1
|
Pan K, Chen L, Tian G, Zhou J, Xu S, Wang L. Boosting responses of fluorescent imaging probes toward sulfur dioxide through engineering side chain length. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126252. [PMID: 40318266 DOI: 10.1016/j.saa.2025.126252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/30/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Development of fluorescent probes with high sensitivity and specificity is always desirable, yet, challenging. Conventionally, improving the responses of probes relied on optimizing the reactivities of recognition sites, either by increasing the binding affinity or reaction rates. Herein, we found the sensitivity and response kinetics could be improved by changing the aggregation behaviors of probes. As a proof-of-concept, benzothiazole derivatives with different side chain lengths were prepared and the enhanced responses toward sulfur dioxide (SO2) were observed for the probe with longer side chain. We demonstrated that the long side chain facilitates formation of tightly aggregates, which possessed higher positive charges and susceptible recognition sites as compared with probes possessing short side chains, resulting in better sensitivity and faster responses. In addition, we also demonstrated the generality of such design protocols with probes displaying aggregation induced emission (AIE) properties. Thus, the proposed side chain engineering strategy provides new paradigm for probe design.
Collapse
Affiliation(s)
- Kexin Pan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liyuan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangjun Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Juyue Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Hu H, Zhu J, Wu Z, Fu Y, Xie J, Liu H, Feng Y, Zhang Q, Jia C. Insight into Cys and its derivatives metabolism in living system with 3D-printed portable smartphone platform via multifunctional fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126324. [PMID: 40344886 DOI: 10.1016/j.saa.2025.126324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/27/2025] [Accepted: 04/27/2025] [Indexed: 05/11/2025]
Abstract
Cysteine (Cys) is a crucial biological thiol that facilitates broad range of biological circumstances and health conditions. Especially the aberrant Cys level in human serum is an independent risk factor for cardiovascular diseases. What more, Cys metabolism (Cys to SO2) is typically connected with illnesses such as lung cancer, and are recognized as biomarker. Herein, an innovative multifunctional fluorescent probe was rudimentarily designed and utilized, not only for realizing real-time visualization of the metabolism of Cys to SO2 in tumors through two self-sufficient channels without spectral cross-interference, but also for sensitive, real-time, on-site, and quantitative visual recognition of Cys in human serum through 3D-printed smartphone sensing platform. In addition, the probe's unique response to Cys/HSO3- in distinct spectral behaviors, which have been characterized theoretically using UV-Vis, fluorescence, DFT calculations, and 1H NMR. More importantly, the methodology reported herein enables an available pathway for real-time/on-site and visual determination of Cys in human serum and is expected to extend the use of potential cardiovascular disease biomarker studies for initial monitoring and clinical diagnosis.
Collapse
Affiliation(s)
- Hao Hu
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Jiali Zhu
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Ziyan Wu
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Yuan Fu
- Department of Public Safety Technolog, Hainan Vocational College of Politics and Law, Haikou 571100, China
| | - Jialin Xie
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China
| | - Hongtao Liu
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China
| | - Yan Feng
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China.
| | - Qiangsheng Zhang
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China.
| | - Chunman Jia
- Analysis and Testing Center, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Cao P, Guo D, Chen X, Li Z, Kang Y, Zhu Q, Zhu L, Li Y, Yu H. Revealing the elevated sulfite levels in acute kidney injury using a promising ratiometric fluorescent probe. Talanta 2025; 291:127903. [PMID: 40058144 DOI: 10.1016/j.talanta.2025.127903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/24/2025]
Abstract
The development of novel biomarkers for the early diagnosis of acute kidney injury (AKI) is critical for enabling timely protective interventions and predicting potential drug toxicity. Recent studies have highlighted metabolic abnormalities in sulfur-containing compounds during AKI progression. A ratiometric fluorescent probe, BP-BT-OH, has been designed for sulfite detection, featuring a covalent bond between benzothiazole and benzopyran-oxonium. The probe's ratio intensity is highly sensitive to sulfite concentration with an almost 80-fold increase. BP-BT-OH showed a rapid response of 50 s, an excellent detection limit of 0.21 μM, and a high selectivity and anti-interference capabilities. The probe can efficiently detects fluctuations in intracellular sulfite, both exogenous and endogenous. In cisplatin-treated cells, the ratio intensity between the two channels was significantly higher compared to untreated cells. More promisingly, BP-BT-OH was successfully used for imaging cisplatin-induced AKI in mice, revealing elevated sulfite levels in the kidneys. These findings validate sulfite as a potential biomarker for AKI. Further analysis of specific kidney proteins indicated that the increased sulfite concentration may be linked to downregulation of sulfur-containing compound metabolic enzymes. This approach offers a novel perspective on using molecular imaging tools for diagnosing early-stage diseases that lack obvious symptoms.
Collapse
Affiliation(s)
- Pan Cao
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Dan Guo
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Xin Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Ziang Li
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yumiao Kang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Qian Zhu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Lili Zhu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Yinhui Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Huan Yu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Zhang H, Li H, Feng Z, Du L, Bi G, Cui Y. A Hemicyanine-based dual function fluorescent probe for rapid detecting sulfur dioxide and viscosity in food sample and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125951. [PMID: 40043368 DOI: 10.1016/j.saa.2025.125951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/10/2025] [Accepted: 02/23/2025] [Indexed: 03/24/2025]
Abstract
Sulfur dioxide is a critical factor in evaluating food safety, as excessive intake can lead to various adverse reactions. Additionally, viscosity is a key indicator of food quality. However, to date, dual-response probes capable of detecting both viscosity and sulfur dioxide in food remain scarce. In this study, we present a novel fluorescent probe, BZID-OH, designed for the simultaneous detection of sulfur dioxide and viscosity in food. Moreover, BZID-OH is also effective for sulfur dioxide detection in living cells. These findings suggest that BZID-OH has the potential to serve as an effective dual-response fluorescent probe for monitoring both sulfur dioxide levels and viscosity in food, offering a valuable tool for food safety and quality assessment.
Collapse
Affiliation(s)
- Huiling Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016 China; Structural Key Laboratory for Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Hualong Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong Province 255049, China; Structural Key Laboratory for Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixuan Feng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016 China; Structural Key Laboratory for Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Libo Du
- Structural Key Laboratory for Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.
| | - Gehua Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong Province 255049, China.
| | - Yan Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016 China.
| |
Collapse
|
5
|
Bin Y, Huang L, Qin J, He M, Zhao S, Huang Y, Zhao J. A Kidney-Targeted Rapid Photoacoustic Probe Activated by Sulfur Dioxide for 3D Visual Diagnosis of Iodinated Contrast-Induced Acute Kidney Injury. Anal Chem 2025; 97:9798-9808. [PMID: 40313201 DOI: 10.1021/acs.analchem.4c07025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Sulfur dioxide (SO2) dysmetabolism is closely associated with various diseases such as acute kidney injury (AKI). Nevertheless, the relationship between SO2 levels and iodinated contrast-induced AKI remains largely unclear. Therefore, accurate imaging of SO2 level fluctuations in vivo is therefore critically important. However, no photoacoustic (PA) imaging method is currently available for the detection of SO2. To address this gap, we designed and synthesized a PA probe toward SO2, namely, Rho-QL, for the first time and performed in situ PA imaging of SO2 in deep tissues in vivo. A novel method was accordingly developed for the 3D visual diagnosis of AKI based on PA imaging of SO2 in kidney tissues with high spatial resolution. Rho-QL exhibited a PA response time of 5 s for SO2 and displayed remarkable turn-on absorption changes at 700 nm, making it a suitable probe for detecting SO2 levels via PA imaging. Moreover, Rho-QL exhibited an excellent targeting ability to the kidney, thereby facilitating in situ imaging of SO2 in the kidney. Notably, through real-time PA imaging, Rho-QL was successfully applied for 3D visualization of the detailed SO2 distribution with high spatial resolution and revealed a remarkable increase in the SO2 levels in the kidney during a contrast-induced AKI process. Based on the current findings, Rho-QL is expected to become a powerful tool for the study and diagnosis of AKI-related diseases.
Collapse
Affiliation(s)
- Yidong Bin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lixian Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jiangke Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Min He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
6
|
Liang Z, Tian F. Functional nucleic acid-based fluorescence imaging for tumor microenvironment monitoring: A review. Anal Chim Acta 2025; 1350:343794. [PMID: 40155176 DOI: 10.1016/j.aca.2025.343794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND The tumor microenvironment (TME) refers to the complex ecological system surrounding tumor cells, which is intimately associated with regulating tumor cell growth, invasive behavior, and metastatic capacity. Hence, in situ imaging of related bioactivity with resolution in the TME is critical for early cancer detection and accurate diagnosis. In recent years, fluorescence imaging technology has become a widely used tool in TME research due to its non-invasive nature, high spatiotemporal resolution, and capability for real-time monitoring. Among these advancements, signal probes designed based on functional nucleic acids (FNAs) provide a promising and innovative toolkit for targeted imaging analysis of the TME. RESULTS This review provides a comprehensive discussion on the construction of FNA-based biosensors and their advancements in TME monitoring. In this review, we initially provide a systematic summary of the current targeting strategies of FNA-based biosensors for visual monitoring of the TME, focusing on targeting cell surface and extracellular matrix components. Subsequently, we further explore the application of FNA-based biosensors in monitoring the TME. These biosensors have successfully achieved the monitoring of key parameters, bioactive molecules and other tumor markers in the tumor microenvironment due to their excellent molecular recognition ability and high sensitivity. Finally, we discuss some of the challenges currently faced in the field. In response to these challenges, we propose potential research directions and look forward to the future development prospects of this field. SIGNIFICANCE Unlike previous reviews of biosensors based on FNAs for imaging tumor markers in the TME, this work is the first to review how such biosensors can be anchored in the TME. With continued efforts and advancements, we believe an increasing number of FNA-based fluorescence imaging probes will be utilized for TME imaging. This progress will significantly enhance our understanding of disease pathogenesis and progression, thereby offering substantial potential in biosensing and imaging analysis.
Collapse
Affiliation(s)
- Zuoxiang Liang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, PR China; Department of Epidemiology and Health Statistics & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, PR China
| | - Fengyu Tian
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, PR China.
| |
Collapse
|
7
|
Yin G, Yu T, Lian C, Li Y, Liu D, Li H, Zhou H, Yin P, Yao S. Multifunctional Fluorescent Probes for Profiling Cys, Hcy, GSH, and SO₂: Illuminating Their Dynamics in Apoptosis and Ferroptosis. Adv Healthc Mater 2025:e2404993. [PMID: 40317670 DOI: 10.1002/adhm.202404993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/16/2025] [Indexed: 05/07/2025]
Abstract
The ability to perform simultaneous fluorescence imaging of multiple targets is essential, providing crucial multi-parametric information necessary for understanding complex biological interactions and processes. In this study, TBC, a novel multi-signal fluorescent probe is presented, crafted for simultaneous differentiation and in situ real-time monitoring of homocysteine (Hcy), cysteine (Cys), sulfur dioxide (SO2), and glutathione (GSH), illuminating the dynamic metabolic status of endogenous reactive sulfur species. TBC achieves an ultrahigh signal-to-background ratio, enabling wash-free direct fluorescence imaging of the dynamics and distribution of these entities in living cells and zebrafish. Notably, TBC has revealed distinctive dynamic metabolic features of Hcy/Cys/SO2/GSH during apoptosis and ferroptosis. This innovative probe acts as a key tool for unraveling the conversion networks of multiple reactive sulfur species and assessing the impact of metabolic oscillations during programmed cell death and the progression of diverse diseases, effectively uncovering concurrent biochemical dynamics in various biological settings and cell death events.
Collapse
Affiliation(s)
- Guoxing Yin
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Ting Yu
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Chunhua Lian
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yang Li
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Dian Liu
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
| | - Haitao Li
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Huijun Zhou
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
| | - Peng Yin
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Shouzhuo Yao
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
8
|
Wen Y, Hu Z, Tian W, Yan H, Huo F, Yin C. A dual-cascade-activatable molecular probe with microenvironment-adapted performance for accurate differentiation of hepatopathy. Biomaterials 2025; 322:123382. [PMID: 40324315 DOI: 10.1016/j.biomaterials.2025.123382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Fluorescence imaging utilizing biomarker-activatable fluorescent probes has emerged as a powerful tool for the precise and early diagnosis of hepatopathy. However, the development of effective molecular probes remains challenging due to limitations, such as single-stimulus responsiveness and incompatible with microenvironment characteristic of hepatopathy. These limitations often result in a lower signal-to-noise ratio, false positives and ultimately reduced diagnostic accuracy. In this study, we developed a novel dual-lock-controlled fluorescent probe (Hdual) based on basic blue 3 dye. This probe was designed to be sequentially activated by two potential hepatopathy biomarkers, leucine aminopeptidase (LAP) and monoamine oxidase (MAO), through a cascade mechanism. Moreover, after addition LAP and MAO, Hdual exhibited a linear fluorescence change within a pH range of 6.2-6.8, ensuring high compatibility with the weakly acidic microenvironment characteristic of hepatopathy. The dual-cascade-activatable design, combined with the probe's microenvironment-adapted property, enabled Hdual to achieve a significantly higher target-to-noise ratio (T/N) of 2.40 in in vivo imaging for drug-induced liver injury, compared to "single-locked" probe (T/N < 0.79). Notably, Hdual demonstrated the ability to differentiate between cirrhotic and hepatitis B samples by analyzing patient blood samples through both fluorescent imaging and a distinct colorimetric change, observable either visually or via smartphone-based color analysis. These findings highlight Hdual's high specificity and accuracy in fluorescence imaging-based detection, underscoring its potential to improve the early diagnosis of hepatopathy.
Collapse
Affiliation(s)
- Ying Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Zefeng Hu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Wenhao Tian
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Huming Yan
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
9
|
Huang H, Li H, Zhang Y, Xia X, Zhang N, Fan H, Guo L, Cao Y, Pan H, Deng R, Wang Y, Ledesma‐Amaro R, Xu J. Simultaneous Monitoring of Tyrosinase and ATP in Thick Brain Tissues Using a Single Two-Photon Fluorescent Probe. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413220. [PMID: 40129186 PMCID: PMC12097068 DOI: 10.1002/advs.202413220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/06/2025] [Indexed: 03/26/2025]
Abstract
Cellular redox homeostasis and energy metabolism in the central nervous system are associated with neurodegenerative diseases. However, their real-time and concurrent monitoring in thick tissues remains challenging. Herein, a single dual-emission two-photon fluorescent probe (named DST) is designed for the simultaneous tracking of tyrosinase (TYR) and adenosine triphosphate (ATP), thereby enabling the real-time monitoring of both neurocellular redox homeostasis and energy metabolism in brain tissue. The developed DST probe exhibits excellent sensitivity and selectivity toward TYR and ATP, with distinctive responses in the blue and red fluorescence channels being observed without spectra crosstalk. Using this probe, the correlation and regulatory mechanism between TYR and ATP during oxidative stress are uncovered. Additionally, the two-photon nature of this probe allows alterations in the TYR and ATP levels to be monitored across different brain regions in an Alzheimer's disease (AD) mouse model. Notably, a significant decrease in ATP levels is revealed within the somatosensory cortex (S1BF) and caudate putamen brain regions of an AD mouse, alongside an increase in TYR levels within the S1BF and laterodorsal thalamic nucleus brain regions. These findings indicate the potential of applying the spatially resolved regulation of neurocellular redox homeostasis and energy metabolism to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Hong Huang
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Huiru Li
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Yong Zhang
- College of Biomass Science and EngineeringSichuan UniversityChengdu610065China
| | - Xuhan Xia
- College of Biomass Science and EngineeringSichuan UniversityChengdu610065China
| | - Ningwen Zhang
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Haixin Fan
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Longhua Guo
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Yongyong Cao
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Hu Pan
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Ruijie Deng
- College of Biomass Science and EngineeringSichuan UniversityChengdu610065China
| | - Yangang Wang
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
| | - Rodrigo Ledesma‐Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic BiologyImperial College LondonLondonSW7 2AZUK
| | - Jianguo Xu
- College of Biological and Chemical EngineeringJiaxing UniversityJiaxing314001China
- Engineering Research Center of Bio‐processMinistry of EducationSchool of Food and Biological EngineeringHefei University of TechnologyHefei230009China
| |
Collapse
|
10
|
Liu C, Lu S, Yan C, Zhao X, Yang J, Zhang W, Zhao X, Ge Y, You X, Guo Z. Sequential metabolic probes illuminate nuclear DNA for discrimination of cancerous and normal cells. Chem Sci 2025; 16:6837-6844. [PMID: 40110524 PMCID: PMC11915456 DOI: 10.1039/d5sc00360a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Elucidating the timing and spatial distribution of DNA synthesis within cancer cells is vital for cancer diagnosis and targeted therapy. However, current probes for staining nucleic acids rely on electrostatic interactions and hydrogen bonds with the nucleic acid, resulting in "static" DNA staining and the inability to distinguish cell types. Here, we present a proof-of-concept study of sequential metabolic probes, for the first time allowing for cancer-cell-specific illumination of DNA. This breakthrough is achieved by the combination of a "dual-locked" nucleoside analog VdU-Lys, and a new tetrazine-based bioorthogonal probe. Specifically, 5-vinyl-2'-deoxyuridine (VdU) release is only conducted in programmatically triggered histone deacetylases (HDACs) and cathepsin L (CTSL) as "sequential keys", enabling the modification of vinyl groups into the nuclear DNA of cancerous cells rather than normal cells. Subsequently, tetrazine-based Et-PT-Tz could in situ light-up DNA containing VdUs with significant fluorescence illumination (120-fold enhancement) through rapid bioorthogonal reaction. We demonstrated the compatibility of our probe in cancer-specific sensing of DNA with a high signal-to-noise ratio ranging from in vitro multiple cell lines to whole-organism scale. This approach would serve as a benchmark for the development of cell-specific metabolic reporters for DNA labelling, to characterize DNA metabolism in various types of cell lines.
Collapse
Affiliation(s)
- Caiqi Liu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Sirui Lu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xingyuan Zhao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Jing Yang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Weixu Zhang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xiuyan Zhao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yao Ge
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xiaofan You
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
11
|
Huang M, Xia X, Li Z, Zhao T, Wu Z, Ren Y, Ren J, Wang F, Wang E. Bifunctional fluorescent probe revealing viscosity and SO 2 in cell, zebrafish and NASH model. Anal Chim Acta 2025; 1345:343740. [PMID: 40015781 DOI: 10.1016/j.aca.2025.343740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Clarifying the presence of viscosity and endogenous sulfur dioxide (SO2) in mitochondria is crucial for advancing the diagnosis and treatment of illnesses. Nevertheless, the advancement of fluorescent probes that concurrently satisfy the criteria of mitochondrial viscosity and endogenous recognition of SO2 remains significantly insufficient. In this work, we have engineered and synthesized two probes ID-OH and BID-OH, which exhibit a ratio-type response to SO2 and an off-on fluorescence response to viscosity. Due to the superior selectivity coupled with its outstanding wavelength and fluorescence quantum yield, BID-OH has been effectively utilized for the detection of exogenous SO2, endogenous SO2 and viscosity within living HepG2 cells. Additionally, BID-OH demonstrates the capability to offer comprehensive insights into the distribution of endogenous SO2 as it traverses through the transfer pathway in zebrafish. Notably, the remarkable capacity of BID-OH to differentiate between normal mice and nonalcoholic steatohepatitis (NASH) mice has been demonstrated, indicating its potential as an excellent diagnostic tool for detecting SO2 levels and viscosity under physiological conditions. It is anticipated that BID-OH will emerge as a valuable instrument for diagnosing mitochondrial irregularities, thereby contributing to the advancement of related medical research in this field.
Collapse
Affiliation(s)
- Minrong Huang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, PR China
| | - Xiaofeng Xia
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, PR China
| | - Zheng Li
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, PR China
| | - Taotao Zhao
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, PR China
| | - Zhengjun Wu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, PR China
| | - Yong Ren
- Department of Cardiology, Institute of Cardiovascular Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, PR China.
| | - Jun Ren
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, PR China
| | - Feiyi Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, PR China.
| | - Erfei Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
12
|
Zhang X, Si Y, Chen X, Nie X, Zhang Y, Lin L, Yan Y. A Bifunctional Fluorescence Probe for the Detection of Hypochlorous Acid and Viscosity in Living Cells and Zebrafish. Molecules 2025; 30:1531. [PMID: 40286121 PMCID: PMC11990390 DOI: 10.3390/molecules30071531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
As two significant indicators in the microenvironment, hypochlorous acid and viscosity play important roles in multitudinous physiological metabolic processes. However, it is challenging to determine the dynamic levels of hypochlorous acid and viscosity in living cells and organisms because of the absence of effective molecular tools that can simultaneously detect hypochlorous acid and viscosity in organisms. Herein, a molecular design strategy was presented to fabricate a single fluorescence probe that can simultaneously detect hypochlorous acid and viscosity by using two different emission channels. In JXR, TICT-based 4-(2-(5-(dimethylamino)thiophen-2-yl)vinyl)-1-methylpyridin-1-ium-iodide chromophore serves as energy acceptor in the FRET process and sensors for hypochlorous acid and viscosity. JXR showed a large Stokes shift, wide emission peak distance, high photostability, and low toxicity. JXR could detect hypochlorous acid and viscosity rapidly, sensitively, and selectively by emitting different fluorescence signals. Importantly, JXR was successfully applied to track the intracellular hypochlorous acid and viscosity in living cells. Meanwhile, the generation of endogenous hypochlorite in living cells can be observed by using JXR.
Collapse
Affiliation(s)
- Xin Zhang
- School of Public Health, Shandong Second Medical University, Weifang 261053, China;
- School of Public Health, Jining Medical University, Jining 272067, China; (X.N.); (Y.Z.)
| | - Yanmei Si
- School of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China;
| | - Xinpeng Chen
- School of Life Science, Hubei Normal University, Huangshi 435002, China;
| | - Xuqing Nie
- School of Public Health, Jining Medical University, Jining 272067, China; (X.N.); (Y.Z.)
| | - Yiheng Zhang
- School of Public Health, Jining Medical University, Jining 272067, China; (X.N.); (Y.Z.)
| | - Li Lin
- School of Public Health, Shandong Second Medical University, Weifang 261053, China;
- School of Public Health, Jining Medical University, Jining 272067, China; (X.N.); (Y.Z.)
| | - Yehao Yan
- School of Public Health, Jining Medical University, Jining 272067, China; (X.N.); (Y.Z.)
| |
Collapse
|
13
|
Palanna M, Itagi M, Sannegowda LK, Kulkarni B, Hiremath K, Austeria M, Balakrishna RG. A bio-mimicking cobalt tetramenthol-substituted phthalocyanine-based electrochemical sensor for selective and sensitive detection of tert-butylhydroquinone. J Mater Chem B 2025; 13:4188-4200. [PMID: 40052219 DOI: 10.1039/d4tb02043j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Healthy eating choices and adequate nutritional foods are the most important factors in extending a person's life expectancy. Synthetic antioxidants are frequently used in the food industry as preservatives despite their toxicity and hence have drawn much attention for their accurate monitoring. This study explores the newly designed cobalt tetramenthol substituted phthalocyanine (CoTMPc) for the electrocatalytic detection of an artificial food preservative, i.e., tertiary butylhydroquinone (TBHQ). A highly selective, cost-effective electrochemical probe is developed for the nanomolar detection of TBHQ. Its efficacy is evaluated and validated by different electrochemical techniques, namely cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CA) and the CA results demonstrated a good sensitivity of 1.3102 μA nM-1 cm-2 with a linear range of 20-200 nM and a detection limit (LOD) of 4.5 nM in comparison to other techniques. The developed sensor was successfully applied to real samples. The CoTMPc electrode exhibited superior sensitivity, excellent selectivity, repeatability, and reproducibility, with anti-interference ability, over a broad linear range towards TBHQ detection. The mechanism of electrochemical detection is supported by fluorescence resonance energy/electron transfer and provides insights into the design of high-performing electroactive molecules that induce specificity and selectivity.
Collapse
Affiliation(s)
- Manjunatha Palanna
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Bangalore, 562112, Karnataka, India.
| | - Mahesh Itagi
- Department of Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari, 583105, Karnataka, India
| | - Lokesh Koodlur Sannegowda
- Department of Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari, 583105, Karnataka, India
| | - Bhakti Kulkarni
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Bangalore, 562112, Karnataka, India.
| | - Kiran Hiremath
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Bangalore, 562112, Karnataka, India.
| | - Muthu Austeria
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Bangalore, 562112, Karnataka, India.
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Bangalore, 562112, Karnataka, India.
| |
Collapse
|
14
|
Liu Q, Dong Z, Chang C, Chen S, Sun P, Shu W, Zeng C, Chi W. Computational Chemistry-Assisted Design of a Dual-Function Fluorescent Probe for Viscosity Sensing in Liver Damage and SO 2 Detection In Vitro. Anal Chem 2025; 97:4144-4150. [PMID: 39951498 DOI: 10.1021/acs.analchem.4c06499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
A new dual-channel and dual-functional fluorescent probe, DX3-AXI, is developed with the aid of computational chemistry, enabling viscosity and SO2 detection in separate fluorescence emission channels. The probe DX3-AXI exhibits significant fluorescence changes in the detection, demonstrating excellent interference resistance and a linear response. Through Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT) calculations, along with hole-electron molecular analysis, energy level structure, and molecular local attachment energy analysis, the mechanism of the dual-channel response of the DX3-AXI probe is systematically revealed, demonstrating that the regulation of interactions between the rotatable bond and double bond drives the fluorescence changes. Furthermore, a portable sensing platform for on-site sulfite detection in water samples was developed by coupling the probe with a smartphone, enabling the rapid qualitative and semiquantitative detection of sulfite. Significantly, DX3-AXI has demonstrated successful application in detecting changes in the microenvironment of normal and cancer cells while also enabling the visualization of viscosity variations in the liver tissue of mice with liver injury. The DX3-AXI probe has shown significant potential for application in disease diagnostics, drug assessment, and environmental monitoring.
Collapse
Affiliation(s)
- Qiye Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Ze Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Chong Chang
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Shijun Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Pingping Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Chaoyuan Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| |
Collapse
|
15
|
Wang J, Cui X, Lun S, Yang D, Gao C, Zhang K, Yan Y. A FRET/TICT based multifunctional fluorescent probe for the monitoring of SO 2 derivatives and viscosity in living cells and real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125074. [PMID: 39232310 DOI: 10.1016/j.saa.2024.125074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
SO2 derivatives and viscosity are important intracellular indicators, which are closely associated with various physiological metabolisms in organisms. The unregulated contents of SO2 derivatives and viscosity in vivo commonly related to some disorders. In this work, probe JFT was developed relying on FRET and TICT mechanisms for the simultaneous detection of SO2 derivatives and viscosity. JFT can rapidly detect viscosity levels with continuously enhanced fluorescence signals at 582 nm basing on the increasing of viscosity. Moreover, JFT was also sensitive to the changes of SO2 derivatives level with a low detection limit (61.5 nM), rapid responding time (with 16 min), excellent selectivity and anti-interference capacity. JFT could detect bisulfite in real water, wine and food samples with high accuracy and recovery rate. Cell imaging indicated that JFT could monitor the endogenous SO2 derivatives and viscosity in mitochondria. Importantly, JFT could recognize the cancer cells basing on the cell imaging difference of JFT in AGS and GES-1 cells.
Collapse
Affiliation(s)
- Jianfeng Wang
- School of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Xiaoling Cui
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Shenghui Lun
- School of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Di Yang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, PR China
| | - Chang Gao
- School of Mental Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Kaiyuan Zhang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, PR China.
| | - Yehao Yan
- School of Public Health, Jining Medical University, Jining, Shandong 272067, PR China.
| |
Collapse
|
16
|
Tang Z, Huang H, Yao Y, Gao S, Lin B, Zong Q, Hu W, Xu J, Wang Y, Guo L. A ratiometric two-photon fluorescent probe for the quantification of nitroreductase in hypoxic neurons. Chem Commun (Camb) 2025; 61:560-563. [PMID: 39655867 DOI: 10.1039/d4cc06218c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
We developed a novel ratiometric two-photon fluorescent probe for the selective and precise detection of nitroreductase (NTR) in neurons. Using this probe, we found that hypoxic stimulation could up-regulate endogenous NTR levels.
Collapse
Affiliation(s)
- Zhiquan Tang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yuanyuan Yao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Shumei Gao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Bingyong Lin
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Qianshou Zong
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Wanpeng Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Jianguo Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Longhua Guo
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
17
|
Yuwen Z, Zou T, He Z, Su Z, Gong Y, Liu H, Yang R. FRET-Based Nanoprobe with Adaptive Background Suppression for Reliable Detection of ONOO -/ClO - in Whole Blood: Facilitating Monitoring of Sepsis Progression and Hemolytic Disorders. Anal Chem 2024; 96:20318-20329. [PMID: 39663575 DOI: 10.1021/acs.analchem.4c05550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Abnormal fluctuations in blood biomarker levels serve as critical indicators of the disease. However, detecting endogenous substances in whole blood using fluorescent probes is challenging due to its complex composition. This challenge primarily arises from two factors: the high autofluorescence of whole blood and the intrinsic fluorescence of the probe, both contributing to significant background fluorescence in the detection system. To overcome these obstacles, we introduced a donor-acceptor "one-to-many" FRET-based sensing strategy integrated with blood autofluorescence suppression to design a multifunctional fluorescent nanoprobe. The donor effectively suppresses blood autofluorescence through the inner filter effect and efficiently quenches donor fluorescence by adjusting the acceptor-to-donor ratio, achieving a "zero" background in whole blood detection. Leveraging this excellent background fluorescence quenching effect, we successfully detected endogenous ONOO- and ClO- levels in whole blood samples from mice with sepsis or hemolytic diseases. Furthermore, we monitored the changes in the ONOO- and ClO- levels throughout the disease course, revealing a positive correlation between the ONOO- and ClO- concentrations and disease severity. This innovative sensing strategy for achieving a "zero" background in whole blood detection provides valuable insights for designing fluorescent probes to directly detect endogenous substances in whole blood.
Collapse
Affiliation(s)
- Zhiyang Yuwen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Tenglong Zou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhihua He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Ziling Su
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yijun Gong
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
18
|
Wang H, Guo J, Xiu T, Tang Y, Li P, Zhang W, Zhang W, Tang B. H 2O 2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe. Chem Sci 2024; 16:345-353. [PMID: 39620070 PMCID: PMC11604047 DOI: 10.1039/d4sc05546b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/16/2024] [Indexed: 12/20/2024] Open
Abstract
The equilibrium of lipid metabolism is critical to sustaining human health. Metabolic disorders often result in a variety of cardiovascular illnesses, especially atherosclerosis. Atherosclerosis is characterized by complicated complications and high mortality. Cholesterol deposition and oxidative stress have been considered as critical mechanisms in the occurrence and progression of atherosclerosis, however, the relationship between oxidative stress and lipid accumulation remains a puzzle in foam cells during the early stages of atherosclerosis development. Hydrogen peroxide (H2O2) has been reported to participate in various signaling pathways associated with atherosclerotic diseases. Additionally, the excessive intake of oxidized low-density lipoprotein (ox-LDL) leads to cholesterol accumulation and viscosity increasing in foam cells. Therefore, it is critical to investigate the internalization and modification of ox-LDL by H2O2 in foam cells. Herein, we developed a near-infrared, synergistic dual-functional fluorescent probe capable of detecting H2O2 and viscosity simultaneously with high selectivity and sensitivity. Through in situ imaging of H2O2 and viscosity in vivo, we discovered that H2O2 accumulation leads to an increased intake of ox-LDL in the early stages of plaque formation. This finding establishes a new experimental approach and theoretical foundation for the diagnosis and treatment of atherosclerosis, as well as the development of new medications.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 Shandong China
| | - Jingjing Guo
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 Shandong China
| | - Tiancong Xiu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 Shandong China
| | - Yue Tang
- Department of Emergency Medicine, Shandong Provincial Clinical, Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University Jinan 250012 Shandong China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 Shandong China
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 Gansu China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 Shandong China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 Shandong China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 Shandong China
- People's Republic of China; Laoshan Laboratory 168 Wenhai Middle Rd, Aoshanwei Jimo Qingdao 266237 Shandong China
| |
Collapse
|
19
|
Ma Q, Liu S, Xu J, Mao G, Wang G, Hou S, Ma Y, Lian Y. A coumarin-naphthalimide-based ratiometric fluorescent probe for nitroxyl (HNO) based on an ICT-FRET mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124876. [PMID: 39059141 DOI: 10.1016/j.saa.2024.124876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Nitroxyl (HNO) is an important reactive nitrogen that is associated with various states in physiology and pathology and plays a unique function in living systems. So, it is important to exploit fluorescent probes with high sensitivity and selectivity for sensing HNO. In this paper, a novel ratiometric fluorescent probe for HNO was developed utilizing intramolecular charge transfer (ICT) and fluorescence resonance energy transfer (FRET) mechanisms. The probe selected coumarin as energy donor, naphthalimide as energy receptor and 2-(diphenylphosphino)benzoate as the sensing site for detecting HNO. When HNO was not present, the 2-(diphenylphosphino)benzoate unit of the probe restricted electron transfer and the ICT process could not occur, leading to the inhibition of FRET process as well. Thus, in the absence of HNO the probe displayed the intrinsic blue fluorescence of coumarin. When HNO was added, the HNO reacted with the 2-(diphenylphosphino)benzoate unit of the probe to yield a hydroxyl group which resulting in the opening of ICT process and the occurring of FRET process. Thus, after providing HNO the probe displayed yellow fluorescence. In addition, the probe showed good linearity in the ratio of fluorescence intensity at 545 nm and 472 nm (I545 nm/I472 nm) with a concentration of HNO (0.1-20 μM). The probe processed a detection limit of 0.014 μM and a response time of 4 min. The probe also specifically identified HNO over a wide pH scope (pH = 4.00-10.00), including physiological conditions. Cellular experiments had shown that this fluorescent probe was virtually non-cytotoxic and could be applied for ratiometric sensing of HNO in A549 cells.
Collapse
Affiliation(s)
- Qiujuan Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application, Zhengzhou, 450046, PR China.
| | - Shuangyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Junhong Xu
- Department of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, PR China.
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Gege Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Shuqi Hou
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yijie Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yujie Lian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| |
Collapse
|
20
|
Ma L, Yang Y, Anwar G, Xie M, Yang J, Yan J, Wu J, Liu C. A unique near-infrared fluorescent probe based on dual-DNP binding sites for rapid monitoring of hydrogen sulfide in food samples and living cells. Chem Commun (Camb) 2024; 60:13895-13898. [PMID: 39499546 DOI: 10.1039/d4cc05081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
A new NIR fluorescent probe (DCIQ-2DNP), which combined the thiolysis of dinitrophenyl (DNP) ether and DNP-marked electron-deficient quaternary carbon, was reported for the first time for detection of H2S. The DCIQ-2DNP probe showed an NIR emission signal (740 nm), a large Stokes shift (128 nm), and rapid monitoring of hydrogen sulfide (within 60 s) in food samples and living cells.
Collapse
Affiliation(s)
- Lili Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Yinliang Yang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | - Gulziba Anwar
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Minqi Xie
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Jie Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Jingjing Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Chuanxiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| |
Collapse
|
21
|
Huang Y, Xin H, Lin Q, Yang G, Zhang Y, Cao D, Yu X. A fluorescent probe for detecting bisulfite/sulfite in lipid droplets and tracking the dynamics of lipid droplets. Talanta 2024; 279:126605. [PMID: 39084038 DOI: 10.1016/j.talanta.2024.126605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Intracellular lipid droplets (LDs) are important organelles regulating intracellular redox processes. Endogenous bisulfite/sulfite (HSO3-/SO32-) is one of the metabolites of thiol metabolism. The variation in HSO3-/SO32- content around LDs is closely related to cellular homeostasis. However, there is currently no effective method to visualize and quantify the dynamic changes in HSO3-/SO32- content around LDs. In this work, a fluorescent probe MC-BEN utilizing a triphenylamine basic framework was developed to selectively recognize HSO3-/SO32- via a nucleophilic addition reaction. The probe exhibits excellent anti-interference capability, short response time, outstanding photostability, and a low fluorescence detection limit (6.1 μM) for HSO3-/SO32- recognition. More interesting, there is a trend of accelerated contact between LDs and lysosomes after MC-BEN targeting LDs and reacting with endogenous/exogenous HSO3-/SO32-, which may provide new ideas for the study of intracellular lysosomal lipophagy.
Collapse
Affiliation(s)
- Yan Huang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Haotian Xin
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Qiaowen Lin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, China
| | - Guiyi Yang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Yan Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, China.
| |
Collapse
|
22
|
Zhang C, Wu G. Recent advances in fluorescent probes for ATP imaging. Talanta 2024; 279:126622. [PMID: 39089081 DOI: 10.1016/j.talanta.2024.126622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Adenosine-5'-triphosphate (ATP) is a critical biological molecule that functions as the primary energy currency within cells. ATP synthesis occurs in the mitochondria, and variations in its concentration can significantly influence mitochondrial and cellular performance. Prior studies have established a link between ATP levels and a variety of diseases, such as cancer, neurodegenerative conditions, ischemia, and hypoglycemia. Consequently, researchers have developed many fluorescent probes for ATP detection, recognizing the importance of monitoring intracellular ATP levels to understand cellular processes. These probes have been effectively utilized for visualizing ATP in living cells and biological samples. In this comprehensive review, we categorize fluorescent sensors developed in the last five years for ATP detection. We base our classification on fluorophores, structure, multi-response channels, and application. We also evaluate the challenges and potential for advancing new generations of fluorescence imaging probes for monitoring ATP in living cells. We hope this summary motivates researchers to design innovative and effective probes tailored to ATP sensing. We foresee imminent progress in the development of highly sophisticated ATP probes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Central Laboratory and Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Guanzhao Wu
- Department of Central Laboratory and Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
| |
Collapse
|
23
|
Xi G, Liu M, Zhou P, Yu C, Zhang F, Zhang Z, Zhang W, Luan T. An Acid-Activatable Fluorescent Probe for Sulfur Dioxide in Traditional Chinese Medicines and Living Cells. Chem Asian J 2024; 19:e202400716. [PMID: 39041455 DOI: 10.1002/asia.202400716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Excessive sulfur dioxide (SO₂) disturbs physiology of lysosomes causing diseases and threatening human health. A fluorescent probe has been regarded as one of the most attractive approaches, which is compatible with living cells and possesses high sensitivity. However, most of fluorescent probes' reaction sites are activated before they reach the destination. In this work, an acid-activatable fluorescent probe PT1 was synthesized, characterized, and used for SO2 detection. The introduction of oxazolines in PT1 enables the intelligent response of probe to release the activation stie for SO2 derivatives through Michael addition upon exposure to acid. In vitro studies showed a remarkable selectivity of PT1 to SO₂ derivatives than other biothiols with a limit of detection as low as 62 nM. By using this acidic pH-controlled fluorescence responsiveness to SO₂, precise spatiotemporal identification of lysosomal SO2 fluctuations has been successfully performed. Furthermore, probe PT1 can be applied for monitoring SO₂ derivatives in traditional Chinese medicines.
Collapse
Affiliation(s)
- Guan Xi
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, China
| | - Mei Liu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, China
| | - Peitao Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Congting Yu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, China
| | - Fan Zhang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, China
| | - Zhenqiang Zhang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, China
| | - Wenli Zhang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, China
| |
Collapse
|
24
|
Zhou L, Jiang Z, Kong X. A remarkable membrane-permeable fluorescent probe for real-time imaging of mitochondrial SO 2 with high fidelity during ferroptosis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6193-6200. [PMID: 39189983 DOI: 10.1039/d4ay01358a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Mitochondrial sulfur dioxide (SO2) plays a double-edged role in cells, and the real-time and in situ tracing of its dynamic behaviors to elucidate its complicated functions in detail is of great significance. Here, we developed a simple mitochondria-targeted fluorescent probe ZW for tracing SO2 with good membrane permeability. In probe ZW, the 1-phenylpyrrolidine-decorated benzopyrylium unit is employed as the selective response site for SO2. Besides, it also acts as the main fluorophore for signal conversion. The spectral results displayed that ZW could emit near-infrared (NIR) fluorescence (670 nm) and has a highly sensitive and selective response to SO2 (LOD = 0.19 μM). For biological imaging, compared with the control probe ZE, concentration- and time-dependent results verified that probe ZW has remarkable cell delivery with low concentration (200 nM) and fast response time (3 min). Furthermore, the NIR emission of ZW rendered high-fidelity imaging in living cells. Owing to its positive charge, ZW showed favorable mitochondria-targeting properties by colocalization experiments. Probe ZW could detect SO2 in real-time and in situ with high photostability in cells. Significantly, it has the ability to monitor the changes of endogenous SO2 during ferroptosis.
Collapse
Affiliation(s)
- Lina Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Zekun Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
25
|
Gu S, Huang Y, Li X, Xin H, Mu H, Zhang Y, Li K, Yang G, Zhao S, Cao D. Near-infrared and multifunctional fluorescent probe enabled by cyanopyridine cyanine dye for bisulfite recognition and biological imaging. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135369. [PMID: 39088949 DOI: 10.1016/j.jhazmat.2024.135369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
SO2 derivatives, sulfite/bisulfite, are widely employed in both the food processing and drug synthesis industries. Despite their widespread application, excessive levels of sulfite/bisulfite can negatively impact human health. Most probes for detecting sulfite/bisulfite are restricted by their fluorescence within the visible spectrum range and poor solubility in aqueous solution, which limit their use in food testing and biological imaging. Herein, a near-infrared probe comprising of the cyanopyridine cyanine skeleton, 4-((Z)-2-((E)-2-chloro-3-(2-cyano-2-(1-methylpyridine-4(1H)-ylidene)ethylidene)cyclohex-1-en-1-yl)-1-cyanovinyl)-1-methylpyridin-1-ium (abbreviated as CCP), was developed. This probe enables precise quantification of bisulfite (HSO3-) in almost pure buffered solutions, showing a near-infrared fluorescence emission at 784 nm with an impressively low detection limit of 0.32 μM. The probe stands out for its exceptional selectivity, minimal susceptibility to interference, and strong adaptability. The probe CCP utilizes the CC bond to trigger a near-infrared fluorescence quenching reaction with HSO3- via nucleophilic addition, which effectively disrupts the large delocalization within the molecule for accurate HSO3- identification. Moreover, the probe has been successfully applied in detecting HSO3- in various food products and living cells, simplifying the measurement of HSO3- content in water samples. This advancement not only enhances the analytical capabilities but also contributes to ensuring food safety and environmental protection. ENVIRONMENTAL IMPLICATION: SO2 derivatives including sulfite/bisulfite, serving dual roles as preservatives and antioxidants, have widespread application across various sectors including food preservation, water sanitation, and the pharmaceutical industry. Despite their widespread application, excessive levels of sulfite/bisulfite can affect human health. Developing methods for precisely and sensitively detecting sulfite/bisulfite in food products and biological samples is important for ensuring food safety and environmental protection. Here, a sensitive near-infrared and multifunctional fluorescent probe in a 99.9 % buffered solution, along with water gel encapsulation, has been successfully applied for the detection of bisulfite in food, authentic water samples, and biological cells.
Collapse
Affiliation(s)
- Shangcong Gu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yan Huang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Xinxin Li
- School of Chemical Engineering, Northwest University, Xian 710127, China
| | - Haotian Xin
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Haoran Mu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yan Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Keyi Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Guiyi Yang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Songfang Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
26
|
Cao T, Xu Z, Dong W, Ma H, Fan Z, Liu Y. A ratiometric fluorescent probe with dual-targeting capability for heat shock imaging. Talanta 2024; 276:126213. [PMID: 38718652 DOI: 10.1016/j.talanta.2024.126213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 06/14/2024]
Abstract
HSO3- is an important reactive sulfur species that maintains the normal physiological activities of living organisms and participates in a variety of redox homeostatic processes. It has been found that changes in HSO3- levels is closely related to the heat stroke phenomenon of the organism. Heat stroke causes damage to normal cells, which in turn causes damage to the body and even death. It is crucial to accurately monitor and track the physiological behavior of HSO3- during heat stroke. Herein, a ratiometric multifunctional fluorescent probe DRM-SO2 with dual-targeting ability to rapidly and precisely recognize HSO3- being constructed based on the FRET mechanism. DRM-SO2 has extra Large Stokes shift (216 nm), very high sensitivity (DL = 12.2 nM), fast response time and good specificity. When DRM-SO2 undergoes Michael addition with HSO3-, the fluorescence emission peak was blue-shifted from 616 nm to 472 nm, and a clear ratiometric signal appeared. The interaction between lysosomes and mitochondria in maintaining cellular homeostasis was investigated by the dual-targeting ability of the probe using HSO3- as a mediator. DRM-SO2 achieved successful targeting and real-time monitoring of exogenous and endogenous HSO3- in the cells. More importantly, imaging experiments in heat stroke mice revealed high HSO3- expression in intestinal tissues. This provides new ideas and research tools for early prevention of heat stroke-induced diseases such as intestinal injuries. In addition, the semi-quantitative monitoring experiments for paper-based visualization of HSO3- make the probe promising for the design of portable detectors.
Collapse
Affiliation(s)
- Ting Cao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Zhongsheng Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Wenhua Dong
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Hong Ma
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, China
| | - Zhefeng Fan
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
27
|
Xie A, Shi J, Yang W. Developing a fluorescent probe containing benzofuranone moiety for imaging sulphite in living hypoxia pulmonary cells. LUMINESCENCE 2024; 39:e4854. [PMID: 39103184 DOI: 10.1002/bio.4854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
In this work, a benzofuranone-derived fluorescent probe BFSF was developed for imaging the sulphite level in living hypoxia pulmonary cells. Under the excitation of 510 nm, BFSF showed a strong fluorescence response at 570 nm when reacted with sulphite. In the solution system, the constructed hypercapnia and serious hypercapnia conditions did not affect the fluorescence response. In comparison with the recently reported probes, BFSF suggested the advantages including rapid response, steady signal reporting, high specificity and low cytotoxicity upon living lung cells. Under a normal incubation atmosphere, BFSF realized the imaging of both exogenous and endogenous sulphite in living pulmonary cells. In particular, BFSF achieved imaging the decrease of the sulphite level under severe hypoxia as well as the recovery of the sulphite level with urgent oxygen supplement. With the imaging capability for the sulphite level in living pulmonary cells under hypoxia conditions, BFSF together with the information herein was meaningful for investigating the anaesthesia-related biological indexes.
Collapse
Affiliation(s)
- Anqin Xie
- Anesthesiology Department, People's Hospital of Wucheng District, Jinhua, China
| | - Jingyi Shi
- Jinhua Advanced Research Institute, Jinhua, China
| | - Wenlong Yang
- Anesthesiology Department, People's Hospital of Wucheng District, Jinhua, China
| |
Collapse
|
28
|
Kang Z, Zhou Y, Ma Y, Wang W, Zhang Y, Chen SW, Tu Q, Wang J, Yuan MS. Dual-Site Chemosensor for Visualizing •OH-GSH Redox and Tracking Ferroptosis-Inducing Pathways In Vivo. Anal Chem 2024; 96:11932-11941. [PMID: 38984509 DOI: 10.1021/acs.analchem.4c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Oxidative stress, characterized by an imbalance between oxidative and antioxidant processes, results in excessive accumulation of intracellular reactive oxygen species. Among these responses, the regulation of intracellular hydroxyl radicals (•OH) and glutathione (GSH) is vital for physiological processes. Real-time in situ monitoring these two opposing bioactive species and their redox interactions is essential for understanding physiological balance and imbalance. In this study, we developed a dual-site fluorescence chemosensor OG-3, which can independently image both exogenous and endogenous •OH and GSH in separate channels both within cells and in vivo, eliminating issues of spatiotemporal inhomogeneous distribution and cross-interference. With its imaging capabilities of monitoring •OH-GSH redox, OG-3 elucidated two different pathways for ferroptosis induction: (i) inhibition of system xc- to block cystine uptake (extrinsic pathway) and (ii) GPX4 inactivation, leading to the loss of antioxidant defense (intrinsic pathway). Moreover, we assessed the antiferroptotic function and effects of ferroptosis inhibitors by monitoring •OH and GSH fluctuations during ferroptosis. This method provides a reliable platform for identifying potential ferroptosis inhibitors, contributing to our understanding of relevant metabolic and physiological mechanisms. It shows potential for elucidating the regulation of ferroptosis mechanisms and investigating further strategies for therapeutic applications.
Collapse
Affiliation(s)
- Zuzhe Kang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yatuan Ma
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenji Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shu-Wei Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mao-Sen Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
29
|
Hu J, Yu T, Huang K, Liang C, Li Y, Li X, Sun J, Bai W. Covalent Interactions of Anthocyanins with Proteins: Activity-Based Protein Profiling of Cyanidin-3- O-glucoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39036896 DOI: 10.1021/acs.jafc.4c03869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Anthocyanins are common natural pigments with a variety of physiological activities. Traditional perspectives attribute their molecular mechanism to noncovalent interactions influencing signaling pathways. However, this ignores the nature of its benzopyrylium skeleton, which readily reacts with the electron-rich groups of proteins. Here, we modified cyanidin-3-O-glucoside (C3G) via activity-based protein profiling technology by our previous synthesis route and prepared the covalent binding probe (C3G-Probe) and the noncovalent photoaffinity probe (C3G-Diazirine). The properties of C3G's covalent binding to proteins were also discovered by comparing the labeling of the two probes to the whole HepG2 cell proteome. We further explored its target proteins and enriched pathways in HepG2 and HeLa cells. Western blot analysis further confirmed the covalent binding of C3G to four target proteins: insulin-degrading enzyme, metal cation symporter ZIP14, spermatid perinuclear RNA-binding protein, and Cystatin-B. Pathway analysis showed that covalent targets of C3G were concentrated in metabolic pathways and several ribonucleoprotein complexes that were also coenriched. The results of this study provide new insights into the interaction of the naturally active molecule C3G with proteins.
Collapse
Affiliation(s)
- Jun Hu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Tingxin Yu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Kuanchen Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Chujie Liang
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
| | - Yue Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| |
Collapse
|
30
|
Zhang X, Wu W, Wei Y, Zhang Y, Nie X, Sun X, Lin L, Yang D, Yan Y. A FRET-based multifunctional fluorescence probe for the simultaneous detection of sulfite and viscosity in living cells. Bioorg Chem 2024; 148:107423. [PMID: 38733751 DOI: 10.1016/j.bioorg.2024.107423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Viscosity and sulfur dioxide derivatives were significant indicators for the assessment of health threat and even cancers, therefore, on-site and real time detection of viscosity and sulfur dioxide derivatives has obtained considerable attentions. An FRET-based fluorescence probe JZX was designed and synthesized based on a novel energy donor of N,N-diethyl-4-(1H-phenanthro[9,10-d]imidazol-2-yl)benzamide fluorophore. JZX exhibited a large Stokes shift (230 nm), high energy transfer efficiency, wide emission channel gap (135 nm) and excellent stability and biocompatibility. JZX detected sulfur dioxide with low detection limit (55 nM), fast responding (16 min), high selectivity and sensitivity. Additionally, JZX tend to target endoplasmic reticulum of which normal metabolism will be disturbed by the abnormal levels of viscosity and sulfur dioxide derivatives. Prominently, JZX could concurrently detect viscosity and sulfur dioxide derivatives depending on different fluorescence signals in living cells for the screening of cancer cells. Hence, probe JZX will be a promising candidate for the detection of viscosity and sulfur dioxide derivatives, and even for the diagnosis of liver cancers.
Collapse
Affiliation(s)
- Xin Zhang
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Wenli Wu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yin Wei
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Yiheng Zhang
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Xuqing Nie
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Xiaoqi Sun
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Li Lin
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Di Yang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Yehao Yan
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China.
| |
Collapse
|
31
|
Sun XY, Zhang X, Gao K, Zhao WJ, Tian YT, Liu T, Lu ZL. A mitochondria-specific NIR fluorescence probe for dual-detection of sulfur dioxide and viscosity in living cells and mice. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3839-3846. [PMID: 38829181 DOI: 10.1039/d4ay00515e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The level of sulfur dioxide (SO2) and viscosity in mitochondria play vital roles in various physiological and pathological processes. Abnormalities in mitochondrial SO2 and viscosity are closely associated with numerous biological diseases. It is of great significance to develop novel fluorescence probes for simultaneous detection of SO2 and viscosity within mitochondria. Herein, we have developed a water-soluble, mitochondrial-targeted and near-infrared fluorescent probe, CMBT, for the simultaneous detection of SO2 and viscosity. The probe CMBT incorporates benzothiazolium salt as a mitochondrial targeting moiety and 7-diethylaminocoumarin as a rotor for viscosity detection, respectively. Based on the prompt reaction between nucleophilic HSO3-/SO32- and the backbone of the benzothiazolium salt derivative, probe CMBT displayed high sensitivity and selectivity toward SO2 with a limit of detection as low as 0.17 μM. As viscosity increased, the twisted intramolecular charge transfer (TICT) process was restricted, resulting in fluorescence emission enhancement at 690 nm. Moreover, probe CMBT demonstrated exceptional mitochondrial targeting ability and was successfully employed to image variations of SO2 and viscosity in living cells and mice. The work highlights the great potential of the probe as a convenient tool for revealing the relationship between SO2 and viscosity in biological systems.
Collapse
Affiliation(s)
- Xue-Yi Sun
- Department of Chemical and Material Engineering, Lyuliang University, Lvliang 033001, PR China.
| | - Xi Zhang
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China.
| | - Ke Gao
- Department of Chemical and Material Engineering, Lyuliang University, Lvliang 033001, PR China.
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Wen-Jing Zhao
- Department of Chemical and Material Engineering, Lyuliang University, Lvliang 033001, PR China.
| | - Yu-Ting Tian
- Department of Chemical and Material Engineering, Lyuliang University, Lvliang 033001, PR China.
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Tao Liu
- Department of Chemical and Material Engineering, Lyuliang University, Lvliang 033001, PR China.
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China.
| |
Collapse
|
32
|
Peng T, Chen J, Liu R, Qu J. A benzothiophene-based fluorescent probe with dual-functional to polarity and cyanide for practical applications in living cells and real water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124198. [PMID: 38552540 DOI: 10.1016/j.saa.2024.124198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Polarity is a significant intracellular environmental parameter associated with cancer, while cyanide (CN-) is known to be highly toxic to humans. In this work, we designed a dual-functional fluorescent probe (TPABT) for simultaneous detection of polarity and CN-. As a polarity sensor, the probe exhibits NIR emission at 766 nm in 1,4-dioxane (non-polar solvent), whose emission intensity is 71-fold stronger than that in water (polar solvent). Meanwhile, the fluorescence intensity and quantum yield are linearly related to solvent polarity, confirming the polarity response ability of TPABT. For cell polarity detection, low cytotoxicity and polarity sensitivity of probe enable the applications for differentiating cancer cells (HeLa, 4TI) from normal cells (HUV, 3 T3) and monitoring the polarity changes of 4TI cells. As a CN- sensor, TPABT displays a turn-on fluorescence at 640 nm upon the addition of CN-, with advantages of anti-interference, response in aqueous media and low detection limit (22 nM). Additionally, we further explored the practical applications of TPABT for CN- determination in three types of real water samples (drinking water, tap water and lake water) and living cells. Notably, TPABT responses to polarity and CN- in two independent fluorescence channels of 766 and 640 nm, respectively, ensuring the dual functions for polarity and CN- sensing. Consequently, this multi-responsive fluorescent probe TPABT is promising to diagnose polarity-related diseases and detect CN- in real environments.
Collapse
Affiliation(s)
- Ting Peng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Jian Chen
- Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Ruiyuan Liu
- Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China.
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
33
|
Liu T, Han X, Zhao W, Gao K, Min R, Tian Y, Sun X, Yin C. Lysosomal-targeted fluorescent probe based pH regulating reactivity for tracking cysteine dynamics under oxidative stress. J Mater Chem B 2024; 12:5157-5161. [PMID: 38715545 DOI: 10.1039/d4tb00478g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The ability to detect and visualize cellular events and associated biological analytes is essential for the understanding of their physiological and pathological functions. Cysteine (Cys) plays a crucial role in biological systems and lysosomal homeostasis. This puts forward higher requirements on the performance of the probe. Herein, we rationally designed a coumarin-based probe for the reversible, specific, sensitive, and rapid detection of Cys based on pH regulating reactivity. The obtained probe (ECMA) introduces a morpholine moiety to target lysosomes, and α,β-unsaturated-ketone with an electron-withdrawing CN group served as a reversible reaction site for Cys. Importantly, ECMA was successfully applied to the real-time monitoring of Cys dynamics in living cells. Furthermore, cell imaging clearly revealed that exogenous Cys could induce the up-regulation of lysosomal ROS, which provided a powerful tool for investigating the relationship between oxidative stress and lysosomal Cys.
Collapse
Affiliation(s)
- Tao Liu
- Department of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, P. R. China
| | - Xuwei Han
- Department of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Wenjing Zhao
- Department of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, P. R. China
| | - Ke Gao
- Department of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Runan Min
- Department of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Yuting Tian
- Department of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Xueyi Sun
- Department of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
34
|
Rajput D, Pradhan N, Mansuri S, Soppina V, Kanvah S. A multipurpose mitochondrial NIR probe for imaging ferroptosis and mitophagy. J Mater Chem B 2024; 12:4698-4707. [PMID: 38652007 DOI: 10.1039/d4tb00293h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This paper explores the use of a di-cationic fluorophore for visualizing mitochondria in live cells independent of membrane potential. Through the synthesized di-cationic fluorophore, we investigate the monitoring of viscosity, ferroptosis, stress-induced mitophagy, and lysosomal uptake of damaged mitochondria. The designed fluorophore is based on DQAsomes, cationic vesicles responsible for transporting drugs and DNA to mitochondria. The symmetric fluorophores possess two charge centres separated by an alkyl chain and are distinguished by a pyridinium group for mitochondrial selectivity, the C-12 alkyl substitution for membrane affinity, and an electron donor-π-acceptor fluorescent scaffold for intramolecular charge transfer. The synthesized fluorophores, PP and NP, emit wavelengths exceeding 600 nm, with a significant Stokes shift (130-211 nm), and NP demonstrates near-infrared emission (∼690 nm). Our study underscores the potential of these fluorophores for live-cell imaging, examining physiological responses such as viscosity and ferroptosis, and highlights their utility in investigating mitophagy damage and lysosomal uptake.
Collapse
Affiliation(s)
- Deeksha Rajput
- Department of Chemistry, Indian Institute of Technology, Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India.
| | - Nachiket Pradhan
- Department of Chemistry, Indian Institute of Technology, Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India.
| | - Shabnam Mansuri
- Department of Chemistry, Indian Institute of Technology, Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India.
| | - Virupakshi Soppina
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology, Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
35
|
Elayan IA, Rib L, A Mendes R, Brown A. Beyond Explored Functionals: A Computational Journey of Two-Photon Absorption. J Chem Theory Comput 2024; 20:3879-3893. [PMID: 38648613 DOI: 10.1021/acs.jctc.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We present a thorough investigation into the efficacy of 19 density functional theory (DFT) functionals, relative to RI-CC2 results, for computing two-photon absorption (2PA) cross sections (σ2PA) and key dipole moments (|μ00|, |μ11|, |Δμ|, |μ01|) for a series of coumarin dyes in the gas-phase. The functionals include different categories, including local density approximation (LDA), generalized gradient approximation (GGA), hybrid-GGA (H-GGA), range-separated hybrid-GGA (RSH-GGA), meta-GGA (M-GGA), and hybrid M-GGA (HM-GGA), with 14 of them being subjected to analysis for the first time with respect to predicting σ2PA values. Analysis reveals that functionals integrating both short-range (SR) and long-range (LR) corrections, particularly those within the RSH-GGA and HM-GGA classes, outperform the others. Furthermore, the range-separation approach was found more impactful compared to the varying percentages of Hartree-Fock exchange (HF Ex) within different functionals. The functionals traditionally recommended for 2PA do not appear among the top 9 in our study, which is particularly interesting, as these top-performing functionals have not been previously investigated in this context. This list is dominated by M11, QTP variants, ωB97X, ωB97X-V, and M06-2X, surpassing the performance of other functionals, including the commonly used CAM-B3LYP.
Collapse
Affiliation(s)
- Ismael A Elayan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Laura Rib
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rodrigo A Mendes
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
36
|
Pei S, Li H, Chen L, Nie G, Wang H, Liu C, Zhang C. Dual-Functional AIE Fluorescent Probe for Visualization of Lipid Droplets and Photodynamic Therapy of Cancer. Anal Chem 2024; 96:5615-5624. [PMID: 38544396 DOI: 10.1021/acs.analchem.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Abnormal lipid droplets (LDs) are known to be intimately bound with the occurrence and development of cancer, allowing LDs to be critical biomarkers for cancers. Aggregation-induced emission luminogens (AIEgens), with efficient reactive oxygen species (ROS) production performance, are prime photosensitizers (PSs) for photodynamic therapy (PDT) with imaging. Therefore, the development of dual-functional fluorescent probes with aggregation-induced emission (AIE) characteristics that enable both simultaneous LD monitoring and imaging-guided PDT is essential for concurrent cancer diagnosis and treatment. Herein, we reported the development of a novel LD-targeting fluorescent probe (TDTI) with AIE performance, which was expected to realize the integration of cancer diagnosis through LD visualization and cancer treatment via PDT. We demonstrated that TDTI, with typical AIE characteristics and excellent photostability, could target LDs with high specificity, which enables the dynamic tracking of LDs in living cells, specific imaging of LDs in zebrafish, and the differentiation of cancer cells from normal cells for cancer diagnosis. Meanwhile, TDTI exhibited fast ROS generation ability (achieving equilibrium within 60 s) under white light irradiation (10 mW/cm2). The cell apoptosis assay revealed that TDTI effectively induced growth inhibition and apoptosis of HeLa cells. Further, the results of PDT in vivo indicated that TDTI had a good antitumor effect on the tumor-bearing mice model. Collectively, these results highlight the potential utility of the dual-functional fluorescent probe TDTI in the integrated diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Shizeng Pei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, China
| | - Haoyang Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Linfeng Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, China
| | - Gang Nie
- Department of Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016 Wuhan, China
| | - Huiling Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
37
|
Zhang Y, Ji X, Han P, Liu Y, Chen P, Chen G. Microenvironment-differential Imaging of Demethylated Metabolites of Methionine for Identifying Ferroptosis Regional Preferences with Path-independent Equifinal Fluorescence Probes. Angew Chem Int Ed Engl 2024; 63:e202400459. [PMID: 38317310 DOI: 10.1002/anie.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/07/2024]
Abstract
We realized the microenvironment-differential Imaging of demethylated metabolites of methionine and the regional regulation of ferroptosis.
Collapse
Affiliation(s)
- Yuanchao Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xinrui Ji
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L3G1, Canada
| | - Ping Han
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Yuxia Liu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L3G1, Canada
| | - Guang Chen
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
38
|
Chen H, Nizard P, Decorse P, Nowak S, Ammar-Merah S, Pinson J, Gazeau F, Mangeney C, Luo Y. Dual-Mode Nanoprobes Based on Lanthanide Doped Fluoride Nanoparticles Functionalized by Aryl Diazonium Salts for Fluorescence and SERS Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305346. [PMID: 37875723 DOI: 10.1002/smll.202305346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Indexed: 10/26/2023]
Abstract
The design of dual-mode fluorescence and Raman tags stimulates a growing interest in biomedical imaging and sensing applications as they offer the possibility to synergistically combine the versatility and velocity of fluorescence imaging with the specificity of Raman spectroscopy. Although lanthanide-doped fluoride nanoparticles (NPs) are among the most studied fluorescent nanoprobes, their use for the development of bimodal fluorescent-Raman probes has never been reported yet, to the best of the authors knowledge, probably due to the difficulty to functionalize them with Raman reporter groups. This gap is filled herein by proposing a fast and straightforward approach based on aryl diazonium salt chemistry to functionalize Eu3+ or Tb3+ doped CaF2 and LaF3 NPs by Raman scatters. The resulting surface-enhanced Raman spectroscopy (SERS)-encoded lanthanide-doped fluoride NPs retain their fluorescence labeling capacity and display efficient SERS activity for cell bioimaging. The potential of this new generation of bimodal nanoprobes is assessed through cell viability assays and intracellular fluorescence and Raman imaging, opening up unprecedented opportunities for biomedical applications.
Collapse
Affiliation(s)
- Huan Chen
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
- Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes MSC, Paris, F-75006, France
| | - Philippe Nizard
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
- Structural and Molecular Analysis platform core facility of BioMedTech Facilities INSERM US36, CNRS UAR2009, Université Paris Cité, Paris, F-75006, France
| | | | - Sophie Nowak
- Université Paris Cité, CNRS, ITODYS, Paris, F-75013, France
| | | | - Jean Pinson
- Université Paris Cité, CNRS, ITODYS, Paris, F-75013, France
| | - Florence Gazeau
- Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes MSC, Paris, F-75006, France
| | - Claire Mangeney
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
| | - Yun Luo
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
| |
Collapse
|
39
|
Hao Q, He X, Wang KN, Niu J, Meng F, Fu J, Zong C, Liu Z, Yu X. Long-Chain Fluorescent Probe for Straightforward and Nondestructive Staining Mitochondria in Fixed Cells and Tissues. Anal Chem 2024. [PMID: 38330436 DOI: 10.1021/acs.analchem.3c05660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Normally, small-molecule fluorescent probes dependent on the mitochondrial membrane potential (MMP) are invalid for fixed cells and tissues, which limits their clinical applications when the fixation of pathological specimens is imperative. Given that mitochondrial morphology is closely associated with disease, we developed a long-chain mitochondrial probe for fixed cells and tissues, DMPQ-12, by installing a C12-alkyl chain into the quinoline moiety. In fixed cells stained with DMPQ-12, filament mitochondria and folded cristae were observed with confocal and structural illumination microscopy, respectively. In titration test with three major phospholipids, DMPQ-12 exhibited a stronger binding force to mitochondria-exclusive cardiolipin, revealing its targeting mechanism. Moreover, mitochondrial morphological changes in the three lesion models were clearly visualized in fixed cells. Finally, by DMPQ-12, three kinds of mitochondria with different morphologies were observed in situ in fixed muscle tissues. This work breaks the conventional concept that organic fluorescent probes only stain mitochondria with normal membrane potentials and opens new avenues for comprehensive mitochondrial investigations in research and clinical settings.
Collapse
Affiliation(s)
- Qiuhua Hao
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Xiuquan He
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, P. R. China
| | - Kang-Nan Wang
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Jie Niu
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Fangfang Meng
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Jinyu Fu
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Chong Zong
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Advanced Medical Research Institute, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
40
|
Kafuti YS, Liu X, Zeng S, Han J, Li H, Wang J. Simultaneous detection of SO 2 and viscosity in drug-induced inflammation in live cells and zebrafish. LUMINESCENCE 2024; 39:e4596. [PMID: 37723926 DOI: 10.1002/bio.4596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
The viscosity within cells is a crucial microenvironmental factor, and sulfur dioxide (SO2 ) has essential functions in regulating cellular apoptosis and inflammation. Some evidence has been confirmed that changes in viscosity and overexposure of SO2 within the cell may cause detrimental effects including, but not limited to, respiratory and cardiovascular illnesses, inflammation, fatty liver, and various types of cancer. Therefore, precise monitoring of SO2 and viscosity in biological entities holds immense practical importance. Therefore, in this research, we developed a versatile fluorescent TCF-Cou that enables the dual detection of SO2 and viscosity in the living system. Probe TCF-Cou possessed a response to viscosity and SO2 through red and green emissions. The alteration of SO2 and viscosity levels in live cells and zebrafish were also monitored using probe TCF-Cou. We hope that this fluorescent probe could be a potential tool for revealing the related pathological and physiological processes through monitoring the changes in SO2 and viscosity.
Collapse
Affiliation(s)
- Yves S Kafuti
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiaosheng Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Shuang Zeng
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Jingjing Han
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
41
|
Fang Y, Zheng D, Zhang T, Cao Z, Zhou H, Deng Y, Peng C. A rationally designed fluorescent probe for sulfur dioxide and its derivatives: applications in food analysis and bioimaging. Anal Bioanal Chem 2024; 416:533-543. [PMID: 38008784 DOI: 10.1007/s00216-023-05060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
Exogenous sulfur dioxide (SO2) and its derivatives (SO32-/HSO3-) have been extensively utilized in food preservation and endogenous SO2 is recognized as a significant gaseous signaling molecule that can mediate various physiological processes. Overproduction and/or extensive intake of these species can trigger allergic reactions and even tissue damage. Therefore, it is highly desirable to monitor SO2 and its derivatives effectively and quantitatively both in vitro and in vivo. Herein, a new mitochondria-targeted fluorescent probe (PIB) had been constructed, which could ratiometrically recognize SO2 and its derivatives with excellent sensitivity (DL = 15.9 nM) and a fast response time (200 s). The obtained high selectivity and good adaptability of this SO2-specific probe in a wide pH range (6.5-10.0) allowed for quantitatively tracking of SO2 and its derivatives in real food samples (granulated sugar, crystal sugar, and white wine). In addition, PIB could locate at mitochondrion and was capable of imaging exogenous/endogenous SO2 in the cells and zebrafish. In particular, our findings represented one of the rare examples that have demonstrated endogenous SO2 is closely related with the apoptosis of cells. Importantly, probe PIB was successfully employed for in situ metabolic localization in mouse organs, implying the potential applications of our probe in further exploration on SO2-releated pathological and physiological processes.
Collapse
Affiliation(s)
- Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu, 611930, China.
| | - Dongbin Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Houcheng Zhou
- Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu, 611930, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
42
|
Zhou L, Wang Z, Wang L, Zhang X, Xiao Y. Tetrazine-Based Ratiometric Nitric Oxide Sensor Identifies Endogenous Nitric Oxide in Atherosclerosis Plaques by Riding Macrophages as a Smart Vehicle. J Am Chem Soc 2023; 145:28296-28306. [PMID: 38090812 DOI: 10.1021/jacs.3c12181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Atherosclerosis (AS) is the formation of plaques in blood vessels, which leads to serious cardiovascular diseases. Current research has disclosed that the formation of AS plaques is highly related to the foaming of macrophages. However, there is a lack of detailed molecular biological mechanisms. We proposed a "live sensor" by grafting a tetrazine-based ratiometric NO probe within macrophages through metabolic and bio-orthogonal labeling. This "live sensor" was proved to target the AS plaques with a diameter of only tens of micrometers specifically and visualized endogenous NO at two lesion stages in the AS mouse model. The ratiometric signals from the probe confirmed the participation of NO during AS and indicated that the generation of endogenous NO increased significantly as the lesion progressed. Our proposal of this "live sensor" provided a native and smart strategy to target and deliver small molecular probes to the AS plaques at the in vivo level, which can be used as universal platforms for the detection of reactive molecules or microenvironmental factors in AS.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zehui Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lai Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
43
|
Chen Q, Liu LY, Tian Z, Fang Z, Wang KN, Shao X, Zhang C, Zou W, Rowan F, Qiu K, Ji B, Guan JL, Li D, Mao ZW, Diao J. Mitochondrial nucleoid condensates drive peripheral fission through high membrane curvature. Cell Rep 2023; 42:113472. [PMID: 37999975 DOI: 10.1016/j.celrep.2023.113472] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/13/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondria are dynamic organelles that undergo fusion and fission events, in which the mitochondrial membrane and DNA (mtDNA) play critical roles. The spatiotemporal organization of mtDNA reflects and impacts mitochondrial dynamics. Herein, to study the detailed dynamics of mitochondrial membrane and mtDNA, we rationally develop a dual-color fluorescent probe, mtGLP, that could be used for simultaneously monitoring mitochondrial membrane and mtDNA dynamics via separate color outputs. By combining mtGLP with structured illumination microscopy to monitor mitochondrial dynamics, we discover the formation of nucleoid condensates in damaged mitochondria. We further reveal that nucleoid condensates promoted the peripheral fission of damaged mitochondria via asymmetric segregation. Through simulations, we find that the peripheral fission events occurred when the nucleoid condensates interacted with the highly curved membrane regions at the two ends of the mitochondria. Overall, we show that mitochondrial nucleoid condensates utilize peripheral fission to maintain mitochondrial homeostasis.
Collapse
Affiliation(s)
- Qixin Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, IGCME, GBRCE for Functional Molecular Engineering, Guangzhou 510275, China
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhou Fang
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, IGCME, GBRCE for Functional Molecular Engineering, Guangzhou 510275, China
| | - Xintian Shao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Chengying Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fiona Rowan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dechang Li
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, IGCME, GBRCE for Functional Molecular Engineering, Guangzhou 510275, China.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
44
|
Xu Y, Hu B, Cui Y, Li L, Nian F, Zhang Z, Wang W. A highly selective ratio-metric fluorescent sensor for visualizing nitroreductase in hypoxic cells. Chem Commun (Camb) 2023; 60:83-86. [PMID: 38018699 DOI: 10.1039/d3cc05063g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Herein, we have developed a novel single-molecular probe (NORP) for selective and accurate determination of NTR in living cells. It was discovered that up-regulation of endogenous NTR occurred in response to hypoxic stimulation, and there was a dependence between the NTR levels and the degree of hypoxia.
Collapse
Affiliation(s)
- Yumei Xu
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agriculture University, No. 1 Yingmen village, Anning District, Lanzhou, Gansu 730070, China.
| | - Bing Hu
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agriculture University, No. 1 Yingmen village, Anning District, Lanzhou, Gansu 730070, China.
| | - Yanjun Cui
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agriculture University, No. 1 Yingmen village, Anning District, Lanzhou, Gansu 730070, China.
| | - Li Li
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agriculture University, No. 1 Yingmen village, Anning District, Lanzhou, Gansu 730070, China.
| | - Fang Nian
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agriculture University, No. 1 Yingmen village, Anning District, Lanzhou, Gansu 730070, China.
| | - Zhixia Zhang
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agriculture University, No. 1 Yingmen village, Anning District, Lanzhou, Gansu 730070, China.
| | - Wenting Wang
- College of Life and Health, Wuhan Vocational College of Software and Engineering, Wuhan 430205, China
| |
Collapse
|
45
|
Shangguan H, Liu Q, Wang Y, Teng Z, Tian R, Wu T, Yang L, Jiang L, Liu X, Wei L. Bioimaging of a chromenoquinoline-based ratiometric fluorescent probe for detecting ClO . SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123256. [PMID: 37579661 DOI: 10.1016/j.saa.2023.123256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Hypochlorous acid (HClO) is a reactive oxygen species and a relatively strong antibacterial substance in the immune defense system. The normal concentration of HClO in the human body is approximately 200 μM, and its high concentration can cause tissue damage and some diseases. Herein, a chromenoquinoline-based ratiometric fluorescent probe was developed to detect and quantify HClO. The developed Probe 1 exhibited the advantages of large Stokes shift (137 nm), high synthetic yield (84.7 %), simple synthesis method, short response time (<4 min), low detection limit (5.1 nM), and low toxicity. The probe was successfully validated in live cells and zebrafish.
Collapse
Affiliation(s)
- Huimin Shangguan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Qianwei Liu
- International College, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yuanjuan Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276000, China
| | - Zixuan Teng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Rumeng Tian
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Tong Wu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276000, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276000, China.
| | - Ling Jiang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276000, China.
| | - Xingjiang Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China.
| | - Liuhe Wei
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
46
|
Yang L, Gu P, Fu A, Xi Y, Cui S, Ji L, Li L, Ma N, Wang Q, He G. TPE-based fluorescent probe for dual channel imaging of pH/viscosity and selective visualization of cancer cells and tissues. Talanta 2023; 265:124862. [PMID: 37379755 DOI: 10.1016/j.talanta.2023.124862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
The development of efficient fluorescence-based detection tools with high contrast and accuracy in cancer diagnosis has recently attracted extensive attention. Changes in the microenvironments between cancer and normal cells provide new biomarkers for precise and comprehensive cancer diagnosis. Herein, a dual-organelle-targeted probe with multiple-parameter response is developed to realize cancer detection. We designed a tetraphenylethylene (TPE)-based fluorescent probe TPE-PH-KD connected with quinolinium group for simultaneous detection of viscosity and pH. Due to the restriction on the double bond's rotation, the probe respond to viscosity changes in the green channel with extreme sensitivity. Interestingly, the probe exhibited strong emission of red channel in acidic environment, and the rearrangement of ortho-OH group occurred in the basic form with weak fluorescence when pH increased. Additionally, cell colocalization studies revealed that the probe was located in the mitochondria and lysosome of cancer cells. Following treatment with carbonyl cyanide m-chloro phenylhydrazone (CCCP), chloroquine, and nystatin, the pH or viscosity changes in the dual channels are also monitored in real-time. Furthermore, the probe TPE-PH-KD could effectively discriminate cancer from normal cells and organs with high-contrast fluorescence imaging, which sparked more research on an efficient tool for highly selectively visualizing tumors at the organ level.
Collapse
Affiliation(s)
- Linlin Yang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Pengli Gu
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Aoxiang Fu
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Yanbei Xi
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Shaoli Cui
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Liguo Ji
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China
| | - Lili Li
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453003, Henan Province, PR China.
| | - Nana Ma
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453003, Henan Province, PR China
| | - Qingzhi Wang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China.
| | - Guangjie He
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
47
|
Wang J, Liu Y, Shang Z, Dong C, Wang Y, Shuang S. A novel multi-functional fluorescent probe for dual-channel detection of SO 2 and Hg 2+ and dynamic visualization of SO 2 fluctuations in vivo upon mercury exposure. Anal Chim Acta 2023; 1279:341786. [PMID: 37827682 DOI: 10.1016/j.aca.2023.341786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Although there are many drugs used for the treatment of mercury poisoning, it is remains confused that pathological symptoms associated with Hg2+-induced oxidative stress. It is reported that SO2 can be generated as the anti-oxidant, and plays an important role in maintaining redox balance in cells. There has not yet been a study to precisely track the changes in SO2 during mercury ion poisoning. We developed a novel dual-response fluorescence probe (CY-SPH) for respective or successive determination of Hg2+ and SO2 in neutral aqueous media. The nucleophilic addition of HSO3- toward CY-SPH caused a significant fluorescence enhancement at 455 nm while the Hg2+ -triggered desulfurization of CY-SPH to the final phenolic product (CY-OH) elicited a markedly enhanced emission at 760 nm, allowing for two-color visualization of Hg2+ and SO2 with good selectivity (detection limit: 67.2 nM for Hg2+ and 34.7 nM for SO2). Moreover, CY-OH could undergo further nucleophilic addition reaction with HSO3- and resulted in a decrease in emission at 760 nm and an increase in emission at 438 nm, enabling the ratiometric determination of SO2 with better sensitivity (detection limit, 3.50 nM). Significantly, CY-SPH can monitor the endogenous SO2 fluctuations upon mercury exposure by means of confocal fluorescence imaging, which may prove valuable for deciphering the relationship between SO2 levels and the mercury induced oxidative stress. We anticipated that this research will promote to understand the functions of SO2 under the oxidative stress by Hg2+.
Collapse
Affiliation(s)
- Jianhua Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Yaoming Liu
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, PR China
| | - Zhuobin Shang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
48
|
Ye Z, Hu C, Wang J, Liu H, Li L, Yuan J, Ha JW, Li Z, Xiao L. Burst of hopping trafficking correlated reversible dynamic interactions between lipid droplets and mitochondria under starvation. EXPLORATION (BEIJING, CHINA) 2023; 3:20230002. [PMID: 37933279 PMCID: PMC10582609 DOI: 10.1002/exp.20230002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/27/2023] [Indexed: 11/08/2023]
Abstract
Dynamic membrane contacts between lipid droplets (LDs) and mitochondria play key roles in lipid metabolism and energy homeostasis. Understanding the dynamics of LDs under energy stimulation is thereby crucial to disclosing the metabolic mechanism. Here, the reversible interactions between LDs and mitochondria are tracked in real-time using a robust LDs-specific fluorescent probe (LDs-Tags). Through tracking the dynamics of LDs at the single-particle level, spatiotemporal heterogeneity is revealed. LDs in starved cells communicate and integrate their activities (i.e., lipid exchange) through a membrane contact site-mediated mechanism. Thus the diffusion is intermittently alternated between active and confined states. Statistical analysis shows that the translocation of LDs in response to starvation stress is non-Gaussian, and obeys nonergodic-like behavior. These results provide deep understanding of the anomalous diffusion of LDs in living cells, and also afford guidance for rationally designing efficient transporter.
Collapse
Affiliation(s)
- Zhongju Ye
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Chengyuan Hu
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Junli Wang
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Hua Liu
- College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
| | - Luping Li
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Jie Yuan
- School of Chemistry and Chemical EngineeringSchool of EnvironmentHenan Normal UniversityXinxiangChina
| | - Ji Won Ha
- Department of ChemistryUniversity of UlsanNam‐guRepublic of Korea
| | - Zhaohui Li
- Department of ChemistryZhengzhou UniversityZhengzhouChina
| | - Lehui Xiao
- College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
| |
Collapse
|
49
|
Tu R, Liu J, Chen W, Fu F, Li MJ. Two near-infrared phosphorescent iridium(III) complexes for the detection of GSH and photodynamic therapy. Dalton Trans 2023; 52:13137-13145. [PMID: 37655695 DOI: 10.1039/d3dt01826a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
GSH is one of the most important reducing agents in biological systems. The depletion of GSH in the human body is linked to many diseases. Therefore, it is necessary to develop suitable and efficient probes for detecting GSH concentrations in real samples. In this work, we designed and synthesized two near-infrared emitting iridium(III) complex probes containing a novel ligand functionalized with an α,β-unsaturated ketone for the rapid and sensitive detection of GSH. The molecular structure of Ir2 was determined by X-ray crystallography. Due to their large Stokes shift, long luminescence lifetime and NIR emission, these probes were successfully applied in the imaging of GSH in living cells. In addition, two iridium(III) complexes have strong singlet oxygen generation ability which can be used for photodynamic therapy (PDT) upon visible light irradiation. On the basis of these findings, our iridium(III) complexes may serve as GSH probes for HeLa cell imaging and as photosensitizers for PDT.
Collapse
Affiliation(s)
- Rui Tu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, China.
| | - Jie Liu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, China.
| | - Weibin Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, China.
| | - Fengfu Fu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, China.
| | - Mei-Jin Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
50
|
Tian Q, Lu X, He W. Structure-regulated mitochondrial-targeted fluorescent probe for sensing and imaging SO 2in vivo. Bioorg Chem 2023; 138:106656. [PMID: 37329811 DOI: 10.1016/j.bioorg.2023.106656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
SO2 and its derivatives play an important role in the antioxidation and anticorrosion of food and medicine. In biological systems, abnormal levels of SO2 lead to the occurrence of many biological diseases. Hence, the development of suitable tools for monitoring SO2 in mitochondria is beneficial for studying the biological effect of SO2 in subcellular organelles. In this research, DHX-1 and DHX-2 are fluorescent probes designed on the basis of dihydroxanthene skeletons. Importantly, DHX-1 (650 nm) and DHX-2 (748 nm) show near-infrared fluorescence response toward endogenous and exogenous SO2, which showed advantages of great selectivity, good sensitivity and low cytotoxicity, and the detection limit is 5.6 μM and 4.08 μM of SO2, respectively. Moreover, DHX-1 and DHX-2 realized SO2 sensing in HeLa cells and zebrafish. Moreover, cell imaging demonstrated that DHX-2 with a thiazole salt structure possesses good mitochondria-targeting ability. Additionally, DHX-2 was perfectly achieved by in situ imaging of SO2 in mice.
Collapse
Affiliation(s)
- Qinqin Tian
- Department of Chemistry, School of Pharmacy, Air Force Military Medical University, 169 Changle West Road, Xi'an 710032, PR China
| | - Xianlin Lu
- Department of Chemistry, School of Pharmacy, Air Force Military Medical University, 169 Changle West Road, Xi'an 710032, PR China
| | - Wei He
- Department of Chemistry, School of Pharmacy, Air Force Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| |
Collapse
|