materials for selective capture of CO2 in the presence of water vapor is of paramount importance in the context of practical separation of CO2 from the flue gas stream. Here, we report the synthesis and structural characterization of a photoresponsive fluorinated MOF {[Cd(bpee)(hfbba)]·EtOH}n (1) constructed by using 4,4'-(hexafluoroisopropylidene)bis(benzoic acid) (hfbba), Cd(NO3)2, and 1,2-bis(4-pyridyl)ethylene (bpee) as building units. Due to the presence of the fluoroalkyl -CF3 functionality, compound 1 exhibits superhydrophobicity, which is validated by both water vapor adsorption and contact angle measurements (152°). The parallel arrangement of the bpee linkers makes compound 1 a photoresponsive material that transforms to {[Cd2(rctt-tpcb)(hfbba)2]·2EtOH}n (rctt-tpcb = regio cis,trans,trans-tetrakis(4-pyridyl)cyclobutane; 1IR) after a [2 + 2] cycloaddition reaction. The photomodified framework 1IR exhibits increased uptake of CO2 in comparison to 1 under ambient conditions due to alteration of the pore surface that leads to additional weak electron donor-acceptor interactions with the -CF3 groups, as examined through periodic density functional theory calculations. The enhanced uptake is also aided by an expansion of the pore window, which contributes to increasing the rotational entropy of CO2, as demonstrated through force field based free energy calculations.
Collapse
Affiliation(s)
- Arpan Hazra
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Satyanarayana Bonakala
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Stephen Adie Adalikwu
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| |
Collapse
|
32
|
Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213655] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Zhang L, Li H, He H, Yang Y, Cui Y, Qian G. Structural Variation and Switchable Nonlinear Optical Behavior of Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006649. [PMID: 33470526 DOI: 10.1002/smll.202006649] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Two europium metal-organic frameworks (MOFs) based on the same ligand, named as ZJU-23-Eu and ZJU-24-Eu, are selectively synthesized by fine-tuning solvent contents to tailor the coordination modes. Eu atoms are eight-coordinated and nine-coordinated in ZJU-23-Eu and ZJU-24-Eu respectively, and their frameworks vary in both spatial connectivity and symmetry. The ligand not only has multiphoton response but also suitable triplet energy level (19 998 cm-1 ) to sensitize Eu3+ . Thus ZJU-23-Eu exhibits characteristic emission of Eu3+ peaking at 614 nm via the energy transfer from the two-/three-photon excited ligand to Eu3+ , with its bidimensional layered structure benefiting this process. In contrast, the changed spatial connectivity in tridimensional ZJU-24-Eu narrows the distances between adjacent Eu3+ ions and reduces the density, resulting in poor two-photon excited fluorescence. Besides, noncentrosymmetric ZJU-24-Eu shows second harmonic generation (SHG) response with an intensity of ≈6.2 times relative to KH2 PO4 (KDP) microcrystalline powder while centrosymmetric ZJU-23-Eu cannot. These results have established two nonlinear optical (NLO) models based on MOFs to synchronously analyze the effects of two structural variables on different NLO behaviors, and provide ingenious ways to design MOF-based NLO devices with function on demand.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongjun Li
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huajun He
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yu Yang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
34
|
|
35
|
Yin MR, Yan QQ, Li B, Yong GP. 1D ladder and 2D bilayer coordination polymers constructed from a new T-shaped ligand: luminescence, magnetic and CO2 gas adsorption properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00257k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1D ladder and 2D bilayer coordination polymers are constructed by using a new T-shaped ligand, in which the 2D bilayer exhibits CO2 gas adsorption features.
Collapse
Affiliation(s)
- Meng-Ru Yin
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Qing-Qing Yan
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Bin Li
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Guo-Ping Yong
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| |
Collapse
|
36
|
Photofunctional metal-organic framework thin films for sensing, catalysis and device fabrication. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Wang Y, Wu H, Li P, Chen S, Jones LO, Mosquera MA, Zhang L, Cai K, Chen H, Chen XY, Stern CL, Wasielewski MR, Ratner MA, Schatz GC, Stoddart JF. Two-photon excited deep-red and near-infrared emissive organic co-crystals. Nat Commun 2020; 11:4633. [PMID: 32934231 PMCID: PMC7493989 DOI: 10.1038/s41467-020-18431-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/21/2020] [Indexed: 11/28/2022] Open
Abstract
Two-photon excited near-infrared fluorescence materials have garnered considerable attention because of their superior optical penetration, higher spatial resolution, and lower optical scattering compared with other optical materials. Herein, a convenient and efficient supramolecular approach is used to synthesize a two-photon excited near-infrared emissive co-crystalline material. A naphthalenediimide-based triangular macrocycle and coronene form selectively two co-crystals. The triangle-shaped co-crystal emits deep-red fluorescence, while the quadrangle-shaped co-crystal displays deep-red and near-infrared emission centered on 668 nm, which represents a 162 nm red-shift compared with its precursors. Benefiting from intermolecular charge transfer interactions, the two co-crystals possess higher calculated two-photon absorption cross-sections than those of their individual constituents. Their two-photon absorption bands reach into the NIR-II region of the electromagnetic spectrum. The quadrangle-shaped co-crystal constitutes a unique material that exhibits two-photon absorption and near-infrared emission simultaneously. This co-crystallization strategy holds considerable promise for the future design and synthesis of more advanced optical materials.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Penghao Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Su Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Martín A Mosquera
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Mark A Ratner
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P.R. China.
| |
Collapse
|
38
|
Gutiérrez L, Mondal SS, Bucci A, Kandoth N, Escudero-Adán EC, Shafir A, Lloret-Fillol J. Crystal-to-Crystal Synthesis of Photocatalytic Metal-Organic Frameworks for Visible-Light Reductive Coupling and Mechanistic Investigations. CHEMSUSCHEM 2020; 13:3418-3428. [PMID: 32351031 DOI: 10.1002/cssc.202000465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Postmodification of reticular materials with well-defined catalysts is an appealing approach to produce new catalytic functional materials with improved stability and recyclability, but also to study catalysis in confined spaces. A promising strategy to this end is the postfunctionalization of crystalline and robust metal-organic frameworks (MOFs) to exploit the potential of crystal-to-crystal transformations for further characterization of the catalysts. In this regard, two new photocatalytic materials, MOF-520-PC1 and MOF-520-PC2, are straightforwardly obtained by the postfunctionalization of MOF-520 with perylene-3-carboxylic acid (PC1) and perylene-3-butyric acid (PC2). The single crystal-to-crystal transformation yielded the X-ray diffraction structure of catalytic MOF-520-PC2. The well-defined disposition of the perylenes inside the MOF served as suitable model systems to gain insights into the photophysical properties and mechanism by combining steady-state, time-resolved, and transient absorption spectroscopy. The resulting materials are active organophotoredox catalysts in the reductive dimerization of aromatic aldehydes, benzophenones, and imines under mild reaction conditions. Moreover, MOF-520-PC2 can be applied for synthesizing gram-scale quantities of products in continuous-flow conditions under steady-state light irradiation. This work provides an alternative approach for the construction of well-defined, metal-free, MOF-based catalysts.
Collapse
Affiliation(s)
- Luis Gutiérrez
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Suvendu Sekhar Mondal
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Alberto Bucci
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Noufal Kandoth
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Eduardo C Escudero-Adán
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Alexandr Shafir
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
39
|
Wang Y, Tang G, Wu Y. A Set of phenyl sulfonate metal coordination complexes triggered Biginelli reaction for the high efficient synthesis of 3,4‐dihydropyrimidin‐2(1
H
)‐ones under solvent‐free conditions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yong‐Tao Wang
- School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Gui‐Mei Tang
- School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Yu‐Song Wu
- School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| |
Collapse
|
40
|
Hu X, Wang Z, Su Y, Chen P, Chen J, Zhang C, Wang C. Nanoscale Metal–Organic Frameworks and Metal–Organic Layers with Two-Photon-Excited Fluorescence. Inorg Chem 2020; 59:4181-4185. [DOI: 10.1021/acs.inorgchem.0c00373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xuefu Hu
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhiye Wang
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yuming Su
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Peican Chen
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jiawei Chen
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Cankun Zhang
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Cheng Wang
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
41
|
Li D, Li B, Wang S, Zhang C, Cao H, Tian X, Tian Y. Modification of side chain of conjugated molecule for enhanced charge transfer and two-photon activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117448. [PMID: 31400746 DOI: 10.1016/j.saa.2019.117448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Amounts of strategies implemented to obtain improved two-photon absorption responses but remains challenging. Herein, a serials zwitterionic chromophores, TSEO1-3, with D-π-A configuration were rational designed and synthesized. Notably, by minor modification of the side chain, the obtained TSEO3 exhibited enhanced two-photon activity and considerable two-photon imaging in vitro and in vivo. It manifested that appropriate modifications of side chains that are linked to conjugated frameworks can improve the intermolecular packing order and boost charge transfer favoring two-photon activity.
Collapse
Affiliation(s)
- Dandan Li
- Institutes of Physics Science and Information Technology, Anhui University, Hefei 230601, PR China; Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, PR China.
| | - Bo Li
- Institutes of Physics Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Siyou Wang
- School of Life Science, Anhui University, Hefei 230601, PR China
| | - Chengkai Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, PR China
| | - Hongzhi Cao
- School of Life Science, Anhui University, Hefei 230601, PR China
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei 230601, PR China
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
42
|
|
43
|
Li Z, Wang G, Ye Y, Li B, Li H, Chen B. Loading Photochromic Molecules into a Luminescent Metal-Organic Framework for Information Anticounterfeiting. Angew Chem Int Ed Engl 2019; 58:18025-18031. [PMID: 31583794 DOI: 10.1002/anie.201910467] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/01/2019] [Indexed: 01/16/2023]
Abstract
Stimuli-responsive photoluminescent materials have attracted considerable attention owing to their potential applications in security protection because the information recorded directly in materials with static luminescent outputs are usually visible under either ambient or UV light. Herein, we realize reversible information anticounterfeiting by loading a photoswitchable diarylethene derivative into a lanthanide metal-organic framework (MOF). Light triggers the open- and closed-form isomerization of the diarylethene unit, which respectively regulates the inactivation and activation of the photochromic FRET process between the diarylethene acceptor and lanthanide donor, resulting in reversible luminescence on-off switching of the lanthanide emitting center in the MOF host. This photoresponsive host-guest system allows for reversible multiple information pattern visible/invisible transformation by simply alternating the exposure to UV and visible light.
Collapse
Affiliation(s)
- Zhiqiang Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China.,Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Guannan Wang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yingxiang Ye
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Bin Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Huanrong Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| |
Collapse
|
44
|
Li Z, Wang G, Ye Y, Li B, Li H, Chen B. Loading Photochromic Molecules into a Luminescent Metal–Organic Framework for Information Anticounterfeiting. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910467] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhiqiang Li
- Tianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 P. R. China
- Department of ChemistryUniversity of Texas at San Antonio San Antonio TX 78249 USA
| | - Guannan Wang
- Tianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 P. R. China
| | - Yingxiang Ye
- Department of ChemistryUniversity of Texas at San Antonio San Antonio TX 78249 USA
| | - Bin Li
- Tianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 P. R. China
| | - Huanrong Li
- Tianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 P. R. China
| | - Banglin Chen
- Department of ChemistryUniversity of Texas at San Antonio San Antonio TX 78249 USA
| |
Collapse
|
45
|
Chen CX, Yin SY, Wei ZW, Qiu QF, Zhu NX, Fan YN, Pan M, Su CY. Pressure-Induced Multiphoton Excited Fluorochromic Metal-Organic Frameworks for Improving MPEF Properties. Angew Chem Int Ed Engl 2019; 58:14379-14385. [PMID: 31355964 DOI: 10.1002/anie.201908793] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 12/13/2022]
Abstract
In multiphoton excited fluorescence (MPEF), high-energy upconversion emission is obtained from low-energy excitation by absorbance of two or more photons simultaneously. In a pressure-induced fluorochromic process, the emission energy is switched by outer pressure stimuli. Now, five metal-organic frameworks containing the same ligand with simultaneous multiphoton absorption and pressure-induced fluorochromic attributes were studied. One-, two-, and three-photon excited fluorescence (1/2/3PEF) can be achieved in the frameworks, which exhibit pressure-induced blue-to-yellow fluorochromism. The performances are closely dependent with the topologies, flexibilities, and packing states of the frameworks and chromophores therein. The multiphoton upconversion performance can be intensified by pressure-related structural contraction. Over ten-fold increment in the 2PA active cross-section up to 2217 GM is achieved in pressed LIFM-114 compared with the 210 GM for pristine sample at 780 nm.
Collapse
Affiliation(s)
- Cheng-Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shao-Yun Yin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qian-Feng Qiu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Neng-Xiu Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ya-Nan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
46
|
Chen C, Yin S, Wei Z, Qiu Q, Zhu N, Fan Y, Pan M, Su C. Pressure‐Induced Multiphoton Excited Fluorochromic Metal–Organic Frameworks for Improving MPEF Properties. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cheng‐Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Shao‐Yun Yin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Zhang‐Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Qian‐Feng Qiu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Neng‐Xiu Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Ya‐Nan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
47
|
|
48
|
Yan H, Ni H, Jia J, Shan C, Zhang T, Gong Y, Li X, Cao J, Wu W, Liu W, Tang Y. Smart All-in-One Thermometer-Heater Nanoprobe Based on Postsynthetical Functionalization of a Eu(III)-Metal–Organic Framework. Anal Chem 2019; 91:5225-5234. [DOI: 10.1021/acs.analchem.8b05960] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huicheng Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongyuhang Ni
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianguo Jia
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Changfu Shan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tong Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuxin Gong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenyu Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Weisheng Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
49
|
Zaręba JK, Nyk M, Janczak J, Samoć M. Three-Photon Absorption of Coordination Polymer Transforms UV-to-VIS Thermometry into NIR-to-VIS Thermometry. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10435-10441. [PMID: 30838852 DOI: 10.1021/acsami.8b21937] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lanthanide-based metal-organic frameworks (MOFs) and coordination polymers (CPs) attract much attention as candidates for optical ratiometric thermometry applications. Thus far, excitation of these materials was mainly performed in the ultraviolet that drastically limits their applicability as sensors, e.g., in tissue biological thermometry. As a remedy for this constraint, for the first time, we leverage a nonlinear optical process, the three-photon absorption property of Eu,Tb-CPs to shift the excitation wavelength from ultraviolet into near-infrared region. Experiments demonstrate that three-photon induced thermometric responses of Eu,Tb-CPs follow excellent optical characteristics similar to those determined for one-photon excitation, yet are not identical. The relative sensitivity reaches a very high value of 2.91%K-1 in the physiological temperature region. We put forward a notion that utilizing multiphoton absorption is a general strategy for realizing NIR-to-VIS remote temperature sensing in practically any CP that is designed for UV-to-VIS thermometry.
Collapse
Affiliation(s)
- Jan K Zaręba
- Advanced Materials Engineering and Modelling Group , Wroclaw University of Science and Technology , Wyb. Wyspiańskiego 27 , Wrocław 50370 , Poland
| | - Marcin Nyk
- Advanced Materials Engineering and Modelling Group , Wroclaw University of Science and Technology , Wyb. Wyspiańskiego 27 , Wrocław 50370 , Poland
| | - Jan Janczak
- Institute of Low Temperature and Structure Research , Polish Academy of Sciences , Wrocław 50950 , Poland
| | - Marek Samoć
- Advanced Materials Engineering and Modelling Group , Wroclaw University of Science and Technology , Wyb. Wyspiańskiego 27 , Wrocław 50370 , Poland
| |
Collapse
|
50
|
Wang Z, Zhu C, Yin S, Wei Z, Zhang J, Fan Y, Jiang J, Pan M, Su C. A Metal–Organic Supramolecular Box as a Universal Reservoir of UV, WL, and NIR Light for Long‐Persistent Luminescence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812708] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zheng Wang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yi Zhu
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Shao‐Yun Yin
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Zhang‐Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jian‐Hua Zhang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Ya‐Nan Fan
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Ji‐Jun Jiang
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- MOE Laboratory of Bioinorganic and Synthetic ChemistryLehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|