1
|
Demirel N, Moths P, Xie X, Ivlev SI, Meggers E. Development of Chiral-At-Ruthenium Mesoionic Carbene Catalysts. Chemistry 2025; 31:e202403792. [PMID: 39905895 DOI: 10.1002/chem.202403792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Indexed: 02/06/2025]
Abstract
Building on our previously established chiral-at-metal approach, in which the overall chirality of the transition metal catalyst is solely determined by a stereogenic metal center, we here present a new addition to the family of C2-symmetric chiral-at-ruthenium catalysts. These are C2-symmetric chiral ruthenium complexes featuring strongly σ-donating 1,2,3-triazol-5-ylidene mesoionic carbene (MIC) ligands. The complexes demonstrate excellent catalytic activity and enantioselectivity in a nitrene-mediated ring-closing C(sp3)-H amination of an aliphatic azide, leading to the formation of an N-Boc-protected chiral pyrrolidine. This study highlights the potential of this new class of chiral mesoionic carbene ruthenium complexes to further enhance or modify the reactivity of ruthenium-based chiral-at-metal catalysts.
Collapse
Affiliation(s)
- Nemrud Demirel
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Paul Moths
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Sergei I Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| |
Collapse
|
2
|
Chen J, Martin R. Ni-Catalyzed Stereodivergent Synthesis of N-Glycosides. Chemistry 2025; 31:e202403822. [PMID: 39612346 DOI: 10.1002/chem.202403822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
Herein, we describe a stereoselective Ni-catalyzed N-glycosylation of glycals. The reaction is enabled by addition of an in situ generated nickel hydride across an olefin prior to C-N bond-formation. Stereodivergence can be accomplished on kinetic or thermodynamic grounds, thus giving access to either α- or β-N-glycosides with equal ease. The protocol is distinguished by its operational simplicity, generality and exquisite selectivity, thus offering a new gateway to expedite the synthesis of N-glycosides.
Collapse
Affiliation(s)
- Jinhong Chen
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
3
|
Ye D, Wu T, Puri A, Hebert DD, Siegler MA, Hendrich MP, Swart M, Garcia-Bosch I. Enhanced Proton-Coupled Electron-Transfer Reactivity by a Mononuclear Nickel(II) Hydroxide Radical Complex. Inorg Chem 2024; 63:24453-24465. [PMID: 39680075 PMCID: PMC11688665 DOI: 10.1021/acs.inorgchem.4c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
The synthesis, characterization, and reactivity of a NiOH core bearing a tridentate redox-active ligand capable of reaching three molecular oxidation states is presented in this paper. The reduced complex [LNiOH]2- was characterized by single-crystal X-ray diffraction analysis, depicting a square-planar NiOH core stabilized by intramolecular H-bonding interactions. Cyclic voltammetry measurements indicated that [LNiOH]2- can be reversibly oxidized to [LNiOH]- and [LNiOH] at very negative reduction potentials (-1.13 and -0.39 V vs ferrocene, respectively). The oxidation of [LNiOH]2- to [LNiOH]- and [LNiOH] was accomplished using 1 and 2 equiv of ferrocenium, respectively. Spectroscopic and computational characterization suggest that [LNiOH]2-, [LNiOH]-, and [LNiOH] are all NiII species in which the redox-active ligand adopts different oxidation states (catecholate-like, semiquinone-like, and quinone-like, respectively). The NiOH species were found to promote H-atom abstraction from organic substrates, with [LNiOH]- acting as a 1H+/1e- oxidant and [LNiOH] as a 2H+/2e- oxidant. Thermochemical analysis indicated that [LNiOH] was capable of abstracting H atoms from stronger O-H bonds than [LNiOH]-. However, the greater thermochemical tendency of [LNiOH] reactivity toward H atoms did not align with the kinetics of the PCET reaction, where [LNiOH]- reacted with H-atom donors much faster than [LNiOH]. The unique stereoelectronic structure of [LNiOH]- (radical character combined with a basic NiOH core) might account for its enhanced PCET reactivity.
Collapse
Affiliation(s)
- Daniel Ye
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Wu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ankita Puri
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - David D. Hebert
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | - Michael P. Hendrich
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel Swart
- University
of Girona, Campus Montilivi (Ciències), IQCC, 17004 Girona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Isaac Garcia-Bosch
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Wu K, Che CM. Iron-catalysed intramolecular C(sp 3)-H amination of alkyl azides. Chem Commun (Camb) 2024; 60:13998-14011. [PMID: 39531011 DOI: 10.1039/d4cc04169k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Iron-catalysed intramolecular C(sp3)-H amination of alkyl azides (N3R, R = alkyl) via the iron-alkylnitrene/alkylimido (Fe(NR)) intermediate, is an appealing synthetic approach for the synthesis of various N-heterocycles. This approach provides a direct atom-economy strategy for constructing C(sp3)-N bonds, with nitrogen gas as the only by-product and iron is a biocompatible, cheap, and earth-abundant metal. However, C(sp3)-H amination with alkyl azides is challenging because alkyl nitrenes readily undergo 1,2-hydride migration to imines. This article summarizes recent major advances in this field in terms of catalyst design, substrate scope expansion, stereoselectivity control, understanding of key reaction intermediates, and applications in the synthesis of complex natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| |
Collapse
|
5
|
Liu J, Zhang Y, Fan P, Feng Y, Duan T, Zhou Y, Zheng S, Li Q, Li Y, Liu X, Wu XY, Li C. Adjustable Regioselectivity for the Diels-Alder Reactions of Sulfolenodipyrrins upon Molecular Engineering on H-Bonds. J Org Chem 2024; 89:15678-15685. [PMID: 39406707 DOI: 10.1021/acs.joc.4c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The Diels-Alder reactions of sulfolenodipyrrins prove to be an efficient way to construct aromatic ring-fused dipyrrins. However, adjustable annulation is still hard to achieve. To address this, molecular engineering on the H-bond has been employed. The α-position aryl group-modified sulfolenodipyrrins have been synthesized to react with various dienophiles in Diels-Alder reactions, affording the monoannulation products with different regioselectivity in good yields (45-76%). The remaining sulfolenopyrrole in monoadducts can undergo further fusion in the presence of dienophiles and TEMPO, giving the bisadducts with a lactam subunit in an appropriate yield. According to the crystal structures and theoretical calculations, the intramolecular H-bonds between the α-substituent and the nearby pyrrole confine the conjugation pathway of the dipyrrin core. With respect to the normal NH-sulfolenopyrrole, the imino-type one features low aromaticity, from which SO2 extrusion generates more stable dipyrrin-diene, achieving regioselectivity. In addition, aromatic ring fusion results in red-shifted absorption and emission spectra, and the annulation units regulate the emission intensity. This work shows the versatility of intramolecular H-bonds in regulating the reaction through confinement of the conjugation system.
Collapse
Affiliation(s)
- Jiayang Liu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yiqi Zhang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Peijun Fan
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yuci Feng
- School of Chemical Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Tingting Duan
- International Elite Engineering School, East China University of Science & Technology, Shanghai 200237, China
| | - Ying Zhou
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Shaoyu Zheng
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qizhao Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yuxin Li
- Key Laboratory of Function Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Xiujun Liu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Stroek W, Rowlinson NAV, Hudson LA, Albrecht M. Heteroleptic Triazole-Bisoxazoline Iron Complexes Reveal Lability of the Iron-Carbene Bond Even Within a Chelating Scaffold. Inorg Chem 2024; 63:17134-17140. [PMID: 39227361 DOI: 10.1021/acs.inorgchem.4c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
N-Heterocyclic carbenes have proven to be excellent ligands for transition metals, with numerous applications in catalysis and beyond. However, they have also displayed lability with first row transition metals, largely due to the hard-soft mismatch of the metal-carbon bond. Chelation is often considered a suitable methodology for supporting the labile M-C bond through the introduction of a strongly coordinating donor site such as hard phenolates. Herein, we demonstrate that chelating phenolate-carbene ligands are kinetically labile in iron(II) complexes. Specifically, heteroleptic iron complexes [Fe(C^O)(N^N)] were synthesized composed of a phenolate-functionalized triazolylidene (CO) ligand and N,N-bidentate coordinating bisoxazoline ligand (N^N). Stability studies by 1H NMR spectroscopy showed that the heteroleptic complexes preferentially convert to their corresponding homoleptic complexes [Fe(C^O)2] and [Fe(N^N)2], indicating reversible decoordination of the carbene phenolate chelate from the iron center. The rate of this rearrangement is dependent on the substituents on the ligands and increases for triazolylidene wingtip groups mesityl (Mes) < di(isopropyl)aryl (DIPP) < adamantyl (Ad), with significant ligand redistribution for DIPP and Ad systems observed even at room temperature. The most stable heteroleptic complex featured mesityl wingtips on the triazole and phenyl groups as oxazoline substituents and displayed signs of ligand exchange only after 16 h at room temperature. This substitutional lability of carbene ligands even when supported by a phenolate chelating group has direct consequences when designing iron complexes for catalytic applications.
Collapse
Affiliation(s)
- Wowa Stroek
- Department of Chemistry, Biochemistry and pharmaceutical sciences, University of Bern, Bern CH-3012, Switzerland
| | - Nathalie A V Rowlinson
- Department of Chemistry, Biochemistry and pharmaceutical sciences, University of Bern, Bern CH-3012, Switzerland
| | - Luke A Hudson
- Department of Chemistry, Biochemistry and pharmaceutical sciences, University of Bern, Bern CH-3012, Switzerland
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and pharmaceutical sciences, University of Bern, Bern CH-3012, Switzerland
| |
Collapse
|
7
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
8
|
Hudson LA, Stroek W, Albrecht M. Tailoring C-H amination activity via modification of the triazole-derived carbene ligand. Dalton Trans 2024; 53:14795-14800. [PMID: 39162580 PMCID: PMC11334762 DOI: 10.1039/d4dt01715c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Two new C,O-bidentate chelating triazolylidene-phenolate ligands were synthesized that feature a diisopropylphenyl (dipp) and an adamantyl (Ad) substituent respectively on the triazole scaffold. Subsequent metalation afforded iron(II) complexes [Fe(C^O)2] that are active catalysts for the intramolecular C-H amination of organic azides. When compared to the parent complex containing a triazolylidene with a mesityl substituent (Mes) the increased steric bulk led to slightly lower activity (TOFmax = 23 h-1vs. 30 h-1), however selectivity towards pyrrolidine formation increases from 92% up to >99%. Kinetic studies indicate that the mechanism is similar in all three complexes and includes a half-order dependence in [Fe(C^O)2], congruent with the involvement of a dimetallic catalyst resting state within this catalyst class. Structural analysis suggests that enhanced bulkiness disfavors N2 loss and nitrene formation, yet shields the nitrene from intermolecular processes and thus favors intramolecular nitrene insertion into the C-H bond. This model rationalizes the high selectivity and the lower reaction rate observed with dipp and with Ad substituents on the ligand.
Collapse
Affiliation(s)
- Luke A Hudson
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| | - Wowa Stroek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| |
Collapse
|
9
|
Wang Z, Jiang W, Tang R, Liu H, Qian H, Guo T, Zhu J, Wu W, Xie W, Zhang J. Synthetic Modification and Insecticidal Activity of 4- epi-cis-Dihydroagarofuran Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15552-15560. [PMID: 38950523 DOI: 10.1021/acs.jafc.4c01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
To synthesize the fundamental framework of dihydroagarofuran, a novel strategy was devised for constructing the C-ring through a dearomatization reaction using 6-methoxy-1-tetralone as the initial substrate. Subsequently, the dihydroagarofuran skeleton was assembled via two consecutive Michael addition reactions. The conjugated diene and trans-dihydroagarofuran skeleton were modified. The insecticidal activities of 33 compounds against Mythimna separata were evaluated. Compounds 11-5 exhibited an LC50 value of 0.378 mg/mL. The activity exhibited a remarkable 29-fold increase compared to positive control Celangulin V, which was widely recognized as the most renowned natural dihydroagarofuran polyol ester insecticidal active compound. Docking experiments between synthetic compounds and target proteins revealed the shared binding sites with Celangulin V. Structure-activity relationship studies indicated that methyl groups at positions C4 and C10 significantly improved insecticidal activity, while ether groups with linear chains displayed enhanced activity; in particular, the allyl ether group demonstrated optimal efficacy. Furthermore, a three-dimensional quantitative structure-activity relationship model was established to investigate the correlation between the skeletal structure and activity. These research findings provide valuable insights for discovering and developing dihydroagarofuran-like compounds.
Collapse
Affiliation(s)
- Ziyu Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| | - Wei Jiang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Rong Tang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Hongxiang Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| | - Hao Qian
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| | - Tao Guo
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| | - Jianjun Zhu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| | - Wenjun Wu
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| | - Weiqing Xie
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| | - Jiwen Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, P. R. China
| |
Collapse
|
10
|
Snyder G, Abuhadba S, Lin N, Lee WT, Mani T, Esipova TV. Pd and Pt Complexes of Benzo-Fused Dipyrrins: Synthesis, Structure, Electrochemical, and Optical Properties. Inorg Chem 2024; 63:11944-11952. [PMID: 38900061 DOI: 10.1021/acs.inorgchem.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Benzo-fused dipyrrins are π-extended analogs of conventional dipyrrins, which exhibit bathochromically shifted absorption and possess the synthetic capability to bind various metal ions. We aimed to investigate the synthetic potential of benzo-fused dipyrrins in the complexation with transition metals. Two new complexes with Pd2+ and Pt2+ were synthesized and characterized. X-ray crystallography reveals that both complexes exhibit a zigzag geometry with square planar coordination of the central metal. The Pd2+ complex possesses a very weak fluorescence at 665 nm, while the Pt2+ complex is completely nonemissive. Transient absorption spectroscopy confirmed triplet excited state formation for both complexes; however, they are short-lived and no phosphorescence was observed even at 77K. DFT calculations support the experimental observation, revealing the existence of the low-lying ligand-metal charge-transfer (LMCT) triplet state acting as an energy sink.
Collapse
Affiliation(s)
- Graden Snyder
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Sara Abuhadba
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Neo Lin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Wei-Tsung Lee
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Tomoyasu Mani
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Tatiana V Esipova
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| |
Collapse
|
11
|
Gwinn R, Williams M, Latendresse TP, Slebodnick C, Troya D, Tarannum T, Thornton DA. Synthesis, Characterization, and the Effect of Lewis Bases on the Nuclearity of Iron Alkoxide Complexes. Inorg Chem 2024; 63:7692-7704. [PMID: 38608180 PMCID: PMC11061831 DOI: 10.1021/acs.inorgchem.3c04538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Inspired by the potential of alkoxides as weak-field ligands and their ability to bridge, we report herein a series of high-spin iron complexes supported by a bis-alkoxide framework PhDbf. A diiron complex [Fe2(PhDbf)2] (1a) is obtained upon metalation of the ligand, whereas addition of substituted pyridines affords five-coordinate mononuclear iron complexes [(R-Py)2Fe(PhDbf)] (2a-4a, R = H, p-tBu, p-CF3). The potential for nuclearity control of the metal complexes via auxiliary ligands is highlighted by the formation of asymmetric diiron species [(p-CF3-Py)Fe2(PhDbf)2] (5a) and [(m-CF3-Py)Fe2(PhDbf)2] (6a) with trifluoromethyl substituted pyridines, while electron-rich pyridines only produced monomeric species. Electronic properties analysis via UV-vis, electron paramagnetic resonance, 57Fe Mössbauer spectroscopy, and time-dependent density functional theory, along with redox capabilities of these complexes are reported to illustrate the effect of nuclearity on reactivity and the potential of these complexes to access higher oxidation states relevant in oxidative chemistry. Species 1a-5a, [(THF)2Fe(PhDbf)][PF6] (7), [PyFe(PhDbf)Cl] (2b), and [Py2Fe(PhDbf)][PF6] (2c) were characterized via SCXRD. Indirect evidence for the formation of dimeric Fe(III) species (1b, 5b, and 6b) is discussed.
Collapse
Affiliation(s)
- Reilly
K. Gwinn
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Matthew Williams
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Trevor P. Latendresse
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Carla Slebodnick
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Diego Troya
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Tasnema Tarannum
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Diana A. Thornton
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
12
|
Kim SG, Kim D, Oh J, Son YJ, Jeong S, Kim J, Hwang SJ. Phosphorus-Ligand Redox Cooperative Catalysis: Unraveling Four-Electron Dioxygen Reduction Pathways and Reactive Intermediates. J Am Chem Soc 2024. [PMID: 38597246 DOI: 10.1021/jacs.4c01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The reduction of dioxygen to water is crucial in biology and energy technologies, but it is challenging due to the inertness of triplet oxygen and complex mechanisms. Nature leverages high-spin transition metal complexes for this, whereas main-group compounds with their singlet state and limited redox capabilities exhibit subdued reactivity. We present a novel phosphorus complex capable of four-electron dioxygen reduction, facilitated by unique phosphorus-ligand redox cooperativity. Spectroscopic and computational investigations attribute this cooperative reactivity to the unique electronic structure arising from the geometry of the phosphorus complex bestowed by the ligand. Mechanistic study via spectroscopic and kinetic experiments revealed the involvement of elusive phosphorus intermediates resembling those in metalloenzymes. Our result highlights the multielectron reactivity of phosphorus compound emerging from a carefully designed ligand platform with redox cooperativity. We anticipate that the work described expands the strategies in developing main-group catalytic reactions, especially in small molecule fixations demanding multielectron redox processes.
Collapse
Affiliation(s)
- Sung Gyu Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dongyoung Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jinrok Oh
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yeong Jun Son
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sangmin Jeong
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Seung Jun Hwang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Yang YZ, Xue Q, Xiong ZQ, Li Y, Ouyang XH, Hu M, Li JH. Divergent [2 + n] Heteroannulation of β-CF 3-1,3-enynes with Alkyl Azides via Hydrogen Atom Transfer and Radical Substitution. Org Lett 2024; 26:889-894. [PMID: 38251851 DOI: 10.1021/acs.orglett.3c04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A copper-promoted divergent intermolecular [2 + n] heteroannulation of β-CF3-1,3-enynes with alkyl azides via alkyl radical-driven HAT and radical substitution (C-C bond formation) to form four- to ten-membered saturated N-heterocycles is developed. This method enables the aryl-induced or kinetically controlled site selective functionalization of the remote C(sp3)-H bonds at positions 2, 3, 4, 5, 6, 7, or 8 toward the nitrogen atom through triplet nitrene formation, radical addition across the C═C bond, HAT and radical substitution cascades, and features a broad substrate scope, excellent site selectivity, and facile late-stage derivatization of bioactive molecules. Initial deuterium-labeling and control experiments shed light on the reaction mechanism via nitrene formation and HAT.
Collapse
Affiliation(s)
- Yu-Zhong Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qi Xue
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
14
|
Sugimoto H, Sakaida M, Shiota Y, Miyanishi M, Morimoto Y, Yoshizawa K, Itoh S. A rhodium(II)/rhodium(III) redox couple for C-H bond amination with alkylazides: a rhodium(III)-nitrenoid intermediate with a tetradentate [14]-macrocyclic ligand. Dalton Trans 2024; 53:1607-1615. [PMID: 38165665 DOI: 10.1039/d3dt03429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The catalytic activity of a rhodium(II) dimer complex, [RhII(TMAA)]2 (TMAA = tetramethyltetraaza[14]annulene), in C-H amination reactions with organic azides is explored. Organic azides (N3-R) with an electron-withdrawing group such as a sulfonyl group (trisylazide; R = S(O)2iPr3C6H2 (Trs)) and a simple alkyl group (R = (CH2)4Ph, (CH2)2OCH2Ph, CH2Ph, or C6H4NO2) are employed in intra- and intermolecular C-H bond amination reactions. The spectroscopic analysis using ESI-mass and EPR spectroscopy techniques on the reaction intermediate generated from [RhII(TMAA)]2 and N3-R reveals that a rhodium(III)-nitrenoid species is an active oxidant in the C-H bond amination reaction. DFT calculations suggest that the species can feature a radical localised nitrogen atom. The DFT calculation studies also indicate that the amination reaction involves hydrogen atom abstraction from the organic substrate R'-H by the NR moiety of 2N˙R and successive rebound of the generated organic radical intermediate R'˙ to [RhIII(NH-R)(TMAA)], giving [RhII(TMAA)] and R'-NH-R (amination product).
Collapse
Affiliation(s)
- Hideki Sugimoto
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Megumu Sakaida
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Mayuko Miyanishi
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yuma Morimoto
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Shinobu Itoh
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
15
|
Pradhan S, Kweon J, Sahoo MK, Jung H, Heo J, Kim YB, Kim D, Park JW, Chang S. A Formal γ-C-H Functionalization of Carboxylic Acids Guided by Metal-Nitrenoids as an Unprecedented Mechanistic Motif. J Am Chem Soc 2023; 145:28251-28263. [PMID: 38100053 DOI: 10.1021/jacs.3c11628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Harnessing the key intermediates in metal-catalyzed reactions is one of the most essential strategies in the development of selective organic transformations. The nitrogen group transfer reactivity of metal-nitrenoids to ubiquitous C-H bonds allows for diverse C-N bond formation to furnish synthetically valuable aminated products. In this study, we present an unprecedented reactivity of iridium and ruthenium nitrenoids to generate remote carbocation intermediates, which subsequently undergo nucleophile incorporation, thus developing a formal γ-C-H functionalization of carboxylic acids. Mechanistic investigations elucidated a unique singlet metal-nitrenoid reactivity to initiate an abstraction of γ-hydride to form the carbocation intermediate that eventually reacts with a broad range of carbon, nitrogen, and oxygen nucleophiles, as well as biorelevant molecules. Alternatively, the same intermediate can lead to deprotonation to afford β,γ-unsaturated amides in a less nucleophilic solvent.
Collapse
Affiliation(s)
- Sourav Pradhan
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Manoj Kumar Sahoo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Joon Heo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Yeong Bum Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jung-Woo Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
16
|
Juda CE, Casaday CE, Clarke RM, Litak NP, Campbell BM, Chang T, Zheng SL, Chen YS, Betley TA. Lewis Acid Supported Nickel Nitrenoids. Angew Chem Int Ed Engl 2023; 62:e202313156. [PMID: 37830508 DOI: 10.1002/anie.202313156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Metalation of the polynucleating ligand F,tbs LH6 (1,3,5-C6 H9 (NC6 H3 -4-F-2-NSiMe2 t Bu)3 ) with two equivalents of Zn(N(SiMe3 )2 )2 affords the dinuclear product (F,tbs LH2 )Zn2 (1), which can be further deprotonated to yield (F,tbs L)Zn2 Li2 (OEt2 )4 (2). Transmetalation of 2 with NiCl2 (py)2 yields the heterometallic, trinuclear cluster (F,tbs L)Zn2 Ni(py) (3). Reduction of 3 with KC8 affords [KC222 ][(F,tbs L)Zn2 Ni] (4) which features a monovalent Ni centre. Addition of 1-adamantyl azide to 4 generates the bridging μ3 -nitrenoid adduct [K(THF)3 ][(F,tbs L)Zn2 Ni(μ3 -NAd)] (5). EPR spectroscopy reveals that the anionic cluster possesses a doublet ground state (S =1 / 2 ${{ 1/2 }}$ ). Cyclic voltammetry of 5 reveals two fully reversible redox events. The dianionic nitrenoid [K2 (THF)9 ][(F,tbs L)Zn2 Ni(μ3 -NAd)] (6) was isolated and characterized while the neutral redox isomer was observed to undergo both intra- and intermolecular H-atom abstraction processes. Ni K-edge XAS studies suggest a divalent oxidation state for the Ni centres in both the monoanionic and dianionic [Zn2 Ni] nitrenoid complexes. However, DFT analysis suggests Ni-borne oxidation for 5.
Collapse
Affiliation(s)
- Cristin E Juda
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Claire E Casaday
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Ryan M Clarke
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Nicholas P Litak
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Brandon M Campbell
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Tieyan Chang
- ChemMatCARS Beamline, The University of Chicago, Advanced Photon Source, Argonne, IL 60429, USA
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Yu-Sheng Chen
- ChemMatCARS Beamline, The University of Chicago, Advanced Photon Source, Argonne, IL 60429, USA
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Carsch KM, North SC, DiMucci IM, Iliescu A, Vojáčková P, Khazanov T, Zheng SL, Cundari TR, Lancaster KM, Betley TA. Nitrene transfer from a sterically confined copper nitrenoid dipyrrin complex. Chem Sci 2023; 14:10847-10860. [PMID: 37829016 PMCID: PMC10566472 DOI: 10.1039/d3sc03641c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
Despite the myriad Cu-catalyzed nitrene transfer methodologies to form new C-N bonds (e.g., amination, aziridination), the critical reaction intermediates have largely eluded direct characterization due to their inherent reactivity. Herein, we report the synthesis of dipyrrin-supported Cu nitrenoid adducts, investigate their spectroscopic features, and probe their nitrene transfer chemistry through detailed mechanistic analyses. Treatment of the dipyrrin CuI complexes with substituted organoazides affords terminally ligated organoazide adducts with minimal activation of the azide unit as evidenced by vibrational spectroscopy and single crystal X-ray diffraction. The Cu nitrenoid, with an electronic structure most consistent with a triplet nitrene adduct of CuI, is accessed following geometric rearrangement of the azide adduct from κ1-N terminal ligation to κ1-N internal ligation with subsequent expulsion of N2. For perfluorinated arylazides, stoichiometric and catalytic C-H amination and aziridination was observed. Mechanistic analysis employing substrate competition reveals an enthalpically-controlled, electrophilic nitrene transfer for primary and secondary C-H bonds. Kinetic analyses for catalytic amination using tetrahydrofuran as a model substrate reveal pseudo-first order kinetics under relevant amination conditions with a first-order dependence on both Cu and organoazide. Activation parameters determined from Eyring analysis (ΔH‡ = 9.2(2) kcal mol-1, ΔS‡ = -42(2) cal mol-1 K-1, ΔG‡298K = 21.7(2) kcal mol-1) and parallel kinetic isotope effect measurements (1.10(2)) are consistent with rate-limiting Cu nitrenoid formation, followed by a proposed stepwise hydrogen-atom abstraction and rapid radical recombination to furnish the resulting C-N bond. The proposed mechanism and experimental analysis are further corroborated by density functional theory calculations. Multiconfigurational calculations provide insight into the electronic structure of the catalytically relevant Cu nitrene intermediates. The findings presented herein will assist in the development of future methodology for Cu-mediated C-N bond forming catalysis.
Collapse
Affiliation(s)
- Kurtis M Carsch
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| | - Sasha C North
- Center for Advanced Scientific Computing and Modeling (CASCaM), Department of Chemistry, University of North Texas, Denton TX 76203 USA
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University Ithaca New York 14853 USA
| | - Andrei Iliescu
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| | - Petra Vojáčková
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| | - Thomas Khazanov
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University Ithaca New York 14853 USA
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| | - Thomas R Cundari
- Center for Advanced Scientific Computing and Modeling (CASCaM), Department of Chemistry, University of North Texas, Denton TX 76203 USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University Ithaca New York 14853 USA
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| |
Collapse
|
18
|
Sunbal, Alamzeb M, Omer M, Abid OUR, Ullah M, Sohail M, Ullah I. Chemical insights into the synthetic chemistry of five-membered saturated heterocycles-a transition metal-catalyzed approach. Front Chem 2023; 11:1185669. [PMID: 37564110 PMCID: PMC10411457 DOI: 10.3389/fchem.2023.1185669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Drug design and delivery is primarily based on the hunt for new potent drug candidates and novel synthetic techniques. Recently, saturated heterocycles have gained enormous attention in medicinal chemistry as evidenced by the medicinal drugs listed in the FDA Orange Book. Therefore, the demand for novel saturated heterocyclic syntheses has increased tremendously. Transition metal (TM)-catalyzed reactions have remained the prime priority in heterocyclic syntheses for the last three decades. Nowadays, TM catalysis is well adorned by combining it with other techniques such as bio- and/or enzyme-catalyzed reactions, organocatalysis, or using two different metals in a single catalysis. This review highlights the recent developments of the transition metal-catalyzed synthesis of five-membered saturated heterocycles.
Collapse
Affiliation(s)
- Sunbal
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | - Muhammad Omer
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | - Mohib Ullah
- Department of Chemistry, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Muhammad Sohail
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Ihsan Ullah
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| |
Collapse
|
19
|
Anwar K, Troyano FJA, Abazid AH, El Yarroudi O, Funes-Ardoiz I, Gómez-Suárez A. Modular Synthesis of Polar Spirocyclic Scaffolds Enabled by Radical Chemistry. Org Lett 2023; 25:3216-3221. [PMID: 37130365 DOI: 10.1021/acs.orglett.3c00869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Herein, we report a highly modular strategy to access spirocyclic scaffolds from abundant starting materials, i.e., cyclic ketones and α-amino or oxamic acids. The sequence proceeds through a straightforward Knoevenagel condensation, followed by a domino Giese-type reaction/base-mediated cyclization process, to deliver a broad scope of polar spirocyclic scaffolds in good to excellent yields. The products can be readily diversified, thus increasing the versatility of our method to gain rapid access to libraries of potential druglike molecules.
Collapse
Affiliation(s)
- Khadijah Anwar
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | | | - Ayham H Abazid
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Oumayma El Yarroudi
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Ignacio Funes-Ardoiz
- Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, 26004 Logroño, Spain
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
20
|
Stroek W, Albrecht M. Discovery of a simple iron catalyst reveals the intimate steps of C-H amination to form C-N bonds. Chem Sci 2023; 14:2849-2859. [PMID: 36937598 PMCID: PMC10016609 DOI: 10.1039/d2sc04170g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022] Open
Abstract
Formation of ubiquitous C-N bonds traditionally uses prefunctionalized carbon precursors. Recently, metal-catalyzed amination of unfunctionalized C-H bonds with azides has become an attractive and atom-economic strategy for C-N bond formation, though all catalysts contain sophisticated ligands. Here, we report Fe(HMDS)2 (HMDS = N(SiMe3)2 -) as an easy-to-prepare catalyst for intramolecular C-H amination. The catalyst shows unprecedented turnover frequencies (110 h-1 vs. 70 h-1 reported to date) and requires no additives. Amination is successful for benzylic and aliphatic C-H bonds (>80% yield) and occurs even at room temperature. The simplicity of the catalyst enabled for the first time comprehensive mechanistic investigations. Kinetic, stoichiometric, and computational studies unveiled the intimate steps of the C-H amination process, including the resting state of the catalyst and turnover-limiting N2 loss of the coordinated azide. The high reactivity of the iron imido intermediate is rationalized by its complex spin system revealing imidyl and nitrene character.
Collapse
Affiliation(s)
- Wowa Stroek
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern CH-3012 Bern Switzerland
| | - Martin Albrecht
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern CH-3012 Bern Switzerland
| |
Collapse
|
21
|
Stroek W, Hoareau L, Albrecht M. From the bottle: simple iron salts for the efficient synthesis of pyrrolidines via catalytic C-H bond amination. Catal Sci Technol 2023; 13:958-962. [PMID: 36825222 PMCID: PMC9939938 DOI: 10.1039/d2cy02065c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Commercially available iron salts FeX2 are remarkably active catalysts for pyrrolidine formation from organic azides via direct C-H bond amination. With FeI2, amination is fast and selective, (<30 min for 80% yield at 2 mol% loading), TONs up to 370 are reached with just 0.1 mol% catalyst, different functional groups are tolerated, and a variety of C-H bonds were activated.
Collapse
Affiliation(s)
- Wowa Stroek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Lilian Hoareau
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
22
|
Wang J, Xiao R, Lin Z, Zheng Z, Zheng K. Mechanistic and chemoselective investigations on nitrene transfer reactions mediated by a novel iron-mesoionic carbene catalyst. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Chen J, Wang H, Day CS, Martin R. Nickel-Catalyzed Site-Selective Intermolecular C(sp 3 )-H Amidation. Angew Chem Int Ed Engl 2022; 61:e202212983. [PMID: 36254803 DOI: 10.1002/anie.202212983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/06/2022]
Abstract
A nickel-catalyzed site-selective intermolecular amidation of saturated C(sp3 )-H bonds is reported. This mild protocol exhibits a predictable reactivity pattern to incorporate amide functions at C(sp3 )-H sites adjacent to nitrogen and oxygen atoms in either cyclic or acyclic frameworks, thus offering a complementary reactivity profile to existing oxidative-type processes or metal-catalyzed C(sp3 )-N bond-forming reactions operating via two-electron manifolds.
Collapse
Affiliation(s)
- Jinhong Chen
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel ⋅ lí Domingo, 1, 43007, Tarragona, Spain
| | - Hao Wang
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel ⋅ lí Domingo, 1, 43007, Tarragona, Spain
| | - Craig S Day
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel ⋅ lí Domingo, 1, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
24
|
Recent Strategies in Nickel-Catalyzed C–H Bond Functionalization for Nitrogen-Containing Heterocycles. Catalysts 2022. [DOI: 10.3390/catal12101163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
N-heterocycles are ubiquitous in natural products, pharmaceuticals, organic materials, and numerous functional molecules. Among the current synthetic approaches, transition metal-catalyzed C–H functionalization has gained considerable attention in recent years due to its advantages of simplicity, high atomic economy, and the ready availability of starting materials. In the field of N-heterocycle synthesis via C–H functionalization, nickel has been recognized as one of the most important catalysts. In this review, we will introduce nickel-catalyzed intramolecular and intermolecular pathways for N-heterocycle synthesis from 2008 to 2021.
Collapse
|
25
|
Mitchell BS, Chirila A, Kephart JA, Boggiano AC, Krajewski SM, Rogers D, Kaminsky W, Velian A. Metal-Support Interactions in Molecular Single-Site Cluster Catalysts. J Am Chem Soc 2022; 144:18459-18469. [PMID: 36170652 DOI: 10.1021/jacs.2c07033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study provides atomistic insights into the interface between a single-site catalyst and a transition metal chalcogenide support and reveals that peak catalytic activity occurs when edge/support redox cooperativity is maximized. A molecular platform MCo6Se8(PEt3)4(L)2 (1-M, M = Cr, Mn, Fe, Co, Cu, and Zn) was designed in which the active site (M)/support (Co6Se8) interactions are interrogated by systematically probing the electronic and structural changes that occur as the identity of the metal varies. All 3d transition metal 1-M clusters display remarkable catalytic activity for coupling tosyl azide and tert-butyl isocyanide, with Mn and Co derivatives showing the fastest turnover in the series. Structural, electronic, and magnetic characterization of the clusters was performed using single crystal X-ray diffraction, 1H and 31P nuclear magnetic resonance spectroscopy, electronic absorption spectroscopy, cyclic voltammetry, and computational methods. Distinct metal/support redox regimes can be accessed in 1-M based on the energy of the edge metal's frontier orbitals with respect to those of the cluster support. As the degree of electronic interaction between the edge and the support increases, a cooperative regime is reached wherein the support can deliver electrons to the catalytic site, increasing the reactivity of key metal-nitrenoid intermediates.
Collapse
Affiliation(s)
- Benjamin S Mitchell
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrei Chirila
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan A Kephart
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew C Boggiano
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sebastian M Krajewski
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dylan Rogers
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alexandra Velian
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
26
|
Wang B, Seo CSG, Zhang C, Chu J, Szymczak NK. A Borane Lewis Acid in the Secondary Coordination Sphere of a Ni(II) Imido Imparts Distinct C-H Activation Selectivity. J Am Chem Soc 2022; 144:15793-15802. [PMID: 35973127 PMCID: PMC10276360 DOI: 10.1021/jacs.2c06662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two borane-functionalized bidentate phosphine ligands that vary in tether length have been prepared to examine cooperative metal-substrate interactions. Ni(0) complexes react with aryl azides at low temperatures to form structurally unusual κ2-(N,N)-N3Ar adducts. Warming these adducts affords products of N2 extrusion and in one case, a Ni-imido compound that is capped by the appended borane. Reactions with 1-azidoadamantane (AdN3) provide a distinct outcome, where a proposed nickel imido intermediate activates the sp2 C-H bonds of arenes, even in the presence of benzylic C-H sites. Combined experimental and computational mechanistic studies demonstrate that the unique reactivity is a consequence of Lewis-acid-induced polarization of the Ni-NR bond, potentially providing a synthetic strategy for chemoselective reaction engineering.
Collapse
Affiliation(s)
- Baolu Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Chris S. G. Seo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Cuijuan Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Jiaxiang Chu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
27
|
Wang Q, Ni S, Yu L, Pan Y, Wang Y. Photoexcited Direct Amination/Amidation of Inert Csp 3–H Bonds via Tungsten–Nickel Catalytic Relay. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qing Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Yu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Zatsikha YV, Shamova LI, Shepit M, Berry SM, Thomas F, Herbert DE, van Lierop J, Nemykin VN. Radical Complexes of Nickel(II)/Copper(II) and Redox Non‐innocent MB‐DIPY Ligands: Unusual Stability and Strong Near‐Infrared Absorption at
λ
max
∼1300 nm. Chemistry 2022; 28:e202201181. [DOI: 10.1002/chem.202201181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yuriy V. Zatsikha
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2 N2 Canada
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
| | - Liliya I. Shamova
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2 N2 Canada
| | - Michael Shepit
- Department of Physics and Astronomy University of Manitoba Winnipeg MB R3T 2 N2 Canada
| | - Steven M. Berry
- Department of Chemistry and Biochemistry University of Minnesota–Duluth Duluth MN 55812 USA
| | | | - David E. Herbert
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2 N2 Canada
| | - Johan van Lierop
- Department of Physics and Astronomy University of Manitoba Winnipeg MB R3T 2 N2 Canada
| | - Victor N. Nemykin
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2 N2 Canada
- Department of Chemistry University of Tennessee–Knoxville Knoxville TN 37996 USA
| |
Collapse
|
29
|
Mai BK, Neris NM, Yang Y, Liu P. C-N Bond Forming Radical Rebound Is the Enantioselectivity-Determining Step in P411-Catalyzed Enantioselective C(sp 3)-H Amination: A Combined Computational and Experimental Investigation. J Am Chem Soc 2022; 144:11215-11225. [PMID: 35583461 DOI: 10.1021/jacs.2c02283] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Engineered metalloenzymes represent promising catalysts for stereoselective C-H functionalization reactions. Recently, P450 enzymes have been evolved to allow for new-to-nature intramolecular C(sp3)-H amination reactions via a nitrene transfer mechanism, giving rise to diamine derivatives with excellent enantiocontrol. To shed light on the origin of enantioselectivity, a combined computational and experimental study was carried out. Hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the activation energies and enantioselectivities of both the hydrogen atom transfer (HAT) and the subsequent C-N bond forming radical rebound steps. Contrary to previously hypothesized enantioinduction mechanisms, our calculations show that the radical rebound step is enantioselectivity-determining, whereas the preceding HAT step is only moderately stereoselective. Furthermore, the selectivity in the initial HAT is ablated by rapid conformational change of the radical intermediate prior to C-N bond formation. This finding is corroborated by our experimental study using a set of enantiomerically pure, monodeuterated substrates. Furthermore, classical and ab initio molecular dynamics simulations were carried out to investigate the conformational flexibility of the carbon-centered radical intermediate. This key radical species undergoes a facile conformational change in the enzyme active site from the pro-(R) to the pro-(S) configuration, whereas the radical rebound is slower due to the spin-state change and ring strain of the cyclization process, thereby allowing stereoablative C-N bond formation. Together, these studies revealed an underappreciated enantioinduction mechanism in biocatalytic C(sp3)-H functionalizations involving radical intermediates, opening up new avenues for the development of other challenging asymmetric C(sp3)-H functionalizations.
Collapse
Affiliation(s)
- Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Natalia M Neris
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, California 93106, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
30
|
Nayl AA, Aly AA, Arafa WAA, Ahmed IM, Abd-Elhamid AI, El-Fakharany EM, Abdelgawad MA, Tawfeek HN, Bräse S. Azides in the Synthesis of Various Heterocycles. Molecules 2022; 27:3716. [PMID: 35744839 PMCID: PMC9228195 DOI: 10.3390/molecules27123716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 11/23/2022] Open
Abstract
In this review, we focus on some interesting and recent examples of various applications of organic azides such as their intermolecular or intramolecular, under thermal, catalyzed, or noncatalyzed reaction conditions. The aforementioned reactions in the aim to prepare basic five-, six-, organometallic heterocyclic-membered systems and/or their fused analogs. This review article also provides a report on the developed methods describing the synthesis of various heterocycles from organic azides, especially those reported in recent papers (till 2020). At the outset, this review groups the synthetic methods of organic azides into different categories. Secondly, the review deals with the functionality of the azido group in chemical reactions. This is followed by a major section on the following: (1) the synthetic tools of various heterocycles from the corresponding organic azides by one-pot domino reaction; (2) the utility of the chosen catalysts in the chemoselectivity favoring C-H and C-N bonds; (3) one-pot procedures (i.e., Ugi four-component reaction); (4) nucleophilic addition, such as Aza-Michael addition; (5) cycloaddition reactions, such as [3+2] cycloaddition; (6) mixed addition/cyclization/oxygen; and (7) insertion reaction of C-H amination. The review also includes the synthetic procedures of fused heterocycles, such as quinazoline derivatives and organometal heterocycles (i.e., phosphorus-, boron- and aluminum-containing heterocycles). Due to many references that have dealt with the reactions of azides in heterocyclic synthesis (currently more than 32,000), we selected according to generality and timeliness. This is considered a recent review that focuses on selected interesting examples of various heterocycles from the mechanistic aspects of organic azides.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia or (A.A.N.); (W.A.A.A.); (I.M.A.)
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - Wael A. A. Arafa
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia or (A.A.N.); (W.A.A.A.); (I.M.A.)
| | - Ismail M. Ahmed
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia or (A.A.N.); (W.A.A.A.); (I.M.A.)
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications (SRTA City), New Borg Al-Arab, Alexandria 21934, Egypt;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia;
| | - Hendawy N. Tawfeek
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, Ggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
31
|
Grünwald A, Goswami B, Breitwieser K, Morgenstern B, Gimferrer M, Heinemann FW, Momper DM, Kay CWM, Munz D. Palladium Terminal Imido Complexes with Nitrene Character. J Am Chem Soc 2022; 144:8897-8901. [PMID: 35575699 DOI: 10.1021/jacs.2c02818] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whereas triplet-nitrene complexes of the late transition metals are isolable and key intermediates in catalysis, singlet-nitrene ligands remain elusive. Herein we communicate three such palladium terminal imido complexes with singlet ground states. UV-vis-NIR electronic spectroscopy with broad bands up to 1400 nm as well as high-level computations (DFT, STEOM-CCSD, CASSCF/NEVPT2, EOS analysis) and reactivity studies suggest significant palladium(0) singlet-nitrene character. Although the aliphatic nitrene complexes proved to be too reactive for isolation in analytically pure form as a result of elimination of isobutylene, the aryl congener could be characterized by SC-XRD, elemental analysis, IR-, NMR spectroscopy, and HRMS. The complexes' distinguished ambiphilicity allows them to activate hexafluorobenzene, triphenylphosphine, and pinacol borane, catalytically dehydrogenate cyclohexene, and aminate ethylene via nitrene transfer at or below room temperature.
Collapse
Affiliation(s)
- Annette Grünwald
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123 Saarbrücken, Germany.,Inorganic and General Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, D-91058 Erlangen, Germany
| | - Bhupendra Goswami
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Kevin Breitwieser
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Bernd Morgenstern
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Martí Gimferrer
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Frank W Heinemann
- Inorganic and General Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, D-91058 Erlangen, Germany
| | - Dajana M Momper
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123 Saarbrücken, Germany.,Physical Chemistry, Saarland University, Campus B2.2, D-66123 Saarbrücken, Germany
| | - Christopher W M Kay
- Physical Chemistry, Saarland University, Campus B2.2, D-66123 Saarbrücken, Germany.,London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, U.K
| | - Dominik Munz
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123 Saarbrücken, Germany.,Inorganic and General Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, D-91058 Erlangen, Germany
| |
Collapse
|
32
|
Reckziegel A, Battistella B, Werncke G. On the Synthesis of a T‐shaped Imido Nickel Silylamide and Elusive Trigonal Amido Nickel Complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Beatrice Battistella
- Humboldt-Universität zu Berlin: Humboldt-Universitat zu Berlin Department of Chemistry GERMANY
| | - Gunnar Werncke
- Philipps-Universität Marburg Fachbereich Chemie Hans-Meerwein-Straße 4 35032 Marburg GERMANY
| |
Collapse
|
33
|
Wang F, Han Y, Yu L, Zhu D. Decarboxylative Amination of Benzoic Acids Bearing Electron-Donating Substituents and Non-Activated Amines. Org Chem Front 2022. [DOI: 10.1039/d2qo00453d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient methods for decarboxylative activation of benzoic acids into great valuable products are highly sought after. Here we report a highly desirable and straightforward decarboxylative amination of readily available benzoic...
Collapse
|
34
|
Reinholdt A, Kwon S, Jafari MG, Gau MR, Caroll PJ, Lawrence C, Gu J, Baik MH, Mindiola DJ. An Isolable Azide Adduct of Titanium(II) Follows Bifurcated Deazotation Pathways to an Imide. J Am Chem Soc 2021; 144:527-537. [PMID: 34963052 DOI: 10.1021/jacs.1c11215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AdN3 (Ad = 1-adamantyl) reacts with the tetrahedral TiII complex [(TptBu,Me)TiCl] (TptBu,Me = hydrotris(3-tert-butyl-5-methylpyrazol-1-yl)borate) to generate a mixture of an imide complex, [(TptBu,Me)TiCl(NAd)] (4), and an unusual and kinetically stable azide adduct of the group 4 metal, namely, [(TptBu,Me)TiCl(γ-N3Ad)] (3). In these conversions, the product distribution is determined by the relative concentration of reactants. In contrast, the azide adduct 3 forms selectively when a masked TiII complex (N2 or AdNC adduct) reacts with AdN3. Upon heating, 3 extrudes dinitrogen in a unimolecular process proceeding through a titanatriazete intermediate to form the imide complex 4, but the observed thermal stability of the azide adduct (t1/2 = 61 days at 25 °C) is at odds with the large fraction of imide complex formed directly in reactions between AdN3 and [(TptBu,Me)TiCl] at room temperature (∼50% imide with a 1:1 stoichiometry). A combination of theoretical and experimental studies identified an additional deazotation pathway, proceeding through a bimetallic complex bridged by a single azide ligand. The electronic origin of this deazotation mechanism lies in the ability of azide adduct 3 to serve as a π-backbonding metallaligand toward free [(TptBu,Me)TiCl]. These findings unveil a new class of azide-to-imide conversions for transition metals, highlighting that the mechanisms underlying this common synthetic methodology may be more complex than conventionally assumed, given the concentration dependence in the conversion of an azide into an imide complex. Lastly, we show how significantly different AdN3 reacts when treated with [(TptBu,Me)VCl].
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Seongyeon Kwon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Caroll
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Chad Lawrence
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jun Gu
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
35
|
Van Trieste GP, Reid KA, Hicks MH, Das A, Figgins MT, Bhuvanesh N, Ozarowski A, Telser J, Powers DC. Nitrene Photochemistry of Manganese
N
‐Haloamides**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Kaleb A. Reid
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Madeline H. Hicks
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Anuvab Das
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Matthew T. Figgins
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Nattamai Bhuvanesh
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory Florida State University Tallahassee FL 32310 USA
| | - Joshua Telser
- Department of Biological, Physical and Chemical Sciences Roosevelt University Chicago IL 60605 USA
| | - David C. Powers
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| |
Collapse
|
36
|
Stroek W, Keilwerth M, Pividori DM, Meyer K, Albrecht M. An Iron-Mesoionic Carbene Complex for Catalytic Intramolecular C-H Amination Utilizing Organic Azides. J Am Chem Soc 2021; 143:20157-20165. [PMID: 34841864 DOI: 10.1021/jacs.1c07378] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis of N-heterocycles is of paramount importance for the pharmaceutical industry. They are often synthesized through atom economic and environmentally unfriendly methods, generating significant waste. A less explored, but greener, alternative is the synthesis through the direct intramolecular C-H amination utilizing organic azides. Few examples exist by using this method, but many are limited due to the required use of stoichiometric amounts of Boc2O. Herein, we report a homoleptic C,O-chelating mesoionic carbene-iron complex, which is the first iron-based complex that does not require the addition of any protecting groups for this transformation and that is active also in strong donor solvents such as THF or even DMSO. The achieved turnover number is an order of magnitude higher than any other reported catalytic system. A variety of C-H bonds were activated, including benzylic, primary, secondary, and tertiary. By following the reaction over time, we determined the presence of an initiation period. Kinetic studies showed a first-order dependence on substrate concentration and half-order dependence on catalyst concentration. Intermolecular competition reactions with deuterated substrate showed no KIE, while separate reactions with deuterium-labeled substrate resulted in a KIE of 2.0. Moreover, utilizing deuterated substrate significantly decreased the initiation period of the catalysis. Preliminary mechanistic studies suggest a unique mechanism involving a dimeric iron species as the catalyst resting state.
Collapse
Affiliation(s)
- Wowa Stroek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Martin Keilwerth
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Daniel M Pividori
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
37
|
Sugimoto H, Yano M, Sato K, Miyanishi M, Sugisaki K, Shiota Y, Kaga A, Yoshizawa K, Itoh S. Tin(II)-Nitrene Radical Complexes Formed by Electron Transfer from Redox-Active Ligand to Organic Azides and Their Reactivity in C(sp 3)-H Activation. Inorg Chem 2021; 60:18603-18607. [PMID: 34779619 DOI: 10.1021/acs.inorgchem.1c02806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A tin(II) complex coordinated by a sterically demanding o-phenylenediamido ligand is synthesized. The ligand is redox-active to reach a tin(II) complex with the diiminobenzosemiquinone radial anion in the oxidation by AgPF6. The tin(II) complex reacts with a series of nosylazides (x-NO2C6H4-SO2-N3; x = o, m, or p) at -30 °C to yield the corresponding nitrene radical bound tin(II) complexes. The nitrene radical complexes exhibit C(sp3)-H activation and amination reactivity.
Collapse
Affiliation(s)
- Hideki Sugimoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mayuka Yano
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazunobu Sato
- Department of Chemistry, Graduate School of Science Osaka City University, 3-3-138 Sumiyoshi, Osaka, Osaka 558-8585, Japan
| | - Mayuko Miyanishi
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenji Sugisaki
- Department of Chemistry, Graduate School of Science Osaka City University, 3-3-138 Sumiyoshi, Osaka, Osaka 558-8585, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Kaga
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinobu Itoh
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Tak RK, Noda H, Shibasaki M. Ligand-Enabled, Copper-Catalyzed Electrophilic Amination for the Asymmetric Synthesis of β-Amino Acids. Org Lett 2021; 23:8617-8621. [PMID: 34689558 DOI: 10.1021/acs.orglett.1c03328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalytic asymmetric nitrene transfer has emerged as a reliable method for the synthesis of nitrogen-containing chiral compounds. Herein, we report the copper-catalyzed intramolecular asymmetric electrophilic amination of aromatic rings. The reactive intermediate is a copper-alkyl nitrene generated from isoxazolidin-5-ones. Copper catalysis promotes three classes of asymmetric transformations, namely, asymmetric desymmetrization, parallel kinetic resolution, and kinetic resolution, expanding the repertoire of alkyl nitrene transfer and providing various cyclic and linear β-amino acids in their enantioenriched forms.
Collapse
Affiliation(s)
- Raj K Tak
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
39
|
Van Trieste GP, Reid KA, Hicks MH, Das A, Figgins MT, Bhuvanesh N, Ozarowski A, Telser J, Powers DC. Nitrene Photochemistry of Manganese N-Haloamides*. Angew Chem Int Ed Engl 2021; 60:26647-26655. [PMID: 34662473 DOI: 10.1002/anie.202108304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/06/2022]
Abstract
Manganese complexes supported by macrocyclic tetrapyrrole ligands represent an important platform for nitrene transfer catalysis and have been applied to both C-H amination and olefin aziridination catalysis. The reactivity of the transient high-valent Mn nitrenoids that mediate these processes renders characterization of these species challenging. Here we report the synthesis and nitrene transfer photochemistry of a family of MnIII N-haloamide complexes. The S=2 N-haloamide complexes are characterized by 1 H NMR, UV-vis, IR, high-frequency and -field EPR (HFEPR) spectroscopies, and single-crystal X-ray diffraction. Photolysis of these complexes results in the formal transfer of a nitrene equivalent to both C-H bonds, such as the α-C-H bonds of tetrahydrofuran, and olefinic substrates, such as styrene, to afford aminated and aziridinated products, respectively. Low-temperature spectroscopy and analysis of kinetic isotope effects for C-H amination indicate halogen-dependent photoreactivity: Photolysis of N-chloroamides proceeds via initial cleavage of the Mn-N bond to generate MnII and amidyl radical intermediates; in contrast, photolysis of N-iodoamides proceeds via N-I cleavage to generate a MnIV nitrenoid (i.e., {MnNR}7 species). These results establish N-haloamide ligands as viable precursors in the photosynthesis of metal nitrenes and highlight the power of ligand design to provide access to reactive intermediates in group-transfer catalysis.
Collapse
Affiliation(s)
| | - Kaleb A Reid
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Madeline H Hicks
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Anuvab Das
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew T Figgins
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Joshua Telser
- Department of Biological, Physical and Chemical Sciences, Roosevelt University, Chicago, IL, 60605, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
40
|
You T, Zeng SH, Fan J, Wu L, Kang F, Liu Y, Che CM. A soluble iron(II)-phthalocyanine-catalyzed intramolecular C(sp 3)-H amination with alkyl azides. Chem Commun (Camb) 2021; 57:10711-10714. [PMID: 34553711 DOI: 10.1039/d1cc04573c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herein, we describe a soluble iron(II)-phthalocyanine, [FeII(tBu4Pc)(py)2] (Pc = phthalocyaninato(2-)), as an effective catalyst in intramolecular C(sp3)-H bond amination, with alkyl azides as the nitrogen source, to afford the amination products in moderate to excellent yields with a broad substrate scope.
Collapse
Affiliation(s)
- Tingjie You
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China. .,Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Si-Hao Zeng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China. .,College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jianqiang Fan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Liangliang Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China. .,Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Fangyuan Kang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China. .,Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China.,College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong 518057, P. R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong, P. R. China
| |
Collapse
|
41
|
Lazib Y, Retailleau P, Saget T, Darses B, Dauban P. Asymmetric Synthesis of Enantiopure Pyrrolidines by C(sp 3 )-H Amination of Hydrocarbons. Angew Chem Int Ed Engl 2021; 60:21708-21712. [PMID: 34329511 DOI: 10.1002/anie.202107898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/07/2022]
Abstract
The asymmetric synthesis of enantiopure pyrrolidines is reported via a streamlined strategy relying on two sequential C-H functionalizations of simple hydrocarbons. The first step is a regio- and stereoselective catalytic nitrene C-H insertion. Then, a subsequent diastereoselective cyclization involving a 1,5-hydrogen atom transfer (HAT) from a N-centered radical leads to the formation of pyrrolidines that can then be converted to their free NH-derivatives.
Collapse
Affiliation(s)
- Yanis Lazib
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Av. de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Av. de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Tanguy Saget
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Av. de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Benjamin Darses
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Av. de la Terrasse, 91198, Gif-sur-Yvette, France.,Université Grenoble Alpes, Département de Chimie Moléculaire, CNRS UMR-5250, 38058, Grenoble, France
| | - Philippe Dauban
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Av. de la Terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
42
|
Lazib Y, Retailleau P, Saget T, Darses B, Dauban P. Asymmetric Synthesis of Enantiopure Pyrrolidines by C(sp
3
)−H Amination of Hydrocarbons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yanis Lazib
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 Av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Pascal Retailleau
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 Av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Tanguy Saget
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 Av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Benjamin Darses
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 Av. de la Terrasse 91198 Gif-sur-Yvette France
- Université Grenoble Alpes Département de Chimie Moléculaire CNRS UMR-5250 38058 Grenoble France
| | - Philippe Dauban
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 Av. de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
43
|
Luo S, Peng M, Querard P, Li CC, Li CJ. Copper-Catalyzed Conjugate Addition of Carbonyls as Carbanion Equivalent via Hydrazones. J Org Chem 2021; 86:13111-13117. [PMID: 34478300 DOI: 10.1021/acs.joc.1c01380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper-catalyzed conjugate addition is a classic method for forming new carbon-carbon bonds. However, copper has never showed catalytic activity for umpolung carbanions in hydrazone chemistry. Herein, we report a facile conjugate addition of hydrazone catalyzed by readily available copper complexes at room temperature. The employment of mesitylcopper(I) and electron-rich phosphine bidentate ligand is a key factor affecting reactivity. The reaction allows various aromatic hydrazones to react with diverse conjugated compounds to produce 1,4-adducts in yields of about 20 to 99%.
Collapse
Affiliation(s)
- Siyi Luo
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrook Street West, Montreal, Quebec H3A 0B8, Canada
| | - Marie Peng
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrook Street West, Montreal, Quebec H3A 0B8, Canada
| | - Pierre Querard
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrook Street West, Montreal, Quebec H3A 0B8, Canada
| | - Chen-Chen Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrook Street West, Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrook Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
44
|
van Leest N, de Zwart FJ, Zhou M, de Bruin B. Controlling Radical-Type Single-Electron Elementary Steps in Catalysis with Redox-Active Ligands and Substrates. JACS AU 2021; 1:1101-1115. [PMID: 34467352 PMCID: PMC8385710 DOI: 10.1021/jacsau.1c00224] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Advances in (spectroscopic) characterization of the unusual electronic structures of open-shell cobalt complexes bearing redox-active ligands, combined with detailed mapping of their reactivity, have uncovered several new catalytic radical-type protocols that make efficient use of the synergistic properties of redox-active ligands, redox-active substrates, and the metal to which they coordinate. In this perspective, we discuss the tools available to study, induce, and control catalytic radical-type reactions with redox-active ligands and/or substrates, contemplating recent developments in the field, including some noteworthy tools, methods, and reactions developed in our own group. The main topics covered are (i) tools to characterize redox-active ligands; (ii) novel synthetic applications of catalytic reactions that make use of redox-active carbene and nitrene substrates at open-shell cobalt-porphyrins; (iii) development of catalytic reactions that take advantage of purely ligand- and substrate-based redox processes, coupled to cobalt-centered spin-changing events in a synergistic manner; and (iv) utilization of redox-active ligands to influence the spin state of the metal. Redox-active ligands have emerged as useful tools to generate and control reactive metal-coordinated radicals, which give access to new synthetic methodologies and intricate (electronic) structures, some of which are yet to be exposed.
Collapse
Affiliation(s)
- Nicolaas
P. van Leest
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Felix J. de Zwart
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
45
|
Grünwald A, Anjana SS, Munz D. Terminal Imido Complexes of the Groups 9–11: Electronic Structure and Developments in the Last Decade. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Annette Grünwald
- Inorganic Chemistry: Coordination Chemistry Saarland University Campus Geb. C4.1 66123 Saarbücken Germany
- Inorganic and General Chemistry Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - S. S. Anjana
- Inorganic Chemistry: Coordination Chemistry Saarland University Campus Geb. C4.1 66123 Saarbücken Germany
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry Saarland University Campus Geb. C4.1 66123 Saarbücken Germany
- Inorganic and General Chemistry Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| |
Collapse
|
46
|
Ghosh SK, Hu M, Comito R. One-Pot Synthesis of Primary and Secondary Aliphatic Amines via Mild and Selective sp3 C-H Imination. Chemistry 2021; 27:17601-17608. [PMID: 34387903 DOI: 10.1002/chem.202102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/09/2022]
Abstract
The direct replacement of sp3 C-H bonds with simple amine units (-NH2) remains synthetically challenging, although primary aliphatic amines are ubiquitous in medicinal chemistry and natural product synthesis. We report a mild and selective protocol for preparing primary and secondary aliphatic amines in a single pot, based on intermolecular sp3 C-H imination. The first C-H imination of diverse alkanes, this method shows useful site-selectivity within substrates bearing multiple sp3 C-H bonds. Furthermore, this reaction tolerates polar functional groups relevant for complex molecule synthesis, highlighted in the synthesis of amine pharmaceuticals and amination of natural products. We characterize a unique C-H imination mechanism based on radical rebound to an iminyl radical, supported by kinetic isotope effects, stereoablation, resubmission, and computational modeling. This work constitutes a selective method for complex amine synthesis and a new mechanistic platform for C-H amination.
Collapse
Affiliation(s)
- Subrata K Ghosh
- University of Houston, Chemistry, Department of Chemistry, 3585 Cullen Boulevard, Room 112, 77204-5003, Houston, UNITED STATES
| | - Mengnan Hu
- University of Houston, Chemistry, Department of Chemistry, 3585 Cullen Boulevard, Room 112, 77204-5003, Houstonn, UNITED STATES
| | - Robert Comito
- University of Houston, Chemistry, Department of Chemistry, 3585 Cullen Boulevard, Room 112, 77204-5003, Houston, UNITED STATES
| |
Collapse
|
47
|
Singer RA, Monfette S, Bernhardson D, Tcyrulnikov S, Hubbell AK, Hansen EC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Robert A. Singer
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - David Bernhardson
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sergei Tcyrulnikov
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Aran K. Hubbell
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Eric C. Hansen
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
48
|
Bismuto A, Müller P, Finkelstein P, Trapp N, Jeschke G, Morandi B. One to Find Them All: A General Route to Ni(I)-Phenolate Species. J Am Chem Soc 2021; 143:10642-10648. [PMID: 34251813 DOI: 10.1021/jacs.1c03763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The past 20 years have seen an extensive implementation of nickel in homogeneous catalysis through the development of unique reactivity not easily achievable by using noble transition metals. Many catalytic cycles propose Ni(I) complexes as potential reactive intermediates, yet the scarcity of nickel(I) precursors and the lack of a general, non-ligand-specific protocol for their synthesis have hampered progress in this field of research. This has in turn also limited the access to novel, well-defined Ni(I) species for the development of new catalytic reactions. Herein, we report a simple, general route to access a wide variety of Ni(I)-phenolate complexes via an unusual example of an olefinic Ni(I) complex, [Ni(COD)(OPh*)] (COD = 1,5-cyclooctadiene, OPh* = O(tBu)3C6H2). This route has proven to be highly efficient for several coordination numbers and ligand classes enabling access to the following complexes: [Ni(IPr)(OPh*)] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), [Ni(dcype)(OPh*)] (dcype = 1,2-bis(dicyclohexylphosphino)ethane), [Ni(dppe)(OPh*)] (dppe = 1,2-bis(diphenylphosphino)ethane), and [Ni(terpy)(OPh*)] (terpy = 2,2':6',2″-terpyridine). Moreover, reacting [Ni(dcype)(OPh*)] with trimethylsilyl triflate has led to the isolation of a unique example of a cationic binuclear Ni(I)-arene complex. All these complexes have been characterized by single-crystal X-ray, DFT, and EPR analyses, thus providing crucial experimental and theoretical information about their coordination environment and confirming a d9 electronic structure for all complexes involved. Overall, this new synthetic approach offers exciting opportunities for the discovery of new stoichiometric and catalytic reactivity as well as the mechanistic elucidation of Ni-based catalytic cycles.
Collapse
Affiliation(s)
- Alessandro Bismuto
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Patrick Müller
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Patrick Finkelstein
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Gunnar Jeschke
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, HCI, 8093 Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| |
Collapse
|
49
|
Park Y, Semproni SP, Zhong H, Chirik PJ. Synthesis, Electronic Structure, and Reactivity of a Planar Four‐Coordinate, Cobalt–Imido Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoonsu Park
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| | - Scott P. Semproni
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| | - Hongyu Zhong
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| | - Paul J. Chirik
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| |
Collapse
|
50
|
Park Y, Semproni SP, Zhong H, Chirik PJ. Synthesis, Electronic Structure, and Reactivity of a Planar Four‐Coordinate, Cobalt–Imido Complex. Angew Chem Int Ed Engl 2021; 60:14376-14380. [DOI: 10.1002/anie.202104320] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/16/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Yoonsu Park
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| | - Scott P. Semproni
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| | - Hongyu Zhong
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| | - Paul J. Chirik
- Department of Chemistry Princeton University Frick Laboratory 292 Princeton NJ 08544 USA
| |
Collapse
|