1
|
Han Y, Wang X, Tao Q, Yang B, Zhu F. Switchable Divergent Photocatalytic C-Glycosylation of Glycosyl Benzoates. Angew Chem Int Ed Engl 2025; 64:e202504504. [PMID: 40084563 DOI: 10.1002/anie.202504504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/16/2025]
Abstract
Metabolically robust C-glycosides are crucial in various biological and medical applications, underscoring the need for efficient synthesis methods. While radical C-glycosylation reactions are known for their reliability and functional group tolerance, challenges such as glycosyl donor stability and atom economy persist. In this study, we investigate the underexplored potential of condition-controlled divergent synthesis of C-glycosides through a switchable photocatalytic C-glycosylation strategy, involving reductive anomeric C─O bond cleavage. Utilizing simple, readily available, and bench-stable glycosyl benzoates as novel O-based glycosyl radical precursors, we successfully achieve deoxygenative glycosylation of simple alkenes and styryl boronic acids, establishing a versatile platform for C-glycoside synthesis. A critical aspect of the challenging reductive cleavage of these benzoate esters is the introduction of strong single-electron transfer (SET) reductants, combined with Brønsted acids to accelerate fragmentation following substrate reduction. Notably, CO2 •-, generated via the consecutive photon-induced electron transfer process, is utilized for the first time in glycosylation reactions. By meticulously tuning the reaction conditions, including photocatalysts and formate additives, we facilitate the divergent synthesis of alkyl and alkenyl C-glycosides with good to high stereoselectivity and yields. Mechanistic studies provide insight into the reaction pathway and the underlying rationale behind this finely tuned, easily controlled photocatalytic system.
Collapse
Affiliation(s)
- Yang Han
- Frontiers Science Center for Transformative Molecules (FSCTM), Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xiaoling Wang
- Frontiers Science Center for Transformative Molecules (FSCTM), Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Qiang Tao
- Frontiers Science Center for Transformative Molecules (FSCTM), Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P.R. China
| | - Bo Yang
- Frontiers Science Center for Transformative Molecules (FSCTM), Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Feng Zhu
- Frontiers Science Center for Transformative Molecules (FSCTM), Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
2
|
Jiang W, He D, Ma X, Zhou H, Wu Y. Electrochemical-Thermochemical Cascade System for the Sustainable Conversion of Crude Acetylene to C 6+ Esters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2504360. [PMID: 40289442 DOI: 10.1002/smll.202504360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Acetylene (C2H2), a critical chemical feedstock derived from natural gas or coal, faces sustainability challenges due to high CO₂ emissions from conventional production methods. These emissions not only contribute to carbon footprints but also hinder the upgrading of C2H2. Herein, a two-step electrochemical and thermochemical cascade system that directly converts CO₂-contaminated crude acetylene into C6+ esters is proposed. In the first step, CO₂ from crude acetylene is captured by hydroxide to form bicarbonate, which is subsequently released in situ at the cathode under electrolysis. Using a Ni single-atom catalyst, CO is efficiently generated with a Faradaic efficiency of 97.8 ± 0.84% at 100 mA cm-2. The generated CO then reacts with acetylene in the second step, where a Pd-based catalyst enables the production of dimethyl butenedioate at 7.83 ± 0.31 mmol L-1 h-1 and selective dimethyl maleate synthesis (>65% selectivity). Furthermore, replacing methanol with ethanol or butanol in the carbonylation step allows for tunable synthesis of diethyl or dibutyl butenedioate, demonstrating broad applicability. Techno-economic analysis indicates a 46.9% cost reduction compared to the traditional reverse water-gas shift system, attributed to lower energy demands and eliminated separation steps. This work provides a green strategy for valorizing low-value acetylene streams while mitigating CO₂ emissions.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Dayin He
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Xianhui Ma
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Huang Zhou
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Yuen Wu
- Key Laboratory of Precision and Intelligent Chemistry/School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Beeler JA, Walkingshaw RP, Hamud SAS, White HS. Reduction by Oxidation: Selective Hydrodehalogenation of Aryl Halides by Mediated Oxalate Oxidation. J Am Chem Soc 2025; 147:12206-12217. [PMID: 40162707 DOI: 10.1021/jacs.5c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Electro-organic reduction reactions are canonically carried out at a cathode at which a significant negative potential is applied. Specifically, at carbon electrodes, aryl bromides and chlorides undergo heterogeneous reduction in organic solvents at potentials more negative than -2 V vs E0' for the Fc/Fc+ couple (Fc = ferrocene). To decrease the overpotential for reduction reactions, homogeneous or heterogeneous electrocatalysis strategies are often employed. Here, we present an electrochemical method to reduce aryl bromides and chlorides that is initiated by an oxidation reaction at very mild potentials (∼0 V vs Fc/Fc+). Specifically, electrochemical oxidation of an outer-sphere redox mediator, 1,1-dimethylferrocene, in dry N,N-dimethylformamide (DMF) containing oxalate (C2O42-), results in the homogeneous one-electron oxidation of C2O42-. The resulting C2O4•- decomposes in ∼1 μs to release the carbon dioxide radical anion (CO2•-), a potent reductant that is oxidized to CO2 at -2.68 V vs Fc/Fc+. In this way, an oxidation reaction at low electrode potentials enables homogeneous reduction of aryl bromides and chlorides, which are otherwise directly reduced at very negative potentials. Using this method, selective hydrodehalogenations of electron-deficient aryl bromides and chlorides are carried out at a reticulated vitreous carbon anode with up to quantitative conversion yields. Cyclic voltammetry and finite difference simulations are used to characterize the hydrodehalogenation of 4-bromobenzonitrile via C2O42- oxidation. Additionally, we show that the efficiency of hydrodehalogenation is tuned by deliberate additions of water to DMF solutions, leading to a substantial improvement in overall conversion yields without interference from water or proton reduction.
Collapse
Affiliation(s)
- Joshua A Beeler
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Rune P Walkingshaw
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Safiya A S Hamud
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Henry S White
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Jian C, Li Z, Mao Y, Zhu Y, Yu W, Wu J, Li S. Photocatalytic Pyridyl-carbamoylation of Alkenes for Accessing β-Pyridyl Amides. Org Lett 2025; 27:2576-2581. [PMID: 40053395 DOI: 10.1021/acs.orglett.5c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The β-pyridyl amide is a critical scaffold in medical discovery yet lacks efficient synthetic methods. Here, we describe, for the first time, a visible-light-induced, redox-neutral radical cross-coupling reaction involving alkenes, oxamic acids, and cyanopyridines that offers a versatile assembly of β-pyridylamides. This approach features mild reaction conditions, high step efficiency, and substrate breadth, providing a green and efficient strategy for alkene pyridyl-carbamoylation. Achieving this transformation relies on the efficient catalytic system, which adeptly avoids the competing cross-coupling of the nucleophilic carbamoyl radical with the electrophilic pyridyl radical, enabling the three-component radical tandem reaction process with high chemoselectivity.
Collapse
Affiliation(s)
- Cui Jian
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Zhikai Li
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Yuyuan Mao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Yilin Zhu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Weijie Yu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Shaoyu Li
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| |
Collapse
|
5
|
Zhai R, Yu H, Ma J, Sun Y, Yang P. Controlled Defluorinative Carboxylation Cascade of Sterically Hindered CF 3-Alkenes with Formate Salt via Photocatalysis. Org Lett 2025; 27:2492-2497. [PMID: 40040467 DOI: 10.1021/acs.orglett.5c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
A controlled cleavage of double C-F bonds in sterically hindered tetrasubstituted CF3-alkenes using formate salt has been achieved through a photoinduced electron transfer approach. Diverse γ-branched multifunctionalized gem-difluoroalkenes and α-fluoroacrylic acids are obtained sequentially via hydrodefluorination and C-F bond carboxylation with good-to-high yields. Precisely controlling the quantity of formate salt and the reaction time is crucial for obtaining divergent defluorinative products. Formate serves as the C1 source, hydrogen donor, and reducing agent.
Collapse
Affiliation(s)
- Runze Zhai
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Haiping Yu
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Jiexiang Ma
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yaxin Sun
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Peng Yang
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
6
|
Zhao M, Liu Y, Chen X, Peng M, Wang Y, Liu X, Jiang H, Tan R, Li J. Photocatalyst-free formate-mediated C-O cleavage by the EDA complex and SCS strategy for the synthesis of diaryl 1,4-diketone in air. Org Biomol Chem 2025; 23:2079-2085. [PMID: 39838809 DOI: 10.1039/d4ob01913j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Under mild visible light conditions, formates facilitate C-O cleavage via the EDA complex and SCS strategy, yielding α-carbonyl alkyl radicals. These radicals then react with olefins under air conditions, leading to the synthesis of diaryl 1,4-dicarbonyl compounds. Mechanistic studies reveal that α-formyloxy ketone is generated in situ by the reaction between α-brominated acetophenone and formates, followed by the formation of the EDA complex. Additionally, formates also serve as a single-electron reducing reagent in the reaction.
Collapse
Affiliation(s)
- Molai Zhao
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yutong Liu
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Xueqin Chen
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Min Peng
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yawen Wang
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Xiangwei Liu
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Hezhong Jiang
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Rui Tan
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Jiangsu, Nanjing, China
| | - Jiahong Li
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
7
|
Xu JC, Yue JP, Pan M, Chen YC, Wang W, Zhou X, Zhang W, Ye JH, Yu DG. Metallaphotoredox-catalyzed alkynylcarboxylation of alkenes with CO 2 and alkynes for expedient access to β-alkynyl acids. Nat Commun 2025; 16:1850. [PMID: 39984439 PMCID: PMC11845457 DOI: 10.1038/s41467-025-57060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
Carboxylation with CO2 offers an attractive and sustainable access to valuable carboxylic acids. Among these methods, direct C-H carboxylation of terminal alkynes with CO2 has attracted much attention for one-carbon homologation of alkynes, enabling rapid synthesis of propiolic acids. In contrast, the multi-carbons homologation of alkynes with CO2 to construct important non-conjugated alkynyl-containing acids has not been reported. Herein, we present alkynylcarboxylation of alkenes with CO2 via photoredox and copper dual catalysis. This protocol provides a direct and practical method to form valuable non-conjugated alkynyl acids from readily available alkynes, alkenes and CO2. Additionally, this approach also features mild (room temperature, 1 atm of CO2) and redox-neutral conditions, high atom and step economy, good functional group tolerance, and high selectivities. Moreover, diverse transformations of the β-alkynyl acid products and the rapid synthesis of bioactive molecule (GPR40/FFA1 agonist) further illustrate the synthetic utility of this methodology.
Collapse
Affiliation(s)
- Jin-Cheng Xu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Min Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Yi-Chi Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Wei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Xi Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China.
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, PR China.
| |
Collapse
|
8
|
Wang S, Xu P, Liu ZT, Liu YQ, Jiang HQ, Hao TZ, Jiang HX, Xu H, Cao XD, Guo D, Zhu X. Visible-Light-Driven Carboxylative 1,2-Difunctionalization of C=C Bonds with Tetrabutylammonium Oxalate. ACS CENTRAL SCIENCE 2025; 11:46-56. [PMID: 39866692 PMCID: PMC11758224 DOI: 10.1021/acscentsci.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 01/28/2025]
Abstract
Herein, we report a visible-light-induced charge-transfer-complex-enabled dicarboxylation and deuterocarboxylation of C=C bonds with oxalate as a masked CO2 source under catalyst-free conditions. In this reaction, we disclosed the first example that the tetrabutylammonium oxalate could be able to aggregate with aryl substrates via π-cation interactions to form the charge transfer complexes, which subsequently triggers the single electron transfer from the oxalic dianion to the ammonium countercation under irradiation of 450 nm bule LEDs, releasing CO2 and CO2 radical anions. Diverse alkenes, dienes, trienes, and indoles, including challenging trisubstituted olefins, underwent dicarboxylation and anti-Markovnikov deuterocarboxylation with high selectivity to access valuable 1,2- and 1,4-dicarboxylic acids as well as indoline-derived diacids and β-deuterocarboxylic acids under mild conditions. The in situ generated CO2 •- and CO2 molecules from oxalic radical anions could both add to the C=C bond without assistance of any photocatalyst or additives, which made this reaction sustainable, clean, and efficient.
Collapse
Affiliation(s)
- Sai Wang
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Pei Xu
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Zhi-Tao Liu
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Yi-Qin Liu
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Hao-Qiang Jiang
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Tian-Zi Hao
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Hui-Xian Jiang
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Hui Xu
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Xu-Dong Cao
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Dong Guo
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Xu Zhu
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Li C, Chen XW, Liao LL, Gui YY, Yang JW, Zhang S, Yue JP, Zhou X, Ye JH, Lan Y, Yu DG. Nickel-Catalyzed Atroposelective Carbo-Carboxylation of Alkynes with CO 2: En Route to Axially Chiral Carboxylic Acids. Angew Chem Int Ed Engl 2025; 64:e202413305. [PMID: 39506458 DOI: 10.1002/anie.202413305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Precise synthesis of carboxylic acids via catalytic carboxylation with CO2 is highly appealing. Although considerable advancements have been achieved in difunctionalizing carboxylation of unsaturated hydrocarbons, the asymmetric variants are conspicuously underdeveloped, particularly in addressing axially chiral alkenes. Herein, we report the first catalytic atroposelective carboxylation of alkynes with CO2. A variety of valuable axially chiral carboxylic acids are obtained with good yields and high chemo-, regio-, Z/E and enantio-selectivities. Notably, an unexpected anti-selective carbo-carboxylation is observed in the sp2-hybrid carbo-electrophile-initiated reductive carboxylation of alkynes. Mechanistic studies including DFT calculation elucidate the origin of chiral induction and anti-selectivity in vinyl-carboxylation of alkynes.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 400030, P. R. China
| | - Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jing-Wei Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Shuo Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiangge Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 400030, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
10
|
Zhao H, Cuomo VD, Tian W, Romano C, Procter DJ. Light-assisted functionalization of aryl radicals towards metal-free cross-coupling. Nat Rev Chem 2025; 9:61-80. [PMID: 39548311 DOI: 10.1038/s41570-024-00664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/17/2024]
Abstract
The many synthetic possibilities that arise when using radical intermediates, in place of their polar counterparts, make contemporary radical chemistry research an exhilarating field. The introduction of photocatalysis has helped tame aryl radicals, leading to a resurgence of interest in their chemistry, and an expansion of viable coupling partners and attainable transformations. These methods are more selective and safer than classical approaches, and they utilize new radical precursors. Given the importance of sustainability in current organic synthesis and our interest in light-assisted metal-free transformations, this Review focuses on recent advances in the use of aryl radicals in photoinduced cross-couplings that do not rely on metals for the crucial bond-forming event, and it is structured according to the key step that the aryl radicals engage in.
Collapse
Affiliation(s)
- Huaibo Zhao
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - Wei Tian
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Ciro Romano
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - David J Procter
- Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Huang H, Lin X, Yang F, Ren Y, Gao Y, Su W. Remote C(sp 3)-H Carboxylation with CO 2 via Visible-Light-Catalyzed 1,5-Hydrogen Atom Transfer. Org Lett 2024; 26:11195-11200. [PMID: 39668700 DOI: 10.1021/acs.orglett.4c04294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The direct carboxylation of C(sp3)-H bonds with CO2 represents a challenging but highly attractive strategy in organic synthesis. In this study, we presented a visible-light-catalyzed strategy for carboxylating remote C(sp3)-H bonds with CO2 via aryl radical induced 1,5-hydrogen atom transfer. This transformation involves generating alkyl radicals via 1,5-hydrogen atom transfer from aryl radicals, forming alkyl carbanions as key intermediates, and a subsequent nucleophilic attack with CO2, thereby enabling access to a variety of tertiary and quaternary carboxylic acids in moderate to good yields.
Collapse
Affiliation(s)
- Haoran Huang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Lin
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanyuanhang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yuxi Ren
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yuzhen Gao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Dang Y, Han J, Chmiel AF, Alektiar SN, Mikhael M, Guzei IA, Yeung CS, Wickens ZK. Alkene Carboxy-Alkylation via CO 2•. J Am Chem Soc 2024; 146:35035-35042. [PMID: 39665217 PMCID: PMC12062844 DOI: 10.1021/jacs.4c14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Herein, we introduce a new platform for alkene carboxy-alkylation. This reaction is designed around CO2•- addition to alkenes followed by radical polar crossover, which enables alkylation through carbanion attack on carbonyl electrophiles. We discovered that CO2•- adds to alkenes faster than it reduces carbonyl electrophiles and that this reactivity can be exploited by accessing CO2•- via hydrogen atom transfer from formate. This photocatalytic system transforms vinylarenes and carbonyl compounds into a diverse array of substituted γ-lactone products. Furthermore, indoles can be engaged through dearomative carboxy-alkylation, delivering medicinally relevant C(sp3)-rich heterocyclic scaffolds. Mechanistic studies reveal that the active photocatalyst is generated in situ through a photochemically induced reaction between the precatalyst and DMSO. Overall, we have developed a three-component alkene carboxy-alkylation reaction enabled by the use of formate as the CO2•- precursor.
Collapse
Affiliation(s)
- Y Dang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jimin Han
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Alyah F. Chmiel
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sara N. Alektiar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Myriam Mikhael
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Charles S. Yeung
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Debbarma S, Hayashi H, Ueno Y, Kanna W, Tanaka K, Mita T. Photoredox-Catalyst-Free Carboxylation of Unactivated Alkenes in DMSO: Synthesis of Polycyclic Indole Derivatives and Aliphatic Acids. Org Lett 2024; 26:10897-10902. [PMID: 39642036 DOI: 10.1021/acs.orglett.4c04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A new method for the carboxylation of unactivated alkenes using CO2 radical anions in the absence of a photoredox catalyst has been developed. The photocatalyst-free approach enables the efficient synthesis of polycyclic indole derivatives and linear carboxylic acids under mild conditions from HCO2K with/without 1,4-diazabicyclo[2.2.2]octane (DABCO) in DMSO. This work demonstrates a significant advance in green chemistry, showcasing a catalyst-free approach for the functionalization of unactivated alkenes with cheap and readily available HCO2K.
Collapse
Affiliation(s)
- Suvankar Debbarma
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yamato Ueno
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Wataru Kanna
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kosaku Tanaka
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
14
|
Hu D, Dang H, Liang Z, Wang D, Du Y, Shen C, Shen J, Wang M. Visible-Light-Mediated Nucleophilic Addition of Alkene with Aldehyde: Synthesis of Secondary Alcohols. Org Lett 2024; 26:10797-10802. [PMID: 39658526 DOI: 10.1021/acs.orglett.4c03819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Herein, a photocatalytic strategy for the synthesis of secondary alcohols by nucleophilic addition of an alkene with an aldehyde is described. This operationally simple methodology opens an approach for the synthesis of alcohols using commercially available reagents in moderate to excellent yields. Mechanistic studies indicate that the formation of the radical anion from alkene via single-electron transfer is the key step in this reaction.
Collapse
Affiliation(s)
- Du Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Haowen Dang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhen Liang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Donghao Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yunyun Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Jiabin Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Min Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
15
|
Yao Y, Bai J, Cheng P, Yang H, Sun J, Sun S. Base-promoted cascade 5- exo-dig annulation/carboxylation of o-(1-alkynyl)benzenesulfonamides with CO 2: divergent synthesis of mono- or gem-dicarboxylic esters. Chem Commun (Camb) 2024; 60:14850-14853. [PMID: 39585237 DOI: 10.1039/d4cc05239k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
A base-promoted cascade 5-exo-dig cyclization/carboxylation of o-alkynylsulfamides with CO2 has been accomplished, furnishing a variety of benzosultam-containing acrylates in good yields by using CO2 as the carboxylic source. Notably, in the case of substrates bearing a TMS-alkyne motif, the gem-dicarboxylation products were generated unprecedentedly.
Collapse
Affiliation(s)
- Yang Yao
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Junxue Bai
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Peidong Cheng
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Han Yang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jianwei Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Song Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
16
|
Wu JY, Wan YC, Shao Y, Zhan LW, Li BD, Hou J. Visible-Light-Promoted Reduction of Nitroarenes with Formate Salts as Reductants. Chemistry 2024; 30:e202402870. [PMID: 39324515 DOI: 10.1002/chem.202402870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 09/27/2024]
Abstract
A visible-light-promoted reduction of nitrobenzenes using formate salts as the reductant was developed. A wide range of nitrobenzenes can be converted into aniline products in a transition metal free fashion. Mechanistic studies revealed that radical species (carbon dioxide radical anion and thiol radical) are key intermediates for the transformation. We anticipate that this method will provide a valuable and green strategy for the reduction of nitrobenzenes.
Collapse
Affiliation(s)
- Jun-Yue Wu
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuan-Cui Wan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yu Shao
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Le-Wu Zhan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bin-Dong Li
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jing Hou
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
17
|
Liu J, Wang W, Liao LL, Zhang W, Yue JP, Liu Y, Chen XW, Ye JH, Yu DG. Photo-induced carboxylation of C(sp 2)-S bonds in aryl thiols and derivatives with CO 2. Nat Commun 2024; 15:10132. [PMID: 39578448 PMCID: PMC11584649 DOI: 10.1038/s41467-024-53351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/04/2024] [Indexed: 11/24/2024] Open
Abstract
Aryl thiols have proven to be a useful class of electron donors and hydrogen atom sources in photochemical processes. However, the direct activation and functionalization of C(sp2)-S bonds in aryl thiols remains elusive in the field of photochemistry. Herein, a photochemical carboxylation of C(sp2)-S bonds in aryl thiols with CO2 is reported, providing a synthetic route to important aryl carboxylic acids. Moreover, different kinds of aryl thiol derivatives, benzeneselenol and diphenyl diselenide also show moderate-to-high reactivity in this transformation. Mechanistic studies, including DFT calculations, suggest that the in situ generated carbon dioxide radical anion (CO2•-) and disulfide might be the key intermediates, which undergo radical substitution to yield products. This reaction features mild and catalyst-free conditions, good functional group tolerance and wide substrate scope. Furthermore, the efficient degradation of polyphenylene sulfide highlights the usefulness of this methodology.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Wei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Li-Li Liao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Yi Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|
18
|
Ghosh P, Maiti S, Malandain A, Raja D, Loreau O, Maity B, Roy TK, Audisio D, Maiti D. Taming CO 2•- via Synergistic Triple Catalysis in Anti-Markovnikov Hydrocarboxylation of Alkenes. J Am Chem Soc 2024; 146:30615-30625. [PMID: 39468468 DOI: 10.1021/jacs.4c12294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The direct utilization of carbon dioxide as an ideal one-carbon source in value-added chemical synthesis has garnered significant attention from the standpoint of global sustainability. In this regard, the photo/electrochemical reduction of CO2 into useful fuels and chemical feedstocks could offer a great promise for the transition to a carbon-neutral economy. However, challenges in product selectivity continue to limit the practical application of these systems. A robust and general method for the conversion of CO2 to the polarity-reversed carbon dioxide radical anion, a C1 synthon, is critical for the successful valorization of CO2 to selective carboxylation reactions. We demonstrate herein a hydride and hydrogen atom transfer synergy driven general catalytic platform involving CO2•- for highly selective anti-Markovnikov hydrocarboxylation of alkenes via triple photoredox, hydride, and hydrogen atom transfer catalysis. Mechanistic studies suggest that the synergistic operation of the triple catalytic cycle ensures a low-steady-state concentration of CO2•- in the reaction medium. This method using a renewable light energy source is mild, robust, selective, and capable of accommodating a wide range of activated and unactivated alkenes. The highly selective nature of the transformation has been revealed through the synthesis of hydrocarboxylic acids from the substrates bearing a hydrogen atom available for intramolecular 1,n-HAT process as well as diastereoselective synthesis. This technology represents a general strategy for the merger of in situ formate generation with a synergistic photoredox and HAA catalytic cycle to provide CO2•- for selective chemical transformations.
Collapse
Affiliation(s)
- Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Augustin Malandain
- Université Paris Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191 Gif-sur-Yvette, France
| | - Dineshkumar Raja
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Olivier Loreau
- Université Paris Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191 Gif-sur-Yvette, France
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Triptesh Kumar Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Davide Audisio
- Université Paris Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191 Gif-sur-Yvette, France
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
19
|
Xu P, Liu YQ, Jiang HX, Hao TZ, Yan SY, Liu ZT, Zhu X. Photoinduced Radical Approach for Desulfurative Alkylation of Cysteine Derivatives to Make Unnatural Amino Acids. Org Lett 2024; 26:8854-8859. [PMID: 39365118 DOI: 10.1021/acs.orglett.4c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Unnatural amino acids (UAAs) are highly valuable molecules in organic synthesis, pharmaceutical sciences, and material science. Herein, we present a photocatalytic radical approach for desulfurative alkylation of cysteine derivatives with arenethiol as the hydrogen atom transfer catalyst for making UAAs and peptides. The formate salt, acting as the hydrogen atom donor, in situ generates the highly reductive CO2 radical anion species, which is the key to unlocking the C-S bond cleavage process with a simple benzoyl protecting group. No photocatalyst is required for the radical initiation and propagation, which makes such a visible-light-induced process mild, efficient, and sustainable.
Collapse
Affiliation(s)
- Pei Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Yi-Qin Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Hui-Xian Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Tian-Zi Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Si-Yi Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Zhi-Tao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Liu Y, Xue GH, He Z, Yue JP, Pan M, Song L, Zhang W, Ye JH, Yu DG. Visible-Light Photoredox-Catalyzed Direct Carboxylation of Tertiary C(sp 3)-H Bonds with CO 2: Facile Synthesis of All-Carbon Quaternary Carboxylic Acids. J Am Chem Soc 2024. [PMID: 39374105 DOI: 10.1021/jacs.4c09558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Direct carboxylation of C-H bonds with CO2 represents an attractive strategy to synthesize valuable carboxylic acids with high atom, step, and redox economy. Although great progress has been achieved in this field, catalytic carboxylation of tertiary C(sp3)-H bonds still remains challenging due to their inherent inertness and significant steric hindrance. Herein, we report a direct carboxylation of tertiary benzylic C(sp3)-H bonds with CO2 via visible-light photoredox catalysis. Various all-carbon quaternary carboxylic acids, which are of significant importance in medicinal chemistry, are successfully obtained with high yields. This direct carboxylation is characterized by good functional group tolerance, broad substrate scope, and mild operational conditions. Furthermore, our methodology enables the efficient and rapid synthesis of key drug or bioactive molecules, such as carbetapentane, caramiphen, and PRE-084 (σ1 receptor agonist), and facilitates various functionalizations of C(sp2)-H bonds using the directing ability of target carboxylic acids, thus highlighting its practical applications. Mechanistic studies indicate that a carbanion, which serves as the key intermediate to react with CO2, is catalytically generated via a single electron reduction of a benzylic radical through a consecutive photoinduced electron transfer process.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Guan-Hua Xue
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhen He
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Min Pan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Song
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
21
|
Xie S, Lan Y, Liu B. Light-Driven Formate-Salts-Induced Cleavage of Oxidized Lignin Model Compounds. Org Lett 2024; 26:8249-8253. [PMID: 39316759 DOI: 10.1021/acs.orglett.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
We report a light-induced cleavage of oxidized lignin model compounds utilizing formate salts. For compounds containing an aliphatic hydroxyl (γ-OH) group, the employment of a hydrogen atom transfer (HAT) catalyst was crucial to preserving the efficacy of the fragmentation reaction. Furthermore, we successfully converted a trimeric oxidized model compound into the desired products with moderate yields.
Collapse
Affiliation(s)
- Siqi Xie
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yingjun Lan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| |
Collapse
|
22
|
Xu P, Jiang HQ, Xu H, Wang S, Jiang HX, Zhu SL, Yin L, Guo D, Zhu X. Photocatalytic deuterocarboxylation of alkynes with oxalate. Chem Sci 2024; 15:13041-13048. [PMID: 39148785 PMCID: PMC11323338 DOI: 10.1039/d4sc03586k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
Herein, a catalytic photoredox-neutral strategy for alkyne deuterocarboxylation with tetrabutylammonium oxalate as the carbonyl source and D2O as the deuteration agent was described. For the first time, the oxalic salt acted as both the reductant and carbonyl source through single electron transfer and subsequential homolysis of the C-C bond. The strongly reductive CO2 radical anion species in situ generated from oxalate played significant roles in realizing the global deuterocarboxylation of terminal and internal alkynes to access various tetra- and tri-deuterated aryl propionic acids with high yields and deuteration ratios.
Collapse
Affiliation(s)
- Pei Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Hao-Qiang Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Hui Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Sai Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Hui-Xian Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Song-Lei Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Long Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| |
Collapse
|
23
|
Mukherjee U, Shah JA, Musaev DG, Ngai MY. Harnessing Bromo/Acyloxy Transposition (BrAcT) and Excited-State Copper Catalysis for Styrene Difunctionalization. J Am Chem Soc 2024; 146:21271-21279. [PMID: 39042434 PMCID: PMC11542872 DOI: 10.1021/jacs.4c08984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
1,2-Difunctionalization of styrenes, adding two distinct functional groups across the C═C double bond, has emerged as a powerful tool for enhancing molecular complexity. Herein, we report the development of a regioconvergent β-acyloxylation-α-ketonylation of styrenes through bromo/acyloxy transposition (BrAcT) and excited-state copper catalysis. This approach is amenable to gram-scale synthesis and tolerates a wide range of functional groups and complex molecular frameworks, including derivatives of natural products and marketed drugs. Our experimental and computational studies suggest a unique mechanism featuring a dynamic, ionic BrAcT process and excited-state copper-catalyzed redox reactions. We anticipate that this BrAcT process could serve as a broadly applicable and versatile strategy for β-acyloxylation-α-functionalization of styrenes, creating valuable intermediates for preparing new pharmaceuticals, agrochemicals, and functional materials.
Collapse
Affiliation(s)
- Upasana Mukherjee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jagrut A Shah
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
24
|
Yang H, Yang Q, Yao Y, Gu P, Sun J, Sun S. Visible-Light-Promoted Cascade Carboxylation/Arylation of Unactivated Alkenes with CO 2 for the Synthesis of Carboxylated Indole-Fused Heterocycles. Org Lett 2024; 26:6341-6346. [PMID: 39024314 DOI: 10.1021/acs.orglett.4c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Described here is a visible-light-promoted cascade carboxylation/arylation of indole-tethered unactivated alkenes with CO2 to access various carboxylated indole-fused heterocycles. This reaction is initiated by the addition of a CO2 radical anion to the alkene motif toward an alkyl carbon radical, followed by its addition to the aromatic ring, and then rearomatization to afford the final products. This reaction provides a facile and sustainable protocol for the construction of carboxylated indole-fused heterocycles using CO2 as the carboxylic source.
Collapse
Affiliation(s)
- Han Yang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qi Yang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yang Yao
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peiyang Gu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Song Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
25
|
Watanabe T, Lorwongkamol P, Saga Y, Kosugi K, Kambe T, Kondo M, Masaoka S. Photocatalytic Three-Component Acylcarboxylation of Alkenes with CO 2. Org Lett 2024; 26:6491-6496. [PMID: 39023907 DOI: 10.1021/acs.orglett.4c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
γ-Keto acid is a valuable chemical motif in a wide range of fields including organic, biological, and medicinal chemistry. However, its single-step synthesis is challenging because of the mismatch of the carbonyl polarity and low tolerance of carboxylic acids. Herein, we report the single-step syntheses of γ-keto acids using alkenes and CO2. Our photocatalytic system enabled the transformation of alkenes under mild conditions in high yields (up to 95%) with broad substrate generality (35 examples).
Collapse
Affiliation(s)
- Taito Watanabe
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Phurinat Lorwongkamol
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yutaka Saga
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kento Kosugi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tetsuya Kambe
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center For Future Innovation (CFi), Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Xu P, Liu WW, Hao TZ, Liu YQ, Jiang HX, Xu J, Li JY, Yin L, Zhu SL, Zhu X. Formate and CO 2 Enable Reductive Carboxylation of Imines: Synthesis of Unnatural α-Amino Acids. J Org Chem 2024; 89:9750-9754. [PMID: 38940722 DOI: 10.1021/acs.joc.3c02887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Herein, a photocatalytic umpolung strategy for reductive carboxylation of imines for the synthesis of α-amino acids was disclosed. Carbon dioxide radical anion (CO2•-) generated from formate is the key single electron reductant in the reactions. An unprecedentedly broad substrate scope of imines with excellent reaction yields was obtained with carbon dioxide (CO2) and formate salt as carbon sources.
Collapse
Affiliation(s)
- Pei Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Wen-Wen Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Tian-Zi Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yi-Qin Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hui-Xian Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jing Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin-You Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Long Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Song-Lei Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
27
|
Zhou L, Li L, Zhang S, Kuang XK, Zhou YY, Tang Y. Catalytic Regio- and Enantioselective Remote Hydrocarboxylation of Unactivated Alkenes with CO 2. J Am Chem Soc 2024; 146:18823-18830. [PMID: 38950377 DOI: 10.1021/jacs.4c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The catalytic regio- and enantioselective hydrocarboxylation of alkenes with carbon dioxide is a straightforward strategy to construct enantioenriched α-chiral carboxylic acids but remains a big challenge. Herein we report the first example of catalytic highly enantio- and site-selective remote hydrocarboxylation of a wide range of readily available unactivated alkenes with abundant and renewable CO2 under mild conditions enabled by the SaBOX/Ni catalyst. The key to this success is utilizing the chiral SaBOX ligand, which combines with nickel to simultaneously control both chain-walking and the enantioselectivity of carboxylation. This process directly furnishes a range of different alkyl-chain-substituted or benzo-fused α-chiral carboxylic acids bearing various functional groups in high yields and regio- and enantioselectivities. Furthermore, the synthetic utility of this methodology was demonstrated by the concise synthesis of the antiplatelet aggregation drug (R)-indobufen from commercial starting materials.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Liping Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Sudong Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiao-Kang Kuang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - You-Yun Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yong Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
28
|
Xie F, Han F, Su Q, Peng Y, Jing L, Han P. Electroreductive Arylcarboxylation of Styrenes with CO 2 and Aryl Halides via a Radical-Polar Crossover Mechanism. Org Lett 2024; 26:4427-4432. [PMID: 38757832 DOI: 10.1021/acs.orglett.4c00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
2,3-Diaryl propanoic acids are important structures as a result of their widespread presence in numerous bioactive compounds. However, the limitations of existing synthetic techniques include the requirement for costly catalysts and limited substrates. Here, we developed a novel electroreductive arylcarboxylation of alkenes with CO2 based on a radical-polar crossover pathway assisted by easily accessible dimethyl terephthalate as a reductive mediator. This method will provide an efficient strategy for the synthesis of 2,3-diarylpropanoic acids.
Collapse
Affiliation(s)
- Fenfen Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Qian Su
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Yulin Peng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, Sichuan 637002, People's Republic of China
| |
Collapse
|
29
|
Yang H, Yao Y, Yang Q, Yao Y, Sun J, Sun S. Visible Light Photoredox-Catalyzed Formyl/Carboxylation of Activated Alkenes with Glyoxylic Acid Acetals and CO 2. Org Lett 2024; 26:4194-4199. [PMID: 38747692 DOI: 10.1021/acs.orglett.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A photoredox-catalyzed sequential α-formyl/carboxylation of alkenes with glyoxylic acid acetals and CO2 has been developed to afford a range of masked γ-formyl esters in good yields, which could be readily transformed into diverse compounds, such as γ-formyl ester, hemiacetal, and 1,4-diol. This reaction features mild conditions, readily available starting materials, and operational simplicity.
Collapse
Affiliation(s)
- Han Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yang Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qi Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Scince, Dushu Lake Campus, Soochow University, Suzhou 215123, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Song Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
30
|
Liu DH, Ma J. Recent Advances in Dearomative Partial Reduction of Benzenoid Arenes. Angew Chem Int Ed Engl 2024; 63:e202402819. [PMID: 38480464 DOI: 10.1002/anie.202402819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/11/2024]
Abstract
Dearomative partial reduction is an extraordinary approach for transforming benzenoid arenes and has been well-known for many decades, as exemplified by the dehydrogenation of Birch reduction and the hydroarylation of Crich addition. Despite its remarkable importance in synthesis, this field has experienced slow progress over the last half-century. However, a revival has been observed with the recent introduction of electrochemical and photochemical methods. In this Minireview, we summarize the recent advancements in dearomative partial reduction of benzenoid arenes, including dihydrogenation, hydroalkylation, arylation, alkenylation, amination, borylation and others. Further, the intriguing utilization of dearomative partial reduction in the synthesis of natural products is also emphasized. It is anticipated that this Minireview will stimulate further progress in arene dearomative transformations.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
31
|
Chen J, Shao L, Zhang B, Tian W, Fu Y, Zhang L. A MOF nanoparticle@carbon aerogel integrated photothermal catalytic microreactor for CO 2 utilization. Chem Commun (Camb) 2024; 60:5209-5212. [PMID: 38652058 DOI: 10.1039/d4cc00635f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A practical carbon dioxide (CO2) conversion and utilization system shows great potential for ameliorating the greenhouse effect. Herein, an integrated carbon aerogel-based photothermal catalysis microreactor with photothermal conversion, enhanced mass transfer adsorption and a thermal catalytic reactor is designed. As a solar-powered CO2 utilization module, this microreactor can conveniently convert CO2 into economically valuable products without elaborate equipment and operation processes.
Collapse
Affiliation(s)
- Junyi Chen
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang, College of Chemistry and Chemical Engineering, Tarim University, Xinjiang Uygur Autonomous Region, Alaer, 843300, P. R. China.
| | - Lei Shao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Bing Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Weiliang Tian
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang, College of Chemistry and Chemical Engineering, Tarim University, Xinjiang Uygur Autonomous Region, Alaer, 843300, P. R. China.
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Liying Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
32
|
Zhang F, Wu XY, Gao PP, Zhang H, Li Z, Ai S, Li G. Visible-light-driven alkene dicarboxylation with formate and CO 2 under mild conditions. Chem Sci 2024; 15:6178-6183. [PMID: 38665514 PMCID: PMC11041354 DOI: 10.1039/d3sc04431a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Low-cost formate salt was used as the reductant and part of the carboxyl source in a visible-light-driven dicarboxylation of diverse alkenes, including simple styrenes. The highly competing hydrocarboxylation side reaction was successfully overridden. Good yields of products were obtained under mild reaction conditions at ambient temperature and pressure of CO2. The dual role of formate salt may stimulate the discovery of a range of new transformations under mild and friendly conditions.
Collapse
Affiliation(s)
- Fulin Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiao-Yang Wu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Pan-Pan Gao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Hao Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhu Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Shangde Ai
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Gang Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
| |
Collapse
|
33
|
Gu C, Zhang L, Guo M, Guan X, Shi C, Jin Y, Ding X. Capture and Utilization of CO 2 with Morpholine for Effective Photocatalytic N-Formylmorpholine Production. Inorg Chem 2024; 63:6922-6927. [PMID: 38551579 DOI: 10.1021/acs.inorgchem.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Converting into high-value-added products represents the most optimal approach to CO2 utilization. The substitution of CO with CO2 as a potential critical material for formamide production is widely regarded as an ideal pathway and has garnered significant attention. However, high temperatures and pressures remain essential for the reaction, exerting a substantial influence on the utilization process. Herein, N-formylmorpholine was creatively synthesized by integrating the capture and solar-driven utilization of CO2 with morpholine. Notably, a remarkable N-formylmorpholine yield of 11433.3 μmol·h-1·g-1 was obtained, surpassing pure MoO3 by an astounding factor of 89.1 with a N-formylmorpholine yield of 63.8 μmol in 6 h, which is an astonishing increase of 57.5 times compared to MoO3. Both experimental results and density functional theory calculations suggest that the inclusion of Fe can effectively reduce the formation energy barrier while facilitating the desorption process of N-formylmorpholine, thereby optimizing the overall performance.
Collapse
Affiliation(s)
- Chunlei Gu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Linlin Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Mingxia Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian 116024, China
| | - Xiping Guan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Chuanwei Shi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Yu Jin
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), Dalian 116024, China
| | - Xin Ding
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| |
Collapse
|
34
|
Yu J, Hao X, Mu L, Shi W, She G. Photoelectrocatalytic Utilization of CO 2 : A Big Show of Si-based Photoelectrodes. Chemistry 2024; 30:e202303552. [PMID: 38158581 DOI: 10.1002/chem.202303552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
CO2 is a greenhouse gas that contributes to environmental deterioration; however, it can also be utilized as an abundant C1 resource for the production of valuable chemicals. Solar-driven photoelectrocatalytic (PEC) CO2 utilization represents an advanced technology for the resourcing of CO2 . The key to achieving PEC CO2 utilization lies in high-performance semiconductor photoelectrodes. Si-based photoelectrodes have attracted increasing attention in the field of PEC CO2 utilization due to their suitable band gap (1.1 eV), high carrier mobility, low cost, and abundance on Earth. There are two pathways to PEC CO2 utilization using Si-based photoelectrodes: direct reduction of CO2 into small molecule fuels and chemicals, and fixation of CO2 with organic substrates to generate high-value chemicals. The efficiency and product selectivity of PEC CO2 utilization depends on the structures of the photoelectrodes as well as the composition, morphology, and size of the catalysts. In recent years, significant and influential progress has been made in utilizing Si-based photoelectrodes for PEC CO2 utilization. This review summarizes the latest research achievements in Si-based PEC CO2 utilization, with a particular emphasis on the mechanistic understanding of CO2 reduction and fixation, which will inspire future developments in this field.
Collapse
Affiliation(s)
- Jiacheng Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xue Hao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| |
Collapse
|
35
|
Morales A, Gonçalves C, Sournia-Saquet A, Vendier L, Lledós A, Baslé O, Bontemps S. Single electron reduction of NHC-CO 2-borane compounds. Chem Sci 2024; 15:3165-3173. [PMID: 38425525 PMCID: PMC10901481 DOI: 10.1039/d3sc06325a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
The carbon dioxide radical anion [CO2˙-] is a highly reactive species of fundamental and synthetic interest. However, the direct one-electron reduction of CO2 to generate [CO2˙-] occurs at very negative reduction potentials, which is often a limiting factor for applications. Here, we show that NHC-CO2-BR3 species - generated from the Frustrated Lewis Pair (FLP)-type activation of CO2 by N-heterocyclic carbenes (NHCs) and boranes (BR3) - undergo single electron reduction at a less negative potential than free CO2. A net gain of more than one volt was notably measured with a CAAC-CO2-B(C6F5)3 adduct, which was chemically reduced to afford [CAAC-CO2-B(C6F5)3˙-]. This room temperature stable radical anion was characterized by EPR spectroscopy and by single-crystal X-ray diffraction analysis. Of particular interest, DFT calculations showed that, thanks to the electron withdrawing properties of the Lewis acid, significant unpaired spin density is localised on the carbon atom of the CO2 moiety. Finally, these species were shown to exhibit analogous reactivity to the carbon dioxide radical anion [CO2˙-] toward DMPO. This work demonstrates the advantage provided by FLP systems in the generation and stabilization of [CO2˙-]-like species.
Collapse
Affiliation(s)
- Agustín Morales
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
- Departament de Química, Universitat Autonoma de Barcelona 08193 Cerdanyola del Valles Catalonia Spain
| | - Caroline Gonçalves
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Alix Sournia-Saquet
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Agustí Lledós
- Departament de Química, Universitat Autonoma de Barcelona 08193 Cerdanyola del Valles Catalonia Spain
| | - Olivier Baslé
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
36
|
Xue T, Ma C, Liu L, Xiao C, Ni SF, Zeng R. Characterization of A π-π stacking cocrystal of 4-nitrophthalonitrile directed toward application in photocatalysis. Nat Commun 2024; 15:1455. [PMID: 38365855 PMCID: PMC10873295 DOI: 10.1038/s41467-024-45686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Photoexcitation of the electron-donor-acceptor complexes have been an effective approach to achieve radicals by triggering electron transfer. However, the catalytic version of electron-donor-acceptor complex photoactivation is quite underdeveloped comparing to the well-established utilization of electronically biased partners. In this work, we utilize 4-nitrophthalonitrile as an electron acceptor to facilitate the efficient π-stacking with electron-rich aromatics to form electron-donor-acceptor complex. The characterization and energy profiles on the cocrystal of 4-nitrophthalonitrile and 1,3,5-trimethoxybenzene disclose that the electron transfer is highly favorable under the light irradiation. This electron acceptor catalyst can be efficiently applied in the benzylic C-H bond photoactivation by developing the Giese reaction of alkylanisoles and the oxidation of the benzyl alcohols. A broad scope of electron-rich aromatics can be tolerated and a mechanism is also proposed. Moreover, the corresponding π-anion interaction of 4-nitrophthalonitrile with potassium formate can further facilitate the hydrocarboxylation of alkenes efficiently.
Collapse
Affiliation(s)
- Ting Xue
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Cheng Ma
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Le Liu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Chunhui Xiao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063, Guangdong, PR China.
| | - Rong Zeng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
37
|
Mao X, Li MM, Wang P, Cao Q, Zhou W, Ding W. Transition-Metal-Free Anti-Markovnikov Hydroarylation of Alkenes with Aryl Chlorides through Consecutive Photoinduced Electron Transfer. Org Lett 2024; 26:1265-1270. [PMID: 38319734 DOI: 10.1021/acs.orglett.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The hydroarylation of alkenes has emerged as a powerful strategy for arene functionalization. However, aryl chlorides remain a large challenge in this type of reaction due to the chemical inertness of the C(sp2)-Cl bond and high negative reduction potential. Herein, we report an anti-Markovnikov radical hydroarylation of alkenes with aryl chlorides via visible-light photoredox catalysis. The key reactive aryl radicals can be efficiently achieved from aryl chlorides by consecutive photoinduced electron transfer. This transition-metal-free protocol features mild conditions, a wide substrate scope, and functional group tolerance, producing a diverse range of linear alkylarenes in moderate to good yields. The reaction is proposed to proceed through a radical-polar crossover pathway.
Collapse
Affiliation(s)
- Xudong Mao
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao-Miao Li
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Pengfei Wang
- Technology Center of China Tobacco Henan Industrial Co., Ltd, Zhengzhou 450000, P. R. China
| | - Qingzhi Cao
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wei Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Wei Ding
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
38
|
Majhi J, Matsuo B, Oh H, Kim S, Sharique M, Molander GA. Photochemical Deoxygenative Hydroalkylation of Unactivated Alkenes Promoted by a Nucleophilic Organocatalyst. Angew Chem Int Ed Engl 2024; 63:e202317190. [PMID: 38109703 DOI: 10.1002/anie.202317190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/20/2023]
Abstract
The direct utilization of simple and abundant feedstocks in carbon-carbon bond-forming reactions to embellish sp3 -enriched chemical space is highly desirable. Herein, we report a novel photochemical deoxygenative hydroalkylation of unactivated alkenes with readily available carboxylic acid derivatives. The reaction displays broad functional group tolerance, accommodating carboxylic acid-, alcohol-, ester-, ketone-, amide-, silane-, and boronic ester groups, as well as nitrile-containing substrates. The reaction is operationally simple, mild, and water-tolerant, and can be carried out on multigram-scale, which highlights the utility of the method to prepare value-added compounds in a practical and scalable manner. The synthetic application of the developed method is further exemplified through the synthesis of suberanilic acid, a precursor of vorinostat, a drug used for the treatment of cutaneous T-cell lymphoma. A novel mechanistic approach was identified using thiol as a nucleophilic catalyst, which forms a key intermediate for this transformation. Furthermore, electrochemical studies, quantum yield, and mechanistic experiments were conducted to support a proposed catalytic cycle for the transformation.
Collapse
Affiliation(s)
- Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Hyunjung Oh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Saegun Kim
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| |
Collapse
|
39
|
Vega KB, de Oliveira ALC, König B, Paixão MW. Visible-Light-Induced Synthesis of 1,2-Dicarboxyl Compounds from Carbon Dioxide, Carbamoyl-dihydropyridine, and Styrene. Org Lett 2024; 26:860-865. [PMID: 38252019 DOI: 10.1021/acs.orglett.3c04015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
β-Amidated carboxylic acids, or succinamic acid derivatives, constitute a valuable chemical scaffold with broad applications in pharmaceuticals, agrochemicals, and polymer sciences. Herein, we report a redox-neutral multicomponent reaction for the synthesis of succinamic acid derivatives in good yields. This protocol involves styrene, CO2 and 1,4-carbamoyl-dihydropyridine as radical precursors. The method exhibits a broad substrate scope under mild reaction conditions, including late-stage functionalization. Moreover, by employing 13CO2, the method enables the synthesis of labeled 1,2-dicarboxylic compounds.
Collapse
Affiliation(s)
- Kimberly Benedetti Vega
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - André Luiz Carvalho de Oliveira
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Márcio Weber Paixão
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| |
Collapse
|
40
|
Sun C, Zhou Q, Li CY, Hou ZW, Wang L. Photoredox-Catalyzed Defluorinative Carboxylation of gem-Difluorostyrenes with Formate Salt. Org Lett 2024; 26:883-888. [PMID: 38252691 DOI: 10.1021/acs.orglett.3c04071] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Herein, we present a transition-metal-free, easy handling protocol for regioselective carboxylation of gem-difluorostyrenes with sodium formate as the C1 source. 30 examples of α-fluoracrylates were obtained in yields of 30 to 80% under these conditions. A defluorinative monofluorovinyl intermediate and consecutive photoinduced electron transfer mechanism were proposed after mechanism investigation.
Collapse
Affiliation(s)
- Chao Sun
- Advanced Research Institute and Department of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Quan Zhou
- Advanced Research Institute and Department of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Chuan-Ying Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and Department of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
41
|
Qi W, Gu S, Xie LG. Reductive Radical-Polar Crossover Enabled Carboxylative Alkylation of Aryl Thianthrenium Salts with CO 2 and Styrenes. Org Lett 2024; 26:728-733. [PMID: 38214477 DOI: 10.1021/acs.orglett.3c04183] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Carboxylic functionalities are among the pivotal groups in bioactive molecules and in the synthesis of new lead compounds because of their unique character in the formation of hydrogen bonds and the possibility of constructing molecular complexes via amide couplings. We adopt the reductive radical-polar crossover strategy to introduce carboxyalkyl groups into arenes with styrenes and CO2 via thianthrenium salts. This protocol exhibits excellent potential as a straightforward and modular platform for site-selective carboxylative derivation of bioactive molecules.
Collapse
Affiliation(s)
- Weiguan Qi
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shiyu Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
42
|
Lan J, Lu X, Ren B, Duo F, Niu X, Si J. Visible-light-driven photocatalytic carboxylation to aromatic carboxylic acids with CO 2. Org Biomol Chem 2024; 22:682-693. [PMID: 38189574 DOI: 10.1039/d3ob01788e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
(Hetero)aromatic carboxylic acids and their derivatives attract attention due to their role in the synthesis of several biologically active molecules, active pharmaceutical ingredients, polymers, etc. Carbon dioxide (CO2) is a prime C1 source for the synthesis of aromatic carboxylic acids because of its nontoxicity, nonflammability, abundance and renewability. Owing to the thermodynamic and chemical inertness of CO2, traditional carboxylation to aromatic carboxylic acids with CO2 is always performed under harsh reaction conditions or using stoichiometric metallic reductants. Visible-light-driven carboxylation with CO2 provides an environmentally benign, mild, and high-efficiency route for the production of aromatic carboxylic acids. This review comprehensively introduces the visible-light-driven preparation of aromatic carboxylic acids through a visible-light-driven oxidative addition and reductive elimination mechanism, binding of aryl (radical) anions which are produced by photoinduced electron transfer (PET) to CO2, binding of carbon dioxide anion radicals (CO2˙-) which are formed by PET to aryl compounds, radical coupling between CO2˙- and aryl radicals, and other mechanisms. Finally, this review provides a summary and the future work direction. This article offers a theoretical guidance for efficient synthesis of aromatic carboxylic acids via photocatalysis.
Collapse
Affiliation(s)
- Jihong Lan
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China.
| | - Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Bo Ren
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Fangfang Duo
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China.
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Jiangju Si
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China.
| |
Collapse
|
43
|
Majhi J, Molander GA. Recent Discovery, Development, and Synthetic Applications of Formic Acid Salts in Photochemistry. Angew Chem Int Ed Engl 2024; 63:e202311853. [PMID: 37812639 DOI: 10.1002/anie.202311853] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
The advancement of sustainable photoredox catalysis in synthetic organic chemistry has evolved immensely because of the development of versatile and cost-effective reagents. In recent years, a substantial effort has been dedicated to exploring the utility of formic acid salts in various photochemical reactions. In this context, formates have demonstrated diverse capabilities, functioning as reductants, sources of carbonyl groups, and reagents for hydrogen atom transfer. Notably, the CO2 ⋅- radical anion derived from formate exhibits strong reductant properties for cleaving both C-X and C-O bonds. Moreover, these salts play a pivotal role in carboxylation reactions, further highlighting their significance in a variety of photochemical transformations. The ability of formates to serve as reductants, carbonyl sources, and hydrogen atom transfer reagents reveal exciting possibilities in synthetic organic chemistry. This minireview highlights an array of captivating discoveries, underscoring the crucial role of formates in diverse and distinctive photochemical methods, enabling access to a wide range of value-added compounds.
Collapse
Affiliation(s)
- Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
44
|
Wu Z, Zhai S, Luo M, Dong Q, Wu S, Zheng M. Metal-Free Heterogeneous Photocatalysis for Carbocarboxylation of Alkenes: Efficient Synthesis of γ-Amino Carboxylic Derivatives. Chem Asian J 2024:e202301069. [PMID: 38234110 DOI: 10.1002/asia.202301069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
A metal-free heterogeneous protocol is established herein for the synthesis of value-added γ-amino acid scaffolds via carbocarboxylation of alkenes with CO2 and alkylamines under visible light irradiation. The protocol shows broad substrate scope under mild reaction conditions and good stability of the catalyst for recycle tests. Moreover, the methodology could be feasible to the late-stage derivatization of several natural products, enriching the chemical arsenal for practical application.
Collapse
Affiliation(s)
- Ziwei Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Senmao Zhai
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meizhen Luo
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Quan Dong
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shiwen Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meifang Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), College of Chemistry, Fuzhou, 350116, P. R. China
| |
Collapse
|
45
|
Gao W, Yang Q, Yang H, Yao Y, Bai J, Sun J, Sun S. Visible-Light Photoredox-Catalyzed Intermolecular α-Aminomethyl/Carboxylative Dearomatization of Indoles with CO 2 and α-Aminoalkyl Radical Precursors. Org Lett 2024. [PMID: 38179973 DOI: 10.1021/acs.orglett.3c03755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Disclosed here is a visible-light photoredox-catalyzed intermolecular sequential α-aminomethyl/carboxylative dearomatization of indoles with CO2 and α-aminoalkyl radical precursors, affording a series of functionalized indoline-3-carboxylic acids and lactams in good yields with high regioselectivity. This multicomponent reaction provides a green and facile method for the synthesis of diverse functionalized indolines by using CO2 as the carboxylic and carbonyl source.
Collapse
Affiliation(s)
- Wanxu Gao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qi Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Han Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yang Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junxue Bai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Song Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
46
|
Tian X, Liu Y, Yakubov S, Schütte J, Chiba S, Barham JP. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem Soc Rev 2024; 53:263-316. [PMID: 38059728 DOI: 10.1039/d2cs00581f] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.
Collapse
Affiliation(s)
- Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Jonathan Schütte
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
47
|
Gui YY, Yan SS, Wang W, Chen L, Zhang W, Ye JH, Yu DG. Exploring the applications of carbon dioxide radical anion in organic synthesis. Sci Bull (Beijing) 2023; 68:3124-3128. [PMID: 37968221 DOI: 10.1016/j.scib.2023.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Affiliation(s)
- Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Si-Shun Yan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China; Leibniz Institute for Catalysis e.V., University of Rostock, Rostock 18059, Germany
| | - Wei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lin Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
48
|
Pal K, Chandu P, Das D, Jinilkumar AV, Mallick M, Sureshkumar D. Organophotocatalyzed Mono- and Bis-Alkyl/Difluoroalkylative Thio/Selenocyanation of Alkenes. J Org Chem 2023. [PMID: 37988569 DOI: 10.1021/acs.joc.3c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Organophotocatalyzed three-component 1,2-difluoroacetyl/alkyl/perfluoroalkylative thio/selenocyanation of styrene derivatives under stoichiometric, transition metal-, oxidant-, and additive-free, and mild redox-neutral conditions is reported. Organophotocatalyst 4CzIPN operates the overall radical-polar-crossover mechanistic cycle via initial oxidative luminescence quenching, and the key intermediates were experimentally detected. Selective mono-alkylative thiocyanation of alkenes using dibromoalkanes is also demonstrated. This one-pot synthetic methodology is suitable for primary, secondary, and tertiary alkyl halides and also extended for double alkylative thiocyanation of the dibromoalkanes with excellent yields.
Collapse
Affiliation(s)
- Koustav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Palasetty Chandu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Debabrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Aliya V Jinilkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Manasi Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
49
|
Mohar M, Ghosh S, Hajra A. Visible Light Induced Three-Component 1,2-Dicarbofunctionalization of Alkenes and Alkynes. CHEM REC 2023; 23:e202300121. [PMID: 37309268 DOI: 10.1002/tcr.202300121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Harnessing visible-light in organic synthesis is one of the most effective methods that aligns with green and sustainable chemistry principles and hence skyrocketed in the last two decades. Similarly, three-component 1,2-dicarbofunctionalization of alkenes and alkynes has recently been a great choice to construct complex molecular systems in an easy and rapid manner. Therefore, light-induced reactions can be an excellent alternative to carry out 1,2-dicarbofunctionalization reactions, and very recently, organic chemists across the globe have fascinated us with their interesting articles. In this present review, we have summarized the recent advancements in the area of visible light induced three-component 1,2-dicarbofunctionalization of alkenes and alkynes till March 2023. We have categorized the discussion based on the catalysts used to carry out the transformations for better understanding and different important aspects of these transformations have also been covered.
Collapse
Affiliation(s)
- Mrittika Mohar
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
50
|
Zeng JH, Du DT, Liu BE, Zhang ZQ, Zhan ZP. Photoredox-Catalyzed Phosphonocarboxylation of Allenes with Phosphine Oxides and CO 2. J Org Chem 2023; 88:14789-14796. [PMID: 37816195 DOI: 10.1021/acs.joc.3c01583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Phosphonocarboxylation of allenes with diarylphosphine oxides and CO2 via visible-light photoredox catalysis was developed for the first time. This work provided practical and sustainable access to highly valuable but otherwise difficult-to-access linear allylic β-phosphonyl carboxylic acids in moderate yields with exclusive regio- and stereoselectivity. This method was also characterized by step and atom economy and transition-metal free and mild conditions. Preliminary mechanistic studies suggested that allyl-methyl carbanion species are the key intermediates.
Collapse
Affiliation(s)
- Jia-Hao Zeng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001, Fujian, People's Republic of China
| | - Deng-Tao Du
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| | - Bao-En Liu
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| | - Zhen-Qiang Zhang
- Yunnan Precious Metals Laboratory Company, Ltd., Kunming 650106, Yunnan, People's Republic of China
| | - Zhuang-Ping Zhan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001, Fujian, People's Republic of China
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| |
Collapse
|