1
|
Verma DK, Singh A. Self-assembly kinetics of miktoarm star polymers in diverse solvent environments: insights from dissipative particle dynamics simulations. SOFT MATTER 2025. [PMID: 40261009 DOI: 10.1039/d5sm00205b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
We present the self-assembly kinetics of miktoarm star polymers (MSPs) with compositional and topological asymmetries in various solvents using three-dimensional dissipative particle dynamics simulations. Morphological evolution, analyzed via radial distribution, spatial correlation functions, and domain growth exponents, reveals distinct structures driven by solvent-MSP interactions. Good solvents promote a mostly slow domain growth rate, resulting in a porous morphology, whereas poor solvents facilitate a faster growth rate and lead to denser and localized lamellar or cylindrical structures. Domain growth follows a power-law behavior with an exponent of nearly 1/3 in the early diffusive regime; however, the growth rate and saturation of the domain size vary with solvent quality. Topologically asymmetric MSPs form interconnected bicontinuous morphologies in good solvents and localized lamellae in poor solvents. The correlation function scaling deviates from universality in symmetric interactions but exhibits better collapse when one arm is solvophilic. Thermodynamic analysis shows that increasing solvophobicity reduces entropy, raises enthalpy, and thus influences self-assembly kinetics. These findings significantly improve our understanding of complex MSP self-assembly under different solvent conditions and offer pathways for designing polymeric materials with diverse functionalities.
Collapse
Affiliation(s)
- Devendra Kumar Verma
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| |
Collapse
|
2
|
Dey U, Demirci S, Ortega R, Rawah T, Chaudary A, Liu F, Yang Z, Huang B, Jiang S. Beyond Surfactants: Janus Particles for Functional Interfaces and Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2980-2993. [PMID: 39883033 PMCID: PMC11823612 DOI: 10.1021/acs.langmuir.4c04612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Janus particles (JPs), initially introduced as soft matter, have evolved into a distinctive class of materials that set them apart from traditional surfactants, dispersants, and block copolymers. This mini-review examines the similarities and differences between JPs and their molecular counterparts to elucidate the unique properties of JPs. Key studies on the assembly behavior of JPs in bulk phases and at interfaces are reviewed, highlighting their unique ability to form diverse, complex structures. The superior interfacial stability and tunable amphiphilicity of JPs make them highly effective emulsifiers and dispersants, particularly in emulsion polymerization systems. Beyond these applications, JPs demonstrate immense potential as coating materials, facilitating the development of eco-friendly, anti-icing, and antifouling coatings. A comparative discussion with zwitterionic polymers also highlights the distinctive advantages of each system. This review emphasizes that while JPs mimic some of the behaviors of small molecular surfactants, they also open doors to entirely new applications, making them indispensable as next-generation functional materials.
Collapse
Affiliation(s)
- Utsav
Kumar Dey
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Serkan Demirci
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Ricardo Ortega
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Thamer Rawah
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Aneeba Chaudary
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Fei Liu
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Zhengtao Yang
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Bingrui Huang
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Shan Jiang
- Department of Materials Science &
Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Kalem S, Siefker D, Ji M, Guigner J, Schweins R, Pensec S, Rieger J, Bouteiller L, Nicol E, Colombani O. Supramolecular Janus Nanocylinders: Controlling Their Characteristics by the Self-Assembly Process. Macromol Rapid Commun 2025; 46:e2400492. [PMID: 39565785 PMCID: PMC11713850 DOI: 10.1002/marc.202400492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/25/2024] [Indexed: 11/22/2024]
Abstract
Janus NanoRods (JNR) are anisotropic and non-symmetrical colloids with two faces of different chemical composition. They are difficult to prepare because of their nanometric dimensions and strong anisotropy. Recently, a versatile strategy was developed, allowing the formation of JNR relying on the self-assembly in aqueous medium of two polymers end-functionalized with non-symmetrical and complementary hydrogen bonding stickers. However, the supramolecular JNR prepared following this strategy are out-of-equilibrium (frozen) and therefore their characteristics depend on the self-assembly process. The present study elucidates the formation mechanism of the JNR and the parameters of the self-assembly process influencing their characteristics. The polymers are initially dissolved as unimers in DMSO. Dropwise addition of water triggers the rapid assembly of more and more unimers into long nanocylinders that are unable to grow anymore once formed. Consequently, increasing the dropwise addition rate of water hardly impacts the process, whereas lowering the initial polymer concentration in DMSO reduces both the length and proportion of nanocylinders. Increasing temperature during water addition weakens hydrogen bonds, triggering the formation of a mixture of spheres and nanocylinders. Many supramolecular polymer assemblies are frozen in solution and these findings should help understanding how to control their characteristics, allowing to adapt them to a target application.
Collapse
Affiliation(s)
- Sandra Kalem
- Institut des Molécules et Matériaux du Mans (IMMM)UMR 6283 CNRSLe Mans UniversitéLe Mans72085 Cedex 9France
| | - David Siefker
- Equipe Chimie des PolymèresInstitut Parisien de Chimie Moléculaire (IPCM)UMR 8232 CNRSSorbonne Université4 Place JussieuParisF‐75005France
| | - Mingsheng Ji
- Equipe Chimie des PolymèresInstitut Parisien de Chimie Moléculaire (IPCM)UMR 8232 CNRSSorbonne Université4 Place JussieuParisF‐75005France
| | - Jean‐Michel Guigner
- Institut de MinéralogiePhysique des Matériaux et de CosmochimieSorbonne UniversitéCNRS UMR 7590MNHN, IRD UR 2064 Place JussieuParisF‐75005France
| | - Ralf Schweins
- DS/LSSInstitut Max von Laue – Paul Langevin71 Av. des Martyrs, CS 20 156GrenobleF‐38042France
| | - Sandrine Pensec
- Equipe Chimie des PolymèresInstitut Parisien de Chimie Moléculaire (IPCM)UMR 8232 CNRSSorbonne Université4 Place JussieuParisF‐75005France
| | - Jutta Rieger
- Equipe Chimie des PolymèresInstitut Parisien de Chimie Moléculaire (IPCM)UMR 8232 CNRSSorbonne Université4 Place JussieuParisF‐75005France
| | - Laurent Bouteiller
- Equipe Chimie des PolymèresInstitut Parisien de Chimie Moléculaire (IPCM)UMR 8232 CNRSSorbonne Université4 Place JussieuParisF‐75005France
| | - Erwan Nicol
- Institut des Molécules et Matériaux du Mans (IMMM)UMR 6283 CNRSLe Mans UniversitéLe Mans72085 Cedex 9France
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM)UMR 6283 CNRSLe Mans UniversitéLe Mans72085 Cedex 9France
| |
Collapse
|
4
|
Ikeda T, Kobayashi Y, Yamakawa M. Structure and dynamics of amphiphilic patchy cubes in a nanoslit under shear. J Chem Phys 2024; 161:024901. [PMID: 38973760 DOI: 10.1063/5.0216550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
Patchy nanocubes are intriguing materials with simple shapes and space-filling and multidirectional bonding properties. Previous studies have revealed various mesoscopic structures such as colloidal crystals in the solid regime and rod-like or fractal-like aggregates in the liquid regime of the phase diagram. Recent studies have also shown that mesoscopic structural properties, such as an average cluster size M and orientational order, in amphiphilic nanocube suspensions are associated with macroscopic viscosity changes, mainly owing to differences in cluster shape among patch arrangements. Although many studies have been conducted on the self-assembled structures of nanocubes in bulk, little is known about their self-assembly in nanoscale spaces or structural changes under shear. In this study, we investigated mixtures of one- and two-patch amphiphilic nanocubes confined in two flat parallel plates at rest and under shear using molecular dynamics simulations coupled with multiparticle collision dynamics. We considered two different patch arrangements for the two-patch particles and two different slit widths H to determine the degree of confinement in constant volume fractions in the liquid regime of the phase diagram. We revealed two unique cluster morphologies that have not been previously observed under bulk conditions. At rest, the size of the rod-like aggregates increased with decreasing H, whereas that of the fractal-like aggregates remained constant. Under weak shear with strong confinement, the rod-like aggregates maintained a larger M than the fractal-like aggregates, which were more rigid and maintained a larger M than the rod-like aggregates under bulk conditions.
Collapse
Affiliation(s)
- Takahiro Ikeda
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yusei Kobayashi
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masashi Yamakawa
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
5
|
MacKenzie HK, Zhang Y, Zheng W, Shaikh H, MacFarlane LR, Musgrave RA, Manners I. Functional Noncentrosymmetric Nanoparticle-Nanofiber Hybrids via Selective Fragmentation. J Am Chem Soc 2024; 146:18504-18512. [PMID: 38946087 DOI: 10.1021/jacs.4c04234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Noncentrosymmetric nanostructures are an attractive synthetic target as they can exhibit complex interparticle interactions useful for numerous applications. However, generating uniform, colloidally stable, noncentrosymmetric nanoparticles with low aspect ratios is a significant challenge using solution self-assembly approaches. Herein, we outline the synthesis of noncentrosymmetric multiblock co-nanofibers by subsequent living crystallization-driven self-assembly of block co-polymers, spatially confined attachment of nanoparticles, and localized nanofiber fragmentation. Using this strategy, we have fabricated uniform diblock and triblock noncentrosymmetric π-conjugated nanofiber-nanoparticle hybrid structures. Additionally, in contrast to Brownian motion typical of centrosymmetric nanoparticles, we demonstrated that these noncentrosymmetric nanofibers undergo ballistic motion in the presence of H2O2 and thus could be employed as nanomotors in various applications, including drug delivery and environmental remediation.
Collapse
Affiliation(s)
- Harvey K MacKenzie
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Weijia Zheng
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Huda Shaikh
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Liam R MacFarlane
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Rebecca A Musgrave
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
6
|
Mazetyte-Stasinskiene R, Freiberger E, Täuscher E, Köhler JM. Four-Level Structural Hierarchy: Microfluidically Supported Synthesis of Polymer Particle Architectures Incorporating Fluorescence-Labeled Components and Metal Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8794-8804. [PMID: 35833738 DOI: 10.1021/acs.langmuir.2c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hierarchical assemblies of functional polymer particles are promising due to their surface as well as physicochemical properties. However, hierarchical composites are complex and challenging to form due to the many steps necessary for integrating different components into one system. Highly structured four-level composite particles were formed in a four-step process. First of all, gold (Au) nanoparticles, poly(methyl methacrylate) (PMMA) nanoparticles, and poly(tripropylene glycol diacrylate) (poly-TPGDA) microparticles were individually synthesized. By applying microfluidic techniques, polymer nano- and microparticles were formed with tunable size and surface properties. Afterwards, the negatively charged gold nanoparticles and PMMA particles functionalized with a positively charged surface were mixed to form Au/PMMA assemblies. The Au/PMMA composites were mixed and incubated with poly-TPGDA microparticles to form ternary Au/PMMA/poly-TPGDA assemblies. For the formation of composite-containing microparticles, Au/PMMA/poly-TPGDA composites were dispersed in an aqueous acrylamide-methylenebisacrylamide solution. Monomer droplets were formed in a co-flow microfluidic device and photopolymerized by UV light. In this way, hierarchically structured four-level composites consisting of four different size ranges─0.025/0.8/30/1000 μm─were obtained. By functionalizing polymer nano- and microparticles with different fluorescent dyes, it was possible to visualize the same composite particle under two different excitation modes (λex = 395-440 and λex = 510-560 nm). The Au/PMMA/poly-TPGDA composite-embedded polyacrylamide microparticles can be potentially used as a model for the creation of composite particles for sensing, catalysis, multilabeling, and biomedical applications.
Collapse
Affiliation(s)
- Raminta Mazetyte-Stasinskiene
- Institute for Chemistry and Bioengineering, Group for Physical Chemistry/Microreaction Technology, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Emma Freiberger
- Institute for Chemistry and Bioengineering, Chemistry Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Eric Täuscher
- Institute for Chemistry and Bioengineering, Chemistry Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Johann Michael Köhler
- Institute for Chemistry and Bioengineering, Group for Physical Chemistry/Microreaction Technology, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| |
Collapse
|
7
|
Sun J, Vogel J, Chen L, Schleper AL, Bergner T, Kuehne AJC, von Delius M. Carbodiimide-Driven Dimerization and Self-Assembly of Artificial, Ribose-Based Amphiphiles. Chemistry 2022; 28:e202104116. [PMID: 35038189 PMCID: PMC9303926 DOI: 10.1002/chem.202104116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 12/20/2022]
Abstract
The aqueous self-assembly of amphiphiles into aggregates such as micelles and vesicles has been widely investigated over the past decades with applications ranging from materials science to drug delivery. The combination of characteristic properties of nucleic acids and amphiphiles is of substantial interest to mimic biological self-organization and compartmentalization. Herein, we present ribose- and ribonucleotide-based amphiphiles and investigate their self-assembly as well as their fundamental reactivity. We found that various types of aggregates are formed, ranging in size from nanometers to micrometers and all amphiphiles exhibit aggregation-induced emission (AIE) in solution as well as in the solid state. We also observed that the addition of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) leads to rapid and selective dimerization of the amphiphiles into pyrophosphates, which decreases the critical aggregation concentration (CAC) by a factor of 25 when compared to the monomers. Since the propensity for amphiphile dimerization is correlated with their tendency to self-assemble, our results may be relevant for the formation of rudimentary compartments under prebiotic conditions.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Julian Vogel
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Lisa Chen
- Institute of Macromolecular and Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - A. Lennart Schleper
- Institute of Macromolecular and Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Tim Bergner
- Central Facility for Electron MicroscopyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Alexander J. C. Kuehne
- Institute of Macromolecular and Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- DWI – Leibniz-Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Max von Delius
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
8
|
Conformational characteristics of regioselectively PEG/PS-grafted cellulosic bottlebrushes in solution: cross-sectional structure and main-chain stiffness. Polym J 2022. [DOI: 10.1038/s41428-021-00594-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Chen X, Michinobu T. Postpolymerization Modification: A Powerful Tool for the Synthesis and Function Tuning of Stimuli‐Responsive Polymers. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xu Chen
- Department of Materials Science and Engineering Tokyo Institute of Technology 2‐12‐1 Ookayama, Meguro‐ku Tokyo 152‐8552 Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering Tokyo Institute of Technology 2‐12‐1 Ookayama, Meguro‐ku Tokyo 152‐8552 Japan
| |
Collapse
|
10
|
Qiang X, Franzka S, Quintieri G, Dai X, Wong CK, Gröschel AH. Size‐Controlled Formation of Polymer Janus Discs. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaolian Qiang
- Physical Chemistry University of Münster Corrensstraße 28–30 48149 Münster Germany
| | - Steffen Franzka
- Center for Nanointegration Duisburg-Essen (CENIDE) and Interdisciplinary Center for Analytics on the Nanoscale (ICAN) University of Duisburg-Essen Carl-Benz-Str. 199 47047 Duisburg Germany
| | - Giada Quintieri
- Physical Chemistry University of Münster Corrensstraße 28–30 48149 Münster Germany
| | - Xuezhi Dai
- Physical Chemistry University of Münster Corrensstraße 28–30 48149 Münster Germany
| | - Chin Ken Wong
- Physical Chemistry University of Münster Corrensstraße 28–30 48149 Münster Germany
| | - André H. Gröschel
- Physical Chemistry University of Münster Corrensstraße 28–30 48149 Münster Germany
| |
Collapse
|
11
|
Qiang X, Franzka S, Quintieri G, Dai X, Wong CK, Gröschel AH. Size-Controlled Formation of Polymer Janus Discs. Angew Chem Int Ed Engl 2021; 60:21668-21672. [PMID: 34265154 PMCID: PMC8518367 DOI: 10.1002/anie.202105235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Indexed: 11/08/2022]
Abstract
A straightforward method is presented for the preparation of nano- to micrometer-sized Janus discs with controlled shape, size, and aspect ratio. The method relies on cross-linkable ABC triblock terpolymers and involves first the preparation of prolate ellipsoidal microparticles by combining Shirasu porous glass (SPG) membrane emulsification with evaporation-induced confinement assembly (EICA). By varying the pore diameter of the SPG membrane, we produce Janus discs with controlled size distributions centered around hundreds of nanometers to several microns. We further transferred the discs to water by mild sulfonation of PS to polystyrene sulfonic acid (PSS) and verified the Janus character by subsequent labelling with cationic nanoparticles. Finally, we show that the sulfonated Janus discs are amphiphilic and can be used as efficient colloidal stabilizers for oil-in-water (O/W) emulsions.
Collapse
Affiliation(s)
- Xiaolian Qiang
- Physical ChemistryUniversity of MünsterCorrensstraße 28–3048149MünsterGermany
| | - Steffen Franzka
- Center for Nanointegration Duisburg-Essen (CENIDE) and Interdisciplinary Center for Analytics on the Nanoscale (ICAN)University of Duisburg-EssenCarl-Benz-Str. 19947047DuisburgGermany
| | - Giada Quintieri
- Physical ChemistryUniversity of MünsterCorrensstraße 28–3048149MünsterGermany
| | - Xuezhi Dai
- Physical ChemistryUniversity of MünsterCorrensstraße 28–3048149MünsterGermany
| | - Chin Ken Wong
- Physical ChemistryUniversity of MünsterCorrensstraße 28–3048149MünsterGermany
| | - André H. Gröschel
- Physical ChemistryUniversity of MünsterCorrensstraße 28–3048149MünsterGermany
| |
Collapse
|
12
|
Rizvi A, Mulvey JT, Carpenter BP, Talosig R, Patterson JP. A Close Look at Molecular Self-Assembly with the Transmission Electron Microscope. Chem Rev 2021; 121:14232-14280. [PMID: 34329552 DOI: 10.1021/acs.chemrev.1c00189] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular self-assembly is pervasive in the formation of living and synthetic materials. Knowledge gained from research into the principles of molecular self-assembly drives innovation in the biological, chemical, and materials sciences. Self-assembly processes span a wide range of temporal and spatial domains and are often unintuitive and complex. Studying such complex processes requires an arsenal of analytical and computational tools. Within this arsenal, the transmission electron microscope stands out for its unique ability to visualize and quantify self-assembly structures and processes. This review describes the contribution that the transmission electron microscope has made to the field of molecular self-assembly. An emphasis is placed on which TEM methods are applicable to different structures and processes and how TEM can be used in combination with other experimental or computational methods. Finally, we provide an outlook on the current challenges to, and opportunities for, increasing the impact that the transmission electron microscope can have on molecular self-assembly.
Collapse
Affiliation(s)
- Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Justin T Mulvey
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
13
|
Guo Y, Fang Y, Jia K, Yu Y, Yu L, Li H, Zhang J, Zheng X, Huang L, Wen W, Mai Y. Electroinduced Reconfiguration of Complex Emulsions for Fabrication of Polymer Particles with Tunable Morphology. Macromol Rapid Commun 2021; 42:e2100085. [DOI: 10.1002/marc.202100085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Yongshun Guo
- College of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Yanxiong Fang
- College of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Yue Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Huanling Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Junjie Zhang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Xiaoshan Zheng
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Linjia Huang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Wu Wen
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| | - Yuliang Mai
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering Guangdong Academy of Sciences Guangzhou Guangdong 510000 P. R. China
| |
Collapse
|
14
|
Kei P, Howell MT, Chavez CA, Mai JC, Do C, Hong K, Nesterov EE. Kinetically Controlled Formation of Semi-crystalline Conjugated Polymer Nanostructures. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter Kei
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mitchell T. Howell
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Carlos A. Chavez
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Joseph C. Mai
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Evgueni E. Nesterov
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| |
Collapse
|
15
|
Choisnet T, Canevet D, Sallé M, Lorthioir C, Bouteiller L, Woisel P, Niepceron F, Nicol E, Colombani O. Colored Janus Nanocylinders Driven by Supramolecular Coassembly of Donor and Acceptor Building Blocks. ACS NANO 2021; 15:2569-2577. [PMID: 33512151 DOI: 10.1021/acsnano.0c07039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Janus nanocylinders exhibit nanometric dimensions, a high aspect ratio, and two faces with different chemistries (Janus character), making them potentially relevant for applications in optics, magnetism, catalysis, surface nanopatterning, or interface stabilization, but they are also very difficult to prepare by conventional strategies. In the present work, Janus nanocylinders were prepared by supramolecular coassembly in water of two different polymers functionalized with complementary assembling units. The originality of our approach consists in combining charge transfer complexation between electron-rich and electron-poor units with hydrogen bonding to (1) drive the supramolecular formation of one-dimensional structures (cylinders), (2) force the two polymer arms on opposite sides of the cylinders independently of their compatibility, resulting in Janus nanoparticles, and (3) detect coassembly through a color change of the solution upon mixing of the functional polymers.
Collapse
Affiliation(s)
- Thomas Choisnet
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, Cedex 9, France
- Laboratoire MOLTECH-Anjou, UNIV Angers, SFR MATRIX, UMR CNRS 6200, 2 Bd Lavoisier, 49045 Angers Cedex, France
| | - David Canevet
- Laboratoire MOLTECH-Anjou, UNIV Angers, SFR MATRIX, UMR CNRS 6200, 2 Bd Lavoisier, 49045 Angers Cedex, France
| | - Marc Sallé
- Laboratoire MOLTECH-Anjou, UNIV Angers, SFR MATRIX, UMR CNRS 6200, 2 Bd Lavoisier, 49045 Angers Cedex, France
| | - Cédric Lorthioir
- CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, 75252 Paris, France
| | - Laurent Bouteiller
- CNRS, Institut Parisien de Chimie Moléculaire, Sorbonne Université, UMR 8232, Equipe Chimie des Polymères, 75252 Paris, France
| | - Patrice Woisel
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Frédérick Niepceron
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, Cedex 9, France
| | - Erwan Nicol
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, Cedex 9, France
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, Cedex 9, France
| |
Collapse
|
16
|
Fu J, An D, Song Y, Wang C, Qiu M, Zhang H. Janus nanoparticles for cellular delivery chemotherapy: Recent advances and challenges. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213467] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Han S, Pensec S, Yilmaz D, Lorthioir C, Jestin J, Guigner JM, Niepceron F, Rieger J, Stoffelbach F, Nicol E, Colombani O, Bouteiller L. Straightforward preparation of supramolecular Janus nanorods by hydrogen bonding of end-functionalized polymers. Nat Commun 2020; 11:4760. [PMID: 32958766 PMCID: PMC7506555 DOI: 10.1038/s41467-020-18587-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/26/2020] [Indexed: 11/24/2022] Open
Abstract
Janus cylinders are one-dimensional colloids that have two faces with different compositions and functionalities, and are useful as building blocks for advanced functional materials. Such anisotropic objects are difficult to prepare with nanometric dimensions. Here we describe a robust and versatile strategy to form micrometer long Janus nanorods with diameters in the 10-nanometer range, by self-assembly in water of end-functionalized polymers. The Janus topology is not a result of the phase segregation of incompatible polymer arms, but is driven by the interactions between unsymmetrical and complementary hydrogen bonded stickers. Therefore, even compatible polymers can be used to form these Janus objects. In fact, any polymers should qualify, as long as they do not prevent co-assembly of the stickers. To illustrate their applicative potential, we show that these Janus nanorods can efficiently stabilize oil-in-water emulsions.
Collapse
Affiliation(s)
- Shuaiyuan Han
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, Equipe Chimie des Polymères, 75252, Paris, France
| | - Sandrine Pensec
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, Equipe Chimie des Polymères, 75252, Paris, France
| | - Dijwar Yilmaz
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, Equipe Chimie des Polymères, 75252, Paris, France
| | - Cédric Lorthioir
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574, 75252, Paris, France
| | - Jacques Jestin
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, Bât. 563, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Jean-Michel Guigner
- Sorbonne Université, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590-IRD-MNHN, 75252, Paris, France
| | - Frédérick Niepceron
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, France
| | - Jutta Rieger
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, Equipe Chimie des Polymères, 75252, Paris, France
| | - François Stoffelbach
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, Equipe Chimie des Polymères, 75252, Paris, France
| | - Erwan Nicol
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, France
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, France.
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, Equipe Chimie des Polymères, 75252, Paris, France.
| |
Collapse
|
18
|
Lu Y, Lin J, Wang L, Zhang L, Cai C. Self-Assembly of Copolymer Micelles: Higher-Level Assembly for Constructing Hierarchical Structure. Chem Rev 2020; 120:4111-4140. [DOI: 10.1021/acs.chemrev.9b00774] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Abstract
AbstractThe self-assembly of Janus ring polymers is studied via a coarse-grained molecular dynamics employing a bead spring model including bending rigidity contributions to the Hamiltonian. We examine the formation and the morphology of amphiphilicity-driven clusters in the system using the number density ρN, the temperature T, the fraction of solvophobic monomers α, and the stiffness of the polymer rings κ as control parameters. We present a quantitative analysis of several characteristics for the formed clusters of Janus rings. Measured quantities include the distribution of the cluster size MC and the shape of the clusters in the form of the prolate/oblate factor Q and shape factors sf. We demonstrate Janus rings form polymorphic micelles that vary from a spherical shape, akin to that known for linear block copolymers, to a novel type of toroidal shape, and we highlight the role played by the key physical parameters leading to the stabilization of such structures.
Collapse
|
20
|
Chen H, Fu W, Li Z. Temperature and pH Responsive Janus Silica Nanoplates Prepared by the Sol-Gel Process and Postmodification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:273-278. [PMID: 31847518 DOI: 10.1021/acs.langmuir.9b03396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
During the process of emulsifying and hydrolyzing, reactive poly(3-(triethoxysilyl)propyl methacrylate)-b-polystyrene (PTEPM-b-PS) diblock copolymers can self-assemble and become cross-linked to form hollow spheres in situ with polystyrene on their inner surfaces. The addition of tetraethoxysilane (TEOS), which was hydrolyzed and condensed together with PTEPM block, can make those spheres as soft foldable capsules or hard hollow spheres depending on the amount of added TESO. Then postmodification, the surface-initiated Atom Transfer Radical Polymerization (ATRP) was applied to afford stimuli-responsive spheres, and the corresponding responsive Janus nanoplates (RJPs) were finally obtained by crushing those responsive hollow spheres (HSs) showing smart tunable emulsifiability and great potential in oily water purification. This facile method to fabricate HSs and RJPs could be used for preparing different Janus polymer-inorganic capsules and nanoplates with varied functions by changing the chemical composition of copolymer surfactants as well as the postmodification process.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China
| | - Wenxin Fu
- Laboratory of Advanced Polymer Materials , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China
| |
Collapse
|
21
|
Anitas EM. Structural characterization of Janus nanoparticles with tunable geometric and chemical asymmetries by small-angle scattering. Phys Chem Chem Phys 2020; 22:536-548. [PMID: 31834334 DOI: 10.1039/c9cp05521e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in polymer chemistry allow a facile, large-scale synthesis of nanoscale Janus particles (JP) with tunable structural and physical properties. Both the structures and distributions of regions with different chemical compositions within JP play an important role in chemical and optical sensing, or in bio-medical applications, such as drug delivery. The structural properties of symmetric JP can be accurately characterized by small-angle scattering (SAS), yet the structure of JP with tunable geometrical and chemical asymmetries (AJP) can be described only qualitatively (e.g., globular, elongated or planar), depending on the value of the scattering exponent in the Porod region of SAS intensity. Here it is shown that identification of AJP and a quantitative description of their morphology can be achieved by using the method of SAS together with contrast variation. This approach is illustrated by providing analytic expressions for SAS intensities and for contrast matching points for two kinds of common multiphase AJP: spheres with one cap and those with two caps. The influence of the model's parameters is presented and discussed, and the structural evolution of AJP upon solvent deuteration is characterized. The results suggest that the combination of the SAS technique with multiphase modeling provides unprecedented detailed information about the structural conformation of AJP, which allows their identification from experimental SAS data. Monte Carlo simulations are performed both to validate the obtained results and to illustrate the above findings for complex AJP for which analytic expressions are not available.
Collapse
|
22
|
Kishor Kumar MJ, Kalathi JT. Interface Dominated Dielectric Response of PS-Fe 3O 4 Patchy Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13923-13933. [PMID: 31560559 DOI: 10.1021/acs.langmuir.9b02117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymeric-inorganic interface plays a vital role in enhancing dielectric properties of patchy microspheres, Janus particles, and nanocomposites. We performed the computational modeling and simulations along with experiments to understand the phenomena behind the improved dielectric permittivity of polystyrene-iron oxide (PS-Fe3O4) patchy microspheres. We addressed the fundamental insights into the role of the interfacial region on the dielectric properties. Based on the experimental outcomes and computational simulations on dielectric behavior including polarization and electric field formation, we propose a new mechanism of charge buildup at the interface. Computational results reveal that the creation of interface bound-charges at the inorganic-polymeric interface is responsible for the improved dielectric properties. We also fabricated PS-Fe3O4 patchy microspheres by Pickering emulsion polymerization using Fe3O4 particles as a solid stabilizer. The microstructure, composition, morphology, dielectric, and thermal properties of the synthesized patchy PS-Fe3O4 particles were investigated. The dielectric permittivity (k) of the neat PS increased from ∼2.9 to ∼14.8 after decorating with Fe3O4 particles. Impedance response of the patchy microspheres shows that the interface of PS-Fe3O4 stores more charges than bulk PS-Fe3O4. The dielectric behavior of patchy microspheres can be engineered by tuning the shape and position of the patches. The present studies on polymer-inorganic interface provide some insights into the mechanisms that control dielectric permittivity and nonlinear conduction in an applied electric field.
Collapse
Affiliation(s)
- M J Kishor Kumar
- Department of Chemical Engineering , National Institute of Technology Karnataka , Mangalore 575025 , India
| | - Jagannathan T Kalathi
- Department of Chemical Engineering , National Institute of Technology Karnataka , Mangalore 575025 , India
| |
Collapse
|
23
|
Percebom AM, Costa LHM. Formation and assembly of amphiphilic Janus nanoparticles promoted by polymer interactions. Adv Colloid Interface Sci 2019; 269:256-269. [PMID: 31102800 DOI: 10.1016/j.cis.2019.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 01/18/2023]
Abstract
Almost three decades after de Gennes have introduced the term Janus for particles possessing two faces with different chemical nature, Janus particles are currently a hot topic in itself. Although de Gennes was not concerned with the size of particles, due to the advent and perspectives of nanotechnology, nanosized Janus particles have particularly received great attention. The capacity of having two antagonistic properties within the same particle has attracted interest on Janus nanoparticles for innumerous potential applications. It took some years for the studies about Janus nanoparticles to finally see great advances, mainly due to the progress in nanoparticle synthesis. What de Gennes might have not predicted (or at least he did not mention it during his speech) is that intermolecular interactions between polymers would be of immense importance to the actual achievement of Janus nanoparticles. Moreover, these interactions can also have large effects on the assembly process of amphiphilic Janus nanoparticles, which is important to form hierarchical structures and new materials at different scales. Hence, it is interesting to notice that de Gennes' contribution for the polymer field has been influencing the preparation and the controlled assembly of Janus nanoparticles. This article attempts to summarize empirical studies where noncovalent forces between polymers played a role, either on the production of Janus nanoparticles or on their assembly.
Collapse
Affiliation(s)
- Ana Maria Percebom
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, PUC-Rio, 22451-900 Rio de Janeiro, RJ, Brazil.
| | - Lais Helena Moreira Costa
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, PUC-Rio, 22451-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Xu JP, Zhu JT. Block Copolymer Colloidal Particles with Unique Structures through Three-dimensional Confined Assembly and Disassembly. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2294-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Affiliation(s)
- Xiaolian Qiang
- Physical Chemistry and Center for Nanointegration (CENIDE)University of Duisburg-Essen 47057 Duisburg Germany
| | - Ramzi Chakroun
- Physical Chemistry and Center for Nanointegration (CENIDE)University of Duisburg-Essen 47057 Duisburg Germany
| | - Nicole Janoszka
- Physical Chemistry and Center for Nanointegration (CENIDE)University of Duisburg-Essen 47057 Duisburg Germany
| | - André H. Gröschel
- Physical Chemistry and Center for Nanointegration (CENIDE)University of Duisburg-Essen 47057 Duisburg Germany
| |
Collapse
|
26
|
Cortes MDLA, de la Campa R, Valenzuela ML, Díaz C, Carriedo GA, Presa Soto A. Cylindrical Micelles by the Self-Assembly of Crystalline- b-Coil Polyphosphazene- b-P2VP Block Copolymers. Stabilization of Gold Nanoparticles. Molecules 2019; 24:molecules24091772. [PMID: 31067770 PMCID: PMC6539542 DOI: 10.3390/molecules24091772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 11/24/2022] Open
Abstract
During the last number of years a variety of crystallization-driven self-assembly (CDSA) processes based on semicrystalline block copolymers have been developed to prepare a number of different nanomorphologies in solution (micelles). We herein present a convenient synthetic methodology combining: (i) The anionic polymerization of 2-vinylpyridine initiated by organolithium functionalized phosphane initiators; (ii) the cationic polymerization of iminophosphoranes initiated by –PR2Cl2; and (iii) a macromolecular nucleophilic substitution step, to prepare the novel block copolymers poly(bistrifluoroethoxy phosphazene)-b-poly(2-vinylpyridine) (PTFEP-b-P2VP), having semicrystalline PTFEP core forming blocks. The self-assembly of these materials in mixtures of THF (tetrahydrofuran) and 2-propanol (selective solvent to P2VP), lead to a variety of cylindrical micelles of different lengths depending on the amount of 2-propanol added. We demonstrated that the crystallization of the PTFEP at the core of the micelles is the main factor controlling the self-assembly processes. The presence of pyridinyl moieties at the corona of the micelles was exploited to stabilize gold nanoparticles (AuNPs).
Collapse
Affiliation(s)
| | - Raquel de la Campa
- Department of Organic and Inorganic Chemistry (IUQOEM), School of Chemistry, University of Oviedo, 33006 Oviedo, Spain.
| | - Maria Luisa Valenzuela
- Inorganic Chemistry and Molecular Material Center, Institute of Applied Chemistry Science, School of Engineering, University Autónoma de Chile, 8900000 Santiago, Chile.
| | - Carlos Díaz
- Department of Chemistry, School of Chemistry, University of Chile, 7800003 Santiago, Chile.
| | - Gabino A Carriedo
- Department of Organic and Inorganic Chemistry (IUQOEM), School of Chemistry, University of Oviedo, 33006 Oviedo, Spain.
| | - Alejandro Presa Soto
- Department of Organic and Inorganic Chemistry (IUQOEM), School of Chemistry, University of Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
27
|
Kirillova A, Marschelke C, Synytska A. Hybrid Janus Particles: Challenges and Opportunities for the Design of Active Functional Interfaces and Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9643-9671. [PMID: 30715834 DOI: 10.1021/acsami.8b17709] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Janus particles are a unique class of multifunctional patchy particles combining two dissimilar chemical or physical functionalities at their opposite sides. The asymmetry characteristic for Janus particles allows them to self-assemble into sophisticated structures and materials not attainable by their homogeneous counterparts. Significant breakthroughs have recently been made in the synthesis of Janus particles and the understanding of their assembly. Nevertheless, the advancement of their applications is still a challenging field. In this Review, we highlight recent developments in the use of Janus particles as building blocks for functional materials. We provide a brief introduction into the synthetic strategies for the fabrication of JPs and their properties and assembly, outlining the existing challenges. The focus of this Review is placed on the applications of Janus particles for active interfaces and surfaces. Active functional interfaces are created owing to the stabilization efficiency of Janus particles combined with their capability for interface structuring and functionalizing. Moreover, Janus particles can be employed as building blocks to fabricate active functional surfaces with controlled chemical and topographical heterogeneity. Ultimately, we will provide implications for the rational design of multifunctional materials based on Janus particles.
Collapse
Affiliation(s)
- Alina Kirillova
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt Jr. School of Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Claudia Marschelke
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6 , 01069 Dresden , Germany
- Fakultät Mathematik und Naturwissenschaften , Technische Universität Dresden , 01062 Dresden , Germany
| | - Alla Synytska
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6 , 01069 Dresden , Germany
- Fakultät Mathematik und Naturwissenschaften , Technische Universität Dresden , 01062 Dresden , Germany
| |
Collapse
|
28
|
Wang Q, Xiao A, Shen Z, Fan XH. Janus particles with tunable shapes prepared by asymmetric bottlebrush block copolymers. Polym Chem 2019. [DOI: 10.1039/c8py01467a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Janus particles were prepared resulting from microphase separation between brush blocks with PS and PDMS side chains using asymmetric BBCPs. Through tuning the volume fraction of PS and the MW of the BBCP, the morphologies of Janus particles can be controlled.
Collapse
Affiliation(s)
- Qian Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Anqi Xiao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
29
|
Eslami H, Khanjari N, Müller-Plathe F. Self-Assembly Mechanisms of Triblock Janus Particles. J Chem Theory Comput 2018; 15:1345-1354. [DOI: 10.1021/acs.jctc.8b00713] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hossein Eslami
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermo-Fluids & Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| | - Neda Khanjari
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr 75168, Iran
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermo-Fluids & Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany
| |
Collapse
|
30
|
Hou X, Guan S, Qu T, Wu X, Wang D, Chen A, Yang Z. Light-Triggered Reversible Self-Engulfing of Janus Nanoparticles. ACS Macro Lett 2018; 7:1475-1479. [PMID: 35651237 DOI: 10.1021/acsmacrolett.8b00750] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Block copolymers containing azobenzene liquid crystalline (LC) mesogen are used to prepare snowman-like Janus nanoparticles (NPs) by emulsion solvent evaporation. The azobenzene-containing poly(methacrylate) (PMAAz) head of the Janus NPs is in the smectic LC phase with ordered stripes, which becomes amorphous and enlarged due to trans/cis transformation under UV irradiation. The expanded PMAAz can consequently engulf the other head. The self-engulfed NPs can recover to their original state in both shape and LC state via visible-light irradiation. This strategy is promising for programmable load and release of different payloads by remote trigger using light.
Collapse
Affiliation(s)
- Xiaojuan Hou
- School of Materials Science and Engineering, Beihang University, Beijing 100191, People’s Republic of China
| | - Song Guan
- School of Materials Science and Engineering, Beihang University, Beijing 100191, People’s Republic of China
| | - Ting Qu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, People’s Republic of China
| | - Xuefei Wu
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Dong Wang
- State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Aihua Chen
- School of Materials Science and Engineering, Beihang University, Beijing 100191, People’s Republic of China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People’s Republic of China
| | - Zhenzhong Yang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
31
|
Wu C, Wang X, Chu B, Tang S, Wang Y. Self-Assembly of Core-Corona β-Glucan into Stiff and Metalizable Nanostructures from 1D to 3D. ACS NANO 2018; 12:10545-10553. [PMID: 30234296 DOI: 10.1021/acsnano.8b06560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of self-assembly strategies for well-studied biopolymers is an important route to complex and functional nanostructures. Here, we report the self-assembly of a stiff polysaccharide, formylated yeast β-glucan, into multiple highly ordered nanostructures from 1D to 3D. This polysaccharide could fold into a two-component helix that consisted of a rod-like helical core and flexible coronas. Annealing in formic acid can trigger the cross-linking of the coronas, resulting in the packing of helices into rod-like, sheet-like, or tube-like supramolecular nanostructures. The specific morphology of the resultant assemblies can be controlled by different annealing conditions such as annealing speed or polymer concentrations. Owing to the presence of reductant formyl groups, these β-glucan nanostructures can reduce silver ions in situ, leading to the guided assembly of ultrathin silver nanowires, silver-polymer nanorods, and silver-polymer necklaces.
Collapse
Affiliation(s)
| | | | - Bin Chu
- Key Laboratory of Biomedical Materials and Implants , Research Institute of Tsinghua University in Shenzhen , Shenzhen 518057 , China
| | | | | |
Collapse
|
32
|
Li ZW, Zhu YL, Lu ZY, Sun ZY. General patchy ellipsoidal particle model for the aggregation behaviors of shape- and/or surface-anisotropic building blocks. SOFT MATTER 2018; 14:7625-7633. [PMID: 30152819 DOI: 10.1039/c8sm01631c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a general patchy ellipsoidal particle model suitable for conducting dynamics simulations of the aggregation behaviors of various shape- and/or surface-anisotropic colloids, especially patchy ellipsoids with continuously variable shape and tunable patchiness. To achieve higher computational efficiency in dynamics simulations, we employ a multi-GPU acceleration technique based on a domain decomposition algorithm. The validation and performance evaluation of this GPU-assisted model are performed by simulating several typical benchmark systems of non-patchy and patchy ellipsoids. Given the generality and efficiency of our GPU-assisted patchy ellipsoidal particle model, it will provide a highly feasible dynamics simulation framework to investigate the aggregation behaviors of anisotropic soft matter systems comprised of shape- and/or surface-anisotropic building blocks.
Collapse
Affiliation(s)
- Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | | | | | |
Collapse
|
33
|
Fan X, Yang J, Loh XJ, Li Z. Polymeric Janus Nanoparticles: Recent Advances in Synthetic Strategies, Materials Properties, and Applications. Macromol Rapid Commun 2018; 40:e1800203. [PMID: 29900609 DOI: 10.1002/marc.201800203] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Indexed: 12/13/2022]
Abstract
Polymeric Janus nanoparticles with two sides of incompatible chemistry have received increasing attention due to their tunable asymmetric structure and unique material characteristics. Recently, with the rapid progress in controlled polymerization combined with novel fabrication techniques, a large array of functional polymeric Janus particles are diversified with sophisticated architecture and applications. In this review, the most recently developed strategies for controlled synthesis of polymeric Janus nanoparticles with well-defined size and complex superstructures are summarized. In addition, the pros and cons of each approach in mediating the anisotropic shapes of polymeric Janus particles as well as their asymmetric spatial distribution of chemical compositions and functionalities are discussed and compared. Finally, these newly developed structural nanoparticles with specific shapes and surface functions orientated applications in different domains are also discussed, followed by the perspectives and challenges faced in the further advancement of polymeric Janus nanoparticles as high performance materials.
Collapse
Affiliation(s)
- Xiaoshan Fan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jing Yang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
34
|
Yu B, Cong H, Peng Q, Gu C, Tang Q, Xu X, Tian C, Zhai F. Current status and future developments in preparation and application of nonspherical polymer particles. Adv Colloid Interface Sci 2018; 256:126-151. [PMID: 29705026 DOI: 10.1016/j.cis.2018.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/30/2018] [Accepted: 04/14/2018] [Indexed: 11/16/2022]
Abstract
Nonspherical polymer particles (NPPs) are nano/micro-particulates of macromolecules that are anisotropic in shape, and can be designed anisotropic in chemistry. Due to shape and surface anisotropies, NPPs bear many unique structures and fascinating properties which are distinctly different from those of spherical polymer particles (SPPs). In recent years, the research on NPPs has surprisingly blossomed in recent years, and many practical materials based on NPPs with potential applications in photonic device, material science and biomedical engineering have been generated. In this review, we give a systematic, balanced and comprehensive summary of the main aspects of NPPs related to their preparation and application, and propose perspectives for the future developments of NPPs.
Collapse
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Qiaohong Peng
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Chuantao Gu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Qi Tang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaodan Xu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Chao Tian
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Feng Zhai
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
35
|
Carriedo GA, de la Campa R, Soto AP. Polyphosphazenes - Synthetically Versatile Block Copolymers (“Multi-Tool”) for Self-Assembly. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Gabino A. Carriedo
- Department of Organic and Inorganic Chemistry; Facultad de Química; Universidad de Oviedo; Julián Clavería s/n 33006 Oviedo Spain
| | - Raquel de la Campa
- Department of Organic and Inorganic Chemistry; Facultad de Química; Universidad de Oviedo; Julián Clavería s/n 33006 Oviedo Spain
| | - Alejandro Presa Soto
- Department of Organic and Inorganic Chemistry; Facultad de Química; Universidad de Oviedo; Julián Clavería s/n 33006 Oviedo Spain
| |
Collapse
|
36
|
Shimizu T. Self-Assembly of Discrete Organic Nanotubes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170424] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshimi Shimizu
- AIST Fellow, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
37
|
Liu W, Zhang S, Qiao Z, Li Q, Li X, Wang H. Facile synthesis and surface activity of poly(ethylene glycol) star polymers with a phosphazene core. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Kong Y, Hanna MES, Zhuo D, Chang KG, Bozorg-Grayeli T, Melosh NA. Self-Assembly of Mesoscale Artificial Clathrin Mimics. ACS NANO 2017; 11:9889-9897. [PMID: 28921943 DOI: 10.1021/acsnano.7b03739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fluidic control and sampling in complex environments is an important process in biotechnology, materials synthesis, and microfluidics. An elegant solution to this problem has evolved in nature through cellular endocytosis, where the dynamic recruitment, self-assembly, and spherical budding of clathrin proteins allows cells to sample their external environment. Yet despite the importance and utility of endocytosis, artificial systems which can replicate this dynamic behavior have not been developed. Guided by clathrin's unusual structure, we created simplified metallic microparticles that capture the three-legged shape, particle curvature, and interfacial attachment characteristics of clathrin. These artificial clathrin mimics successfully recreate biomimetic analogues of clathrin's recruitment, assembly, and budding, ultimately forming extended networks at fluid interfaces and invaginating immiscible phases into spheres under external fields. Particle curvature was discovered to be a critical structural motif, greatly limiting irreversible aggregation and inducing the legs' selective tip-to-tip attraction. This architecture provides a template for a class of active self-assembly units to drive structural and dimensional transformations of liquid-liquid interfaces and microscale fluidic sampling.
Collapse
Affiliation(s)
- Yifan Kong
- Department of Materials Science and Engineering, Stanford University , 476 Lomita Mall, Stanford, California 94305, United States
| | - Mina-Elraheb S Hanna
- Department of Materials Science and Engineering, Stanford University , 476 Lomita Mall, Stanford, California 94305, United States
| | - Denys Zhuo
- Department of Materials Science and Engineering, Stanford University , 476 Lomita Mall, Stanford, California 94305, United States
| | - Katherine G Chang
- Department of Materials Science and Engineering, Stanford University , 476 Lomita Mall, Stanford, California 94305, United States
| | - Tara Bozorg-Grayeli
- Department of Materials Science and Engineering, Stanford University , 476 Lomita Mall, Stanford, California 94305, United States
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University , 476 Lomita Mall, Stanford, California 94305, United States
| |
Collapse
|
39
|
Zhang Z, Li H, Huang X, Chen D. Solution-Based Thermodynamically Controlled Conversion from Diblock Copolymers to Janus Nanoparticles. ACS Macro Lett 2017; 6:580-585. [PMID: 35650841 DOI: 10.1021/acsmacrolett.7b00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanosized polymeric Janus particles (NPJPs) have important applications in a variety of theoretical and practical research fields. However, the methods that are versatile and can prepare NPJPs highly efficiently are very limited. Herein, we reported a two-step thermodynamically controlled preparation of NPJPs with a high yield using a diblock copolymer as the precursor. At the first step, A-b-B coassembled in the solution with a partner diblock copolymer C-b-B to form the mixed shell micelles (MSMs) with B core and A/C mixed shell. Then, intramicellarly covalently cross-linking the A block chains resulted in the complete phase separation of A and C chains in the mixed shell, leading to the direct conversion of the MSMs into NPJPs. The first step, diblock copolymer micellization, is known as a thermodynamically controlled process, and we also made the second step, conversion from MSMs to NPJPs, be thermodynamically controlled due to the application of covalent cross-linking. As the result, the conversion efficiency is close to 100%. Besides, it was further confirmed that the method can be applied to different systems and used to tune the Janus balance. Therefore, this conversion should be very significant for the fabrication and application of the NPJPs.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| | - Haodong Li
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| | - Xiayun Huang
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| | - Daoyong Chen
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| |
Collapse
|
40
|
Xie G, Krys P, Tilton RD, Matyjaszewski K. Heterografted Molecular Brushes as Stabilizers for Water-in-Oil Emulsions. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Guojun Xie
- Department
of Chemistry, ‡Department of Biomedical Engineering, and §Department of
Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Pawel Krys
- Department
of Chemistry, ‡Department of Biomedical Engineering, and §Department of
Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Robert D. Tilton
- Department
of Chemistry, ‡Department of Biomedical Engineering, and §Department of
Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, ‡Department of Biomedical Engineering, and §Department of
Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
41
|
Yi Y, Sanchez L, Gao Y, Lee K, Yu Y. Interrogating Cellular Functions with Designer Janus Particles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:1448-1460. [PMID: 31530969 PMCID: PMC6748339 DOI: 10.1021/acs.chemmater.6b05322] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Janus particles have two distinct surfaces or compartments. This enables novel applications that are impossible with homogeneous particles, ranging from the engineering of active colloidal metastructures to creating multimodal therapeutic materials. Recent years have witnessed a rapid development of novel Janus structures and exploration of their applications, particularly in the biomedical arena. It, therefore, becomes crucial to understand how Janus particles with surface or structural anisotropy might interact with biological systems and how such interactions may be exploited to manipulate biological responses. This perspective highlights recent studies that have employed Janus particles as novel toolsets to manipulate, measure, and understand cellular functions. Janus particles have been shown to have biological interactions different from uniform particles. Their surface anisotropy has been used to control the cell entry of synthetic particles, to spatially organize stimuli for the activation of immune cells, and to enable direct visualization and measurement of rotational dynamics of particles in living systems. The work included in this perspective showcases the significance of understanding the biological interactions of Janus particles and the tremendous potential of harnessing such interactions to advance the development of Janus structure-based biomaterials.
Collapse
Affiliation(s)
| | | | | | | | - Yan Yu
- Corresponding Author (Y.Yu)
| |
Collapse
|
42
|
Huang L, Lei Z, Huang T, Zhou Y, Bai Y. "Installation art"-like hierarchical self-assembly of giant polymeric elliptical platelets. NANOSCALE 2017; 9:2145-2149. [PMID: 28127609 DOI: 10.1039/c6nr09379e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper reports the aqueous self-assembly of giant elliptical platelets over 20 μm in axial length, from a novel polyamide. Both the self-assembly pathway and mechanism were studied using morphology and X-ray characterizations. The polymer first self-organizes into small quadrangular frustum pyramid platelets, and then these small platelets can be further installed into giant elliptical platelets through an "installation art"-like hierarchical self-assembly process driven by crystallization. The as-prepared regular giant platelets can further aggregate together into multi-horned or flower-like superstructures.
Collapse
Affiliation(s)
- Lei Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Zuotao Lei
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Tong Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Yongping Bai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
43
|
Kim Y, Kim HJ, Kim JS, Hayward RC, Kim BJ. Architectural Effects on Solution Self-Assembly of Poly(3-hexylthiophene)-Based Graft Copolymers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2933-2941. [PMID: 28026922 DOI: 10.1021/acsami.6b12193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
While solution assembly of conjugated block copolymers has been widely used to produce long 1-D nanowires (NWs), it remains a great challenge to provide a higher level of control over structure and function of the NWs. Herein, for the first time, we report the solution assembly of graft copolymers containing a conjugated polymer backbone in a selective solvent and demonstrate that their self-assembly behaviors can be manipulated by the molecular structures of the graft copolymers. A series of poly(3-hexylthiophene)-graft-poly(2-vinylpyridine) (P3HT-g-P2VP) copolymers was designed with two different architectural parameters: grafting fraction (fg) and molecular weight of P2VP chains (Mn,P2VP) on the P3HT backbone. Interestingly, crystallization of the P3HT-g-P2VP copolymers was systematically modulated by changes in fg and Mn,P2VP, thus allowing for control of the growth kinetics and curvatures of solution-assembled NWs. When Mn,P2VP (4.4 to 15.1 kg/mol) or fg (2.8 to 9.2%) of the P3HT-g-P2VP polymers was increased, the crystallinity of the copolymers was reduced significantly. Steric hindrance from the grafted P2VP chains apparently modified the growth of NWs, leading to shorter NWs with a greater degree of curvature for graft copolymers with more hindrance. Therefore, we envision that such conjugated chain-based graft copolymers can be versatile building blocks for producing NWs with controlled length and shape, which can be important for tailoring the optical and electrical properties of NW-based devices.
Collapse
Affiliation(s)
- Youngkwon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon, 34141, Korea
| | - Hyeong Jun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon, 34141, Korea
| | - Jin-Seong Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon, 34141, Korea
| | - Ryan C Hayward
- Department of Polymer Science and Engineering, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon, 34141, Korea
| |
Collapse
|
44
|
Guo YQ, Pan JX, Sun MN, Zhang JJ. Phase transition of a symmetric diblock copolymer induced by nanorods with different surface chemistry. J Chem Phys 2017; 146:024902. [PMID: 28088151 DOI: 10.1063/1.4973560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We investigate the phase transition of a symmetric diblock copolymer induced by nanorods with different surface chemistry. The results demonstrate that the system occurs the phase transition from a disordered structure to ordered parallel lamellae and then to the tilted layered structure as the number of rods increases. The dynamic evolution of the domain size and the order parameter of the microstructure are also examined. Furthermore, the influence of rod property, rod-phase interaction, rod-rod interaction, rod length, and polymerization degree on the behavior of the polymer system is also investigated systematically. Moreover, longer amphiphilic nanorods tend to make the polymer system form the hexagonal structure. It transforms into a perpendicular lamellar structure as the polymerization degree increases. Our simulations provide an efficient method for determining how to obtain the ordered structure on the nanometer scales and design the functional materials with optical, electronic, and magnetic properties.
Collapse
Affiliation(s)
- Yu-Qi Guo
- School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
| | - Jun-Xing Pan
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
| | - Min-Na Sun
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
| | - Jin-Jun Zhang
- School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
| |
Collapse
|
45
|
Sheng Y, Xia L, Yang G, Xia Y, Huang Y, Pan C, Zhu Y. Stepwise study on Janus-like particles fabricated by polymeric mixtures within soft droplets: a Monte Carlo simulation. RSC Adv 2017. [DOI: 10.1039/c7ra06190k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Janus particles were fabricated using different polymer mixtures and the self-assembly behavior for different particles was compared.
Collapse
Affiliation(s)
- Yuping Sheng
- Analytical and Testing Center
- Sichuan University of Science and Engineering
- Zigong 643000
- People's Republic of China
| | - Li Xia
- Analytical and Testing Center
- Sichuan University of Science and Engineering
- Zigong 643000
- People's Republic of China
| | - Guanzhou Yang
- Analytical and Testing Center
- Sichuan University of Science and Engineering
- Zigong 643000
- People's Republic of China
| | - Yiqing Xia
- Analytical and Testing Center
- Sichuan University of Science and Engineering
- Zigong 643000
- People's Republic of China
- College of Materials Science and Engineering
| | - Yong Huang
- Analytical and Testing Center
- Sichuan University of Science and Engineering
- Zigong 643000
- People's Republic of China
| | - Chuanjiang Pan
- Analytical and Testing Center
- Sichuan University of Science and Engineering
- Zigong 643000
- People's Republic of China
| | - Yutian Zhu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| |
Collapse
|
46
|
Chambers M, Mallory SA, Malone H, Gao Y, Anthony SM, Yi Y, Cacciuto A, Yu Y. Lipid membrane-assisted condensation and assembly of amphiphilic Janus particles. SOFT MATTER 2016; 12:9151-9157. [PMID: 27796398 DOI: 10.1039/c6sm02171a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amphiphilic Janus particles self-assemble into complex metastructures, but little is known about how their assembly might be modified by weak interactions with a nearby biological membrane surface. Here, we report an integrated experimental and molecular dynamics simulation study to investigate the self-assembly of amphiphilic Janus particles on a lipid membrane. We created an experimental system in which Janus particles are allowed to self-assemble in the same medium where zwitterionic lipids form giant unilamellar vesicles (GUVs). Janus particles spontaneously concentrated on the inner leaflet of the GUVs. They exhibited biased orientation and heterogeneous rotational dynamics as revealed by single particle rotational tracking. The combined experimental and simulation results show that Janus particles concentrate on the lipid membranes due to weak particle-lipid attraction, whereas the biased orientation of particles is driven predominantly by inter-particle interactions. This study demonstrates the potential of using lipid membranes to influence the self-assembly of Janus particles.
Collapse
Affiliation(s)
- Mariah Chambers
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | | | - Heather Malone
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Yuan Gao
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Stephen M Anthony
- Department of Bioenergy and Defense Technology, Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - Yi Yi
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Angelo Cacciuto
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA.
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
47
|
Li X, Gao Y, Harniman R, Winnik M, Manners I. Hierarchical Assembly of Cylindrical Block Comicelles Mediated by Spatially Confined Hydrogen-Bonding Interactions. J Am Chem Soc 2016; 138:12902-12912. [DOI: 10.1021/jacs.6b05973] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyu Li
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Yang Gao
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Robert Harniman
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Mitchell Winnik
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
48
|
Catrouillet S, Bouteiller L, Boyron O, Lorthioir C, Nicol E, Pensec S, Colombani O. Patchy Supramolecular Bottle-Brushes Formed by Solution Self-Assembly of Bis(urea)s and Tris(urea)s Decorated by Two Incompatible Polymer Arms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8900-8908. [PMID: 27459308 DOI: 10.1021/acs.langmuir.6b01609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In an attempt to design urea-based Janus nanocylinders through a supramolecular approach, nonsymmetrical bis(urea)s and tris(urea)s decorated by two incompatible polymer arms, namely, poly(styrene) (PS) and poly(isobutylene) (PIB), were synthesized using rather straightforward organic and polymer chemistry techniques. Light scattering experiments revealed that these molecules self-assembled in cyclohexane by cooperative hydrogen bonds. The extent of self-assembly was limited for the bis(urea)s. On the contrary, reasonably anisotropic 1D structures (small nanocylinders) could be obtained with the tris(urea)s (Nagg ∼ 50) which developed six cooperative hydrogen bonds per molecule. (1)H transverse relaxation measurements and NOESY NMR experiments in cyclohexane revealed that perfect Janus nanocylinders with one face consisting of only PS and the other of PIB were not obtained. Nevertheless, phase segregation between the PS and PIB chains occurred to a large extent, resulting in patchy cylinders containing well separated domains of PIB and PS chains. Reasons for this behavior were proposed, paving the way to improve the proposed strategy toward true urea-based supramolecular Janus nanocylinders.
Collapse
Affiliation(s)
- Sylvain Catrouillet
- LUNAM Université, Université du Maine, IMMM - UMR CNRS 6283, Université du Maine , av. O. Messiaen, 72085 cedex 9 Le Mans, France
| | - Laurent Bouteiller
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères , 4 Place Jussieu, F-75005 Paris, France
| | - Olivier Boyron
- Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Université de Lyon, Univ. Lyon 1, CPE Lyon, CNRS UMR 5265, Bat 308F, 43 Bd du 11 Novembre 1918, 69100 Villeurbanne, France
| | - Cédric Lorthioir
- Université Paris Est, ICMPE (UMR7182), CNRS, UPEC , F-94320 Thiais, France
| | - Erwan Nicol
- LUNAM Université, Université du Maine, IMMM - UMR CNRS 6283, Université du Maine , av. O. Messiaen, 72085 cedex 9 Le Mans, France
| | - Sandrine Pensec
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères , 4 Place Jussieu, F-75005 Paris, France
| | - Olivier Colombani
- LUNAM Université, Université du Maine, IMMM - UMR CNRS 6283, Université du Maine , av. O. Messiaen, 72085 cedex 9 Le Mans, France
| |
Collapse
|
49
|
Labbé-Laurent M, Dietrich S. Critical Casimir interactions between Janus particles. SOFT MATTER 2016; 12:6621-6648. [PMID: 27444691 DOI: 10.1039/c6sm00990e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently there has been strong experimental and theoretical interest in studying the self-assembly and the phase behavior of patchy and Janus particles, which form colloidal suspensions. Although in this quest a variety of effective interactions have been proposed and used in order to achieve a directed assembly, the critical Casimir effect stands out as being particularly suitable in this respect because it provides both attractive and repulsive interactions as well as the potential of a sensitive temperature control of their strength. Specifically, we have calculated the critical Casimir force between a single Janus particle and a laterally homogeneous substrate as well as a substrate with a chemical step. We have used the Derjaguin approximation and compared it with results from full mean field theory. A modification of the Derjaguin approximation turns out to be generally reliable. Based on this approach we have derived the effective force and the effective potential between two Janus cylinders as well as between two Janus spheres.
Collapse
Affiliation(s)
- M Labbé-Laurent
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany.
| | | |
Collapse
|
50
|
Liu H, Luo J, Shan W, Guo D, Wang J, Hsu CH, Huang M, Zhang W, Lotz B, Zhang WB, Liu T, Yue K, Cheng SZD. Manipulation of Self-Assembled Nanostructure Dimensions in Molecular Janus Particles. ACS NANO 2016; 10:6585-6596. [PMID: 27337531 DOI: 10.1021/acsnano.6b01336] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability to manipulate self-assembly of molecular building blocks is the key to achieving precise "bottom-up" fabrications of desired nanostructures. Herein, we report a rational design, facile synthesis, and self-assembly of a series of molecular Janus particles (MJPs) constructed by chemically linking α-Keggin-type polyoxometalate (POM) nanoclusters with functionalized polyhedral oligomeric silsesquioxane (POSS) cages. Diverse nanostructures were obtained by tuning secondary interactions among the building blocks and solvents via three factors: solvent polarity, surface functionality of POSS derivatives, and molecular topology. Self-assembled morphologies of KPOM-BPOSS (B denotes isobutyl groups) were found dependent on solvent polarity. In acetonitrile/water mixtures with a high dielectric constant, colloidal nanoparticles with nanophase-separated internal lamellar structures quickly formed, which gradually turned into one-dimensional nanobelt crystals upon aging, while stacked crystalline lamellae were dominantly observed in less polar methanol/chloroform solutions. When the crystallizable BPOSS was replaced with noncrystallizable cyclohexyl-functionalized CPOSS, the resulting KPOM-CPOSS also formed colloidal spheres; however, it failed to further evolve into crystalline nanobelt structures. In less polar solvents, KPOM-CPOSS crystallized into isolated two-dimensional nanosheets, which were composed of two inner crystalline layers of Keggin POM covered by two monolayers of amorphous CPOSS. In contrast, self-assembly of KPOM-2BPOSS was dominated by crystallization of the BPOSS cages, which was hardly sensitive to solvent polarity. The BPOSS cages formed the crystalline inner bilayer, sandwiched by two outer layers of Keggin POM clusters. These results illustrate a rational strategy to purposely fabricate self-assembled nanostructures with diverse dimensionality from MJPs with controlled molecular composition and topology.
Collapse
Affiliation(s)
- Hao Liu
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Jiancheng Luo
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Wenpeng Shan
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Dong Guo
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Jing Wang
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Chih-Hao Hsu
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Mingjun Huang
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Wei Zhang
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Bernard Lotz
- Institut Charles Sadron, CNRS, Université de Strasbourg , 23, Rue du Lœss, 67034 Strasbourg, France
| | - Wen-Bin Zhang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Tianbo Liu
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Kan Yue
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Stephen Z D Cheng
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|